
HAL Id: hal-03674690
https://hal.science/hal-03674690v3

Preprint submitted on 8 Jan 2023 (v3), last revised 22 Jan 2024 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Holonomic equations and efficient random generation of
binary trees
Pierre Lescanne

To cite this version:
Pierre Lescanne. Holonomic equations and efficient random generation of binary trees. 2023. �hal-
03674690v3�

https://hal.science/hal-03674690v3
https://hal.archives-ouvertes.fr

Holonomic equations and efficient random generation

of binary trees

Pierre Lescanne

École Normale Supérieure de Lyon,
LIP (UMR 5668 CNRS ENS Lyon UCBL),

46 allée d’Italie, 69364 Lyon, France
pierre.lescanne@ens-lyon.fr

orcid : 0000-0001-9512-5276

Abstract

Holonomic equations are recursive equations which allow computing efficiently numbers
of combinatoric objects. Rémy showed that the holonomic equation associated with binary
trees yields an efficient linear random generator of binary trees. I extend this paradigm
to Motzkin trees and Schröder trees and show that despite slight differences my algorithm
that generates random Schröder trees has linear expected complexity and my algorithm
that generates Motzkin trees is in O(n) expected complexity, only if we can implement
a specific oracle with a O(1) complexity. For Motzkin trees, I propose a solution which
works well for realistic values (up to size ten millions) and yields an efficient algorithm.
Keywords: combinatorics, random generation, Motzkin number, Catalan number, bi-
nary tree, unary-binary tree

1 Introduction

Considering a recurrence defining a sequence of integer coefficients Fn. In this paper, I am
interested in specific recurrences called “holonomic recurrence” where roughly speaking, “holo-
nomic” means that Fn+s is a combination, using polynomials in n, of the Fi’s, for n ≤ i ≤ n + s.
More precisely, (see Flajolet and Sedgewick’s book [14], Appendix B.4) the coefficients fulfill
the following recurrence:

Ps(n)Fn+s + Ps−1(n)Fn+s−1 + ... + P0(n)Fn = 0

for some n ≥ n0, where the Pj(n) are polynomials in n. This kind of recurrence is called a
P -recurrence. For instance, for Catalan numbers:

Cn −
n−1

∑
k=0

CkCn−k−1 = 0

is the classical recurrence that is used in general to defined them, but it is not a P -recurrence,
whereas

(n + 1)Cn − 2(2n − 1)Cn−1 = 0

is the P -recurrence, which will be considered later on. Notice that initial values should be
added to this P -recurrence. This will be considered in the paper for each specific case.

In this paper, I consider three families of binary trees (binary trees, Motzkin trees aka
unary-binary trees, Schröder trees) and their random generation. It turns out that holonomic
recurrences play a key role in the design of efficient random generation algorithms.

The three examples: binary trees, Motzkin trees, Schröder trees are interesting because
they have different holonomic equations, one (Catalan numbers) has one term on the right,

Holonomic equations and random generation Pierre Lescanne

one (Motzkin numbers) has a sum of two terms on the right and one (Schröder numbers) has a
subtraction of two terms, on the right. These yield different algorithms, as this will be explained
further in this paper.

This paper is associated with a Haskell program available on GitHub which serves as an
executable specification.

2 Random binary trees

Rémy’s algorithm [22] for generation of random binary trees is of linear complexity, i.e., O(n).
It is based on a constructive proof of the holonomic equation [23]:

(n + 1)Cn = 2(2n − 1)Cn−1

Here “constructive” means that an explicit bijection between objects counted by the both sides
of the equation is provided. In the case of binary trees, this holonomic equation is very peculiar
since Cn times a polynomial in n is equal to Cn−1 times a polynomial in n. We will see that this
is not the case for Motzkin numbers and Schröder numbers, but the paradigm can be extended.
Rémy’s algorithm is described by Knuth in [19] § 7.2.1.6 (pp. 18-19) and works on extended
binary trees, or just binary trees in which we distinguish internal nodes and external nodes or
leaves. The idea of the algorithm is that a random binary tree can be built by iteratively and
randomly drawing an internal node or a leaf in a random binary tree and inserting, between
it and its parent a new internal node and a new leaf either on the left or on the right (see
Figure 1). An insertion is also possible at the root. In this case, the new inserted node becomes
the root. The root can be seen as the child of a hypothetical node

⍟

T
→

○ ⋆

T

Figure 1: Rémy’s right insertion of a leaf

A binary tree of size n has n − 1 internal nodes and n leaves. We label binary trees with
numbers between 0 and 2n−2 such that internal nodes are labeled with odd numbers and leaves
are labeled with even numbers. Inserting a node in a binary tree of size n requires drawing
randomly a number between 0 and 4n − 3. This process can be optimized by representing a
binary tree as a list (a vector in Haskell), an idea sketched by Rémy and described by Knuth.
In this vector, even values are for internal nodes and odd values are for leaves. The root is
located at index 0. The left child of an internal node with label 2k+1 is located at index 2k+1
and its right child is located at index 2k + 2. Here is a vector representing a binary tree with
10 leaves and its drawing.

indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
values 1 13 0 2 5 9 7 8 4 11 17 12 10 15 3 16 14 18 6

2

https://github.com/PierreLescanne/Motzkin

Holonomic equations and random generation Pierre Lescanne

1

13 0

15 3

16 14 2 5

9 7

11 17 8 4

12 10 18 6

This tree was built by inserting the node 17 together with the leaf 18 in the following vector.

indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
values 1 13 0 2 5 9 7 8 4 11 6 12 10 15 3 16 14

which codes the tree

1

13 0

15 3

16 14 2 5

9 7

11 6 8 4

12 10

This was done by drawing a node (internal node or leaf, here the node with label 6, right child
of the node with label 9) and a direction (here right) and by inserting above this node a new
internal node (labeled 17) and, below the new inserted internal node, a new leaf of the left
(labeled 18). This double action (inserting the internal node and attaching the leaf) is done
by choosing a number in the interval [0..33] (in general, in the interval [0..(4n − 3)]). Assume
that in this case the random generator returns 21. 21 contains two pieces of information : its
parity (a boolean) and floor of its half. Half of 21 is 10, which tells that the new node 17 must
be inserted above the 11th node (in the vector) namely 6. Since 21 is odd, the rest of the tree
(here reduced to the leaf 6) is inserted on the right (otherwise it would be inserted on the left).
A new leaf 18 is inserted on the left (otherwise it would be inserted on the right).

Consider the same tree and suppose that the random value is 8. Half of 8 is 4. Hence the

3

Holonomic equations and random generation Pierre Lescanne

new internal node labeled by 17 is inserted above the node labeled by 5

1

13 0

15 3

16 14 2 5

9 7

11 6 8 4

12 10

and, since 8 is even, the rest of the tree is inserted on the left and a new leaf (labeled 18) is
inserted on the right.

