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Abstract

Motzkin trees are also called unary-binary trees. This paper proposes a linear algorithm
for uniform random generation of Motzkin trees. The algorithm uses the same paradigm
as this of Rémy’s linear algorithm for random generation of binary trees and is based on a
preliminary computation.
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1 Introduction

Motzkin trees are also called unary-binary trees. This paper proposes a linear algorithm for
random generation of Motzkin trees. The algorithm takes the same paradigm as this of Rémy’s
linear algorithm for random generation of binary trees [19]. Assume n is the size of the trees.
Rémy’s algorithm is based on a bijective proof of the inductive equality:

(n + 1)Cn = 2(2n − 1)Cn−1

where the Cn’s are the Catalan numbers. My algorithm for random generation of Motzkin trees
is based on a bijective proof due to Dulucq and Penaud [10] of the inductive equality:

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2

where the Mn’s are the Motzkin numbers. At some points of the algorithm, choices have
to be made. To avoid an excessive cost for these steps, we propose a preprocessing. This
paper is associated with a Haskell program available on GitHub which serves as an executable
specification.

2 Motzkin numbers and Motzkin trees

The nth Motzkin number Mn is the number of different ways of drawing non-intersecting chords
between n points on a circle (not necessarily touching every point by a chord). Motzkin numbers
count also well parenthesized expressions with a constant c, called Motzkin words. They are
words of length n in the language generated by the grammar M .

M = ε ∣ cM ∣ (M)M

https://github.com/PierreLescanne/Motzkin
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Figure 1: The 9 non-intersecting chords between 4 points on a circle

cccc cc() c(c)
c()c (cc) (c)c
()cc (()) ()()

Figure 2: The 9 parenthesized words with constant c.

The bijection between sets of non intersecting chords and well parenthesized words with
constant c is as follows: first one numbers nodes on the circle counterclockwise, as follows:

A position at the beginning of a chord on the circle corresponds to an opening parenthesis. A
position at the end of a chord on the circle corresponds to a closing parenthesis. A position
which is neither of those corresponds to the constant c.

Motzkin numbers count also routes in the upper quadrant from (0,0) to (0,4) with move
up, down and straight.

The bijection is as follows: an opening parenthesis corresponds to an up, a closing parenthesis
corresponds to a down and the constant c corresponds to a straight.

Motzkin number Mn counts also the number in unary-binary planar trees with n edges, that
are tree structures with nodes of arity one or two and with n edges. Let us call this number n
of edges the size of the Motzkin tree. Notice that the number of nodes of a Motzkin tee of size
n is n + 1, i.e., the size plus one. Figure 6 gives the trees for n = 4. The bijection f from well
parenthesized expressions with constant c to Motzkin trees is as follows. Its inverse f−1 is also
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Figure 3: The 9 routes in the upper right quadrant from (0,0) to (0,4) with move up, down
and straight

given.

f[ε] = ●

f[c w] =
●

f[w]

f[(w1) w2] =
●

f[w1] f[w2]

f−1[●] = ε

f−1
⎡⎢⎢⎢⎢⎣

●
t

⎤⎥⎥⎥⎥⎦
= c f−1[t]

f−1
⎡⎢⎢⎢⎢⎣

●
t1 t2

⎤⎥⎥⎥⎥⎦
= (f−1[t1]) f−1[t2]

Motzkin numbers fulfill the equation:

Mn+1 =Mn +
n−1
∑
i=0

MiMn−1−i

3 Random binary trees

Rémy’s algorithm [19] for generation of random binary trees is linear. It is based on a construc-
tive proof of the holonomic equation:

