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Abstract

We investigate equilibrium problems arising in a decentralized electricity market involving risk-averse pro-
sumers. The prosumers have the possibility to hedge their risks through financial contracts that they can
purchase from an insurance company or trade directly with their peers. We formulate the problem as a
Stackelberg game where the insurance company acts as the leader while the prosumers behave as followers.
We consider two designs of the problem, in the first model only the insurance company acts as a source
of risk-hedging contracts, in the second model we supplement the former design by allowing inter-agent
risk-hedging. We derive risk-hedging pricing scheme in each design and show that the Stackelberg game
pessimistic formulation might have no solution. We propose an equivalent reformulation as a parametrized
generalized Nash equilibrium problem, and characterize the set of equilibria. We prove that the insurance
company can design price incentives that guarantee the existence of a solution of the pessimistic formula-
tion, which is € close to the optimistic one. We then derive economic properties of the Stackelberg equilibria
such as fairness, equity, and economic efficiency. We also quantify the impact of the insurance company
incomplete information on the prosumers’ risk-aversion levels on its individual cost and social cost. Finally,
we evaluate numerically the proposed risk-hedging market models, using residential data provided by Pecan
Street.

Keywords: Game theory; Generalized Nash Equilibrium; Stackelberg Game; Risk-Hedging; Electricity
Market

1. Introduction

Motivated by the urgent need for electricity market restructuring, this paper quantitatively analyzes
decentralized market designs formulated as equilibrium problems. In the last years, decentralization has
been broadly seen as an upcoming trend in network economics (Courcoubetis and Weber, 2006, Fang et al.,
2017), and more specifically in the electrcity market literature where it is perceived as an emerging topic
(Anderson and Philpott, 2002, Cadre et al., 2020, Moret and Pinson, 2019), largely due to the liberalization
of the energy sector, that has to account for the massive penetration of renewable energy sources (RES), and
the more proactive role of prosumers.
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Equilibrium problems used to analyze market designs rely heavily on the structure and the rules of the
market, as well as on the way network constraints are handled (Hu and Ralph, 2007). As a first step, in
order to account for the strategic behavior of consumers and the network constraints, we model the electric-
ity market as a generalized Nash equilibrium problem (GNEP), i.e., a noncooperative game endogenizing
shared coupling constraints within the agents’ parametrized optimization problems. We employ general-
ized Nash equilibrium (GNE) as a solution concept (Harker, 1991, Kulkarni and Shanbhag, 2012, Yin et al.,
2011), and a refinement of it, called variational equilibria (VE), assuming that the shadow variables of the
shared coupling constraints are aligned among the agents (Kulkarni and Shanbhag, 2012, Rosen, 1965). We
focus on the design of decentralized electricity markets which rely on a network defining each agent’s trad-
ing relationships, e.g., their neighbors. We focus on a financial level of a distribution network, but coupling
between the market and the physical layer of a distribution network (seen e.g. as two inter-dependent layers
(Shilov et al., 2021)) constitutes an interesting direction for future work.

When dealing with future uncertain losses, agents can have individual perception of uncertainties or risk
perception, that should be accounted for in the prosumers’ optimization problems. Whenever agents have
different perceptions of risk (heterogeneous risk aversion framework), it might lead to market inefficiencies
(Philpott et al., 2016, Gerard et al., 2017, Ehrenmann and Smeers, 2011, Ralph and Smeer, 2010). Addi-
tionally, the heterogeneous description of uncertainties makes the market incomplete for risk (Moret et al.,
2020). We allow financial contracts trading between agents to complete the market (Ralph and Smeers,
2015). These contracts act as instruments to reduce the effect of heterogeneous risk attitudes on the out-
come of the risk adjusted market. The questions that naturally arise from this inclusion are: i) how to define
a mechanism with desirable market properties (e.g., economic efficiency, fairness) for risk hedging financial
contracts? ii) How to incentivize the prosumers to participate in this market? And, iii) how to characterize
the resulting equilibria?

To answer these questions, we model financial contracts in the form of Arrow-Debreu securities. Several
works have considered Arrow-Debreu securities for risk trading among prosumers in peer-to-peer electricity
markets (Moret et al., 2020, Vespermann et al., 2020, Gerard et al., 2017) in a decentralized one-level
setting. Dealing with these securities, a first market design option requires the involvement in the market
of an additional strategic agent, that can be interpreted as an insurance company. The insurance company
acts as a seller of financial contracts with the goal to maximize its profit. In a second market design option,
we allow the agents to trade Arrow-Debreu securities both with the insurance company and with the other
agents, to hedge their risks. For both options, the presence of an insurance company that has to provide
contract options to the prosumers calls for a Stackelberg formulation of the model, in which the insurance
company acts as a leader and prosumers as followers.

Stackelberg games (Stackelberg, 1934) have been extensively applied in various fields such as market
design, financial hedging, security applications, etc. (Caldentey and Haugh, 2008, Liu et al., 2018, Wolf and
Smeers, 1997, Sherali et al., 1983, Yao et al., 2007). Stackelberg games can be casted as bilevel optimization
problems where one problem (followers’ or lower-level) is nested within another (leader’s or upper-level).
The structure of our problem naturally gives rise to a one-leader, multi-follower generalized Stackelberg
game involving a GNEP at the lower level which might have multiple solutions (Cadre et al., 2020), (Ves-
permann et al., 2020). In that setting agents might either try to cooperate with the leader, or behave in an
adversarial way, thus, either they choose the best solution with respect to the leader’s objective (optimistic
bilevel problem) or the worst one (pessimistic bilevel problem). We consider both optimistic (OBP) and
pessimistic (PBP) formulations. PBP is usually considered to be more complicated to solve than OBP, due
to the difficulties arising in the computation of its solution or even in the proofs of existence of solutions
(Liu et al., 2018, Robinson, 1982, Lucchetti et al., 1987, Ben-Ayed and Blair, 1990). To guarantee the exis-



tence of a solution of PBP, we include contract price based incentives for the prosumers, which allow us to
characterize Stackelberg-Nash equilibrium of PBP, and to compare it to the solution of OBP.

In addition, the literature dedicated to the computation of PBP solutions often focuses on the computa-
tion of approximate equilibria (Lampariello et al., 2019, Liu et al., 2018) or specific cases (Coniglio et al.,
2020, Basilico et al., 2016, Wang et al., 2022). Using the structure of our model, we parametrize the re-
sponse of the prosumers by introducing a choice function, which allows us to reformulate the initial bilevel
problem as a set of parametrized GNEPs. This allows us to use results from the GNEP literature (Tushar
et al., 2018, Tatarenko and Kamgarpour, 2019, Yin et al., 2011) to analyze the market equilibria. Finally, we
compare the properties of our market models on data from Pecan Street, by computing the prosumers’ indi-
vidual costs, the social cost, analyzing fairness, and the impact of incomplete information on the insurance
company’s cost.

1.1. Related Work

Game-theoretic models have been widely employed to investigate agents’ strategic behaviors in elec-
tricity markets (Hu and Ralph, 2007, Ehrenmann and Neuhoff, 2009, Tushar et al., 2018, Wang et al., 2022).
In (Cadre et al., 2020), authors quantify the efficiency loss relying on the price of anarchy and capture the
impact of incomplete information on the market equilibrium relying on GNE and VE. In the same vein,
the economic dispatch in electricity trading with different structures of communication is analysed using
consensus based approaches in (Moret et al., 2020, Moret and Pinson, 2019).

A large part of the literature focuses on the impact of risk on the agents’ decisions in competitive settings
(de Maere d’ Aertrycke et al., 2017, Hoschle et al., 2018, Ralph and Smeers, 2015, Gaur and Seshadr, 2005)
and in electricity markets in particular (Ralph and Smeer, 2010, Moret et al., 2020, Abada et al., 2017, Ves-
permann et al., 2020, Gerard et al., 2017, Philpott et al., 2016, Ehrenmann and Smeers, 2011). Among them,
many papers explore equilibrium properties assuming that the market is not complete for risk (Ralph and
Smeer, 2010, Abada et al., 2017, Ehrenmann and Smeers, 2011, Philpott et al., 2016, de Maere d’ Aertrycke
etal., 2017, Ralph and Smeers, 2015). In (Kazempour and Pinson, 2016), authors analyze the impact of het-
erogeneous risk preferences on the electricity market equilibrium. In (de Maere d’ Aertrycke et al., 2017),
authors discuss incomplete risk trading and its impact on the long-term strategic investment decisions, and
compare cases of complete and fully incomplete markets for risk. Risk trading alongside with the prop-
erties of complete market is explored in (Ralph and Smeers, 2015). Financial hedging in a supply chain,
modeled as a Stackelberg game, is considered in (Caldentey and Haugh, 2008) and hedging inventory risk
in (Gaur and Seshadr, 2005), where authors show that risk hedging leads to a lower risk and a higher return
on inventory investment.