1

13 0

15 3

16 14 2 17

5 18

9 7

11 6 8 4

12 10

The algorithm (Figure 2) works as follows. If n = 0, Rémy’s algorithm returns the vector
starting at 0 and filled with anything, since the whole algorithm works on the same vector with
the same size. In general, say that, for n−1, Rémy’s algorithm returns a vector v (vector is the
concept used in Haskell for arrays that can be changed in place). In our Haskell implementation
the function yields an object of type Gen (Vector Int) which returns vector and carries a
hidden random number generator. One accesses to the generator by get and stores the new
generator by put. One draws a random integer x between 0 and 4n − 3. Let k be half of x. In
the vector v one replaces the kth position with 2n − 1 and one appends two elements, namely
the kth item of v followed by 2n if x is even and 2n followed by the kth item of v if x is odd.

The algorithm builds a uniformly random decorated binary tree, i.e., a binary tree with
its leaves numbered 0, 2,... 2n. We notice that the construction of a tree with such labels
is unique, the labels of the internal nodes are a consequence of the construction, hence are
deduced from the labels of the leaves. If we ignore the leaves, we get a uniform distribution for
the undecorated binary trees (i.e., with no labels on the leaves).

In the program, rands is a vector of random floating numbers between 0 and 1. The reader
who wants to read a better typographic presentation of the program is invited to get the version
on my web page.

4

http://perso.ens-lyon.fr/pierre.lescanne/PUBLICATIONS/Motzkin_Rand_Gen.pdf

Holonomic equations and random generation Pierre Lescanne

1 rbt :: Int −> Int −> Gen (Vector Int)
2 rbt seed 0 = do put (mkStdGen seed)
3 return(initialVector // [(0,0)])
4 rbt seed n =
5 do v <− rbt seed (n−1)
6 generator <− get
7 let (rand, newGenerator) = randomR (0::Double,1) generator
8 put newGenerator
9 let x = floor (rand ∗ fromIntegral (4∗n−3))

10 −− x is a random value between 0 and 4n−3 −−
11 k = x ‘div‘ 2
12 case even x of
13 True −> return(v // [(k,2∗n−1),(2∗n−1,v!k),(2∗n,2∗n)])
14 False −> return(v // [(k,2∗n−1),(2∗n−1,2∗n),(2∗n,v!k)])

Figure 2: Haskell program for Rémy’s algorithm

3 Motzkin trees

Motzkin trees are also called unary-binary trees. This paper proposes an algorithm for random
generation of Motzkin trees. The algorithm takes the same paradigm as this of Rémy’s linear
algorithm for random generation of binary trees [22]. Assume n is the size of the trees. Recall
that Rémy’s algorithm is based on a bijective proof of the inductive equality:

(n + 1)Cn = 2(2n − 1)Cn−1

where the Cn’s are the Catalan numbers. My algorithm for random generation of Motzkin trees
is based on a bijective proof due to Dulucq and Penaud [12] of the inductive equality:

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2

where the Mn’s are the Motzkin numbers. At some point of the algorithm, an “oracle” choices
which subprogram to call, based on Mn and Mn−1. Since Mn and Mn−1 are big numbers, this
induces potentially not O(1) computations on big numbers. For a constant time computation
for the oracle, I propose a preprocessing.

4 Motzkin numbers and Motzkin trees

The nth Motzkin number Mn is the number of different ways of drawing non-intersecting chords
between n points on a circle (not necessarily touching every point by a chord). Motzkin numbers
count also well parenthesized expressions with a constant c, called Motzkin words. They are
words of length n in the language generated by the grammar M .

M = ε ∣ cM ∣ (M)M

The bijection between sets of non intersecting chords and well parenthesized words with

5

Holonomic equations and random generation Pierre Lescanne

Figure 3: The 9 non-intersecting chords between 4 points on a circle

cccc cc() c(c)
c()c (cc) (c)c
()cc (()) ()()

Figure 4: The 9 parenthesized words with constant c.

constant c is as follows: first one numbers nodes on the circle counterclockwise, as follows:

A position at the beginning of a chord on the circle corresponds to an opening parenthesis. A
position at the end of a chord on the circle corresponds to a closing parenthesis. A position
which is neither of those corresponds to the constant c.

Motzkin numbers count also routes in the upper quadrant from (0,0) to (0,4) with move
up, down and straight.

● ● ● ● ●
●

● ● ● ●
● ●

● ● ●

●
● ● ● ●

● ● ●
● ●

● ●
● ● ●

●
● ● ● ●

●
● ●

● ●
● ●

● ● ●

Figure 5: The 9 routes in the upper right quadrant from (0,0) to (0,4) with move up, down
and straight

6

Holonomic equations and random generation Pierre Lescanne

The bijection is as follows: an opening parenthesis corresponds to an up, a closing parenthesis
corresponds to a down and the constant c corresponds to a straight.

Motzkin number Mn counts also the number in unary-binary planar trees with n edges, that
are tree structures with nodes of arity one or two and with n edges. Let us call this number n
of edges the size of the Motzkin tree. Notice that the number of nodes of a Motzkin tee of size
n is n + 1, i.e., the size plus one. Figure 6 gives the trees for n = 4. The bijection f from well
parenthesized expressions with constant c to Motzkin trees is as follows. Its inverse f−1 is also
given.

f[ε] = ●

f[c w] =
●

f[w]

f[(w1) w2] =
●

f[w1] f[w2]

f−1[●] = ε

f−1
⎡⎢⎢⎢⎢⎣

●
t

⎤⎥⎥⎥⎥⎦
= c f−1[t]

f−1
⎡⎢⎢⎢⎢⎣

●
t1 t2

⎤⎥⎥⎥⎥⎦
= (f−1[t1]) f−1[t2]

Motzkin numbers fulfill the equation:

Mn+1 =Mn +
n−1

∑
i=0

MiMn−1−i

5 Dulucq-Penaud bijection proof

Motzkin numbers fulfill also the holonomic equation [14]:

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2.

Together with the equalities M0 = 1 and M1 = 1, Motzkin numbers can be computed and form
the sequence A001006 in the online encyclopedia of integer sequences [18]. In this section, I
present Dulucq and Penaud’s proof of this equality [12]. This proof relies on the exhibition of a
bijection between the objects counted by the left-hand side and those counted by the right-hand
side. The first idea is to consider specific binary trees called slanting binary trees and divide
those trees into 7 subclasses.

5.1 Slanting binary trees

Following Dulucq and Penaud, I represent Motzkin trees as specific binary trees in which leaves 2
are added. In such binary trees, only the three first configurations below are allowed and the
rightmost one is not

The first configuration corresponds to a binary node, the second configuration corresponds to a
unary node and the third configuration corresponds to an end node in the classical presentation
(for instance in Figure 6). I call such trees slanting trees.