(n + 1)Cn = 2(2n − 1)Cn−1

where, roughly speaking, “holonomic” means that Cn is a linear combination of the Ci’s, for
0 ≤ i < n (see Flajolet and Sedgewick’s book [11], Appendix B.4). Here this holonomic equation
is very peculiar since Cn is equal to Cn−1 times a factor. We will see that this is not the case
for Motzkin numbers. Rémy’s algorithm is described by Knuth in [16] § 7.2.1.6 (pp. 18-19) and
works on extended binary trees, or just binary trees in which we distinguish internal nodes and
external nodes or leaves. The idea of the algorithm is that a random binary tree can be built
by iteratively and randomly drawing an internal node or a leaf in a random binary tree and
inserting, between it and its father a new internal node and a new leaf either on the left or on
the right (see Figure 4). An insertion is also possible at the root. In this case, the new inserted
node becomes the root. This is not a specific case in the algorithm as we will see. The root can
be seen as the child of an hypothetical node

A binary tree of size n has n − 1 internal nodes and n leaves. We label binary trees with
numbers between 0 and 2n−2 such that internal nodes are labeled with odd numbers and leaves
are labeled with even numbers. Inserting a node in a binary tree of size n requires drawing
randomly a number between 0 and 4n − 3. This process can be optimized by representing a
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⍟

T

→
○ ⋆

T

Figure 4: Rémy’s right insertion of a leaf

binary tree as a list (a vector in Haskell), an idea sketched by Rémy and described by Knuth.
In this vector, even values are for internal nodes and odd values are for leaves. The root is
located at index 0. The left child of an internal node with label 2k+1 is located at index 2k+1
and its right child is located at index 2k + 2. Here is a vector representing a binary tree with
10 leaves and its drawing.

indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
values 1 13 0 2 5 9 7 8 4 11 17 12 10 15 3 16 14 18 6

1

13 0

15 3

16 14 2 5

9 7

11 17 8 4

12 10 18 6

This tree was built by inserting the node 17 together with the leaf 18 in the following vector.

indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
values 1 13 0 2 5 9 7 8 4 11 6 12 10 15 3 16 14

which codes the tree

1

13 0

15 3

16 14 2 5

9 7

11 6 8 4

12 10

4
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This was done by drawing a node (internal node or leaf, here the node with label 6, right child
of the node with label 9) and a direction (here right) and by inserting above this node a new
internal node (labeled 17) and, below the new inserted internal node, a new leaf of the left
(labeled 18). This double action (inserting the internal node and attaching the leaf) is done
by choosing a number in the interval [0..33] (in general, in the interval [0..(4n − 3)]). Assume
that in this case the random generator returns 21. 21 contains two pieces of information : its
parity (a boolean) and floor of its half. Half of 21 is 10, which tells that the new node 17 must
be inserted above the 11th node (in the vector) namely 6. Since 21 is odd, the rest of the tree
(here reduced to the leaf 6) is inserted on the right (otherwise it would be inserted on the left).
A new leaf 18 is inserted on the left (otherwise it would be inserted on the right).

Consider the same tree and suppose that the random value is 8. Half of 8 is 4. Hence the
new internal node labeled by 17 is inserted above the node labeled by 5

1

13 0

15 3

16 14 2 5

9 7

11 6 8 4

12 10

and, since 8 is even, the rest of the tree is inserted on the left and a new leaf (labeled 18) is
inserted on the right.

1

13 0

15 3

16 14 2 17

5 18

9 7

11 6 8 4

12 10

The algorithm (Figure 5) works as follows. If n = 0, Rémy’s algorithm returns the vector
starting at 0 and filled with anything, since the whole algorithm works on the same vector with
the same size. In general, say that, for n−1, Rémy’s algorithm returns a vector v (vector is the
concept used in Haskell for arrays that can be changed in place). One draws a random integer
x between 0 and 4n − 3. Let k be half of x. In the vector v one replaces the kth position with
2n − 1 and one appends two elements, namely the kth item of v followed by 2n if x is even and
2n followed by the kth item of v if x is odd.
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The algorithm builds a uniformly random decorated binary tree, i.e., a binary tree with
its leaves numbered 0, 2,... 2n. We notice that the construction of a tree with such labels
is unique, the labels of the internal nodes are a consequence of the construction, hence are
deduced from the labels of the leaves. If we ignore the leaves, we get a uniform distribution for
the undecorated binary trees (i.e., with no labels on the leaves).