Heterogeneous risk-adjusted decentralized electricity markets are considered in (Moret et al., 2020),
(Vespermann et al., 2020). In (Moret et al., 2020), a model for risk hedging via financial contracts is
considered. It addresses the definition of fairness and the impact of risk in a one settlement two-stage
market. In (Vespermann et al., 2020), a Nash equilibrium problem formulation is considered under different
degrees of market completeness for risk. In (Gerard et al., 2017), coherent risk measures are employed.
In this paper, the authors analyse risk-adjusted markets and evaluate the impact of risk-hedging contracts
on the market efficiency. The question of uniqueness and existence of risk-averse equilibria is addressed
in (Abada et al., 2017, Gerard et al., 2017, Ralph and Smeers, 2015), where one can find insights on some
equivalences between social planner problems and equilibrium problems. The problem we address in our
paper relies on a similar risk-averse setting. In (Moret et al., 2020, Gerard et al., 2017, Vespermann et al.,
2020), risk trading takes the form of Arrow-Debreu financial contracts, that prosumers can trade among
themselves. We go further and supplement this one stage model with an additional layer operated by an
insurance company. We thoroughly analyze the resulting Stackelberg game, considering both optimistic and
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pessimistic formulations and provide results on equilibria characterization, solution existence and market
properties.

A wide range of problems, from security games (Sinha et al., 2018) to general market design, are
modeled as Stackelberg games. We provide only a few relevant examples and refer the reader to the literature
for further information (Sinha et al., 2018, Liu et al., 2018, Dempe et al., 2015). In (Sherali et al., 1983),
authors study Stackelberg-Nash-Cournot equilibria in a game with one leader and NV followers and analyze
its properties under mild economic assumptions. De Wolf and Smeers extend this result in (Wolf and
Smeers, 1997) to a stochastic version, in which the decision of the leader is taken while the market demand
is uncertain, and provide a practical implementation of their model in the European gas market. Equilibrium
problems with equilibrium constraints (EPECs) arising from the applications of Stackelberg game to the
electricity markets are thoroughly analyzed in (Yao et al., 2007, Ralph and Smeers, 2006, Hu and Ralph,
2007).

In the bilevel optimization literature, most papers focus on the solution characterization and the devel-
opment of computational approaches (Sinha et al., 2018, Liu et al., 2018, Coniglio et al., 2020, Basilico
et al., 2016, Lampariello et al., 2019, Lucchetti et al., 1987, Wang et al., 2022, Ben-Ayed and Blair, 1990) .
In (Lampariello et al., 2019), authors focus on PBP, reformulating it in a standard form and then as a bilevel
problem with a two player GNEP at the lower level, that later can be solved as a mathematical program
with complementarity constraints (MPCC). They consider € solution of the lower-level problem in order to
overcome issues arising from PBP solution existence. We use the machinery from (Lampariello et al., 2019)
to analyze PBP and its properties, but we focus on ¢ solution of the upper-level problem and introduce a
parametrization of the reaction of the prosumers that allows us to use computational approaches suited for
GNEPs.

1.2. Contributions and Paper Organization

We provide a thorough analysis of equilibrium models for risk-averse market design taking into account
uncertainties, the agents’ strategic behaviors and network constraints. By comparison with the previous
works that account for players with heterogeneous risk-aversion levels, in the context of local energy com-
munities (Moret et al., 2020, Vespermann et al., 2020), we focus on an imperfect competition setting in
which the electricity market price is not enforced by an exogenous price setter, but is obtained as the re-
sult of the interactions between the prosumers. To that purpose, we first consider a noncooperative game
model with coupled constraints capturing the energy trading reciprocity constraints between couples of
agents, therefore leading to a GNEP framework. This allows us to include the connection graph structure,
capturing the prosumers’ trading preferences, in the prosumers’ energy exchange model.

We first build a risk-averse model to capture risk-attitude heterogeneity among the agents and supple-
ment it with an additional layer, operated by an insurance company. The insurance company can supply
risk-hedging financial contracts for the agents as a sole supplier and as a competitor for an inter-agent
financial contracts trading. We analyze the resulting Stackelberg game considering both optimistic and
pessimistic formulations, and provide results on equilibria characterization, solution existence and market
properties. We first prove the equivalence of the reformulation of the bilevel problem with a parameterized
GNEP, by using a so-called choice function. Relying on this parametrization, we prove that the PBP formu-
lation might not have a solution without including additional price incentives from the insurance company.
Then, we prove that a slight decrease in the financial contracts’ price leads to a solution of PBP that is €
close to the optimistic solution of OBP. We next discuss the situation where the insurance company has in-
complete information about the prosumers’ risk-aversion levels, and analyze the resulting two-stage market
equilibrium, proving that it is economically efficient and fair.
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The organization of the rest of this paper is as follows: after introducing the problem statement in
Section 2 and the agents in Section 2.1, we analyse risk-averse market equilibria in an incomplete market
setting, in Section 2.2. We discuss completeness of the market in Section 3, in which we build a two-stage
market design involving an insurance company in Section 3.1. In Section 4, we provide a comprehensive
analysis of the resulting Stackelberg game, considering both OBP and PBP. Numerical illustrations are
provided in Section 5.

2. Problem Description

We consider a single-settlement market for decentralized electricity trading modeled as a noncoopera-
tive game P involving a set N of N agents (prosumers). Each agent is located in a node of the network,
which is modeled as an undirected connected graph G := (N, E) where E C N x N is the set of links be-
tween the agents. Agent n can trade energy only with her neighbors in G, denoted by I';,. The graph G does
not necessarily reflect the distribution power network constraints. We do not consider the physical layer of
the distribution network, but coupling it with the market (seen as two inter-dependent layers) constitutes an
interesting direction for future work (Shilov et al., 2021).

2.1. Agents

We assume that each agent n € A is equipped with RES-based self-generation which is denoted by
Agy,. To model randomness, we employ scenario based approach, which is widely used in the literature ded-
icated to the electricity markets (Ehrenmann and Smeers, 2011, Vespermann et al., 2020, Moret et al., 2020,
Gerard et al., 2017). This approach allows to account for the stochasticity of the electricity market involving
RES-based generation and risk hedging contracts. There are 7" possible scenarios: 7 := (1,...,7T). Each
agent’s probability of being in a scenario ¢ is given by p’ s.t. >, - p" = 1. Probabilities p’ for all t € T
are known by all the agents. Another approach to model individual and collective uncertainty is described
in Appendix 7.3.1.

Each prosumer n chooses independently her bilateral trades q., flexible energy generation g! and
flexible demand d!,, to minimize her cost function IT!,. The quantity exchanged between n and mn, is denoted
as ¢t,, forallm € T, \ {n}. If ¢¢,, > 0, then n buys ¢’,,, from m, otherwise (¢%,,, < 0) n sells —¢’,.. to
m. We use subscript ¢ to reflect the dependence of the decision variables on the scenario.

t
Anm

2.1.1. Feasibility Set

In each node, we introduce D), := {d', € Ry|D,, < d', < D,} as agent n’s demand set and G,, :=
{¢t € R4|G,, < ¢' < G,} as agent n’s generation set. Given a scenario ¢, we impose an equality on the
trading reciprocity:

Gom + @ =0,  VmeT, (1)
which couples agents’ bilateral trading decisions. It means that, in the case where ¢!,,, > 0, the quantity
that n buys from m should be equal to the quantity ¢, that m is willing to offer to n. Let Ky, € [0, +00)
be the equivalent trading capacity between node n and node m, such that s, = Kmy. Then

G < Fnm,  YmeT, 2)

Local supply and demand balance leads to the following equality in each node n in \V:

d =g\ + Agh+ > dh 3)
mely,
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We denote the dual variable &m associated with the constraint (2), sz as the dual variable for (1) and
Al for (3). Denote %, := (d%, g%, q',) to be the vector which contains the decision variables of prosumer n.
We denote feasibility sets as K, (zt ) := {z!|d!, € Dy, gl € Gn, (1),(2), (3) hold Vt € T}, where z*,
is a vector which contains the decisions of all agents excluding agent n. Joint admissible set is written then
asa k=[], Kn(z,).

2.1.2. Prosumer n’s Cost Function

We consider a quadratic production cost with a,, by, ¢, > 0: Cj, (gf%) = %angff + b, gfl +c, forallt €
T. We assume that the self-generation occurs at zero marginal cost with a quadratic form of the cost, that is
seen as realistic for a large class of conventional generators (Cadre et al., 2020). The usage benefit perceived
by agent n is modeled as a strictly concave function of agent n’s demand: U, (de) = —ay(d, — CZ%)Q + by,

forallt € T, where dﬁl is a target demand defined exogenously for agent n.

