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We investigate equilibrium problems arising in various decentralized designs of the electricity market involving risk-

averse prosumers. The prosumers have the possibility to hedge their risks through financial contracts that they can trade

with peers or purchase from an insurance company. We build several market designs of increasing complexity, from a

one-stage market design with inter-agent financial contract trading to a Stackelberg game where an insurance company

acts as a leader and prosumers are followers. We derive risk-hedging pricing scheme for each model and show that

the Stackelberg game pessimistic formulation might have no solution. We propose an equivalent reformulation as a

parametrizated generalized Nash equilibrium problem, and characterize the set of equilibria. We prove that the insurance

company can design price incentives that guarantee the existence of a solution of the pessimistic formulation, which is

ε close to the optimistic one. We then derive economic properties of the Stackelberg equilibria such as fairness, equity,

and efficiency. We also quantify the impact of the insurance company incomplete information on the prosumers’ risk-

aversion levels on its cost and social cost. Finally, we evaluate numerically the proposed risk-hedging market models,

using residential data provided by Pecan Street.
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1. Introduction

This paper investigates decentralized market designs along with related equilibrium problems motivated by

the current electricity market restructuring. In the last years, decentralization has been seen as an upcoming

trend in network economics Courcoubetis et al. (2006), Fang et al. (2017). Particularly, the decentralized
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design of electricity markets is an emerging topic Anderson and Philpott (2002), Le Cadre et al. (2020),

Moret et al. (2019), largely due to the liberalization of the energy sector, that has to account for the massive

penetration of renewable energy sources (RES), and the more proactive role of prosumers.

Equilibrium problems used to analyze market designs rely heavily on the structure and the rules of the

market, as well as on the way network constraints are handled Hu et al. (2007). As a first step, in order to

account for the strategic behavior of consumers and the network constraints, we model the electricity mar-

ket as a generalized Nash equilibrium problem (GNEP), i.e., a noncooperative game endogenizing shared

coupling constraints within the agents’ parametrized optimization problems. We employ generalized Nash

equilibrium (GNE) as a solution concept Harker et al. (1991), Kulkarni et al. (2012), Yin et al. (2011),

and a refinement of it, called variational equilibria (VE), assuming that the shadow variables of the shared

coupling constraints are aligned among the agents Kulkarni et al. (2012), Roasen (1965). We focus on the

design of decentralized electricity markets which rely on a network defining each agent’s trading relation-

ships, e.g., their neighbors. The laws of physics of the distribution network are not considered in this paper,

but coupling between the market and the distribution network (seen as two inter-dependent layers) Shilov

et al. (2021) constitutes an interesting direction for future work.

When dealing with future uncertain losses, agents can have individual perception of uncertainties or risk

perception, that should be accounted for in the prosumers’ optimization problems. Whenever agents have

different perceptions of risk (heterogeneous risk aversion framework), it might lead to market inefficiencies

Philpott et al. (2016), Gerard et al. (2017), Ehrenmann et al. (2011), Ralph et al. (2010). Additionally,

the heterogeneous description of uncertainties makes the market incomplete for risk Moret et al. (2020).

We allow financial contracts trading between agents to complete the market Ralph et al. (2015). These

contracts act as instruments to reduce the effect of heterogeneous risk attitudes on the outcome of the risk

adjusted market. The questions that naturally arise from this inclusion are: i) how to define a mechanism

with desirable market properties (e.g., fairness, efficiency) for risk hedging financial contracts? ii) How to

incentivize the prosumers to participate in this market? And, iii) how to characterize the resulting equilibria?

To answer these questions, we start by building a simple one stage market, in which agents can trade

Arrow-Debreu securities with their neighbors. Several works have considered Arrow-Debreu securities for
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risk trading among prosumers in peer-to-peer electricity markets Moret et al. (2020), Vespermann et al.

(2020), Gerard et al. (2017). However, as discussed in Vespermann et al. (2020), the design of electricity

markets might range from fully incomplete markets for risk, where no financial hedging products are avail-

able, to complete markets for risk, where all potential realizations can be hedged. In order to allow agents

to fully hedge their risk and to complete the market, we supplement the model by including an additional

strategic agent, that can be interpreted as an insurance company. The insurance company acts as a seller of

financial contracts with the goal to maximize its profits. The presence of an insurance company that has to

provide contract options to the prosumers calls for a Stackelberg formulation of the model, in which the

insurance company acts as a leader and prosumers as followers.

Stackelberg games Stackelberg (1934) have been extensively applied in various fields such as market

design, financial hedging, security applications, etc. Caldentey and Haugh (2008), Liu et al. (2018), Wolf

and Smeers (1997), Sherali et al. (1983), Yao et al. (2007). Stackelberg games can be casted as bilevel

optimization problems where one problem (followers’ or lower-level) is nested within another (leader’s or

upper-level). The structure of our problem naturally gives rise to a one-leader, multi-follower generalized

Stackelberg game involving a GNEP at the lower level which might have multiple solutions Le Cadre et al.

(2020), Vespermann et al. (2020). In that setting agents might either try to cooperate with the leader, or

behave in an adversarial way, thus, either they choose the best solution with respect to the leader’s objective

(optimistic bilevel problem) or the worst one (pessimistic bilevel problem). We consider both optimistic

(OBP) and pessimistic (PBP) formulations. PBP is usually considered to be more complicated to solve than

OBP, due to the difficulties arising in the computation of its solution or even in the proofs of existence of

solutions Liu et al. (2018), Robinson et al. (1982), Lucchetti et al. (1987), Ben-Ayed and Blair (1990). To

guarantee the existence of a solution of PBP, we include contract price based incentives for the prosumers,

which allow us to establish results (existence, characterization) about Stackelberg-Nash equilibrium of PBP,

and to compare it to the solution of OBP.

In addition, the literature dedicated to the computation of PBP solutions often focuses on the computation

of approximate equilibria Lampariello et al. (2019), Liu et al. (2018) or specific cases Coniglio et al.
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(2020), Basilico et al. (2016), Wang et al. (2021). Using the structure of our model, we parametrize the

response of the prosumers by introducing a choice function, which allows us to reformulate the initial bilevel

problem as a set of parametrized GNEPs. This allows us to use results from the GNEP literature Tushar et

al. (2018), Tatarenko et al. (2019), Yin et al. (2011) to analyze the market equilibria. Finally, we compare

the properties of our market models on data from Pecan Street, by computing the prosumers’ costs, the

social cost, analyzing fairness, and the impact of incomplete information on the insurance company’s cost.

1.1. Related work

Game-theoretic models have been widely employed to investigate agents’ strategic behaviors in electricity

markets Hu et al. (2007), Ehrenmann and Neuhoff (2009), Tushar et al. (2018), Wang et al. (2021). In

Le Cadre et al. (2020), authors quantify the efficiency loss relying on the price of anarchy and capture the

impact of incomplete information on the market equilibrium relying on GNE and VE. In the same vein,

the economic dispatch in electricity trading with different structures of communications is analysed using

consensus based approaches in Moret et al. (2020, 2019).

A large part of the literature focuses on the impact of risk on the agents’ decisions in competitive settings

de Maere d’Aertrycke et al. (2017), Hoschle et al. (2018), Ralph et al. (2015), Gaur and Seshadri (2005)

and in electricity markets in particular Ralph et al. (2010), Moret et al. (2020), Abada et al. (2017),

Vespermann et al. (2020), Gerard et al. (2017), Philpott et al. (2016), Ehrenmann et al. (2011). Among

them, many papers explore equilibria properties assuming that the market is not complete for risk Ralph et

al. (2010), Abada et al. (2017), Ehrenmann et al. (2011), Philpott et al. (2016), de Maere d’Aertrycke et al.