In the program, rands is a vector of random floating numbers between 0 and 1. The reader
who wants to read a better typographic presentation of the program is invited to get the version
on my web page.

1 rbt :: Vector Float −> Int −> Vector Int
2 rbt 0 = initialVector // [(0,0)]
3 rbt rands n =
4 let x = floor ((rands!n) ∗ fromIntegral (4∗n−3))
5 −− x is a random value between 0 and 4n−3 −−
6 v = rbt rands (n−1)
7 k = x ‘div‘ 2
8 in case even x of
9 True −> v // [(k,2∗n−1),(2∗n−1,v!k),(2∗n,2∗n)]

10 False −> v // [(k,2∗n−1),(2∗n−1,2∗n),(2∗n,v!k)]

Figure 5: Haskell program for Rémy’s algorithm

4 Dulucq-Penaud bijection proof

Motzkin numbers fulfill also the holonomic equation [11]:

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2.

Together with the equalities M0 = 1 and M1 = 1, Motzkin numbers can be computed and form
the sequence A001006 in the online encyclopedia of integer sequences [15]. In this section, we
present Dulucq and Penaud’s proof of this equality [10]. This proof relies on the exhibition of a
bijection between the objects counted by the left-hand side and those counted by the right-hand
side. The first idea is to consider specific binary trees called slanting binary trees and divide
those trees into 7 subclasses.

4.1 Slanting binary trees

Following Dulucq and Penaud, I represent Motzkin trees as specific binary trees in which leaves 2
are added. In such binary trees, only the three first configurations below are allowed and the
rightmost one is not

The first configuration corresponds to a binary node, the second configuration corresponds to a
unary node and the third configuration corresponds to an end node in the classical presentation
(for instance in Figure 6). I call such trees slanting trees.

Figure 6 shows the 9 Motzkin trees with 4 edges and their corresponding slanting trees. Let
us label each node of a slanting tree with a number between 1 and 2m + 1, where m is the
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Figure 6: 9 Motzkin trees with 4 edges and their slanting trees

number of internal nodes of the slanting tree. Let us call such a labeled tree a labeled slanting
tree. Now consider labeled slanting trees with one marked leaf. Let us call it a leaf-marked
slanting tree. Below there is a labeled slanting tree of size 4 and a leaf-marked labeled slanting
tree, where the mark is on the leaf labeled 8.

3

5 4

7 1

6 8 0 2

3

5 4

7 1

6 8 0 2

This corresponds to the vector:
[3,0,2,5,4,7,1,6,8]
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How nodes and leaves are labeled by numbers will be explained below and is essentially
similar to binary trees. Just notice that internal nodes have odd labels and leaves have even
labels. From now on, let us forget the labels, but let us mark one of the leaves. In such trees
with a marked leaf, we can distinguish 7 general patterns of subtrees containing the marked
leaf (Figure 7 first column). The marked leaf is denoted by a star in a square, namely ⋆ . In
the first group of 4 there are the patterns where the marked leaf is a right child and in the
second group of 3, there are the patterns where the marked leaf is a left child, hence, due to
the constraints on slanting trees, the other child (a right child) is also a leaf.

leaf-marked Choice and
slanting trees marked node-marked

slanting trees slanting trees
1.

⋆
▲ ▲

⋆
▲ ▲

2.

⋆ ▲ ▲

LR ,
⋆

▲ ▲
3.

⋆
⋆

4.

▲ ▲ ⋆
⋆

▲ ▲

RR ,
⋆

▲ ▲

5.

▲ ▲ ⋆
RL ,

⋆
▲ ▲

6.

⋆ ▲ ▲

LL ,
⋆

▲ ▲
7.