Figure 6 shows the 9 Motzkin trees with 4 edges and their corresponding slanting trees. Let
us label each node of a slanting tree with a number between 1 and 2m + 1, where m is the
number of internal nodes of the slanting tree. Let us call such a labeled tree a labeled slanting
tree. Now consider labeled slanting trees with one marked leaf. Let us call it a leaf-marked

7

https://oeis.org/A001006

Holonomic equations and random generation Pierre Lescanne

●
●
●
●
●

●
●
●

● ●

●
●

● ●
●

●
●

● ●
●

●
● ●
●●

●
● ●
● ●

●
● ●

●
●

●
● ●

● ●

●
● ●
● ●

Figure 6: 9 Motzkin trees with 4 edges and their slanting trees

slanting tree. Below there is a labeled slanting tree of size 4 and a leaf-marked labeled slanting
tree, where the mark is on the leaf labeled 8.

3

5 4

7 1

6 8 0 2

3

5 4

7 1

6 8 0 2

This corresponds to the vector:

[3,0,2,5,4,7,1,6,8]

How nodes and leaves are labeled by numbers will be explained below and is essentially like

8

Holonomic equations and random generation Pierre Lescanne

binary trees. Just notice that internal nodes have odd labels and leaves have even labels. From
now on, let us forget the labels, but let us mark one of the leaves. In such trees with a marked
leaf, we can distinguish 7 general patterns of subtrees containing the marked leaf (Figure 7 first
column). The marked leaf is denoted by a star in a square, namely ⋆ . In the first group of 4
there are the patterns where the marked leaf is a right child and in the second group of 3, there
are the patterns where the marked leaf is a left child, hence, due to the constraints on slanting
trees, the other child (a right child) is also a leaf.

Let us call node-marked a slanting tree in which one internal node is marked. Let us call
marked tree, a slanting tree in which either a leaf or an internal node is marked.

How many leaves in a Motzkin tree?

The slanting tree associated with a Motzkin tree of size n (number of its edges) has n+2 leaves.
This can be shown by induction.

Basic case: If the Motzkin tree is ●, its size is 0 and its associated slanting tree has 2
leaves.

Adding a unary node: Assume we add a unary node above a Motzkin tree t of size n, this
yields a Motzkin tree t′ of size n+ 1 . The slanting tree associated with t′ has n+ 2 leaves
(the number of the leave of the slanting tree u associated with t) plus a new one added,
then all together n + 3.

t →
t

u → u

Adding a binary node: Assume we add a binary node above two Motzkin trees t1 and t2
of size n1 and n2, this yields a Motzkin tree t′ of size n1 + n2 + 2. The slanting trees

associated with
t1 t2

have n1 + n2 + 4 leaves.

5.2 A taxonomy of slanting trees

Recall Rémy’s algorithm which consists in inserting, at a marked position (internal node or
leaf), a leaf in a marked tree (see Figure 1). After insertion, the formerly marked node becomes
unmarked and the inserted leaf becomes marked. Here, since we are interested in Motzkin trees,
we insert a leaf on the right, above the marked node in the marked slanting tree and like in
Rémy’s algorithm, a leaf insertion on a marked tree is performed, but unlike Rémy’s algorithm
the insertion is performed only on the right and a leaf-marked slanting tree is produced. This
corresponds to what is done to pattern1, pattern3 and pattern4 in the middle column of Figure 7.
The leaf is inserted at a marked position in the marked tree of the middle column producing the
leaf-marked tree of the left column. But as we will see for the other patterns, there are other
ways to increase a slanting tree when it does not correspond to one of these three patterns.

6 The bijection

What makes the random generation of Motzkin trees trickier than Rémy’s algorithm is the
structure of the holonomic equation:

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2

9

Holonomic equations and random generation Pierre Lescanne

leaf-marked Choice and
slanting trees marked node-marked

slanting trees slanting trees
1.

⋆

▲ ▲

⋆

▲ ▲

2.

⋆ ▲ ▲

LR ,
⋆

▲ ▲
3.

⋆

⋆

4.

▲ ▲ ⋆

⋆

▲ ▲

RR ,
⋆

▲ ▲

5.

▲ ▲ ⋆

RL ,
⋆

▲ ▲
6.

⋆ ▲ ▲

LL ,
⋆

▲ ▲
7.

⋆

⋆

Figure 7: The 7 patterns of leaf-marked slanting trees

when compared to the equation:

(n + 1)Cn = 2(2n − 1)Cn−1

First, if we use a construction based on that equation, a Motzkin tree of size n can be built
from a Motzkin tree of size n − 1 or from a Motzkin tree of size n − 2. Thus there are at least
two cases to consider. Actually 7 cases as we will see, since the construction of a Motzkin tree
of size n−1 splits in 4 cases and the construction of a Motzkin tree of size n−2 splits in 3 cases.
Notice that Mn counts both the number of Motzkin trees of size n and the slanting trees with
n + 2 leaves.

Interpreting the holonomic equation

We conclude that (n + 2)Mn counts the number of leaf-marked slanting trees of size n, that
(2n + 1)Mn−1 counts the number of marked slanting trees of size n − 1 and that (n − 1)Mn−2

counts the number of node-marked slanting trees of size n−2. Therefore looking at the equation,

10

Holonomic equations and random generation Pierre Lescanne

we see that we should be able to build a leaf-marked slanting tree of size n from either a marked
slanting tree of size n − 1 or from a pair made of an item which can take one of three values
and of a node-marked slanting tree of size n − 2. Let us see how Dulucq and Penaud propose
to proceed.

1

⋆

▲ ▲

⋆

▲ ▲

3

⋆

⋆

4

▲ ▲ ⋆

⋆

▲ ▲

7

⋆

⋆

Figure 8: Contribution of marked slanting tree of size n − 1. for pattern7 marks a specific
case explained in Section The lower part

A taxonomy of leaf-marked slanting trees

Leaf-marked slanting trees can be sorted according to the position of their mark. This is done
in the first column of Figure 7. This column has two parts.

The upper part

In the upper part, we have four patterns in which the marked leaf is a right child. Let us call
them pattern1, pattern2, pattern3 and pattern4 (Figure 7). Three of them pattern1, pattern3
and pattern4 are obtained by Rémy’s right insertion of a leaf in a marked slanting tree. The
other pattern2 is not. Indeed if the marked leaf is removed, the tree that is obtained has a leaf
on the left and a node on the right, which is forbidden. This pattern will be obtained another
way.

The lower part

In the lower part, there are three patterns which correspond to the case where the marked leaf
is a left child, hence the sibling of a leaf (Figure 9); pattern7 cannot be obtained by a right
insertion of a leaf (Figure 7), this is why I mark it by . But Dulucq and Penaud noticed that

pattern ⋆ among marked slanting trees is not taken into consideration. Thus they propose

to associate this pattern ⋆ with pattern7, as shown in Figure 7.