(2017), Ralph et al. (2015). In Kazempour et al. (2016), authors analyze the impact of heterogeneous risk

preferences on the electricity market equilibrium. In de Maere d’Aertrycke et al. (2017), authors discuss

incomplete risk trading and its impact on long-term strategic investment decisions, and compare cases of

complete and fully incomplete markets for risk. Risk trading alongside with the properties of complete

market is explored in Ralph et al. (2015). Financial hedging in a supply chain, modeled as a Stackelberg

game, is considered in Caldentey and Haugh (2008) and hedging inventory risk in Gaur and Seshadri

(2005), where authors show that risk hedging leads to lower risk and higher return on inventory investment.
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Heterogeneous risk-adjusted decentralized electricity markets are considered in Moret et al. (2020), Ves-

permann et al. (2020). Moret et al. (2020) provide a model for risk hedging via financial contracts and

address the definition of fairness and the impact of risk in a one settlement two-stage market. Vespermann

et al. (2020) use a Nash equilibrium problem formulation and consider different degrees of market com-

pleteness for risk. Gerard et al. (2017) employ coherent risk measures. They analyse risk-adjusted markets

and evaluate the impact of risk-hedging contracts on the market efficiency. The question of uniqueness and

existence of risk-averse equilibria is addressed in Abada et al. (2017), Gerard et al. (2017), Ralph et al.

(2015), where one can find insights on some equivalences between social planner problems and equilibrium

problems. The problem we address in our paper relies on a similar risk-averse setting. In Moret et al. (2020),

Gerard et al. (2017), Vespermann et al. (2020), risk trading takes the form of Arrow-Debreu financial

contracts, that prosumers can trade among themselves. We go further and supplement this one stage model

with an additional layer operated by an insurance company. We thoroughly analyze the resulting Stack-

elberg game, considering both optimistic and pessimistic formulations and provide results on equilibria

characterization, solution existence and market properties.

A wide range of problems, from security games Sinha et al. (2018) to general market design, are modeled

as Stackelberg games. We provide only a few relevant examples and refer the reader to the literature for

further information Sinha et al. (2018), Liu et al. (2018), Dempe et al. (2015). In Sherali et al. (1983),

authors study Stackelberg-Nash-Cournot Equilibria in a game with one leader and N followers and its

properties under mild economic assumptions. De Wolf and Smeers extend this result in Wolf and Smeers

(1997). They consider a stochastic version, in which the decision of the leader is taken when market demand

is uncertain and provide an implementation of the model for European gas market. Equilibrium problems

with equilibrium constraints (EPECs) arising from the applications of Stackelberg game to the electricity

markets are thoroughly analyzed in Yao et al. (2007), Ralph and Smeers (2006), Hu et al. (2007).

In the bilevel optimization problem literature, most papers focus on the characterization of the solution

and computational approaches Sinha et al. (2018), Liu et al. (2018), Coniglio et al. (2020), Basilico et

al. (2016), Lampariello et al. (2019), Lucchetti et al. (1987), Wang et al. (2021), Ben-Ayed and Blair
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(1990) . In Lampariello et al. (2019), authors focus on PBP, reformulating it in a standard form and then

as a bilevel problem with a two player GNEP on the lower level, that later can be solved as a mathematical

program with complementarity constraints (MPCC). They consider ε solution of the lower-level problem

in order to overcome issues arising from PBP solution existence. We use the machinery from Lampariello

et al. (2019) to analyze PBP and its properties, but we focus on ε solution of the upper-level problem and

introduce parametrization of the reaction of the prosumers that allows us to use computational approaches

suited for GNEP.

1.2. Contributions and Paper Organization

We provide a thorough analysis of equilibrium models for risk-averse market design taking into account

uncertainties, the agents’ strategic behaviors and network constraints. By comparison with the previous

works that account for players with heterogeneous risk-aversion levels, in the context of local energy com-

munities Moret et al. (2020), Vespermann et al. (2020), we focus on an imperfect competition setting in

which the electricity market price is not enforced by an exogenous price setter, but is obtained as the result

of the interactions between the prosumers. To that purpose, we first consider a noncooperative game model

with coupled constraints capturing the energy trading reciprocity constraints between couples of agents,

therefore leading to a GNEP framework. This allows us to include the connection graph structure, capturing

the prosumers’ trading preferences, in the prosumers’ energy exchange model. We characterize the market

outcomes by analyzing the VE of this GNEP and prove that it is economically efficient.

In order to complete the market, we first consider a one stage model involving prosumers who trade

Arrow-Debreu contracts among themselves. We focus on a decentralized design of the market and provide

a characterization of the market equilibrium, proving its economic efficiency.

Then, we go further and supplement this one stage model with an additional layer, operated by an insur-

ance company. We analyze the resulting Stackelberg game considering both optimistic and pessimistic

formulations, and provide results on equilibria characterization, solution existence and market properties.

We first prove the equivalence of the reformulation of the bilevel problem with a parameterized GNEP,

by using a so-called choice function. Relying on this parametrization, we prove that the PBP formulation
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might not have a solution without including additional price incentives from the insurance company. Then,

we prove that a slight decrease in the financial contracts’ price leads to a solution of PBP that is ε close

to the optimistic solution of OBP. We next discuss the situation where the insurance company has incom-

plete information about the prosumers’ risk-aversion levels, and analyze the resulting two-stage market

equilibrium, proving that it is economically efficient and fair.

The organization of the rest of this paper is as follows: after introducing the problem statement in Section

2 and the agents in Section 2.2, we analyse risk-averse market equilibria in an incomplete market setting,

in Section 3. We discuss completeness of the market in Section 4, in which we sequentially build a one-

stage design in Section 4.1 which is later extended to a two-stage market design involving an insurance

company in Section 4.2. In Section 5, we provide a comprehensive analysis of the resulting Stackelberg

game, considering both OBP and PBP. Numerical illustrations are provided in Section 6.

2. Problem description

2.1. Preliminaries

We consider a single-settlement market for decentralized electricity trading involving a set N of N agents

(prosumers) located on a network modeled as a connection graph, modeled as a noncooperative game PG.

Each agent is located in a node of the network, which is modeled as an undirected graph G := (N,E)

where E ⊆N ×N is the set of links between the agents. Agent n can trade energy only with her neighbors

in G, denoted by Γn. The graph G does not necessarily reflect the distribution power network constraints.

The laws of physics of the distribution network are not considered in this paper, but coupling between the

market and the distribution network (seen as two inter-dependent layers) constitutes an interesting direction

for future work Shilov et al. (2021).

Scenario based approach is widely used in the literature dedicated to the electricity markets Ehrenmann

et al. (2011), Vespermann et al. (2020), Moret et al. (2020), Gerard et al. (2017). This approach allows

to account for the stochasticity of the electricity market involving RES-based generation and risk hedging

contracts. There are T possible scenarios: T := (1, . . . , T ). Each agent’s probability of being in a scenario

t is given by pt s.t.
∑

t∈T p
t = 1.
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2.2. Agents

Each prosumer n chooses independently her bilateral trades qt
n, energy generation Gt

n and demand Dt
n, to

minimize her cost function Πt
n. The quantity exchanged between n and m in the direction from m to n,

is denoted as qtmn for all m ∈ Γn \ {n}. If qtmn ≥ 0, then n buys qtmn from m, otherwise (qtmn < 0) n sells

−qtmn to m. We use subscript t to reflect the dependence of the decision variables on the uncertainty.