We introduce price differentiation that characterizes both the locational aspects and the preferences of
the prosumers. The preferences are modeled with (product) differentiation prices: each agent n has a price
Cnm to trade with an agent m in her neighborhood I';,. The total trading cost of agent n is modeled by a
linear function C,,(g',) = Y mel s mstn Cnmpm V¢ € T, where parameters ¢;,, > 0 can be interpreted as
taxes for energy trading or agents’ preferences regarding the trade characteristics. If ¢,,,, > 0 then n has to
pay the cost c,mgl,, > 0. Thus, the higher c,,, is, the less interesting it is for n to buy electricity from m
but the more interesting it is for n to sell electricity to m. We write prosumer n’s cost function Vt € T as
follows:

IT, = Cu(gn) + Culay) —Un(d,) VteT )

2.1.3. Local Market Operator (MO)

In the electricity market literature, the electricity trading problem is often considered to be solved in
a centralized way, requiring the presence of a market operator (MO) to which all the private information
is reported (Vespermann et al., 2020), (Moret et al., 2020). In our work, the centralized electricity market
design will be considered as the benchmark. The MO minimizes the social cost, SC := Y, -\ >, 71T,
under constraints expressed by the joint feasible set /C.

2.2. Risk-Averse Electricity Market Design

In this paper, we focus on a risk-averse design in which we consider a market with collective uncer-
tainties that are common knowledge, but agents have different risk-aversion levels. On the contrary, in the
risk-neutral formulation, prosumers optimize their costs with respect to the probabilities p?, without taking
into account the heterogeneity of the risk perception of the agents. A detailed description of the risk-neutral
electricity market design can be found in the Appendix.

Under risk-averse market design, the prosumers act upon the set of risk attitudes x,,, n € N. Different
risk attitudes imply different risk perception of the cost function (4). To account for the risk-averse behavior
of the agents, we employ CVaR as a coherent risk measures in agents’ objective functions. CVaR is known
to have a lot of appealing properties, e.g., it is coherent, easy to integrate in an optimization problem, etc.
(Rockafellar and Uryasev, 2000).

By definition, CVaR is the average of all realizations larger than the VaR, where the latter is given by
nn, = min,, {n, | P[IT, <n,] = x»}. Then, we write CVaR as follows: R[IT},| = nn+ﬁ > e PHIE—
nn]T. Note that R[ITL] is convex in (dt, gt | gt , n,) if IIL is convex in (d%, g%, q!,), which is the case in our
model. The non-differentiability of R[II.] can be overcome by leveraging the epigraph form (Rockafellar
and Uryasev, 2000): R[IT!] = n, + m e plul, with uf, > 0 and ITY, — n,, < wf, with dual variables
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7t and 7! respectively. Define feasibility set KC,, as KCp, (z.,,) := {2, = (dt,, gl q!,, uly, )i (4, 95, @1 €
Kn(xt,),ut, > 0,ITY, —n, < ul} and denote K := [][ K, (x',,) as a joint admissible set. We formulate
agent n’s optimization problem as:

. 1 t t
min M+ > P, (52)
da»gzaqﬁz’u%ﬂ/]n (1 - XTL) tET
s.t. (d, g, gl uly,mn) € Kn(zh,). (5b)

To analyse the efficiency loss of decentralized electricity market designs, we apply solutions concepts of
Generalized Nash Equilibria and Variational Equilibria, both of them exist under mild conditions (Kulkarni
and Shanbhag, 2012), (Yin et al., 2011).

Definition 1. A Generalized Nash Equilibrium (GNE) of the noncooperative game P with coupling con-
straints is a vector © := (), that solves the maximization problems of the agents or, equivalently, a vector
@ such that x solve the KKT system for each n.

Definition 2. A Variational Equilibrium (VE) is a GNE such that the Lagrangian multipliers of the coupling
constraints (1), are equal, i.e.:
o =Ce YREN,YmET, (6)

By duality theory, ¢!, for n € N,¥m € T, can be interpreted as bilateral energy trading prices
(Cadre et al., 2020). In general, ¢!, might not be aligned with ¢!, , thus leading to non-symmetric energy
trading prices between couple of agents. Relying on VE as solution concepts enforces a natural symmetry
in the bilateral energy price valuations (Cadre et al., 2020). However, this might require strong coordination
between the agents.

3. Completeness of the Market

A market is said to be complete, whenever there exists an equilibrium price for every asset in every
possible state of the world; the market is incomplete otherwise (Baron, 1979), (Moret et al., 2020). To
complete the market in the sense of this definition, we include financial contracts that are intended to hedge
the risk of market participants. We discuss below two possible designs of the risk hedging market.

3.1. Two Stage Design of the Risk-Hedging Market with an Insurance Company

We introduce an insurance company I, whose sole purpose is to sell the state contingent claims to the
agents. We want to consider the situation in which financial contracts trading inside the community is not
sufficient to satisfy all the demand, and agents still have the possibility to buy missing contracts from 1.
Below, we build a model of a risk hedging market, including first the insurance company and finally both
the insurance company and inter-agent financial contracts trading. We model the insurance company as
a distinct agent whose behavior is restricted purely to contract trading. I decides on the price !, and the
maximum contract value J' for the contract J&, which is paid if the outcome  is realized. In this framework,
the cost function of the insurance company is defined as follows:

M= =Y atdi+ Yo7 | ™

neN teT teT
~—— ~——

Received revenue  Insurance payments

With the presence of the sole insurance company at the upper-level and without inter-agent trading on the
lower-level, the timeline of the risk-hedging market can be described as follows:
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(1) The insurance company [ optimizes (anticipating the reaction of the prosumers) the contract price
al, for prosumer n and the maximum amount 7 (the same for all agents) for scenario ¢.

(2) Each prosumer n € A determines the contracts .J. she wants to buy such that 0 < J! < Jt and
buys the contracts by paying the total price } , al Jt to receive J¢ in scenario t.

Note that the price o, for the insurances is settled per scenario, per agent instead of per scenario in the
inter-agent trading case. The motivation for this setting comes from the ability of the insurance company to
evaluate the risks related to each agent as it is usually done in practice: the insurance company has means
to assess these risks more accurately than the prosumers. Moreover, the insurance might propose contract
prices that are discriminatory.

The sequence of decisions introduced in the timeline above made by insurance company I and pro-
sumers have a hierarchical structure. It can be modelled as a Stackelberg one leader multi-follower game in
which I acts as a leader and prosumers as a followers. The leader anticipates the reaction of the followers
when optimizing his strategy, while the followers react rationally to the actions of the leader by computing
their best-response functions. Formally, the one leader multi-follower game can be written as follows:

min Z [ - Z ol It + Zthﬂ (8a)

(a%jt)neN neN teT teT
s.t. 0<a, VneN (8b)
1L,
1

Vn €N J. € argmin Z o Jh A+ + Zptufl (8¢)

Jntn teT (1= xn) teT
s.t. zt e Ko(xl,) YneN (8d)
0<JE<Jl VneN (8e)

where (8a) - (8b) constitute the upper level and (8c) - (8e), the lower level problems. Note that the risk-
adjusted costs of the agents are changing due to contract inclusion:

> P, = T =)t )
teT

RIL] =) apJy + . +

1
teT (1=xn)

t
<ug,

for which we can employ the epigraph form accordingly.

3.2. Two-level Design of the Risk-Hedging Market with Insurance Company and Inter-Agent Trading

Finally, we incorporate risk-hedging that includes both the insurance company and inter-agent financial
contracts trading. We assume that the agents can not only acquire insurances J, but also they can trade
risk with each other using financial contracts, i.e., they pay a certain amount contingent on a given scenario
occurring. We assume that agent n can trade risk with the whole community . The price for the contract
corresponding to the scenario ¢t € 7 is denoted ~*. It is supposed to be homogeneous, e.g., the same price
is proposed to all the agents in order to have non-discriminatory pricing on the prosumers’ level. Note, that
we impose no bound on the sign of W.

More precisely, we consider a modified formulation of (8) with prosumers’ risk-adjusted costs at the
lower level written as

1
RIIL) = [of Jh + ' Wi+ . + T > Pl = W = T =)t (10)
teT T Xn) T g

t
Sug,
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for which we can employ the epigraph form accordingly. It means that now in stage (2) of the timeline of
the two-level game, each prosumer n € N decides on the contracts W, J! she wants to buy after receiving

price af, s.t. 0 < Jt < Jt and buys the contracts by paying the total price et at Jt + YT YW in
order to obtain contingent payments J!. + W in scenario .

4. Stackelberg Game Analysis

Section 4.2 starts with an introduction of the differences between OBP and PBP formulations for the
two-level problem with I as the only seller of financial contracts. In Section 4.2.1, we first discuss the prices
of the financial contracts and existence of solution in PBP. We propose price incentives for the prosumers in
Section 4.2.2 and compare the resulting equilibria with the solution of OBP, investigated in 4.2.3. Further, in
4.2.4, we discuss an extension of the Stackelberg game, including imperfect information about risk attitudes
of the prosumers. In Section 4.3 we analyze the two-level formulation with both I and inter-agent trading
of financial contracts. The also discuss the market properties of the resulting model.