11

Holonomic equations and random generation Pierre Lescanne

The bijection by cases

Case (2n + 1)Mn−1

The previously explained contribution to leaf-marked slanting trees of size n from marked
slanting tree of size n − 1 is summarized in Figure 8. All the patterns of marked slanting trees
are taken into account.

Case 3(n − 1)Mn−2

Let us now look at the three remaining patterns: pattern2, pattern5 and pattern6 ; forming the
lines of Figure 9. Those three patterns have the same model, namely an internal node with two
children: one child is an internal node and the other child is an internal node whose children are
two leaves, one of which is marked, the other is not. Depending on the position of the marked
leaf, we distinguish three cases.

• LL corresponds to the case where the marked node is on the left of the top node and on
the left of its parent node.

• LR corresponds to the case where the marked node is on the left of the top node and on
the right of its parent node.

• RL corresponds to the case where the marked node is on the right of the top node and
on the left of its parent node.

One notices that there is no case RR, because this would correspond to pattern4 considered
in the previous section. As a matter of fact, the three cases LL, LR and RL correspond to the
multiplicative factor 3 in the holonomic equation.

2

⋆ ▲ ▲

LR
⋆

▲ ▲

5

▲ ▲ ⋆

RL
⋆

▲ ▲

6

⋆ ▲ ▲

LL
⋆

▲ ▲

Figure 9: Contribution of node-marked slanting tree of size n − 2

Forgetting the marks on leaves

As Rémy noticed for binary trees, since we generate the leaf-marked slanting trees of size n
uniformly, we also get a uniform distribution of slanting trees of size n. Thus we can forget the
marks, which we do in the concrete algorithm.

12

Holonomic equations and random generation Pierre Lescanne

1 rMt :: Int −> Int −> Gen (Vector Int)
2 rMt seed 0 = do put (mkStdGen seed)
3 return $ initialVector // [(0,1),(1,0),(2,2)]
4 rMt seed 1 = do put (mkStdGen seed)
5 return $ initialVector // [(0,1),(1,3),(2,0),(3,2),(4,4)]
6 rMt seed n =
7 do generator <− get
8 let (rand, newGenerator) = randomR (0::Double,1) generator
9 put newGenerator

10 case oracle n rand of
11 True −> case1 seed n
12 False −> case2 seed n
13

14 case1 seed n =
15 do generator <− get
16 let (rand, newGenerator) = randomR (0::Double,1) generator
17 k = floor (rand ∗ (fromIntegral (2∗n)))
18 v <− rMt seed (n−1)
19 put newGenerator
20 case odd k || odd (v!k) || odd (v!(k−1)) of
21 True −> return $ v // [(k,2∗n+1),(2∗n+1,v!k),(2∗n+2,2∗n+2)]
22 False −> return $ v // [(k−1,2∗n+1),(2∗n+1,v!(k−1)),(2∗n+2,2∗n+2)]
23

24 case2 seed n =
25 do generator <− get
26 let (rand, newGenerator) = randomR (0::Double,1) generator
27 r = floor (rand ∗ (fromIntegral (3∗n−6)))
28 k = r ‘div‘ 3
29 c = r ‘rem‘ 3
30 v <− rMt seed (n−2)
31 put newGenerator
32 case c < 2 of
33 True −> return $ v // [(2∗k+1,2∗n−1),(2∗k+2,2∗n+1),
34 (2∗n−1,2∗n),(2∗n,2∗n+2),
35 (2∗n+1,v!(2∗k+1)),(2∗n+2,v!(2∗k+2))]
36 False −> return $ v // [(2∗k+1,2∗n−1),(2∗k+2,2∗n+1),
37 (2∗n−1,v!(2∗k+1)),(2∗n,v!(2∗k+2)),
38 (2∗n+1,2∗n),(2∗n+2,2∗n+2)]

Figure 10: Haskell program for random generation of Motzkin trees

7 A concrete algorithm for random generation of Motzkin
trees

The Haskell program of Figure 10 presents the algorithm for random generation of Motzkin
trees. In what follows, I make no distinction between the algorithm and the program and I
consider the Haskell program as an executable specification. The main function is called rMt
and returns an object of type Gen (Vector Int) like rbt in Figure 2.

13

Holonomic equations and random generation Pierre Lescanne

Assume that there is a function motzkin that returns the nth Motzkin number. Like for
Rémy’s algorithm, one represents a labeled slanting tree by a vector. In this vector, odd
labels are for internal and even labels are for leaves. Notice that the algorithm preserves two
properties:

1. The vector codes a slanting tree.

2. The vector of a Motzkin tree of size n has a length 2n + 3.

In order to choose which case to consider, namely (2n + 1)Mn−1 (case1) or 3(n − 1)Mn−2

(case2), the algorithm rMt requires a random value between 0 and (n+ 2)Mn which we call r.
If r is less than or equal to (2n+1)Mn−1, we are in case1, else we are in case2. Said otherwise,

given a random value c between 0 and 1 if c ≤ (2n+1)Mn−1
(n+2)Mn

we choose case1, if not we choose

case2. In another hand we can consider that we have an oracle which, given a random number r
between 0 and 1 and an n chooses between case1 and case2. If the oracle runs in constant
time (a challenge) and returns a boolean according to distribution given by the above inequality
then the algorithm has a linear time complexity and returns a random Motzkin tree distributed
according to the above inequality.

• case1: one draws at random a leaf or an internal node in a slanting tree of size n−1. This
means choosing at random an index k in the vector v. We get pattern7 if three conditions
are fulfilled.

1. The marked item, should be a right child. This means that k is even, since
the left child of a node of index 2p + 1 is 2p + 1 and the right child of this node is
2p + 2.

2. The marked item is a leaf. This means that v[k] is even, since leaves have even
labels. Notice that Haskell uses the notation v!k for our mathematical notation v[k].

3. The sibling item of the marked item is a leaf (a left child by the way). This
means that v[k − 1] is even.

In this case (k is even, v[k] is even and v[k − 1] is even) one inserts a node and a leaf as
shown by Figure 8, which corresponds in the code to:

v // [(k-1,2*n+1),(2*n+1,v!(k-1)),(2*n+2,2*n+2)]

In Haskell, the operator // updates vectors at once, it is called a bulk update. (2*n+1,v!(k-1))
means that the left child is a new node, at index 2 ∗ n + 1, which points to the former
value of v!(k-1). The right child is a new leaf.

The other cases (pattern1, pattern3, pattern4) correspond to cases when one of k, v[k] or
v[k − 1] is odd. The update is then

v // [(k,2*n+1),(2*n+1,v!k),(2*n+2,2*n+2)]

which corresponds to the first lines of Figure 8.