2.2.1. Feasibility set In each node, we introduce Dn := {Dt
n ∈ R+|Dn ≤ Dt

n ≤ Dn} as agent n’s

demand set and Gn := {Gt
n ∈ R+|Gn ≤ Gt

n ≤ Gn} as agent n’s generation set. Given a scenario t, we

impose an equality on the trading reciprocity:

qtnm + qtmn = 0, ∀m∈ Γn (1)

which couples agents’ bilateral trading decisions. It means that, in the case where qtmn > 0, the quantity that

n buys from m should be equal to the quantity qtnm that m is willing to offer to n. Let κnm ∈ [0,+∞) be

the equivalent trading capacity between node n and node m, such that κnm = κmn. Then

qtnm ≤ κnm, ∀m∈ Γn (2)

Local supply and demand balance leads to the following equality in each node n in N :

Dt
n =Gt

n +∆Gt
n +

∑
m∈Γn

qtmn (3)

We denote the dual variable ξtnm associated with the constraint (2), ζtn as the dual variable for (EC.23) and

λt
n for (3). Denote xt

n := (Dt
n,G

t
n,q

t
n) to be the vector which contains the decision variables of prosumer n.

We denote feasibility sets as Kn(x
t
−n) := {xt

n|Dt
n ∈ Dn,G

t
n ∈ Gn, (EC.23), (2), (3) hold ∀t ∈ T }, where

xt
−n is a vector which contains the decisions of all agents excluding agent n. Joint admissible set is written

then as a K :=
∏

nKn(x
t
−n).

2.2.2. Prosumer n’s cost function We consider a quadratic production cost with an, bn,D
t
n > 0:

Cn

(
Gt

n

)
= 1

2
anG

t
n
2
+ bnG

t
n+D

t
n for all t∈ T . We assume that the self-generation occurs at zero marginal

cost with a quadratic form of the cost, that is seen as realistic for a large class of conventional generators
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Le Cadre et al. (2020). The usage benefit perceived by agent n is modeled as a strictly concave function

of agent n’s demand: Un

(
Dt

n

)
=−ãn(Dt

n − D̂t
n)

2 + b̃n for all t ∈ T , where D̂t
n is a target demand defined

exogenously for agent n.

We introduce price differentiation that characterizes both the locational aspects and the preferences of the

prosumers. The preferences are modeled with (product) differentiation prices: each agent n has a price cnm

to trade with an agent m in her neighborhood Γn. The total trading cost of agent n is modeled by a linear

function C̃n(q
t
n) =

∑
m∈Γn,m ̸=n cnmq

t
nm,∀t ∈ T , where parameters cmn > 0 can be interpreted as taxes for

energy trading or agents’ preferences regarding the trade characteristics. If qtmn > 0 then n has to pay the

cost cmnq
t
nm > 0. Thus, the higher cmn is, the less interesting it is for n to buy electricity from m but the

more interesting it is for n to sell electricity to m. We write prosumer n’s cost function ∀t∈ T as follows:

Πt
n =Cn

(
Gt

n

)
+ C̃n

(
qt
n

)
−Un

(
Dt

n

)
∀t∈ T (4)

2.2.3. Local Market Operator (MO) In the electricity market literature, the electricity trading prob-

lem is often considered to be solved in a centralized way, requiring the presence of a market operator (MO)

to which all the private information is reported Vespermann et al. (2020), Moret et al. (2020). In our work,

the centralized electricity market design will be considered as the benchmark. The MO minimizes the social

cost, SC :=
∑

n∈N
∑

t∈T Πt
n, under constraints expressed by the joint feasible set K.

3. Risk-Averse Electricity Market Design

3.1. Preliminaries

In this paper, we focus on a risk-averse design in which we consider a market with collective uncertainties

that are common knowledge, but agents have different risk-aversion levels. On the contrary, in the risk-

neutral formulation, prosumers optimize their costs with respect to the probabilities pt, without taking into

account the heterogeneity of the risk perception of the agents. A detailed description of the risk-neutral

electricity market design can be found in electronic companion of this work [EC]. In our risk-averse market

design, we assume that the prosumers are endowed with coherent risk measures in their objective functions.

To analyse the efficiency loss of decentralized electricity market designs, we apply solutions concepts of

Generalized Nash Equilibria and Variational Equilibria, both of them exist under mild conditions Kulkarni

et al. (2012), Yin et al. (2011).



Author Author: Short Title
10 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

DEFINITION 1. A Generalized Nash Equilibrium (GNE) of the noncooperative game PG with coupling

constraints is a vector x := (xn)n that solves the maximization problems of the agents or, equivalently, a

vector x such that x solve the KKT system for each n.

DEFINITION 2. A Variational Equilibrium (VE) is a GNE such that the Lagrangian multipliers of the cou-

pling constraints (EC.23), are equal, i.e.:

ζtnm = ζtmn, ∀n∈N ,∀m∈ Γn (5)

By duality theory, ζtnm for n∈N ,∀m∈ Γn can be interpreted as bilateral energy trading prices Le Cadre

et al. (2020). In general, ζtnm might not be aligned with ζtmn, thus leading to non-symmetric energy trading

prices between couple of agents. Relying on VE as solution concepts enforces a natural symmetry in the

bilateral energy price valuations Le Cadre et al. (2020). However, this might require strong coordination

between the agents.

3.2. Risk Averse Market Design

Under risk-averse market design, the prosumers act upon the set of risk attitudes χn, n ∈N . Different risk

attitudes imply different risk perception of the cost function (4). To account for the risk-averse behavior of

the agents, we employ CVaR as a risk measure. CVaR is known to have a lot of appealing properties, e.g.,

it is coherent, easy to integrate in an optimization problem, etc. Rockafellar and Uryasev (2000).

By definition, CVaR is the average of all realizations larger than the VaR, where the latter is given by ηn =

minηn{ηn |P[Πt
n ≤ ηn] = χn}. Then, we write CVaR as follows: R[Πt

n] = ηn +
1

(1−χn)

∑
t∈T p

t[Πt
n − ηn]

+.

Note that R[Πt
n] is convex in (Dt

n,G
t
n,q

t
n, ηn) if Πt

n is convex in (Dt
n,G

t
n,q

t
n), which is the case in our

model. The non-differentiability ofR[Πt
n] can be overcome by leveraging the epigraph form Rockafellar and

Uryasev (2000): R[Πt
n] = ηn +

1
(1−χn)

∑
t∈T p

tut
n, with ut

n ≥ 0 and Πt
n − ηn ≤ ut

n with dual variables πt
n

and τ tn respectively. Define feasibility set K̃n as K̃n(x−n) := {xn = (Dt
n,G

t
n,q

t
n, u

t
n, ηn)t|(Dt

n,G
t
n,q

t
n) ∈

Kn(x−n), u
t
n ≥ 0,Πt

n − ηn ≤ ut
n} and denote K̃ :=

∏
K̃n(x−n) as a joint admissible set. We formulate

agent n’s optimization problem as:

min
Dt

n,G
t
n,q

t
n,u

t
n,ηn

ηn +
1

(1−χn)

∑
t∈T

ptut
n, (6a)

s.t. (Dt
n,G

t
n,q

t
n, u

t
n)∈ K̃n(x−n). (6b)
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Computing the KKT conditions of (6), we can easily see that closed form expressions for Dt
n, Gt

n, qtmn

coincide with the KKT conditions of the risk neutral model [EC] with two differences: first, instead of pt

we have τ tn, which is expressed as τ tn = pt

1−χn
− πt

n. The dual variables τ tn could be viewed as agent n’s

risk-adjusted probabilities Moret et al. (2020). From the complementarity constraints, we see that the set

of risk adjusted probabilities implies zero probability on the scenarios with Πt
n ≤ ηn, and τ tn = pt

1−χn
for

scenarios with Πt
n ≥ ηn. In addition, we prove that when the MO knows the risk attitudes (χn)n, the VEs

solutions of (6) for each agent n∈N are economically efficient:

PROPOSITION 1. The KKT conditions of the centralized market design coincide with the KKT of the peer-

to-peer market design, thus, the set of VEs solutions of PG leads to economically efficient solutions.