⋆
⋆

Figure 7: The 7 patterns of leaf-marked slanting trees

Let us call node-marked a slanting tree in which one internal node is marked. Let us
call marked tree, a slanting tree in which either a leaf or an internal node is marked. Recall
Rémy’s algorithm which consists in inserting, at the marked place (internal node or leaf), a
leaf in a marked tree (see Figure 4). After the insertion the formerly marked node becomes
unmarked and the inserted leaf becomes marked. Here, since we are interested in Motzkin trees,
we insert a leaf on the right, above the marked node in the marked slanting tree and like in
Rémy’s algorithm, a leaf insertion on a marked tree is performed, but unlike Rémy’s algorithm
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the insertion is performed only on the right and a leaf-marked slanting tree is produced. This
corresponds to what is done to pattern1, pattern3 and pattern4 in the middle column of Figure 7.
But as we will see for the other patterns, there are other ways to increase a slanting tree when
it does not correspond to one of these three patterns.

4.2 How many leaves in a Motzkin tree?

The slanting tree associated with a Motzkin tree of size n (number of its edges) has n+2 leaves.
This can be shown by induction.

Basic case: If the Motzkin tree is ●, its size is 0 and its associated slanting tree has 2
leaves.

Adding a unary node: Assume we add a unary node above a Motzkin tree t of size n, this
yields a Motzkin tree t′ of size n+ 1 . The slanting tree associated with t′ has n+ 2 leaves
(the number of the leave of the slanting tree u associated with t) plus a new one added,
then all together n + 3.

t →
t

u → u

Adding a binary node: Assume we add a binary node above two Motzkin trees t1 and t2
of size n1 and n2, this yields a Motzkin tree t′ of size n1 + n2 + 2. The slanting trees

associated with
t1 t2

have n1 + n1 + 4 leaves.

5 The bijection

What makes the random generation of Motzkin trees trickier than Rémy’s algorithm is the
structure of the holonomic equation:

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2

when compared to the equation:

(n + 1)Cn = 2(2n − 1)Cn−1

First, if we use a construction based on that equation, a Motzkin tree of size n can be built
from a Motzkin tree of size n − 1 or from a Motzkin tree of size n − 2. Thus there are at least
two cases to consider. Actually 6 cases as we will see. Notice that Mn counts both the number
of Motzkin trees of size n and the slanting trees with n + 2 leaves.

Interpreting the holonomic equation

We conclude that (n + 2)Mn counts the number of leaf-marked slanting trees of size n, that
(2n + 1)Mn−1 counts the number of marked slanting trees of size n − 1 and that (n − 1)Mn−2
counts the number of node-marked slanting trees of size n−2. Therefore looking at the equation,
we see that we should be able to build a leaf-marked slanting tree of size n from either a marked
slanting tree of size n − 1 or from a pair made of an item which can take one of three values
and of a node-marked slanting tree of size n − 2. Let us see how Dulucq and Penaud propose
to proceed.

9
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1

⋆
▲ ▲

⋆
▲ ▲

3

⋆
⋆

4

▲ ▲ ⋆
⋆

▲ ▲
7

⋆
⋆

Figure 8: Contribution of marked slanting tree of size n − 1. for pattern7 marks a specific
case explained in Section The lower part

A taxonomy of leaf-marked slanting trees

Leaf-marked slanting trees can be sorted according to the position of their mark. This is done
in the first column of Figure 7. This column has two parts.

The upper part

In the upper part, we have four patterns in which the marked leaf is a right child. Let us call
them pattern1, pattern2, pattern3 and pattern4. Three of them pattern1, pattern3 and pattern4
are obtained by Rémy’s right insertion of a leaf (Figure 4) in a marked slanting tree. The other
pattern2 (Figure 9) is not. Indeed if the marked leaf is removed, the tree that is obtained has
a leaf on the left and a node on the right, which is forbidden. This pattern will be obtained
another way.

The lower part

In the lower part, there are three patterns which correspond to the case where the marked leaf
is a left child, hence the sister of a leaf (Figure 9); pattern7 cannot be obtained by a right
insertion of a leaf (Figure 4), this is why we mark it by . But Dulucq and Penaud noticed that

pattern ⋆ among marked slanting trees is not taken into consideration. Thus they propose

to associate this pattern ⋆ with pattern7, as shown in Figure 7.