• case2: In this case we consider a random node-marked slanting trees of size n − 2 and a
random values among LR, RL, LL. For that we draw a number r between 0 and 3n − 6,
from which r÷3 gives a random number between 0 and n−2 (a random node) and r mode 3
yields a random number among 0, 1 and 2. We notice that LR and LL correspond to the
same transformation, while RL corresponds to another transformation. In each case one
adds four nodes, with labels 2n − 1, 2n, 2n + 1 and 2n + 2. Thus,

14

Holonomic equations and random generation Pierre Lescanne

v // [(2*k+1,2*n-1),(2*k+2,2*n+1),(2*n-1,2*n),(2*n,2*n+2),

(2*n+1,v!(2*k+1)),(2*n+2,v!(2*k+2))]

is the transformation for LR and LL and

v // [(2*k+1,2*n-1),(2*k+2,2*n+1),(2*n-1,v!(2*k+1)),(2*n,v!(2*k+2)),

(2*n+1,2*n),(2*n+2,2*n+2)]

corresponds to RL. We let the reader check that the code of Figure 10 corresponds to the
pictures of Figure 9.

8 Linearity and oracle

The linearity of the algorithm depends on an oracle (actually this of Figure 11) which should
decide an inequality in constant type. In the case of the plain implementation of Figure 11, the
complexity of the algorithm rMt is clearly non asymptotically linear.

However the inequality rand < (2n+1)Mn−1
(n+2)Mn

of the oracle can be approximated by a precom-

puted table which I call ratioM (of actual size 10004) in my case), and which is used in the
oracle in Figure 12. For sizes larger that this bound, I take just the value 0.66666666667, which
is a good approximation, since the fraction goes down to the limit 2

3
. The actual implemen-

tation runs up to size 9 × 106 and never requires (in the benchmarks) more than 10 digits of
precision (see next section). But asymptotic linearity is not guaranteed.

For a better efficiency, the program rMt can run without recursive calls. In this case, the
stack of the calls is first computed and the construction of the vector is performed by popping
the stack. I wrote a Python program, which generates random Motzkin trees of size 9 millions
in less that 50 seconds on a laptop. In all the benchmarks, I checked that the difference between
the drawn rand and the fraction is always larger than 10−10. Hence, digits that are not 6 are
never checked, which shows that the oracle called oracleRatioM corresponds to the oracle called
oracleMotzkin in this size interval [0 .. 9 × 106] and runs in constant time.

9 Schröder trees

In this section, I define Schröder trees and a proof by bijection of the holonomic equation
for defining numbers that count Schröder trees, aka Schröder numbers or Schröder-Hipparchus

1 oracleMotzkin :: Int −> Double −> Bool
2 oracleMotzkin n rand =
3 let r = floor (rand ∗ fromIntegral (fromIntegral (n+2) ∗ (motzkin n)))
4 in r <= (fromIntegral (2∗n+1)) ∗ (motzkin (n−1))

Figure 11: The plain oracle

1 oracleRatioM :: Int −> Double −> Bool
2 oracleRatioM n rand = case n <= 100004 of
3 True −> ratioM!n <= rand
4 False −> 0.66666666667 <= rand

Figure 12: The approximation oracle

15

Holonomic equations and random generation Pierre Lescanne

Figure 13: The 11 Schröder trees with 4 leaves.

numbers. From this proof I derive a quasi linear algorithm for random generation of Schröder
trees.

9.1 Definition of Schröder trees

We take the definition of Knuth [19] § 7.2.1.6 (pp. 41): ”A Schröder tree is a binary tree in
which every nonnull right link is colored either white or black”. We represent black with

and white with . But unlike Knuth, we follow Foata and Zeilberger [16] and we say that a

Schröder tree has size n it it has n leaves, hence n− 1 nodes. For instance, Schröder trees with
4 leaves are given in Figure 13.

Schröder trees are counted by numbers Sn, which form the sequence A001003 in the online
encyclopedia of integer sequences [18] and which fulfill the holonomic equations:

(n + 1)Sn+1 − 3(2n − 1)Sn + (n − 2)Sn−1 = 0

that we will use on the form

(n + 1)Sn+1 = 3(2n − 1)Sn − (n − 2)Sn−1

Notice that Foata and Zeilberger [16] use for the constructive proof:

3(2n − 1)Sn = (n + 1)Sn+1 + (n − 2)Sn−1 (1)

Schröder trees count also ordinary trees with n leaves and no node of degree one. One “shrinks”
the white edges, merging the nodes that they connects (see [19] Exercise 66). For trees with
4 leaves, the reader can see the bijection in the lines of Figure 13 and in the odd lines of
Figure 14. Trees in correspondence are on the same row. Schröder numbers count also partitions
of polygons [13]. The bijection between ordinary trees with 4 leaves and no node of degree one

16

https://oeis.org/A001003

Holonomic equations and random generation Pierre Lescanne

2 2 2 2 2 2

2 2

2

2

2 2

2

2 2 2

αβγδ (αβ)γδ α(β(γδ)) α(βγδ)

β γ

α δ

β γ

α δ

β γ

α δ

β γ

α δ

2
2

2 2

2 2
2 2

2
2 2 2

2
2

2 2
α((βγ)δ) α(βγ)δ (αβγ)δ (α(βγ)δ
β γ

α δ

β γ

α δ

β γ

α δ

β γ

α δ

2
2

2 2

2 2 2 2
2 2

2 2

((αβ)γ)δ (αβ)(γδ) (αβ)γδ
β γ

α δ

β γ

α δ

β γ

α δ

Figure 14: 11 Trees having no node of degree one and 4 leaves, associated with
11 partitions of pentagons

and partitions of pentagons (polygons with 5 edges) is illustrated by Figure 14. First one
associates with each tree a parenthesized expression in α, β, γ and δ, in this order. Then
each parenthesized expression is associated with a unique partition of the pentagon. For this
purpose, a basic edge is chosen and other edges are named clockwise by letters α, β, γ, δ.
If one proceeds starting at edge α, each diagonal closes a polygon (with less edges) in which
the other edges have been already named by an expression. Therefore one can associate a
partition with each expression as this is presented in Figure 14. One can process the same way
for hexagons, heptagons etc.

Didier Arquès and Alain Giorgetti have shown that planar rooted hypergraphs with vertices
only of the outer face are also counted by Schröder numbers [3].

17

Holonomic equations and random generation Pierre Lescanne

9.2 Foata and Zeilberger bijection

In identity (1):

• (2n−1)Sn counts marked Schröder trees of size n, where nodes and leaves can be marked,
therefore 3(2n− 1)Sn, counts pairs made of one of three values and of a marked Schröder
tree,

• (n + 1)Sn+1 counts leaf-marked Schröder trees of size n + 1,

• (n − 2)Sn−1 counts node-marked Schröder trees of size n − 1.