4. Completeness of the market

A market is said to be complete, whenever there exists an equilibrium price for every asset in every possible

state of the world; the market is incomplete otherwise Baron et al. (1979), Moret et al. (2020). To complete

the market in the sense of this definition, we include financial contracts that are intended to hedge the risk

of market participants. We discuss below two possible designs of the risk hedging market.

4.1. One stage design

As a first step, we use a framework of risk trading previously investigated in several works (e.g. Vespermann

et al. (2020), Moret et al. (2020)), adapted to our risk-augmented electricity peer-to-peer trading problem. It

includes financial contracts in the form of Arrow-Debreu securities, to mitigate the effect of heterogeneous

risk attitudes on the decentralized electricity trading. We assume that the agents can trade risk with each

other using financial contracts, i.e., they pay a certain amount contingent on a given scenario occurring.

Note that risk trading differs from energy trading. In this section we assume that agent n can trade risk

with the whole community N . The price for the contract corresponding to the scenario t ∈ T is denoted

γt. It is supposed to be homogeneous, e.g., the same price is proposed to all the agents in order to have

non-discriminatory pricing on the prosumers’ level. Trading risk in such market involves prosumers making

a first-stage decision which consists in agent n paying
∑

t∈T γ
tW t

n to obtain contingent payments W t
n in

each outcome t∈ T , i.e., W t
n represents the contracts traded inside the community.
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The objective function Rn[Π
t
n] of prosumer n in the risk-averse setting is expressed as follows:

Rn[Π
t
n] = ηn +

∑
t∈T

γtW t
n +

1

(1−χn)

∑
t∈T

pt[Πt
n −W t

n − ηn]
+. (7)

with risk trading balance per scenario condition:
∑

n∈N W
t
n = 0 for all t ∈ T with dual variable ϕt

associated to it. We define feasibility set K̂ as K̂n(x−n) := {(xn,W
t
n)|xn ∈ K̃n(x−n) and

∑
n∈N W

t
n =

0 holds ∀t ∈ T } and K̂ :=
∏

n K̂n(x−n). Risk-averse formulation with risk trading contracts and auxiliary

variables ut
n takes the following form for prosumer n:

min
Dt,Gt,qt,ut,W t

Rn[Π
t
n], (8a)

s.t. (Dt
n,G

t
n,q

t
n, u

t
n,W

t
n)∈ K̂n(x−n). (8b)

A fictitious player, acting as a distinct price setter, responsible for determining the price γt for the risk-

hedging contracts inside the community is often employed in the literature Vespermann et al. (2020). The

sole purpose of this agent is to minimize the aggregate price of risk trading for the whole community.

Thus, the optimization problem of the price-setter is to minimize the sum
∑

n∈N
∑

t∈T γ
tW t

n w.r.t γt. It

is straightforward to check that the KKT conditions for the price-setter thus coincide with risk trading

balance condition. Still, this approach does not bring any substantial result because by changing the order

of summation in this expression, and due to risk balance condition, we obtain that the objective function of

the price setter is always equal to zero, so the approach proposed in Vespermann et al. (2020) is not suited

for our model. On the other hand, in the absence of the term
∑

t∈T γ
tW t

n in the prosumers’ objectives, the

dual variable ϕt can be interpreted as the price of the financial contracts as done in Moret et al. (2020).

Hence, in our model we shall combine these approaches to determine the prices γt and to characterize the

market for risk. Below we establish result similar to Lemma 2 in Moret et al. (2020), but we provide an

alternative proof which contains technical results that will be subsequently used later.

PROPOSITION 2. In the risk complete market, risk-adjusted probabilities are aligned across market par-

ticipants. The risk-adjusted probabilities coincide with those of the least risk averse agent and are equal to

the financial contract prices, i.e., γt = pt

1−minχn

Proof. Proof can be found in [EC].
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4.2. Two Stage Design of the Risk-Hedging Market with an Insurance Company

In this section, we introduce an insurance company I , whose sole purpose is to sell the state contingent

claims to the agents. We want to consider the situation in which financial contracts trading inside the com-

munity is not sufficient to satisfy all the demand, and agents still have the possibility to buy missing contracts

from I . Below, we build a model of a risk hedging market, including first the insurance company and finally

both the insurance company and inter-agent financial contracts trading. We model the insurance company

as a distinct agent whose behavior is restricted purely to contract trading. I decides on the price αt
n and the

maximum contract value J
t

for the contract J t
n, which is paid if the outcome t is realized. In this framework,

the cost function of the insurance company is defined as follows:

ΠI =
∑
n∈N

[
−
∑
t∈T

αt
nJ

t
n︸ ︷︷ ︸

Received revenue

+
∑
t∈T

ptJ t
n︸ ︷︷ ︸

Insurance payments

]
(9)

With the presence of the sole insurance company at the upper-level and without inter-agent trading on the

lower-level, the timeline of the risk-hedging market can be described as follows:

(1) The insurance company I optimizes (anticipating the reaction of the prosumers) the contract price

αt
n for prosumer n and the maximum amount J

t
(the same for all agents) for scenario t.

(2) Each prosumer n∈N determines the contracts J t
n she wants to buy such that 0≤ J t

n ≤ J t and buys

the contracts by paying the total price
∑

t∈T α
t
nJ

t
n to receive J t

n in scenario t.

Note that the price αt
n for the insurances is settled per scenario, per agent instead of per scenario in the

inter-agent trading case. The motivation for this setting comes from the ability of the insurance company to

evaluate the risks related to each agent as it is usually done in practice: the insurance company has means

to assess these risks more accurately than the prosumers. Moreover, the insurance might propose contract

prices that are discriminatory.

The sequence of decisions introduced in the timeline above made by insurance company I and prosumers

have a hierarchical structure. It can be modelled as a Stackelberg one leader multi-follower game in which

I acts as a leader and prosumers as a followers. The leader anticipates the reaction of the followers when
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optimizing his strategy, while the followers react rationally to the actions of the leader by computing their

best-response functions. Formally, the one leader multi-follower game can be written as follows:

min
(αt

n,J
t
)n∈N

∑
n∈N

[
−
∑
t∈T

αt
nJ

t
n +

∑
t∈T

ptJ t
n

]
(10a)

s.t. 0≤ αt
n ∀n∈N (10b)

∀n∈N J t
n ∈ argmin

Jt
n,x

t
n

Πn︷ ︸︸ ︷∑
t∈T

αt
nJ

t
n + ηn +

1

(1−χn)

∑
t∈T

ptut
n (10c)

s.t. xn ∈ K̃n(x−n) ∀n∈N (10d)

0≤ J t
n ≤ J t ∀n∈N (10e)

where (10a) - (10b) constitute the upper level and (10c) - (10e), the lower level problems. Note that the

risk-adjusted costs of the agents are changing due to contract inclusion:

R[Πt
n] =

∑
t∈T

αt
nJ

t
n + ηn +

1

(1−χn)

∑
t∈T

pt[Πt
n −J t

n − ηn︸ ︷︷ ︸
≤ut

n

]+. (11)

for which we can employ the epigraph form accordingly.