The bijection by cases

Case (2n + 1)Mn−1

The previously explained contribution to leaf-marked slanting trees of size n from marked
slanting tree of size n − 1 is summarized in Figure 8. All the patterns of marked slanting trees
are taken into account.

10
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Case 3(n − 1)Mn−2

Let us now look at the three remaining patterns: pattern2, pattern5 and pattern6 ; forming the
lines of Figure 9. Those three patterns have the same model, namely an internal node with two
children, one is an internal node and the other one is an internal node whose children are two
leaves, one of which is marked, the other is not. Depending on the position of the marked leaf,
we distinguish three cases.

• LL corresponds to the case where the marked node is on the left of the top node and on
the left of its father node.

• LR corresponds to the case where the marked node is on the left of the top node and on
the right of its father node.

• RL corresponds to the case where the marked node is on the right of the top node and
on the left of its father node.

One notices that there is no case RR, because this would correspond to pattern4 considered
in the previous section. As a matter of fact, the three cases LL, LR and RL correspond to the
multiplicative factor 3 in the holonomic equation.

2

⋆ ▲ ▲

LR
⋆

▲ ▲
5

▲ ▲ ⋆

RL
⋆

▲ ▲
6

⋆ ▲ ▲

LL
⋆

▲ ▲

Figure 9: Contribution of node-marked slanting tree of size n − 2

Forgetting the marks on leaves

As Rémy noticed for binary trees, since we generate the leaf-marked slanting trees of size n
uniformly, we also get a uniform distribution of slanting trees of size n. Thus we can forget the
marks, which we do in the concrete algorithm.

6 A concrete algorithm for random generation of Motzkin
trees

The Haskell program of Figure 10 can be considered as abstract enough to present the algorithm
for random generation of Motzkin trees. Thus, in what follows, I make basically no distinction
between the algorithm and the program and I consider the Haskell program as a executable
specification.

11
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Assume that there is a function motzkin that returns the nth Motzkin number. Like for
Rémy’s algorithm, one represents a labeled slanting tree by a vector. In this vector, odd labels
are for internal nodes and even labels are for leaves. Notice that the algorithm preserves two
properties:

1. the vector codes a slanting tree,

2. the vector of a Motzkin tree of size n has a length 2n + 3.

In order to choose which case to consider, namely (2n + 1)Mn−1 (case1) or 3(n − 1)Mn−2
(case2), the algorithm rMt requires a random value between 0 and (n+ 2)Mn which we call r.
If r is less than or equal to (2n+1)Mn−1, we are in case1, else we are in case2. Said otherwise,

given a random value c between 0 and 1 if c ≤ (2n+1)Mn−1
(n+2)Mn

we choose case1, if not we choose
case2.

• case1: one draws at random a leaf or an internal node in a slanting tree of size n−1. This
means choosing at random an index k in the vector v. We get pattern7 if three conditions
are fulfilled.

1. The marked item, should be a right child. This means that k is even, since
the left child of a node of index 2p + 1 is 2p + 1 and the right child of this node is
2p + 2.

2. The marked item is a leaf. This means that v[k] is even, since leaves have even
labels. Notice that Haskell uses the notation v!k for our mathematical notation v[k].

3. The sister item of the marked item is a leaf (a left child by the way). This
means that v[k − 1] is even.

In this case (k is even, v[k] is even and v[k − 1] is even) one inserts a node and a leaf as
shown by Figure 8, which corresponds in the code to:

v // [(k-1,2*n+1),(2*n+1,v!(k-1)),(2*n+2,2*n+2)]

In Haskell, the operator // updates vectors at once, it is called a bulk update. (2*n+1,v!(k-1))
means that the left child is a new node, at index 2 ∗ n + 1, which points to the former
value of v!(k-1). The right child is a new leaf.

The other cases (pattern1, pattern3, pattern4 ) correspond to cases when one of k, v[k] or
v[k − 1] is odd. The update is then

v // [(k,2*n+1),(2*n+1,v!k),(2*n+2,2*n+2)]

which corresponds to the first lines of Figure 8.