In order to prove identity (1), Foata and Zeilberger build a one-to-one function which associates,
with a pair of a number 0, 1 or 2 (coded by Foata and Zeilberger as L1, L2 and R1) and a
marked Schröder tree of size n, either a leaf-marked Schröder tree of size n+1 or a node-marked
Schröder tree of size n − 1.

Foata and Zeilberger bijection [16] that proves identity (1) is based on constructions similar
to Rémy’s insertion (Figure 1), with the difference that there are two left insertions, one that
corresponds to a black link and one that corresponds to a white link (Figure 15). Due to the

⋆ ○
T

⋆ ○
T

○ ⋆

T

Figure 15: Insertion of a leaf in Foata and Zeilberger bijection

constraints on white links in Schröder trees, there are three patterns (Figure 16), with impossible
insertion, when one tries to insert a left leaf to become a left sibling of a leaf connected with a
white link. Two patterns (a and c in Figure 16) can be ”recovered”. The third pattern (b in
in Figure 16) is shrunk toward a Schröder tree of size n − 1. This corresponds to a fail in the
algorithm.

⋆ ▲ ⋆

▲ ▲
▲ ⋆

a b c

Figure 16: Three impossible left insertions of leaves

Similarly there are two unreachable cases by left or right insertion. They are patterns which
are the results of a right or left insertion on a leaf which are a right child by a white link.

Let us call L1, L2 and R1 the three labels. Therefore Figure 18 gives the correspondence
between pairs of a label from {L1, L2,R2} and of a marked Schröder tree, with either a leaf-
marked tree of size n + 1 or a node marked tree of size n − 1.

Cases L1 and R1. One inserts a leaf with a black link. This is exactly like Rémy’s insertion.

18

Holonomic equations and random generation Pierre Lescanne

▲
⋆

▲
⋆

Figure 17: Two unreachable

Case L2. This case deals with a left insertion with a white right link.

First line: The mark is on a node. The left insertion with a white right link is possible.

Second line: The mark is on a left leaf and the right link is black. The left insertion
yields a forbidden pattern (a right white link toward a leaf). But by twisting the tree
and swapping the colors of the right links, one reach the first unreachable pattern of
Figure 17.

Third line: The mark is on a left leaf and the right link is white. Then the left child
is not a leaf. The left insertion is forbidden as well. Therefore by removing the left
leaf one gets a node marked tree of size n − 1.

Fourth line: The mark is on a right leaf. The left insertion yields a forbidden pattern,
but by swapping the colors of the right link one gets the second unreachable pattern
of Figure 17.

10 A concrete algorithm for random generation of Schröder
trees

The program of Figure 19 presents the algorithm for random generation of Schröder trees. Like
in previous cases one uses an array of size 2n + 1. But in addition to the indices for the next
nodes, one adds a boolean. This boolean says that the right link that starts from the node
corresponding to this index is white. Hence each cell of the array contains a pair (k, b) where
k is an index and b is a boolean. According to the constraints induced on the Schröder trees,
the pair corresponding to a boolean True has as a first component an odd number, since this
first component corresponds to a link to a node. Since the node is a right child, it is located
at an even index. If these constraints are not fulfilled, the second component must be a False.
Therefore in the program when the programmer adds a pair (k, True) at a position m, she has
to check that k is odd and m is even. In another hand, if she writes (m, (k, True)) for such
an operation, the programmer has to check that it is of the form (2p, (2q + 1, T rue)). This
constraints is an invariant of the program. The case when Foata and Zeilberger produce a
Schröder tree of size n − 2 corresponds in my algorithm to a “failure”, that is a “retry”: the
subprogram body is called with a new generator.

There are six cases. Assume one draws a number x between 0 and 6n − 4 and let us call
k the number x ÷ 3. The values x mod 3 discriminate among L1, L2 and R2: 0 for L1, 1 for
L2 and 2 for R1. The cases L1 and R1 are easy. Assume also that at the kth index the array
contains (h, b).

L1 corresponds in the code to

(v // [(k,(2*n-1,False)),(2*n-1,(2*n,False)),(2*n,v!k)]

19

Holonomic equations and random generation Pierre Lescanne

L1

⍟

⋆ ⍟

L2

⋆

▲ ▲ ⋆

▲ ▲

⋆ ▲
▲

⋆

←→ ↓↑
▲

⋆

⋆

▲ ▲

↘
⋆

▲ ▲

▲ ⋆

▲
⋆

↓↑
▲

⋆

R1

⍟

⍟ ⋆

Figure 18: Foata and Zeilberger isomorphism in pictures

The links are black hence the booleans are False.

L2 and h is odd. This means that the mark is on a node. This corresponds to the code:

v// [(k,(2*n-1,False)),(2*n-1,(2*n,False)),(2*n,(fst(v!k),True))]

Clearly, 2*n,(fst(v!k),True) fulfills the constraints (2p, (2q+1, T rue)) since fst(v!k),
that is h, is odd.

L2 and h is even and k is odd and the second component of v!(k+1) is False: This
means that the mark is on a leaf (h is even) which is a left child (k is odd) and the link
that goes to the sibling leaf is black. This corresponds to the code:

v//[(k,v!(k+1)),(k+1,(2*n-1,True)),(2*n-1,v!k),(2*n,(2*n,False))]

The reader may check that the code corresponds to the picture of Figure 18, line 2.
(k+1,(2*n-1,True)) fulfills the constraints (2p, (2q + 1, T rue)) since k + 1 is even and
2n − 1 is odd.

L2 and h is even and k is odd and the other link is white and the second component
of v!(k+1) is True: This corresponds to a failure, and the program loops with a new
random generator.

20

Holonomic equations and random generation Pierre Lescanne

1 type Gen = State StdGen
2

3 rst :: Int −> Int −> Gen (Vector (Int,Bool))
4 rst seed 0 = do put (mkStdGen seed)
5 return (initV // [(0,(0, False))])
6 rst seed n =
7 let g = rst seed (n−1)
8 body generator =
9 do v <− g

10 let (rand, newGenerator) = randomR (0::Double,1) generator
11 x = floor (rand ∗ fromIntegral (6∗n−4))
12 −− x is a random value between 0 and 6n − 4
13 k = x ‘div‘ 3
14 put newGenerator
15 case x ‘mod‘ 3 of
16 0 {−L1−} −> return (v // [(k,(2∗n−1,False)),
17 (2∗n−1,(2∗n,False)),
18 (2∗n,v!k)]) −− L1
19 1 {−L2−} −> case odd(fst (v!k)) of
20 True {− not a leaf−}−> return (v// [(k,(2∗n−1,False)),
21 (2∗n−1,(2∗n,False)),
22 (2∗n,(fst(v!k),True))])
23 False −> case odd k of
24 True {− the leaf is on the left −} −> case snd (v ! (k+1)) of
25 False {− the other link is black−} −>
26 return (v//[(k,v!(k+1)),
27 (k+1,(2∗n−1,True)),
28 (2∗n−1,v!k),(2∗n,(2∗n,False))])
29 {−Failure−} True {− the other link is white −} −> body newGenerator
30 False {− the leaf is on the right −} −>
31 return (v//[(k,(2∗n−1,True)),
32 (2∗n−1,v!k),
33 (2∗n,(2∗n,False))])
34 2 {−R1−} −> return (v // [(k,(2∗n−1,False)),
35 (2∗n−1,v!k),
36 (2∗n,(2∗n,False))])
37 in do generator <− get
38 body generator

Figure 19: Haskell program for random generation of Schröder trees.