4.3. Two-level Design of the Risk-Hedging Market with Insurance Company and

Inter-Agent Trading

Finally, we incorporate risk-hedging that includes both the insurance company and inter-agent financial

contracts trading. We model it similarly to the one presented in Section 4.2 with the lower- level problem

accounting for the inter-agent trading of the financial contracts W t
n as in Section 4.1 and the insurances J t

n.

More precisely, we consider a modified formulation of (10) with prosumers’ risk-adjusted costs at the lower

level written as

R[Πt
n] =

∑
t∈T

[αt
nJ

t
n + γtW t

n] + ηn +
1

(1−χn)

∑
t∈T

pt[Πt
n −W t

n −J t
n − ηn︸ ︷︷ ︸

≤ut
n

]+. (12)

for which we can employ the epigraph form accordingly. It means that now in stage (2) of the timeline of

the two-level game, each prosumer n∈N decides on the contracts W t
n, J

t
n she wants to buy after receiving

price αt
n, s.t. 0 ≤ J t

n ≤ J t and buys the contracts by paying the total price
∑

t∈T α
t
nJ

t
n +

∑
t∈T γ

tW t
n in

order to receive J t
n +W t

n in scenario t.
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5. Equilibrium analysis and computation of the Stackelberg game

Section 5.1 starts with an introduction of the differences between OBP and PBP formulations for the two-

level problem with I as the only seller of financial contracts. In Section 5.1.1, we first discuss the prices of

the financial contracts and existence of solution in PBP. We propose price incentives for the prosumers in

Section 5.1.2 and compare the resulting equilibria with the solution of OBP, investigated in 5.1.3. Further, in

5.1.4, we discuss an extension of the Stackelberg game, including imperfect information about risk attitudes

of the prosumers. In Section 5.2 we analyze the two-level formulation with both I and inter-agent trading

of financial contracts. The market properties of the resulting model are discussed in Section 5.3.

Before going deeper into the analysis, we introduce the necessary notions. Let ϕ(xI) denote the

value function of the lower level problem in (10): ϕ(xI) := minxn{Πn(xI , xn)|xn ∈ K∗
n(x−n, xI)} where

K∗
n(x−n, xI) is the feasible set of the lower level problem for prosumer n and xI , is the decision variables

of I . Then, xI which is the dependent optimal point set of this problem can be written as Sn(xI ,x−n) :=

{xn ∈K∗
n(x−n, xI)|Πn(xI , xn)≤ ϕ(xI)}. Next, we recall the notion of equilibria we use in our analysis.

DEFINITION 3. A Stackelberg equilibrium of the game defined in (10) is a tuple (x∗
I ,x

∗) such that x∗
n ∈

Sn(x
∗
I ,x

∗
−n) and ΠI(x

∗
I ,x

∗)≤maxxn∈Sn(xI ,x
t
n)∀nΠI(xI ,x).

5.1. Optimistic versus Pessimistic Formulations of the Game

In our analysis of the two-level insurance market, we focus on two formulations of the bilevel optimization

problem that are classical in the literature: optimistic and pessimistic. These two formulations are needed

to analyse the Stackelebrg game, because the lower level problem in (10) does not have unique equilibrium.

Thus, in order to optimize its problem, I has to choose an equilibrium among the set of the possible equi-

libria of the lower-level GNEP. Intuitively, we might see it as a situation in which there are some prosumers

at the lower level who are indifferent between several outcomes of the game that result in the same cost,

but the values of some decision variables of these prosumers have an impact on the cost of the leader. We

illustrate this intuition on a simple example below.

EXAMPLE 1. Assume that there are only two prosumers at the lower level f the Stackelberg game. Let us

consider prosumer n= 1,2. If at the equilibrium of the game the price for the contracts J t
n established by
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insurance company equals pn

1−χn
(which is a reasonable assumption as we show later) and ut

n =Πt
n − ηn −

J t
n > 0, then prosumer n is indifferent in her choice of insurance: J t

n ∈ [0,min{J t

n,Π
t
n − ηn}]. But this

choice is crucial for the profits of I , as J t
n =min{J t

n,Π
t
n − ηn} is the best possible outcome for it and the

worst one is J t
n = 0, constituting two different outcomes of the game for I , while leading to the same result

for prosumer n.

Note that we consider only one of two prosumers in the example above. Indeed, prosumers might have

different behavior on the risk trading market, depending on the values of their decision variables in the

electricity peer-to-peer market equilibrium. We further partition the set N into groups and emphasize on

the ones that are indifferent in the context of risk trading with I , i.e. the group of the agents for whom the

objective function remains of the same value for all J t
n ∈ [0,min{J t

n,Π
t
n − ηn}]. We first formally define

different formulations of the two-level interaction, depending on the response of the prosumers.

When I and prosumers n ∈ N act in cooperative manner, that is prosumers seek not only to minimize

their own costs, but also take into account the maximization of the profits of the insurance company, then

I can choose to solve its own problem with respect to the best possible solution of the GNEP at the lower

level (from its point of view). This leads us to the OBP formulation of (10):

min
xI ,x

L
n

ΠI(xI , x
L
n)

s.t. xI ∈Xi

xL
n ∈ Sn(xI ,x

L
−n) ∀n∈N

(13)

Optimistic problems are widely studied in the literature Dempe et al. (2015), Sinha et al. (2018) and

are considered to be more tractable as compared to the pessimistic position. The optimistic formulation is

guaranteed to have an optimal solutions under reasonable assumptions of regularity and compactness Sinha

et al. (2018). Indeed, it is easy to establish existence of solutions of problem (13) using Proposition EC.2

[EC] and Dempe et al. (2015). On the other hand, the optimistic solution might not exactly correspond to

the design of the risk hedging market, as there are no intrinsic incentives for the prosumers at the lower

level to act in favor of the insurance company’s profit maximization.
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Under PBP setting, we assume that the insurance company and the prosumers do not act in the cooperative

manner. It might be natural to assume that the insurance company I considers “worst case” with respect

to the equilibrium of the lower-level GNEP. Indeed, if we refer to the Example 1 and consider indifferent

prosumers, then it is natural to assume that given the choice of buying the insurance and not buying it with

the same outcome, prosumers would choose the latter option. Then, we can rewrite bilevel problem (10) as

min
xI

max
xL
n

ΠI(xI , x
L
n)

s.t. xI ∈XI

xL
n ∈ Sn(xI ,x

L
−n) ∀n∈N

(14)

The scope of literature that investigates pessimistic formulations of bilevel problems is much smaller than

that for the optimistic one, due to the fact that the pessimistic formulation is often more complicated than

the optimistic one Dempe et al. (2015). It is not always guaranteed that the solution of (14) exists even for

very simple formulations Lampariello et al. (2019), Lucchetti et al. (1987), and a lot of work is dedicated to

the computation of approximate equilibria Lampariello et al. (2019), Liu et al. (2018) or focus on specific

cases Coniglio et al. (2020), Liu et al. (2018), Basilico et al. (2016).

5.1.1. Insurance company’s information about the prosumers’ parameters Alongside with the

different formualtions of the bilevel optimization problem, we focus on the information structure of the

Stackelberg game. For the insurance company I , it is crucial to have full information about the set of pro-

sumers’ electricity trading problem parameters: RES-based generation ∆Gt
n, target demand D̂t

n, flexibility

activation cost function Cn(·) (more specifically parameters an, bn,Dt
n), ut

n(·) the usage benefit function

(more specifically parameters ãn, b̃n), and bilateral trade cost function C̃n(·) (more specifically parameters

(cnm)m∈Γn). Also it is crucial that I has full information about the risk-attitudes (χn)n of the prosumers to

properly settle the prices (αt
n)n.