4.1. Two-Stage Problem Preliminaries

First, we will need some standard bilevel optimization notations. We denote the insurance company’s
(at the upper level) variables as x; = (a;,jt,uf% /)n and prosumer n’s (at the lower level) variables
as vk = (JL,xl). Let ¢(x;) denote the value function of the lower level problem in (8): ¢(x;) :=
ming, {1, (z, 2|2, € Ki (2L, z)} where KCf (xL,,, 1) is the feasible set of the lower level problem
for prosumer n and x;, is the decision variables of 1. Then, the dependent optimal point set of this problem
can be written as Sy, (v, ®_,,) = {x, € K} (xL,,, 21)| L, (z,2L) < ¢(x1)}. X denotes the feasible set
of the upper-level optimization problem. Combining these definitions, we can write the bilevel optimization
problem as

” min 7 H[(Z’[,.fﬁ)
x[,w%
s.t. xrr € Xy (11)

ak e S, (xr,x,) YneN

and separately the individual problem for agent n on a lower-level problem in a compact form Vn € N:

min 0, (z7, z%)
o (12)
s.t. xk e K (xt,, o)

For the KKT conditions, we use the following notation: gﬁl() <0 (hﬁ, ;(+) = 0) represents the generic

inequality (equality) constraints of the lower-level problem for prosumer n, while £ is the vector of dual
variables for prosumer n’s problem. In the same manner, we use notations g/ (-), h]I- (+), &u for the upper-

level problem. Let 17 (J) denote the index set of the market level inequality (equality) constraints and IV
(JY) denote the index set for the upper level constraints. The optimal dual variable set of prosumer n for
the lower-level problem is denoted as

En(vawgnv'%%) = {Eﬁ >0: fg,igﬁ,i(vawemxﬁ) =0, vm%[’(xbxen’xﬁvéﬁ) = O} (13)

Definition 3 (Slater’s condition). We say that Slater’s condition holds for prosumer n’s lower level prob-
lem (12) for a given x1, if there exists x% such that hZL (x5, 2", %) = 0 and gZ-L(xi, xl al) <o.
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Proposition 4. 1. Slater’s condition holds for the lower level problem for each n € N and for each
rr € X.
2. The lower-level problem (12) is convex 'n € N for each x; € X|.
L

3. En(zr, xl,, xk) is upper-semicontinuous.

Proof.

1. The first part of the proposition statement simply follows from the structure of the constraints of the
lower-level problem: taking dfl = gfL > 0, ufl > 0 and g = 0 Vn,m if Ky, > 0 and rewriting
constraint (2) as an equality if ., = 0 we can guarantee its qualification.

2. Convexity of the lower level problem (12) follows from the fact that the matrices of the constraints
are positive semi-definite.

3. Slater’s condition implies MFCQ, then we use Theorem 3.1 from (Dempe et al., 2015), Theorem 2.3
from (Robinson, 1982)

]
Lastly, we recall the notion of equilibria we use in our analysis.

Definition 5. A Stackelberg equilibrium of the game defined in (8) is a tuple (z7, x*") such that zit e

L L
Sp(ay, x> and I (z7", @) < MAX,L e, (z)al, )¥n Hy(zg, %)

4.1.1. Efficiency of the Lower Level Equilibria

First market property that we prove is the economic efficiency of the Variational Equilibrium of the
lower level problem (12), by considering its centralized formulation. A centralized problem is formulated
by means of a local Market Operator (MO) who collects all the information of prosumers € A and then
solves the problem (12) as a single optimization problem, reacting to the actions =y of the leader (insurance
company ). It constitutes a single leader single follower game (SLSF), with the lower level problem written
as

min Z I, (z7, z%)

@t neN (14)
s.t. ke Kf(xt,, z;) YneN

Writing the KKT conditions for the problems (12) and (14), and using the property of the VE, we can
establish the following result:

Proposition 6. The set of Variational Equilibria of the GNEP given by (12) for all n € N coincides with
the set of social welfare optima solutions of (14).

Besides the important property of efficiency, Proposition 6 allows us also to build theoretical analysis
of both pessimistic and optimistic formulations of bilevel problem.

4.2. Optimistic Versus Pessimistic Formulations of the Game

In our analysis of the two-level insurance market, we focus on two formulations of the bilevel opti-
mization problem that are classical in the literature: optimistic and pessimistic. These two formulations
are needed to analyse the Stackelebrg game, because the lower level problem in (8) does not have unique
equilibrium. Thus, in order to optimize its problem, I has to choose an equilibrium among the set of the
possible equilibria of the lower-level GNEP. Intuitively, we might see it as a situation in which there are

10



some prosumers at the lower level who are indifferent between several outcomes of the game that result in
the same cost, but the values of some decision variables of these prosumers have an impact on the cost of
the leader. We illustrate this intuition on a simple example below.

Example 7. Assume that there are only two prosumers at the lower level of the Stackelberg game. Let us
consider prosumer n = 1,2. If at the equilibrium of the game the price for the contracts J! established by

n
insurance company equals -2 which is a reasonable assumption as we show later) and ut = It —n,, —
1—xn n n

o : : . =t _
JL > 0, then prosumer n is indifferent in her choice of insurance: J! € [0, min{J,,, 11t — n,}]. But this

. . .=t . . .
choice is crucial for the profits of 1, as Jfl = min{J,,, Hfl — N } is the best possible outcome for it and the
worst one is J. = 0, constituting two different outcomes of the game for I, while leading to the same result
for prosumer n.

Note that we consider only one of two prosumers in the example above. Indeed, prosumers might have
different behavior on the risk trading market, depending on the values of their decision variables in the
electricity peer-to-peer market equilibrium. We further partition the set NV into groups and emphasize on
the ones that are indifferent in the context of risk trading with I, i.e. the group of the agents for whom the
objective function remains of the same value for all J! € [0, min{jz, ¢, — n,, }]. We first formally define
different formulations of the two-level interaction, depending on the response of the prosumers.

When I and prosumers n € A act in cooperative manner, that is prosumers seek not only to minimize
their own costs, but also take into account the maximization of the profits of the insurance company, then
I can choose to solve its own problem with respect to the best possible solution of the GNEP at the lower
level (from its point of view). This leads us to the OBP formulation of (8):

min I (xg, xk)
xr,xk
s.t. rr € Xy (15)

ke S, (xp,xl) YneN

Optimistic problems are widely studied in the literature (Dempe et al., 2015), (Sinha et al., 2018) and
are considered to be more tractable as compared to the pessimistic position. The optimistic formulation is
guaranteed to have an optimal solutions under reasonable assumptions of regularity and compactness (Sinha
et al., 2018). Indeed, it is easy to establish existence of solutions of problem (15) using Proposition 4 and
(Dempe et al., 2015). On the other hand, the optimistic solution might not exactly correspond to the design
of the risk hedging market, as there are no intrinsic incentives for the prosumers at the lower level to act in
favor of the insurance company’s profit maximization.

Under PBP setting, we assume that the insurance company and the prosumers do not act in the coopera-
tive manner. It might be natural to assume that the insurance company I considers “worst case” with respect
to the equilibrium of the lower-level GNEP. Indeed, if we refer to the Example 7 and consider indifferent
prosumers, then it is natural to assume that given the choice of buying the insurance and not buying it with
the same outcome, prosumers would choose the latter option. Then, we can rewrite bilevel problem (8) as

min max I (xg, xk)
rr kb
s.t. rr € Xy (16)

x,LL € Sn(x[,mfn) VYneN

The scope of literature that investigates pessimistic formulations of bilevel problems is much smaller than
that for the optimistic one, due to the fact that the pessimistic formulation is often more complicated than
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the optimistic one (Dempe et al., 2015). It is not always guaranteed that the solution of (16) exists even for
very simple formulations (Lampariello et al., 2019), (Lucchetti et al., 1987), and a lot of work is dedicated
to the computation of approximate equilibria (Lampariello et al., 2019, Liu et al., 2018) or focus on specific
cases (Coniglio et al., 2020, Liu et al., 2018, Basilico et al., 2016).

4.2.1. Insurance Company’s Information About the Prosumers’ Parameters

Alongside with the different formualtions of the bilevel optimization problem, we focus on the informa-
tion structure of the Stackelberg game. For the insurance company I, it is crucial to have full information
about the set of prosumers’ electricity trading problem parameters: RES-based generation Ag’, target de-
mand d"., flexibility activation cost function Cj, (-) (more specifically parameters ay,, by, d,), uy, (-) the usage
benefit function (more specifically parameters a,, by, ), and bilateral trade cost function C,,(-) (more specifi-
cally parameters (Cnm )mer,,)- Also it is crucial that I has full information about the risk-attitudes (xy,)», of
the prosumers to properly settle the prices (o).