L2 and h is even and k is even: This means that the mark is a leaf (h is even) which is a
right child. This corresponds to the code:

v//[(k,(2*n-1,True)),(2*n-1,v!k),(2*n,(2*n,False))]

(k,(2*n-1,True)) fulfills the constraints (2p, (2q + 1, T rue)) since k is even and 2n − 1
is odd.

R2 corresponds in the code to

21

Holonomic equations and random generation Pierre Lescanne

v // [(k,(2*n-1,False)),(2*n-1,v!k),(2*n,(2*n,False))

The links are black hence the booleans are False.

One may notice that in the array, only values at odd indices require to carry a boolean, and
this boolean is required only when the first value of the pair is odd. This suggests a better data
structure which may save little space.

10.1 Ratio of failures and average linear complexity

The loop in rst can be sketched by the following program P:

1 while True:
2 r = random.randint(0,2)
3 if r == 0:
4 break
5 elif r == 1:
6 continue
7 else:
8 break

despite in rst, the loop happens less often. In P, one breaks with probability 2
3
, in the first run

of the loop, with probability 2
32

in the second run of the loop, with probability 2
33

in the third
run of the loop, etc. Therefore if the cost of executing the statements of the loop is c, the total
average cost of the loop is:

c
∞

∑
i=1

2

3i
= c.

10.2 Benchmarks

Benchmarks are done on a Python program, with a while loop, which mimics the Haskell program.
See Figure 20. A third column yields the ratio of number of fails over the size of the produced
tree. Computations are run on a laptop with 4 Gb of memory.

size time ratio

1 000 0.012s 0.024
5 000 0.031s 0.0288

10 000 0.064s 0.025
50 000 0.200s 0.0269

100 000 0.290s 0.02707
500 000 1.295s 0.027762

1 000 000 3.065s 0.027883
5 000 000 15.183s 0.0276378

10 000 000 30.738s 0.0275827

Figure 20: Benchmarks for Schröder trees

22

Holonomic equations and random generation Pierre Lescanne

11 Related Works

Our work was inspired by Jean-Luc Rémy’s algorithm [22]. Laurent Alonso [1] proposed an
algorithm for generating uniformly Motzkin trees. His method consists in generating the num-
ber k of binary nodes with the correct probability law; he uses then standard techniques to
generate a unary-binary tree with k binary nodes among n nodes. The number of trees with k
binary nodes is over-approximated by values that follow a binomial distribution: choosing k is
therefore done using random generations for a binomial law and rejections. Therefore his algo-
rithm is linear on the average, with possible but rare long sequences of rejection. Dominique
Gouyou-Beauchamps and Cyril Nicaud [17] propose a random generation for color Motzkin
trees which is linear on the average and Srečko Brlek et al. [8] propose an extension of Alonso’s
algorithm to generalized versions of Motzkin trees.

Axel Bacher, Olivier Bodini and Alice Jacquot [4] propose an algorithm with similar ideas.
Especially their Figure 2 shares similarity with our Figure 9. There “operations” G3, G4

and G5 are connected with our cases RL, LR and LL respectively. #↗ corresponds to ⋆

and #↖ corresponds to ⋆ . The algorithm they propose has a linear expected complexity, like
Alonso’s. Let us also mention generic Boltzmann’s samplers with exact-size which apply among
others to Motzkin trees [6, 20] and generic algorithms [10, 21] with linear expected complexity.

Denise and Zimmermann [9] discuss what can be done on floating-point arithmetic when
generating random structures. The authors focus on decomposable labeled structures [15] and
address the problem of choice (which I call oracle), with a specific section on Motzkin trees.

After studying the random generation of Motzkin trees and reading Foata and Zeilberger
paper, I started the implementation of a random generation of Schröder trees, which turns
out to be of expected linear complexity. Actually Laurent Alonso, René Schott and Jean-Luc
Rémy [2] proposed another linear algorithm for random generation of Schröder trees, on the
same principle as Alonso’s algorithm for the generation of Motzkin trees. Like this quasi-linear
algorithm, it proceeds in two steps: first, it chooses randomly the number k of leaves with an
adequate probability and a rejection technique, second, it generates a random Schröder tree
with k leaves. In comparison, my algorithm is direct. I deal only with Schröder trees, not with
Schröder trees with k leaves and I am very closed to Rémy’s algorithm and to my algorithm
for random generation of Motzkin trees.

Acknowledgments

I thank Laurent Alonso, Maciej Bendkowski, Éric Fusy, Alain Giorgetti and Jean-Luc Rémy
for interesting discussions and suggestions.

12 Conclusion

Generating Motzkin trees and Schröder trees has many potential applications [11, 5, 2]. My
algorithm for generation of Motzkin trees has a simple code and is linear and my algorithm
for Schröder trees is direct. Among the possible extensions of my method which could be
explored, there is the generation of extended versions of Motzkin structures like Motzkin trees
with colored leaves [17] or Motzkin paths with k long straights [8]. k = 1 corresponds to Motzkin
paths and k = 2 to Schröder paths. On another hand, Bracucci et al. [5] study a family of sets of
permutations: M1,M2, ...,M∞, in whichM1 is for Motzkin permutations (that are Motzkin
trees up to a bijection) and M∞ is for Catalan permutations (that are binary trees up to a
bijection) an interpolation of our method seems doable.

23

Holonomic equations and random generation Pierre Lescanne

Deriving linear algorithms for the generation of random objects applies to other structures.
Indeed the production of a holonomic function can be mechanized by the software GFUN [24].
However, for my purpose, this method has limitations, since the size of the equation can blow
up as shown by Figure 3 of [7] for instance.

References

[1] Laurent Alonso. Uniform generation of a Motzkin word. Theor. Comput. Sci., 134(2):529–536,
1994.

[2] Laurent Alonso, Jean-Luc Rémy, and René Schott. Uniform generation of a Schröder tree. Inf.
Process. Lett., 64(6):305–308, 1997. doi:10.1016/S0020-0190(97)00174-9.