We first discuss theoretical properties of the Stackelberg game assuming full information of I on the

parameters listed above. We prove that the noncooperative game (14) has no solution, and propose a method

to compute an approximate equilibrium that we compare to the equilibrium obtained as output of the opti-

mistic formulation. Then, we discuss the game outcome in case of incomplete information, i.e. when the
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insurance company does not have an access to the true values of the listed parameters in Section 5.1.4.

We start with a lemma about the insurance prices αt in case when there is only insurance company on the

risk-hedging market and there is no inter-agent financial contracts trading.

LEMMA 1. The price αt
n of the insurances J t

n for agent n and scenario t does not exceed pt

1−χn
.

Proof. Proof can be found in [EC].

Choice function In the text below we use the partition of the agents in groups. We denote agents with the

value ut
n =Πt

n−ηn−J t
n > 0 at the GNE as N ′ ⊆N . This group is later referred to as indifferent prosumers

(see Example 1). Agents with the value Πt
n − ηn − J t

n ≤ 0 and Πt
n − ηn ≤ 0 are denoted as N ′′ ⊆N and

with Πt
n − ηn > 0 as N ′′′ ⊆N .

Consider the group N ′. For this group of agents, we can describe best-response mapping of agent n to

the insurance company w.r.t the decision xI = (αt
n, J

t
):

J t
n =BRn(xI) =



0 if αt
n >

ptn
q−χn

min{J t

n,Π
t
n − ηn} if αt

n <
ptn

q−χn

Cht
n(A,ω) if αt

n =
ptn

q−χn

where A := [0,min{J t

n,Π
t
n − ηn}] and Cht

n(A,ω) is a choice function Cht
n(A,ω) : {A} × Ω → A. We

refer to Figure 1 as an illustration of BRn(xI). More precisely, for each agent n ∈N ′, for each scenario t

this function takes as input the interval A and parameter ω ∈Ω and returns a single value J t
n, corresponding

to the insurance bought by agent n: Cht
n(A,ω) := ω

[
Πt

n− ηn
]
. Parameter ω ∈Ω := [0,1] controls the opti-

mality of the choice of the prosumer for the insurance company I . Using this function, we write Cht
n(A,ω)

instead of J t
n in upper-level optimization problem (10a). We denote this formulation of (10) as Gch(ω).

5.1.2. Pessimistic formulation analysis

No solution Finally, we return to our initial statement that might be seen as the situation where the

absence of the additional price incentives from the insurance company I for the group of indifferent agents

n∈N ′ leads to a non-existence of solution of (14).

PROPOSITION 3. In a pessimistic framework, the problem (14) admits no solution.

Proof. Proof can be found in [EC].
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J t
n

αt
n0

min{J t
n,Π

t
n − ηn}

•
Indifference set A

of agent n

•
pt

1−χn

optimistic

pessimistic

BRn(xI)

Figure 1 BRn(xI) for n∈N ′.

J t
n

αt
n0 pt

1−χn

Figure 2 Best-response function in PBP.

Price incentives Although the non-existence of a solution of the pessimistic bilevel problem is not a rare

case Lucchetti et al. (1987), it is not desirable from the market point of view. Several works deal with the

question of overcoming this issue by computing ε-optimal solution Lampariello et al. (2019), Liu et al.

(2018) of the lower level problem. From Proposition 3, it is natural to consider an approximate solution of

the upper level as a way to incentivize the indifferent prosumers n∈N ′ to act in favor of buying insurances

thus, increasing the profit of the insurance company. Indeed, consider again Example 1 and assume that the

insurance company chooses to set αt
n = pt

1−χn
− ε for some now fixed parameter ε > 0. Then, the amount

bought by the prosumer becomes min{J t

n,Π
t
n− ηn} as now it is profitable for her to acquire the insurance.

In that case the profit of insurance company I will become
[

pt

1−χn
− ε− pt

]
min{J t

n,Π
t
n − ηn} > 0. We

formalize this in the following proposition:

PROPOSITION 4. For any given ε, if insurance company sets the prices αt
n = pt

1−χn
− ε for prosumers

n∈N ′, then the problem (14) has a solution.

Proof. The proof follows directly from the reformulation of PBP as a Stackelberg game with 2N agents at

the lower level [EC] and the proof of Lemma 1.

Moreover, these considerations allow us to evaluate how much the insurance company fails to receive

when the agents are reluctant to cooperate by comparison with the optimistic solution. More precisely, we

show that the value of the objective function ΠP
I in this formulation is at most ε

∑
n∈N ′ min{J t

n,Π
t
n − ηn}

less than the value of ΠO
I at the equilibrium of the optimistic problem (13).
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5.1.3. Optimistic formulation analysis Optimistic formulation can be described by means of the

choice function if we set parameter ω = 1. That means that those agents who are indifferent in their choice

of J t
n choose the best possible option for I : Cht

n(A,1) = Πt
n − ηn. First, note that if the type of the two-

level game is optimistic, then we can set the price αt
n = ptn

1−χn
for all agents n ∈N . Indeed, we follow the

proof of Lemma 1 and extend it by considering slightly lower prices. But in the optimistic framework there

is no need to provide incentives to the indifferent prosumers, so the insurance company can always increase

price for them up to αt
n =

pt

1−χn
. In the next proposition we show the connection between (13) and Gch(ω):

PROPOSITION 5. Stackelberg equilibria of (13) with VE at the lower level coincides with the set of equi-

libria EGch
of Gch(1).

Proof. Proof can be found in [EC].

In view of the above results, we can directly establish the following proposition:

PROPOSITION 6. The value of the objective function ΠP
I in PBP is at most ε

∑
n∈N ′ min{J t

n,Π
t
n − ηn}

less than the value of ΠO
I at the equilibrium of OBP (13):

ΠO
I −ΠP

i = ε
∑
n∈N ′

min{J t

n,Π
t
n − ηn} (15)

5.1.4. Incomplete information about the risk attitudes Up to this section, we assumed that the insur-

ance company I can correctly assess the risk attitudes (χn)n of the prosumers and compute the prices

accordingly, alongside with the parameters (an, bn,D
t
n, ãn, b̃n,∆G

t
n, D̂n, cnm) of the electricity trading

problem. Nevertheless, in practice the insurance company does not have an access to the agents’ perception

of the risk, thus, the only information insurance company I has access to is some a priori belief about (χn)n,

expressed by means of some distribution (Xn)n. We also assume that the insurance company has an access

to good estimations of the electricity trading problem parameters in the sense that the difference in the

resulting assessments and the true values bring negligible difference to our model. We leave the discussion

about the ways to achieve this out of the scope of the paper. It follows that the insurance company solves

the problem (10) by taking the expectation of (10c), where the expectation is taken with respect to some

distribution χn ∼Xn,∀n. Following the same path as in the proof of Lemma 1, we establish the following

result:
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PROPOSITION 7. When the only information the insurance company has access to is a distribution χn ∼

Xn, then the price for the contract for agent n is given by αt
n =E

[
pt

1−χn

]
.

It is straightforward to determine which agent acquires the contracts, depending on the relation between

αt
n = E

[
pt

1−χn

]
and αt

n = pt

1−χn
and the partition into groups N ′,N ′′,N ′′′. The only interesting situation

appears when αt
n = E

[
pt

1−χn

]
= pt

1−χn
for some agent n ∈ N ′ (e.g., when Xn is discrete). Then, we again

have to consider optimistic and pessimistic formulations and use the machinery established in Section 5.1.2.