We first discuss theoretical properties of the Stackelberg game assuming full information of I on the
parameters listed above. We prove that the noncooperative game (16) has no solution, and propose a method
to compute an approximate equilibrium that we compare to the equilibrium obtained as output of the op-
timistic formulation. Then, we discuss the game outcome in case of incomplete information, i.e. when
the insurance company does not have an access to the true values of the listed parameters in Section 4.2.4.
We start with a lemma about the insurance prices ! in case when there is only insurance company on the
risk-hedging market and there is no inter-agent financial contracts trading.

pt
I_Xn '

Lemma 8. The price o, of the insurances J. for agent n and scenario t does not exceed

Proof. The objective function of the prosumer at the lower level takes the closed form

t

p

II,, = E [Wn‘FOZZsz*‘l ufl
teT ~ Xn

Note that prosumer n can belong to one of the following two groups, at the equilibrium, defined by the two
cases below:

case (i) ul, = 0if Iy, —m,, — JL <0 case (i) ul, =11}, —n, — J.. >0 (17)

In case (i), we write the cost of prosumer n as II,, = Zte’r [nn + aflJfL] and in case (ii) as II,, =

Sier (1 — $22) + Jh(al, — £2-) + (211
We aim to compute insurance company I’s strategy, e.g., the insurance prices (o, ),,. First, consider case
i
=
inequality, J{ = min{J", IT, —7, }, in case of equality agent n is indifferent, so J¢ € [0, min{J", I, —n, }],
and 0 otherwise.
For case (i), it is clear that J! = 0if [T}, — 5, < 0, and J}, = IT}, — n,, otherwise. It means that the total

price paid for the contract o, J! should be smaller than the loss incurred without one:

t
ii): from the term J* (o — , it is clear that to have J" > 0, I needs to set o, < —2—. In case of stric
(ii): from the term J! (o, tis clear that to have Jj, > 0, I needs to set o, < 22— 1 f strict

t t
p t t p
I — = <
1_Xn( n 77n) an_l_Xn

al Jb <

Thus, considering the response of the prosumers to the price settled by the insurance company, we obtain

. t
that in both cases of, < {£—. m
Xn
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n n
; t Tt :
BR,(z5) min{Jy, II;, — 9, } ;
optimistic — | . :
p Indifference set A
o of agent
pessimistic —_|
— ot 5 ot
0 ot n 0 p:t n
1—xn 1—xn
Figure 1: BR,,(z;) forn € N. Figure 2: Best-response function in PBP.

Choice function. In the text below we use the partition of the agents in groups. We denote agents with
the value u!, = IIY, — 1, — J. > 0 at the GNE as N’ C N. This group is later referred to as indifferent
prosumers (see Example 7). Agents with the value 1Y, — 1, — J. < 0 and I}, — 7, < 0 are denoted as
N C N and with IT, — 5, > 0as N C N,

Consider the group A/’. For this group of agents, we can describe best-response mapping of agent n to
the insurance company w.r.t the decision z; = (f,, jt):

( ¢
0 ifal >
qd— Xn
t _ _ Tt o ot Py,
J, = BRy(xzr) = < min{J,,II}, —n,} ifa, <
q— Xn
t ¢ P
Ch;(A,w) ifa;, =
L(Aw) ifal = P

where A := [0, min{J.,, I, — n,}] and ChL (A, w) is a choice function Ch!,(4,w) : {A} x © — A. We
refer to Figure 1 as an illustration of BR,,(z ). More precisely, for each agent n € N”, for each scenario ¢
this function takes as input the interval A and parameter w € ) and returns a single value J!, corresponding
to the insurance bought by agent n: Chf(A,w) = w[II}, — n,]. Parameter w € Q := [0, 1] controls
the optimality of the choice of the prosumer for the insurance company /. Using this function, we write
Chl (A,w) instead of J! in upper-level optimization problem (8a). We denote this formulation of (8) as

gch(w)‘

4.2.2. Pessimistic Formulation Analysis

Connection between pessimistic formulation and G, (w). In the next lemmas, we show the link between
pessimistic formulation (16) and G, (w). First, we follow the path established in (Lampariello et al., 2019)
and reformulate problem (16) as a one leader, multi-follower game, where the lower level is modeled as a
GNEP with 2N players. Intuitively, at the lower level, each prosumer cares not only about minimization of
her own cost function, but also about maximization of the cost of insurance company I. To formalize the
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setting, we introduce an auxiliary agent who takes care of this maximization task:

min I (zp, k)
m]:(wre:zr%)”

s.t. xr € Xr (18)
(zF 2Ly e B(xy) VYneN

where E(x) is the equilibrium set of the following GNEP:

. min I, (z7, L)
min — Iz, @) o (19)
Tn L L
. o s.t. zy € K (xZ,,, xr)
s.t. x, € Ky (xZ,,xr)

Hn(.’E], $7Ll) < Hn<l‘[, Zﬁ)

Lemma 9. If solution (&, %) of (16) exists and is a local optimal point of this problem, then for any
z2lc S, (21, 2L,), the tuple (21, &%, 2%) is a local optimal point of (18).

Proof. Denote the optimal value function ¥(z1) = maxX,reg (4, 2 ynen Hi(21, xL). Suppose by

_ o a T AT ) . . . k
contradiction that (z 7, ccﬁ, z,LL) is not a local optimal point for (18), i.e., there exists a sequence (w’;, azﬁ ,

zﬁk) with 2% € X/ and (:L’Lk sz) € E(z%) for all n € N such that («, aLt z,’%k) — (&1, 2%, 2L and

n rTn n

(k) = M (2h, mﬁk) < (&7, 2L) = 1(&). This contradicts the optimality of (27, £%). m

Lemma 10. Stackelberg equilibria of (18) with VE at the lower level belong to the set of equilibria Fg_,
Ofgch(o).

Proof. First, note that from Proposition 6, VE at the right part of (19) is efficient. From which it follows
that at the left part of (19), instead of the last inequality we have an equality. Fix some o, as a solution of
the upper-level problem. Then, we can rewrite (19) as

" neNteT (20)

where af, — p' > 0. Thus, each agent chooses minimal possible J! while satisfying the KKT conditions of

(19). For prosumers n € A [ JN"”, the choice of best response J!, is fixed, so it follows that we should
pt
1—xn’

minimize the profits of the insurance company, each agent in N’ chooses J! = 0. =

consider prosumers n € N”. The response of this group is fixed unless o, = for which, in order to

No solution. Finally, we return to our initial statement that might be seen as the situation where the absence
of the additional price incentives from the insurance company I for the group of indifferent agents n € A/’
leads to a non-existence of solution of (16).

Proposition 11. In a pessimistic framework, the problem (16) admits no solution.
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Proof. Suppose by contradiction that the solution of problem (16) exists. We first state that at optimum
pt
1—xn"

T
al, < T fxn. Then, the insurance company I can always increase its profit by adding sufficiently small ¢:

t . . . . . . . .
al +e< %, and taking the limit ¢ — 0, we obtain a contradiction wrt the optimality of o,. Then, from

of G, (0), problem o, can not be strictly less than

Suppose, by contradiction, that at the optimum,

Lemma 8, it follows that of, = 1 f;n . In addition, from the definition of problem G, (0), it follows that the
values of contracts J!, acquired by agents n € N are equal to 0. Thus, decreasing o, by small € > 0 (see
Figure 2), insurance company can increase its profits. Thus, we obtain a contradiction which concludes the

proof. m

Price incentives. Although the non-existence of a solution of the pessimistic bilevel problem is not a rare
case (Lucchetti et al., 1987), it is not desirable from the market point of view. Several works deal with
the question of overcoming this issue by computing e-optimal solution (Lampariello et al., 2019, Liu et al.,
2018) of the lower level problem. From Proposition 11, it is natural to consider an approximate solution of
the upper level as a way to incentivize the indifferent prosumers n € N’ to act in favor of buying insurances

thus, increasing the profit of the insurance company. Indeed, consider again Example 7 and assume that the
t
P
1_Xn
. =t .. ) )
bought by the prosumer becomes min{.J,,, ITY —n,,} as now it is profitable for her to acquire the insurance.

insurance company chooses to set o, =

— ¢ for some now fixed parameter € > (. Then, the amount

In that case the profit of insurance company I will become [1 L ;n —€— pt} min{ji, It —n,} > 0. We
formalize this in the following proposition:

. . . . t
Proposition 12. For any given &, if insurance company sets the prices of = —£— — ¢ for prosumers

n l—xn
n € N, then the problem (16) has a solution.

Proof. The proof follows directly from the reformulation of PBP as a Stackelberg game with 2N agents at
the lower level and the proof of Lemma §. =

Moreover, these considerations allow us to evaluate how much the insurance company fails to receive
when the agents are reluctant to cooperate by comparison with the optimistic solution. More precisely, we
show that the value of the objective function I17 in this formulation is at most e >, v min{j;, It —nn}
less than the value of HIO at the equilibrium of the optimistic problem (15).