• case2: In this case we consider a random node-marked slanting trees of size n − 2 and a
random values among LR, RL, LL. For that we draw a number r between 0 and 3n − 6,
from which r÷3 gives a random number between 0 and n−2 (a random node) and r mode 3
yields a random number among 0, 1 and 2. We notice that LR and LL correspond to the
same transformation, while RL corresponds to another transformation. In each case one
adds four nodes, with labels 2n − 1, 2n, 2n + 1 and 2n + 2. Thus,

v // [(2*k+1,2*n-1),(2*k+2,2*n+1),(2*n-1,2*n),(2*n,2*n+2),

(2*n+1,v!(2*k+1)),(2*n+2,v!(2*k+2))]

12
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is the transformation for LR and LL and

v // [(2*k+1,2*n-1),(2*k+2,2*n+1),(2*n-1,v!(2*k+1)),(2*n,v!(2*k+2)),

(2*n+1,2*n),(2*n+2,2*n+2)]

corresponds to RL. We let the reader check that the code corresponds to the pictures of
Figure 9.

1 rMt :: Vector Float −> Int −> Vector Int
2 rMt 0 = initialVector // [(0,1),(1,0),(2,2)]
3 rMt 1 = initialVector // [(0,1),(1,3),(2,0),(3,2),(4,4)]
4 rMt rands n = −− (rands!n) a Float between 0 and 1
5 let floatToInteger x n = floor (x ∗ (fromIntegral n))
6 r = floatToInteger (rands!(3∗n)) ((fromIntegral (n+2))∗(motzkin n))
7 in case r <= (fromIntegral (2∗n+1)) ∗ (motzkin (n−1)) of
8 True −> case1 rands n
9 False −> case2 rands n

10 False −> case2 rands n
11

12 −− (even k) means that the marked item is a right child
13 −− (even (v!k)) means that its label is even, hence it is a leaf
14 −− (even (v!(k−1)) means that the label of its left sister is even,
15 −− hence it is a leaf
16 −− Therefore {(even k) && (even (v!k) && (even (v!(k−1))} is configuration 7
17 case1 :: Vector Float −> Int −> Vector Int
18 case1 0 = initialVector
19 case1 1 = initialVector −− 0, 1 are never invoqued and are irrelevant
20 case1 rands n =
21 let k = floor ((rands!(3∗n+1)) ∗ (fromIntegral (2∗n)))
22 v = rMt rands (n−1)
23 in case odd k || odd (v!k) || odd (v!(k−1)) of
24 True −> v // [(k,2∗n+1),(2∗n+1,v!k),(2∗n+2,2∗n+2)]
25 False −> v // [(k−1,2∗n+1),(2∗n+1,v!(k−1)),(2∗n+2,2∗n+2)]
26

27 case2 :: Vector Float −> Int −> Vector Int
28 case2 0 = initialVector
29 case2 1 = initialVector −− 0, 1 are never invoqued and are irrelevant
30 case2 rands n =
31 let r = floor ((rands!(3∗n+2)) ∗ (fromIntegral (3∗n−6)))
32 k = r ‘div‘ 3
33 c = r ‘rem‘ 3
34 v = rMt rands (n−2)
35 in case c < 2 of
36 True −> v // [(2∗k+1,2∗n−1),(2∗k+2,2∗n+1),(2∗n−1,2∗n),
37 (2∗n,2∗n+2),(2∗n+1,v!(2∗k+1)),(2∗n+2,v!(2∗k+2))]
38 False −> v // [(2∗k+1,2∗n−1),(2∗k+2,2∗n+1),(2∗n−1,v!(2∗k+1)),
39 (2∗n,v!(2∗k+2)),(2∗n+1,2∗n),(2∗n+2,2∗n+2)]

Figure 10: Haskell program for random generation of Motzkin trees
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7 Linear algorithm

In the above algorithm, choosing between case1 and case2 requires computing Mn and Mn−1,
numbers of order 3n. Since for each instance of the algorithm, one uses the same values
(2n + 1)Mn−1/(n + 2)Mn, these values can be precomputed once for all and stored in a vec-
tor, hence making the algorithm linear.