5.2. Analysis of the two-level formulation with inter-agent trading

The most comprehensive formulation proposed in Section 4.3 poses a lot of questions regarding the market

organization. First, we provide an illustration, why the prices αt
n settled as in the previous sections may

generate market imperfections in the framework with inter-agent trading.

EXAMPLE 2. Consider decentralized electricity market with two agents at the lower level with risk attitudes

χ1 <χ2. Then αt
1 <α

t
2 and if the price γt is less than pt

1−χ2
, then agent 1 can buy the insurances from I and

resell them to agent 2. This behavior clearly reflects a market imperfection that must be addressed.

We again consider two formulations, optimistic (OBP) and pessimistic (PBP) and analyse the market

prices and its properties at equilibrium. We use the results established in the previous section to address the

problems encountered in the full formulation of the decentralized electricity market with risk hedging.

We consider OBP first. From Proposition 2, the price of the contracts at the lower level is settled as

γt = pt

1−χn
. It follows that the agent with the minimal risk aversion can supply risk-hedging demand for the

agents at the lower level. In such setting, optimistic formulation again is expressed through the choice func-

tion Cht
n(A,1) and by using choice function reformulation, we establish that the prices for the insurances

provided by I are equal to αt
n =

pt

1−minχn
, ∀n∈N .

In PBP, the prosumers prefer to trade contracts directly with their peers than with I . More precisely, we

follow the proofs of Lemmas EC.2 and EC.3 to derive Proposition 3. It leads to the question of how to

design price incentives described in Section 5.1.2, and similarly to Proposition 4. We show that the prices

of the insurances with price incentives are equal to αt
n =

pt

1−minχn
− ε, ∀n∈N .
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REMARK 1. In the two-level model, similarly to the one-level with only inter-agent tradings, the insurance

prices do not depend on their own risk aversion, but solely on the risk aversion of the least risk averse agent.

Therefore, it is more appropriate to speak about equity than about any other kind of fairness, as the prices

are now aligned across the agents.

5.3. Risk hedging market properties

5.3.1. Efficiency of the lower level equilibria We prove the economic efficiency of the Variational

Equilibrium of the lower level problem (EC.7), by considering its centralized formulation. A centralized

problem is formulated by means of a local Market Operator (MO) who collects all the information of

prosumers ∈N and then solves the problem (EC.7) as a single optimization problem, reacting to the actions

xI of the leader (insurance company I). It constitutes a single leader single follower game (SLSF), with the

lower level problem written as

min
xL

∑
n∈N

Πn(xI , x
L
n)

s.t. xL
n ∈Xn(x

L
−n, xI) ∀n∈N

(16)

Writing the KKT conditions for the problems (EC.7) and (16), and using the property of the VE, we can

establish the following result:

PROPOSITION 8. The set of Variational Equilibria of the GNEP given by (EC.7) for all n ∈ N coincides

with the set of social welfare optima solutions of (16).

Besides the important property of efficiency, Proposition 8 allows us also to use the machinery established

in Lampariello et al. (2019) in order to reformulate the pessimistic variant of problem (EC.10) as an MPCC.

5.3.2. Fairness Investigating the impact of risk preferences on cost allocation in decentralized elec-

tricity markets becomes fundamental in order to design mechanisms that grant fairness among prosumers.

We provide a definition for fairness of cost allocation in risk-adjusted market with financial contracts.

Intuitively, in our framework involving the presence of an insurance company, fairness should relate the

insurances’ price (αt
n)n to the prosumers’ risk aversion levels. More precisely:



Author Author: Short Title
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 23

Figure 4 Histograms of RES-generation. Figure 5 Histograms of demand.

DEFINITION 4. We say that the risk-hedging market with an insurance company is fair if the insurances’

price αt
n is lower for less risk-averse agents, that is αt

n′ ≤ αt
n′′ if χn′ ≤ χn′′ .

From the Propositions 4 and 5, it is straightforward that the risk-hedging market is fair:

PROPOSITION 9. The risk-hedging market described by the two-level game (EC.10) is fair in the sense of

Definition 4.

6. Numerical results

We compare the performance of the various electricity and financial contracts trading market designs pro-

posed in this article, and analyze the impact of heterogeneous risk aversion on the prosumers’ and I’s costs

Figure 3: Connection graph.

as well as social cost, by solving the noncooperative games from

Section 4.

Data We use residential data provided by Pecan Street Pecan

Street (2022) for Austin, Texas. The data consists of 15-minutes

intervals specifying renewable generation, load and facilities energy

consumption for 25 individual homes. We sample the distribution of

scenarios for RES-based generation and demand from the genera-

tion data and aggregated consumption respectively. Histograms rep-

resenting 100 scenarios of the RES-based generation and demand

of three agents are given in Figures 4 and 5. To run the experiments,
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Figure 6 Spread of the prosumers’ costs and social cost in each market design for 5 trials. (RN) - risk-neutral, (RA) - risk-

averse, (Only I) - two level with only I , (No I) - one level with risk-hedging, (OBP) - two-level optimistic, (PBP) -

two-level pessimistic.

we use the same probabilities to generate the scenarios for all the agents. Extensions of the model that

account for different distributions across the agents is described in [EC]. We solve the problem using a

radial connection graph depicted in Figure 3. Here, edges represent the neighborhood of each prosumer.

Edges were generated randomly, such that the radial structure of the graph is preserved.

Comparison of different market designs In order to compare the market design outcomes, we run a set of

experiments (trials) with different values of the parameters (ãn, b̃n, an, bn, D̂t
n, χn)n sampled from a uniform

distribution U [0,1]. Then, for each set of parameters and 100 sampled scenarios for RES-based generation

RN RA Only I No I OBP PBP

SC [$] 0.101 3.686 3.686 0.186 0.186 0.162

I’s cost [$] - - -1.41 - -0.437 -0.018

Fairness - + - - -

Equity - - + + +

Table 1: Prosumers’ social cost, I’s cost, market properties for

different market designs computed on a 15 min interval.

and target demand we solve the cor-

responding model and compute the

prosumers’ costs, the social cost and

the insurance company I’s profit

where applicable. Prosumers’ costs

and social costs for 5 trials in the dif-

ferent market designs are shown in

Figure 6; where a different mark is

used for each trial. The costs are the

lowest in the risk-neutral framework

(RN). They increase in the risk-averse framework (RA), as one could expect, due to increased risk-aversion
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of the agents, which motivates them to make more conservative decisions such that the volatility of their

overall costs reduces Vespermann et al. (2020).

The participation of an insurance company in the two-level (optimistic) framework (Only I) allows the

agents to hedge their risk towards uncertainties, but numerical tests show that the prosumers adjust their

electricity generations, demands and tradings to belong to the set of indifferent prosumers. This means that

by buying insurances they do not decrease their costs, but due to the optimistic formulation, the purchases of

the insurance company enable it to increase its profits. Pessimistic formulation in the Only I setting slightly

decreases both the profits of I and the costs of the prosumers, but the difference is minor. The introduction

of financial contracts in the one-level setting (No I) sets more profitable financial contracts conditions for

the prosumers, because now the contract prices are uniform and are set to be pt

1−minχn
, as highlighted in

Lemma 2.

It allows agents to decrease their costs significantly by comparison woth the risk-averse (RA) and two-

level with the sole I (Only I) settings. The possibility for I to propose insurances in the optimistic (OBP)

formulation, allows prosumers to reduce their costs by comparison with the risk-averse setting – in the same

manner as the one-level formulation – while bringing more profits to I . The pessimistic formulation entails

slightly lower costs. That is an important consequence of the price incentives that I uses in PBP market:

the relative reluctance of the agents to buy insurances from I motivates the company to slightly decrease its

contract prices, making them cheaper to the agents. On the other hand, it leads to a decrease in I’s profits.