4.2.3. Optimistic Formulation Analysis

Optimistic formulation can be described by means of the choice function if we set parameter w = 1.
That means that those agents who are indifferent in their choice of J!, choose the best possible option for
I: Chi(A,1) = It — n,. First, note that if the type of the two-level game is optimistic, then we can
set the price af, = 2 i’(n for all agents n € N. Indeed, we follow the proof of Lemma 8 and extend it by
considering slightly lower prices. But in the optimistic framework there is no need to provide incentives to
the indifferent prosumers, so the insurance company can always increase price for them up to o, = = ‘

—Xn :
In the next proposition we show the connection between (15) and G, (w):

Proposition 13. Stackelberg equilibria of (15) with VE at the lower level coincides with the set of equilibria
Egch Ofgch(l)-
Proof. (i) Assume by contradiction that a solution (1:([;, ng) of G. (1) is not a solution of (15). It means
that there exists a solution (27, &%) of (15) such that IT; (&7, &%) < H[(.’L’?, a:Lg). Equivalently:
5 . +
D2 Sl —an] = 3 3 [ —ma] TP — o)
neN teT neN teT
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¢ N ¢ .
We showed that &!, = af, = T f’Xn. Then, dividing by the term p! — ﬁﬁ’ we obtain

PIPILEDIPIUETN
neN teT neN teT

The set \ can be split into three groups: N, N/, N”/, that are defined as follows: (1) J = II!, — 7}, > 0,
2)J =0and (3) J € [0, 1Tt — 4,],ITL — 4, > 0, thus

D [ =i = 30 3 [ -]

neN teT neN teT
which contradicts Proposition 6.
T
(ii) We use the fact that of, = T fx and write the closed form of the objective function in (15):
tr, t P’
min 3> Ji[p' - o]
TOE e N teT Xn

from which it follows that each agent n maximizes J!, while satisfying the KKT conditions. From Propo-
sition 6, it follows that J., = Ch! (1) for all agents n € N’ which gives us exactly a solution of G.;(1).
|

In view of the above results, we can directly establish the following proposition:

Proposition 14. The value of the objective function Hf in PBP is atmoste ), - min{ji, It —n,} less
than the value of HIO at the equilibrium of OBP (15):

. —t
0P -1 =¢ Y min{J,, I}, — 7} (21)
neN’

4.2.4. Incomplete Information About the Risk Attitudes

Up to this section, we assumed that the insurance company [ can correctly assess the risk attitudes (x,)n
of the prosumers and compute the prices accordingly, alongside with the parameters (ay,, by, d',, @y, bn, A gt
D,, ¢nm ) Of the electricity trading problem. Nevertheless, in practice the insurance company does not have
an access to the agents’ perception of the risk, thus, the only information insurance company I has access
to is some a priori belief about (), expressed by means of some distribution (X, ),,. We also assume that
the insurance company has an access to good estimations of the electricity trading problem parameters in
the sense that the difference in the resulting assessments and the true values bring negligible difference to
our model. We leave the discussion about the ways to achieve this out of the scope of the paper. It follows
that the insurance company solves the problem (8) by taking the expectation of (8c), where the expectation
is taken with respect to some distribution x,, ~ X,,, Vn. Following the same path as in the proof of Lemma
8, we establish the following result:

Proposition 15. When the only information the insurance company has access to is a distribution x, ~ X,

t
then the price for the contract for agent n is given by o, = E [ - xn]'

It is straightforward to determine which agent acquires the contracts, depending on the relation between

¢ ¢ o . S

af = E [ﬁ] and of, = 5 an and the partition into groups N, N/, N”'. The only interesting situation
t i . . .

appears when of, = E[1 a Xn] =7 L o for some agent n € N (e.g., when X,, is discrete). Then, we again

have to consider optimistic and pessimistic formulations and use the machinery established in Section 4.2.2.
16



4.3. Analysis of the Two-Level Formulation with Inter-Agent Trading

The most comprehensive formulation proposed in Section 3.2 poses a lot of questions regarding the
market organization. First, we provide an illustration, why the prices !, settled as in the previous sections
may generate market imperfections in the framework with inter-agent trading.

Example 16. Consider decentralized electricity market with two agents at the lower level with risk attitudes
'3

X1 < Xx2. Then o < ol and if the price ' is less than 11)?, then agent 1 can buy the insurances from I

and resell them to agent 2. This behavior clearly reflects a market imperfection that must be addressed.

We again consider two formulations, optimistic (OBP) and pessimistic (PBP) and analyse the market
prices and its properties at equilibrium. We use the results established in the previous section to address the
problems encountered in the full formulation of the decentralized electricity market with risk hedging.

We consider OBP first. We first show that the price of the contracts at the lower level is settled as
i

t _ _D
7= 1=xn"

Proposition 17. For a inter-agent financial contracts trading, the risk-adjusted probabilities are aligned

across market participants. Furthermore, the risk-adjusted probabilities coincide with those of the least

pt

risk averse agent and are equal to the prices of financial contracts, i.e., ' = Tmimn
n n

Proof.
.. t . .
From the KKT conditions, we get that 7 fxn = 7! + x!. From the complementarity constraints, we see
that the set of risk adjusted probabilities in the modified problem with risk-hedging contracts W} implies
oqe . . t . .
zero probability on the scenarios with IT;, — Wy, <, and 7;, = £~ for scenarios with IT;, — W > n,,.
From the KKT conditions, we infer that the 7! are
aligned across agents: 75, = 75, = 7' Vn,m € N. To At
cide wi : SCN T BCN
show that they coincide with those of the least risk averse = | =
agent, assume that the price 4 if fixed. Then, for those plt | plt
t . . T DY T
agent n’ € N for whom fyt > 7 L -t it is profitable to sell 1—min xn 1—max xn
/ . t < " 3
the contracts (n’ € S): tI/Vn, < 0. The opposite holds for Figure 3: ' on the risk-aversion scale
agent n”” with " < 2, thus making her the buyer of
Xn!!

the financial contracts (n” € B).

Consider n” € B C N. If u!,, > 0, then v}, = II* , — n,» — W, and the term representing financial
t
p
1—x,,»
to the decrease in the cost of the agent. In other words, taking the sub-derviative dR,,»[IT* ,] w.r.t. W, it
is straightforward to establish that 0 € dy+ Ry [T, J(ITE,, — mprr).

On the other hand, for n’ € S C N we can similarly establish that 0 ¢ dy+ Ry [IT!,](x) for z € R™,

which means that it is always profitable to sell any amount of financial contracts for agents in S C N.
Hence, agent n* with the lowest risk aversion can sell contracts W', at the lowest prices ' equal (by taking
. o . pt pt
infinitesimal €, and setting € — 0) to oy = Tominxn

It follows that the agent with the minimal risk aversion can supply risk-hedging demand for the agents
at the lower level. In such setting, optimistic formulation again is expressed through the choice function

Chl (A, 1) and by using choice function reformulation, we establish that the prices for the insurances pro-
vided by [ are equal to o, = — P YneN.

1—min xp’
In PBP, the prosumers prefer to trade contracts directly with their peers than with I. More precisely, we

follow the proofs of Lemmas 9 and 10 to derive Proposition 11. It leads to the question of how to design
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contract trading becomes W, (v* — ) < 0, which implies that increasing W}, up to IT%,, — 1, leads
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price incentives described in Section 4.2.2, and similarly to Proposition 12. We show that the prices of the
t
insurances with price incentives are equal to o, = —L2— — ¢, Vn € N.

1—min xn
Remark 18. In the two-level model the insurance prices do not depend on their own risk aversion, but
solely on the risk aversion of the least risk averse agent. Therefore, it is more appropriate to speak about
equity than about any other kind of fairness, as the prices are now aligned across the agents.

4.3.1. Fairness

Investigating the impact of risk preferences on cost allocation in decentralized electricity markets be-
comes fundamental in order to design mechanisms that grant fairness among prosumers. We provide a
definition for fairness of cost allocation in risk-adjusted market with financial contracts. Intuitively, in our
framework involving the presence of an insurance company, fairness should relate the insurances’ price
(al),, to the prosumers’ risk aversion levels. More precisely:

Definition 19. We say that the risk-hedging market with an insurance company is fair if the insurances’
price o, is lower for less risk-averse agents, that is az, < O‘iw if X < Xt

From the Propositions 12 and 13, it is straightforward that the risk-hedging market is fair:

Proposition 20. The risk-hedging market described by the two-level game (11) is fair in the sense of Defi-
nition 19.

5. Numerical Results

We compare the performance of the various electricity and financial contracts trading market designs
proposed in this article, and analyze the impact of heterogeneous risk aversion on the prosumers’ and I’s
costs as well as social cost, by solving the noncooperative games from Section 3.

Data. We use residential data provided by Pecan Street ([dataset], 2021) for Austin, Texas. The data
consists of 15-minutes intervals specifying renewable generation, load and facilities energy consumption for
25 individual homes. We sample the distribution of scenarios for RES-based generation and demand from
the generation data and aggregated consumption respectively. Histograms representing 100 scenarios of the
RES-based generation and demand of three agents are given in Figures 4 and 5. To run the experiments, we
use the same probabilities to generate the scenarios for all the agents. Extensions of the model that account
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Figure 7: Spread of the prosumers’ costs and social cost in each market design for 5 trials. (RN) - risk-neutral, (RA) - risk-averse,
(Only I) - two level with only I, (No I) - one level with risk-hedging, (OBP) - two-level optimistic, (PBP) - two-level pessimistic.

for different distributions across the agents is described in the Appendix. We solve the problem using a
radial connection graph depicted in Figure 6. Here, edges represent the neighborhood of each prosumer.
Edges were generated randomly, such that the radial structure of the graph is preserved.