Arithmetic complexity

In arithmetic complexity, in which operation +, −, ∗and / take time O(1), the table can be
precomputed in time O(n). Therefore the full algorithm is linear.

Bit complexity

In bit complexity, the precomputation takes time O(n2) and then the algorithm itself is linear.

Results

I precomputed the values, using SAGE [7], until n = 100 000 and the HASKELL program (Fig-
ure 12) produces random Motzkin trees in times given by the arrays of Figure 11.

size time

1 000 1.4s
2 000 3.1s
3 000 5.3s
4 000 6.6s
5 000 8.4s

size time

6 000 8.5s
7 000 10.8s
8 000 13.0s
9 000 12.7s

size time

10 000 15s
20 000 32s
30 000 54s
40 000 74s
50 000 85s

size time

60 000 101s
70 000 131s
80 000 160s
90 000 172s

100 000 179s

Figure 11: Benchmarks

1 rMtFast :: Vector Double −> Int −> Vector Int
2 rMtFast 0 = initialVector // [(0,1),(1,0),(2,2)]
3 rMtFast 1 = initialVector // [(0,1),(1,3),(2,0),(3,2),(4,4)]
4 rMtFast rands n = −− (rands!n) a Float between 0 and 1
5 case ratioM!n <= rands!n of
6 True −> case1Fast rands n
7 False −> case2Fast rands n

Figure 12: A program with processing (vector ratioM)

8 Related Works

Our work was inspired by Jean-Luc Rémy’s algorithm [19]. Laurent Alonso [1] proposed an
algorithm for generating uniformly Motzkin trees. His method consists in generating the num-
ber k of binary nodes with the correct probability law; he uses then standard techniques to

14
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generate a unary-binary tree with k binary nodes among n nodes. The number of trees with k
binary nodes is over-approximated by values that follow a binomial distribution: choosing k is
therefore done using random generations for a binomial law and rejections. Therefore his algo-
rithm is linear on the average, with possible but rare long sequences of rejection. Dominique
Gouyou-Beauchamps and Cyril Nicaud [14] propose a random generation for color Motzkin
trees which is linear on the average and Srečko Brlek et al. [5] propose an extension of Alonso’s
algorithm to generalized versions of Motzkin trees.

Axel Bacher, Olivier Bodini and Alice Jacquot [2] propose an algorithm with similar ideas.
Especially their Figure 2 shares similarity with our Figure 9. There “operations” G3, G4 and

G5 are connected with our cases RL, LR and LL respectively. #↗ corresponds to ⋆ and

#↖ corresponds to ⋆ . However the algorithm they propose has a linear expected complexity,
like Alonso’s. Let us also mention generic Boltzmann’s samplers with exact-size which apply
among others to Motzkin trees [4, 17] and generic algorithms [8, 18] with linear expected
complexity.

Denise and Zimmermann [6] discuss what can be done on floating-point arithmetic when
generating random structures. The authors focus on decomposable labeled structures [12]
and address the problem of choice, with a specific section on Motzkin trees and a non linear
algorithm.
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9 Conclusion

Generating Motzkin trees has many potential applications [9, 3]. Moreover my algorithm has
a simple code and is linear. Among the possible extensions of my method which could be
explored, there is the generation of extended versions of Motzkin structures like Motzkin trees
with colored leaves [14] or Motzkin paths with k long straights [5]. k = 1 corresponds to
Motzkin paths and k = 2 to Schröder paths. I am currently working on a linear algorithm for
random generation of Schröder paths or trees, since Dominique Foata and Doron Zeilberger [13]
proposed a constructive proof of the holonomic equation for Schröder numbers, which inspired
Dulucq and Penaud.

On another hand, Bracucci et al. [3] study a family of sets of permutations: M1, M2, ...,
M∞, in which M1 is for Motzkin permutations (that are Motzkin trees up to a bijection) and
M∞ is for Catalan permutations (that are binary trees up to a bijection) an interpolation of
our method seems doable.
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