[3] Didier Arquès and Alain Giorgetti. Une bijection géométrique entre une famille d’hypercartes et
une famille de polygones énumérées par la série de Schröder. Discret. Math., 217(1-3):17–32, 2000.
doi:10.1016/S0012-365X(99)00253-8.

[4] Axel Bacher, Olivier Bodini, and Alice Jacquot. Efficient random sampling of binary and unary-
binary trees via holonomic equations. CoRR, abs/1401.1140, 2014.

[5] Elena Barcucci, Alberto Del Lungo, Elisa Pergola, and Renzo Pinzani. From Motzkin to Catalan
permutations. Discret. Math., 217(1-3):33–49, 2000. doi:10.1016/S0012-365X(99)00254-X.

[6] Maciej Bendkowski, Olivier Bodini, and Sergey Dovgal. Polynomial tuning of multiparametric
combinatorial samplers. In Markus E. Nebel and Stephan G. Wagner, editors, Proceedings of the
Fifteenth Workshop on Analytic Algorithmics and Combinatorics, ANALCO 2018, New Orleans,
LA, USA, January 8-9, 2018, pages 92–106. SIAM, 2018. doi:10.1137/1.9781611975062.9.

[7] Maciej Bendkowski and Pierre Lescanne. On the enumeration of closures and environments with
an application to random generation. Log. Methods Comput. Sci., 15(4), 2019. doi:10.23638/

LMCS-15(4:3)2019.

[8] Srecko Brlek, Elisa Pergola, and Olivier Roques. Non uniform random generation of generalized
Motzkin paths. Acta Informatica, 42(8-9):603–616, 2006. doi:10.1007/s00236-006-0008-x.

[9] Alain Denise and Paul Zimmermann. Uniform random generation of decomposable structures
using floating-point arithmetic. Theor. Comput. Sci., 218(2):233–248, 1999. doi:10.1016/

S0304-3975(98)00323-5.

[10] Luc Devroye. Simulating size-constrained Galton-Watson trees. SIAM J. Comput., 41(1):1–11,
2012. doi:10.1137/090766632.

[11] R. Donaghey and L. W. Shapiro. Motzkin numbers. Journal of Combinatorial Theory, Series A,
23(3):291–301, 1977.

[12] Serge Dulucq and Jean-Guy Penaud. Interprétation bijective d’une récurrence des nombres de
Motzkin. Discret. Math., 256(3):671–676, 2002. doi:10.1016/S0012-365X(02)00342-4.

[13] I. M. H. Etherington. Some problems of non-associative combinations. The Edinburgh math. notes,
32:i–vi, 1940. doi:https://doi.org/10.1017/S0950184300002639.

[14] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
2008.

[15] Philippe Flajolet, Paul Zimmermann, and Bernard Van Cutsem. A calculus for the random
generation of labelled combinatorial structures. Theor. Comput. Sci., 132(2):1–35, 1994. doi:

10.1016/0304-3975(94)90226-7.

[16] Dominique Foata and Doron Zeilberger. A classic proof of a recurrence for a very classical sequence.
J. Comb. Theory, Ser. A, 80(2):380–384, 1997. doi:10.1006/jcta.1997.2814.

[17] Dominique Gouyou-Beauchamps and Cyril Nicaud. Random generation using binomial approxi-
mations. In 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods
in the Analysis of Algorithms (AofA’10), pages 359–372, Vienna, Austria, 2010.

24

https://doi.org/10.1016/S0020-0190(97)00174-9
https://doi.org/10.1016/S0012-365X(99)00253-8
https://doi.org/10.1016/S0012-365X(99)00254-X
https://doi.org/10.1137/1.9781611975062.9
https://doi.org/10.23638/LMCS-15(4:3)2019
https://doi.org/10.23638/LMCS-15(4:3)2019
https://doi.org/10.1007/s00236-006-0008-x
https://doi.org/10.1016/S0304-3975(98)00323-5
https://doi.org/10.1016/S0304-3975(98)00323-5
https://doi.org/10.1137/090766632
https://doi.org/10.1016/S0012-365X(02)00342-4
https://doi.org/https://doi.org/10.1017/S0950184300002639
https://doi.org/10.1016/0304-3975(94)90226-7
https://doi.org/10.1016/0304-3975(94)90226-7
https://doi.org/10.1006/jcta.1997.2814

Holonomic equations and random generation Pierre Lescanne

[18] OEIS Foundation Inc. The on-line encyclopedia of integer sequences. Published electronically at
https://oeis.org/, 2022.

[19] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Generating All
Combinations and Partitions. Addison-Wesley Publishing Company, 2005.

[20] Pierre Lescanne. Boltzmann samplers for random generation of lambda terms. CoRR,
abs/1404.3875, 2014. URL: http://arxiv.org/abs/1404.3875, arXiv:1404.3875.

[21] Konstantinos Panagiotou, Leon Ramzews, and Benedikt Stufler. Exact-size sampling of enriched
trees in linear time, 2021. URL: https://arxiv.org/abs/2110.11472, doi:10.48550/ARXIV.

2110.11472.

[22] Jean-Luc Rémy. Un procédé itératif de dénombrement d’arbres binaires et son application à leur
génération aléatoire. RAIRO Theor. Informatics Appl., 19(2):179–195, 1985. doi:10.1051/ita/

1985190201791.

[23] Olinde Rodrigues. Sur le nombre de moyens d’effectuer un produit de n facteurs. Journal de
mathématiques pures et appliquées, page 549, 1938.

[24] Bruno Salvy and Paul Zimmermann. GFUN: a Maple package for the manipulation of generating
and holonomic functions in one variable. ACM Trans. Math. Softw., 20(2):163–177, 1994. doi:

10.1145/178365.178368.

25

https://oeis.org/
http://arxiv.org/abs/1404.3875
http://arxiv.org/abs/1404.3875
https://arxiv.org/abs/2110.11472
https://doi.org/10.48550/ARXIV.2110.11472
https://doi.org/10.48550/ARXIV.2110.11472
https://doi.org/10.1051/ita/1985190201791
https://doi.org/10.1051/ita/1985190201791
https://doi.org/10.1145/178365.178368
https://doi.org/10.1145/178365.178368

	Introduction
	Random binary trees
	Motzkin trees
	Motzkin numbers and Motzkin trees
	Dulucq-Penaud bijection proof
	Slanting binary trees
	A taxonomy of slanting trees

	The bijection
	A concrete algorithm for random generation of Motzkin trees
	Linearity and oracle
	Schröder trees
	Definition of Schröder trees
	Foata and Zeilberger bijection

	A concrete algorithm for random generation of Schröder trees
	Ratio of failures and average linear complexity
	Benchmarks

	Related Works
	Conclusion