Comparison of different market designs. In order to compare the
market design outcomes, we run a set of experiments (trials) with
different values of the parameters (a,, brs A, b, CZ;, Xn)n sampled
from a uniform distribution U0, 1]. Then, for each set of parameters
and 100 sampled scenarios for RES-based generation and target de-
mand we solve the corresponding model and compute the prosumers’
costs, the social cost and the insurance company I’s profit where ap-
plicable. Prosumers’ costs and social costs for 5 trials in the different
market designs are shown in Figure 7; where a different mark is used
for each trial. The costs are the lowest in the risk-neutral framework
(RN). They increase in the risk-averse framework (RA), as one could
expect, due to increased risk-aversion of the agents, which motivates
them to make more conservative decisions such that the volatility of Figure 6: Connection graph.
their overall costs reduces (Vespermann et al., 2020).

The participation of an insurance company in the two-level (optimistic) framework (Only I) allows
the agents to hedge their risk towards uncertainties, but numerical tests show that the prosumers adjust their
electricity generations, demands and tradings to belong to the set of indifferent prosumers.

This means that by buying insur-
RN RA Onlyl NolI OBP PBP ances they do not decrease their
SC [$] 0.101 3.686 3.686 0.186 0.192 0.162 costs, but due to the optimistic for-

I’s cost [$] - - -1.41 - -0.437 -0.018 mulation, the purchases of the insur-
Fairness - + - - - ance company enable it to increase
Equity - - + + + its profits. Pessimistic formulation

in the Only I setting slightly de-
creases both the profits of I and the
costs of the prosumers, but the dif-
ference is minor. The introduction of
financial contracts in the one-level setting (No I) (Moret et al., 2020) sets more profitable financial contracts

.o, . . . t
conditions for the prosumers, because now the contract prices are uniform and are set to be ﬁ.
n
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Table 1: Prosumers’ social cost, I’s cost, market properties for different market
designs computed on a 15 min interval.



It allows agents to decrease their costs significantly by comparison with the risk-averse (RA) and two-
level with the sole I (Only I) settings. The possibility for I to propose insurances in the optimistic (OBP)
formulation, allows prosumers to reduce their costs by comparison with the risk-averse setting — in the same
manner as the one-level formulation — while bringing more profits to I. The pessimistic formulation entails
slightly lower costs. That is an important consequence of the price incentives that I uses in PBP market:
the relative reluctance of the agents to buy insurances from I motivates the company to slightly decrease its
contract prices, making them cheaper to the agents. On the other hand, it leads to a decrease in I’s profits.

From the experiments below, one can conclude that the most profitable framework for insurance com-
pany [ is the Only I, in which it is the only provider of risk-hedging contracts. On the other hand, allowing
competition between inter-agent contracts and I’’s acting as a contract provider allows prosumers to decrease
their costs significantly, at the expense of the insurance company.

Impact of incomplete information. In Sections 4.2.1 and 4.2.4, we discussed the effects of incomplete
information of I about the prosumers’ parameters. We focus here more specifically on I’s incomplete
information about (), in PBP, as introduced in Section 4.2.4. We test several distributions X, available
to I as the beliefs about ,, and compare I’s resulting profits induced by these distributions, in Table 2.
The True value is a vector of risk attitudes for the 25 prosumers sampled from the beta distribution 5(1,1).
Distributions of X, are taken from the same family of beta distributions with different parameter values for
the distribution. The best outcome is obtained when the parameters of the distribution are guessed correctly
by I.

| True value  3(1,1) B(0.5,1) B(1,05) B(2,2)
Iscost[$] | -0.0316 -0.0082 -0.0015 -0.0062 -0.0036

Table 2: I’s cost differences under different distributions of the prosumers’ risk attitudes in PBP.

However, Table 2 shows that the insurance company’s profit even in the best outcome is still 3.85 times
lower than with complete information. The same holds for other two-level formulations. Clearly, this
highlights the fact that the insurance company has incentives to learn the distribution of the risk-aversion
levels of the prosumers. Further research should be done in order to understand how to choose suitable
distribution to model the prosumers’ risk aversion, and design learning mechanism for I that also enables
it to maximize its profit. A more detailed analysis of the agents’ parameters impact on the results of the
model, is presented in the Appendix.

6. Concluding Remarks

In this work, we investigated two-level risk-hedging market designs of a decentralized electricity market,
and provided a comprehensive analysis of the underlying equilibrium problems. An insurance company is
included in the two-level market first as the only insurance supplier and then as a competitor with the inter-
agent financial contract trading. We showed that the structure of the two-level design might lead to the
nonexistence of a solution, but that problem can be overcome by designing price-based incentives which
aim to incentivize the prosumers to buy insurances instead of trading contract with their peers. To that
purpose, we reformulated the resulting Stackelberg game as a parametrized GNEP. The price incentives
only slightly decrease the profits of the insurance company, but also allow prosumers to decrease their
costs, as we illustrate in the numerical experiments.
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The discussion around incomplete information on the prosumers’ risk-aversion levels poses several
questions for future research, e.g., how can the insurance company optimize the electricity trading param-
eters while learning the risk-aversion levels of the agents? One way to achieve that could be to build a
dynamic incentive-compatible mechanism such that the agents report their private information to the insur-
ance company. Another important extension of the proposed market design would be to allow competition
among several insurance companies at the upper level of the Stackelberg game, leading to a multi-leader
multi-follower framework. Finally, another interesting branch of future research would be developing more
efficient distributed algorithms to compute market equilibria.
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7. Appendix

7.1. Risk-Neutral Framework
In a risk-neutral framework, prosumers optimize their costs with respect to the probabilities p’, without
taking differences in risk perception of the agents into account. This corresponds to the classical economic
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dispatch model, in which prosumers account for the uncertainty of their generation and inflexible demand
when optimizing their strategy, with a common view on the collective uncertainty.

7.1.1. Centralized case

The first formulation that is considered in this paper, and will be used as a benchmark, is formulated
in a centralized manner, where a global Market Operator minimizes the social cost for the risk-neutral
community. We can write the formulation as follows:

min E[SC]
Dt7Gt7qt
s.t. xz:= (D', G, q") € K.

The Social Cost function SC(.) is convex as the sum of convex functions defined on a convex feasibility set.
Indeed, the feasibility set is obtained as Cartesian product of convex sets. Thus, the optimization problem
can be solved using standard convex optimization algorithms.

7.1.2. Decentralized case

We propose different decentralized market designs, in which each prosumer n. € A selfishly optimizes
her demand (d!)), energy generation (g) and bilateral trades (qg',) with other prosumers in her neighbor-
hood under constraints on demand, generation and trading capacity so as to minimize her expected costs.
Formally, each prosumer in node n € A solves the following optimization problem:

. ¢
B 220
s.t. Ty = (d;,gfl, qfl) € Kn(x_p), (22b)

where expectation is given by

B[, = 30" [Culgh) + Culal) — UL(dL) 23)
t

This formulation can be viewed as a decomposition of the centralized problem which accounts for the
strategic behavior of all the prosumers. We first show the efficiency of the equilibria of the game (22):

Proposition 21. The KKT conditions of the centralized market design coincide with the KKT conditions at
any variational equilibrium (VE) of the decentralized market design. It follows that the set of VEs obtained
as outcome of the decentralized market design contains economically efficient outcomes.

Proof. The proof follows from the KKT conditions and the definition of VE that impose that szm =
¢, VmeN,VmeTl,. n

Lemma 22. At equilibrium, 11!, is uniquely defined, n € N. Moreover, if the values p'(cum — Cmn)nm

are not equal for any couple (n,m) € N x T, and corresponding scenarios, then prosumer n’s strategy
x,, at VE is unique.
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Proof. We start the proof by decomposing the problem into quadratic and linear parts. First, let Q),, =
Zmef‘n Gnm be prosumer n’s net import, and note that Qfl € Q,, where due to (2) Q,, is closed and bounded
set. We consider the following problem V(Q?)),:

i, Y [Cn(gi) — up,(df,)
’ neN t
s.t. (dh,gt) € Dy x Gny, YneN

dl, = gl, + Agl, + Q.

(24)

Problem (24) has unique solution (D!, GY) for each Q!, € Q,, because it is strictly convex in D?, G".
To prove the statement of the lemma, we have to consider the linear subproblem, which is formulated as

follows: ~
min Y Y p'Calay)
a neN teT
s.t. @ < Kom, vmeTl,,VneN

25
Qflm+qzm=0 vmeTl,,Vm e N (25)

t 2 : t
Qn - qnm'
mEFn

Using (1) we can rewrite the objective function of (25) as

Yo >0 dh(cam — cmn) (26)

(n,m)eN XTIy, teT

For convenience, we index all possible combinations (n,m,t) € N'x I, x T of trades between agents and
denote them as ky, . .., kys, where M = |E| - |T|. Coefficients for g, appearing in (26) are denoted as ¢y,
Then, the linear subproblem can be written as follows:

min § Ch; Gk,

q

kiji=1,....M
Q= > a,
ki€Jn
where J,, is a subset of indices ki, ..., kjs representing the trades of agent n. By Theorem 1 from (Man-

gasarian, 1979), a solution Z of the linear problem {min, c‘!x|Az = b, Cx > d} is unique if and only if
it remains a solution to all linear programs obtained by arbitrary but sufficiently small perturbation of its
cost vector ¢, or equivalently, for each b in R", there exists a real positive number ¢ such that & remains a
solution of the perturbed linear program {min, (c + ¢b)? z| Az = b, Cx > d}. Thus, to finish the proof, we
order the coefficients ¢y, such that ¢, < ¢g, < --- < ¢y,,, and consider two cases: (i) Fi, 5 Ck; = Ck;
or, equivalently, ¢, < ¢, < ...cg,,. Then, it is clear that solution q' of the original LP is a solution
of the perturbed LP for any vector b, because the order of coefficients cj, can be preserved by choosing
sufficiently small €. In case (ii) in which the ordering of the coefficients is not strict, i.e. 3¢, j : ¢, = ¢,
perturbing the cost by vector b = (..., b, ... NI ) with by, # by, restricts us from preserving the
order of coefficients thus leading to a non unique solution. It remains to conclude that equal coefficients cy,

among agents lead to the same trading costs, thus leading to the unique values of IT%,. m
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Remark 23. The implication of the above result is that even if the solution x.,, at VE is not unique, it still
bears the same individual costs for all the prosumers. Moreover, the condition for having a unique VE in
practice is pretty mild, e.g., it reduces to the agents having non-symmetric coefficients cpp,. If the condition
to have symmetric coefficients is crucial, e.g., when they represent taxes, it is possible to achieve uniqueness
of VE by adding a regularization quadratic term ¢ q2,,, that accounts for transaction costs (Vespermann
et al.,, 2020). This track is discussed later in Section 7.2.

7.2. Regularized lower level problem

In this section, we modify the risk-adjusted costs of the agents in order to ensure the strict convexity of
the lower-level problem:

R =3 [okJt + B1JE ]+, +
teT

1
(1_7) Zpt[l'[fl — Jp =] (28)
Xn) T

with the costs TT, redefined as TI%, := TI%, + 15 > mer, Cnmmm + B J* for some small By, B2 > 0 and

H,If = Zt T Hﬁb . The regularization formulation is common in the literature; for example, in (Vespermann
et al., 2020), authors interpret the regularizer 32 ) -, CnmQ>,, as a transaction cost arising from trades.

In (Moret et al., 2020) the regularizer 5y J,f is introduced as a transaction cost for financial contracts.
These terms allow us to obtain a unique solution (J%, x!) for all n € N/, for all values of z;. With this
modification, we can write the KKT conditions of the lower-level problem (12) with modified Hfl, in which
the only changes appear for the optimality condition w.r.t. q:

oL
S =0s G + Em + Thcum (1 + Bagnm) — AL, =0
qmn
oL _
o =0& ol + Bty —7h — ol +7h, =0

Proposition 24. For any ¢ > 0, there exists B, 32 > 0 s.t. I < II,, + ¢, i.e., we can approximate any
e-GNE of the lower level using a regularized formulation. Moreover, there exists a sequence B{“ , B§ s.t.

ke Er 1 for some Z.

Proof. We first observe that %ﬁg Zmern Com@2m + B1 Jff is non-negative, and that | ¢, | < KpmVn, m €
N, from which it follows that the difference between the objective functions for agent n can be bounded

by B2 Zmern Comk2,,. Fixing other decision variables at the equilibrium and taking (33 = £

2 s
Zmefn CnmKnm

we obtain the first statement.
Second, we note that from (7.2), boundeness of |gy,, | and Proposition 4.3, that for each ﬁ§ there exists
a set of dual variables s.t.

k k k k k
|C7tzm +§1tzm ""7':1 Cnm — /\fz | < B3 knm W 0,
24)

which approaches exactly the set of solutions described by KKT for original problem. We note that from the
reformulation (19), the set of equilibria solutions of the lower-level problem in PBP is a subset of equilibra
solutions of the lower level of OBP. Thus, the bound is proved for both formulations. =

7.3. Numerical results supplement
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RN RA Nol OBP PBP Computational approaches. In general, computing a
CS 0.7 1.21 12 1.28 1.28 GNE can be a challenging task. Many algorithms
DS | ~1200 ~1600 ~1600 ~1600 ~1600 have been proposed, especially in recent years, but
the conditions that guarantee their convergence, such
Table 3: Average computational time in seconds as strong monotonicity of the pseudo-gradient of the
game, aggregative structure, potential structure, etc.
(Facchinei et al., 2011), (Paccagnan et al., 2016), (Tatarenko and Kamgarpour, 2019), (Yin et al., 2011),
might be to strong to justify in practice. Computing solutions of bilevel problems, especially in the pes-
simistic framework, can be even more challenging (Sinha et al., 2018), (Basilico et al., 2016), (Liu et al.,
2018). Reformulation as a centralized optimization problem might lead to the inefficiency of the solution
(Ralph and Smeers, 2015) and also, due to computational and communication limitations, it is not always
possible to solve a large-scale optimization problem, and it is preferable to decompose the problem so that
it can be solved by a distributed algorithmic approach. Using reformulation G, with choice function, we
can implement both centralized and distributed approaches to solve the two-level problem. To solve the
problem in a distributed fashion, we use gradient-descent method discussed for e.g. in (Yin et al., 2011)
implemented using PyTorch and for the centralized solution we use Gurobi Optimizer 9.5. The comparison
of the computational time for centralized (CS) and decentralized (DS) solutions of different models with
100 scenarios are given in Table 3.

Parameters’ impact. We want to assess the agents’ pa-
rameters’ impact on their costs in different frameworks.
To that purpose, we use linear regression on a set of o0
2000 parameters sampled from the uniform distribution
and extract the weights corresponding to the parameters,
summing them over all agents. The result is depicted in
Figure 8. The R? scored obtained are > 0.75. It might
seem surprising that the main weights are put on by, and
d!, which are the constant terms in agent’s demand and °
generation costs. This is due to the fact that these terms

are not affected by the decisions of the prosumers, and,

while prosumers minimize the terms in their costs that

depend on d', ¢!, these constants remain unchanged.
Coefficients ay,, b, of generation cost C,(g') as well as risk aversion ¥, affect a lot RA and Only I while
not having a significant impact in OBP and PBP frameworks. This is due to the equity property of the latter,
i.e., the price for the financial contracts being the same (and minimal possible) for all the prosumers.
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Figure 8: Parameters’ weights

7.3.1. Uncertainties

Scenario approach considered in the paper can be supplemented with a distinction between the cor-
related and independent random variables reflecting prosumers’ generation, demand etc. It is possible to
adapt the notion of the general types of individual risk and collective risk investigated in (Cass et al. , 1996),
where authors accounted for both of them and investigated the effects of the combination of both Arrow-
Debreu and Malinvaud’s models of insurances on this type of uncertainty. In our work we can employ the
former ones, while considering the same type of uncertainty division. Thus, each agent faces two sorts of
uncertainty: individual uncertainty and collective uncertainty. It allows to speak about the independence of
the random variables we focus on.
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For each agent, there are possible .S, individual states (1,...,.S,) and T possible collective states
(1,...,T). Each agent correctly believes that her probability of being in a joint state (s, t) is given by
pn(s,t) > 0s.t. 35 pn(s,t) = 1. We denote the corresponding random variables as Sy, and 7. Agents
view 7 as a possible state of nature (e.g. weather conditions) which are common knowledge for everyone.
Sy, on the other hand, reflects individual uncertainties conditioned on the state of nature (e.g. the demand
of agent n). It is natural to assume that after the state of nature ¢ is observed by the agents, their individual
r.v. Sy, are independent i.e. .S,, are conditionally independent given 7 and the conditional probabilities are
given by (5.0

sty — _ Pnl8:)
(A PN ER) =

All the results in the paper can be proven for this modified scenario approach. Additional constraints
are introduced due to the trading in the electricity market. For pairs of agents n,m € N,n # m, in order
to align their trading decisions, we have to consider pairs of individual scenarios (s%,s7) € S, x Sp,
given collective state ¢. Under the assumption of conditional independence of individual scenarios, we
can write the joint probabilities of individual scenarios conditionally to the state of nature, as p(s’, s7|t) =

p(silt) ) pgij It)

n . Given a scenario (s', s7,t), we impose an equality on the trading reciprocity:

a5+ =0, VmeT,, (30)
which couples the agents’ bilateral trading decisions. It means that in the case where qy({j;’sj’t) > 0, the

quantity that n buys from m should be equal to the quantity q,(,f:fj ) that m is willing to offer to n. Individual

uncertainties sets S,, are unknown by other agents in the network, thus it follows that the trades of agent n
decided for scenario s’ should be equal for all the scenarios s7, s* of the agent m € T'),:

(s8,57,8) _ (s%,s%,0) Vsl sk e S (€1

nm = 4dpm ’
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