From the experiments below, one can conclude that the most profitable framework for insurance company

I is the Only I, in which it is the only provider of risk-hedging contracts. On the other hand, allowing

competition between inter-agent contracts and I’s acting as a contract provider allows prosumers to decrease

their costs significantly, at the expense of the insurance company.

Impact of incomplete information In Sections 5.1.1 and 5.1.4, we discussed the effects of incomplete

information of I about the prosumers’ parameters. We focus here more specifically on I’s incomplete infor-

mation about (χn)n in PBP, as introduced in Section 5.1.4. We test several distributions Xn available to I as

the beliefs about χn and compare I’s resulting profits induced by these distributions, in Table 2. The True
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value is a vector of risk attitudes for the 25 prosumers sampled from the beta distribution β(1,1). Distribu-

tions of Xn are taken from the same family of beta distributions with different parameter values for the dis-

tribution. The best outcome is obtained when the parameters of the distribution are guessed correctly by I .

True value β(1,1) β(0.5,1) β(1,0.5) β(2,2)

I’s cost [$] -0.0316 -0.0082 -0.0015 -0.0062 -0.0036

Table 2: I’s cost differences under different distributions of the

prosumers’ risk attitudes in PBP.

However, Table 2 shows that the

insurance company’s profit even in

the best outcome is still 3.85 times

lower than with complete information.

The same holds for other two-level

Clearly, this highlights the fact that the

insurance company has incentives to

learn the distribution of the risk-aversion levels of the prosumers. Further research should be done in order

to understand how to choose suitable distribution to model the prosumers’ risk aversion, and design learn-

ing mechanism for I that also enables it to maximize its profit. A more detailed analysis of the agents’

parameters impact on the results of the model, is presented in [EC].

7. Concluding Remarks

In this work, we investigated one-level and two-level risk-hedging market designs of a decentralized elec-

tricity market, and provided a comprehensive analysis of the underlying equilibrium problems. An insurance

company is included in the two-level market first as the only insurance supplier and then as a competitor

with the inter-agent financial contract trading. We showed that the structure of the two-level design might

lead to the nonexistence of a solution, but that problem can be overcome by designing price-based incentives

which aim to incentivize the prosumers to buy insurances instead of trading contract with their peers. To

that purpose, we reformulated the resulting Stackelberg game as a parametrized GNEP. The price incentives

only slightly decrease the profits of the insurance company, but also allow prosumers to decrease their costs,

as we illustrate in the numerical experiments.

The discussion around incomplete information on the prosumers’ risk-aversion levels poses several ques-

tions for future research, e.g., how can the insurance company optimize the electricity trading parameters
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while learning the risk-aversion levels of the agents? One way to achieve that could be to build a dynamic

incentive-compatible mechanism such that the agents report their private information to the insurance com-

pany. Another important extension of the proposed market design would be to allow competition among

several insurance companies at the upper level of the Stackelberg game, leading to a multi-leader, multi-

follower framework. Finally, another interesting branch of future research would be developing more effi-

cient distributed algorithms to compute market equilibria.
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Electronic companion

EC.1. Risk-Neutral Framework

In a risk-neutral framework, prosumers optimize their costs with respect to the probabilities pt, without

taking differences in risk perception of the agents into account. This corresponds to the classical economic

dispatch model, in which prosumers account for the uncertainty of their generation and inflexible demand

when optimizing their strategy, with a common view on the collective uncertainty.

EC.1.1. Centralized case

The first formulation that is considered in this paper, and will be used as a benchmark, is formulated in a cen-

tralized manner, where a global Market Operator minimizes the social cost for the risk-neutral community.

We can write the formulation as follows:

min
Dt,Gt,qt

E
[
SC

]
s.t. x := (Dt,Gt,qt)∈K.

The Social Cost function SC(.) is convex as the sum of convex functions defined on a convex feasibility set.

Indeed, the feasibility set is obtained as Cartesian product of convex sets. Thus, the optimization problem

can be solved using standard convex optimization algorithms.

EC.1.1.1. Decentralized case We propose different decentralized market designs, in which each pro-

sumer n ∈ N selfishly optimizes her demand (Dt
n), energy generation (Gt

n) and bilateral trades (qt
n) with

other prosumers in her neighborhood under constraints on demand, generation and trading capacity so as

to minimize her expected costs. Formally, each prosumer in node n ∈N solves the following optimization

problem:

min
Dt

n,G
t
n,q

t
n

E[Πt
n], (EC.1a)

s.t. xn := (Dt
n,G

t
n,q

t
n)∈Kn(x−n), (EC.1b)
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where expectation is given by

E[Πt
n] =

∑
t

pt
[
Cn(G

t
n)+ C̃n(q

t
n)−U t

n(D
t
n)
]

︸ ︷︷ ︸
Πt
n

(EC.2)

This formulation can be viewed as a decomposition of the centralized problem which accounts for the

strategic behavior of all the prosumers. We first show the efficiency of the equilibria of the game (EC.1):

PROPOSITION EC.1. The KKT conditions of the centralized market design coincide with the KKT condi-

tions at any variational equilibrium (VE) of the decentralized market design. It follows that the set of VEs

obtained as outcome of the decentralized market design contains economically efficient outcomes.

Proof. The proof follows from the KKT conditions and the definition of VE that impose that ζtnm =

ζtmn, ∀m∈N ,∀m∈ Γn.

LEMMA EC.1. At equilibrium, Πt
n is uniquely defined, ∀n ∈N . Moreover, if the values pt(cnm − cmn)nm

are not equal for any couple (n,m)∈N ×Γn and corresponding scenarios, then prosumer n’s strategy xn

at VE is unique.

Proof. We start the proof by decomposing the problem into quadratic and linear parts. First, let Qn =∑
m∈Γn

qnm be prosumer n’s net import, and note that Qt
n ∈Qn where due to (2) Qn is closed and bounded

set. We consider the following problem ∀(Qt
n)n:

min
Dt,Gt

∑
n∈N

∑
t

pt
[
Cn(G

t
n)−ut

n(D
t
n)
]

s.t. (Dt
n,G

t
n)∈Dn ×Gn, ∀n∈N

Dt
n =Gt

n +∆Gt
n +Qt

n.

(EC.3)

Problem (EC.3) has unique solution (Dt,Gt) for each Qt
n ∈ Qn because it is strictly convex in Dt,Gt.

To prove the statement of the lemma, we have to consider the linear subproblem, which is formulated as
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follows:

min
qt

∑
n∈N

∑
t∈T

ptC̃n(q
t
n)

s.t. qtnm ≤ κnm, ∀m∈ Γn,∀n∈N

qtnm + qtmn = 0 ∀m∈ Γn,∀m∈N

Qt
n =

∑
m∈Γn

qtnm.

(EC.4)

Using (EC.23) we can rewrite the objective function of (EC.4) as

∑
(n,m)∈N×Γn

∑
t∈T

pt · qtnm(cnm − cmn) (EC.5)

For convenience, we index all possible combinations (n,m, t)∈N ×Γn ×T of trades between agents and

denote them as k1, . . . , kM , where M = |E| · |T |. Coefficients for qki appearing in (EC.5) are denoted as cki

Then, the linear subproblem can be written as follows:

min
qt

∑
ki,i=1,...,M

ckiqki

s.t. −κki ≤ qki ≤ κki

Qj =
∑
ki∈Jn

qki ,

(EC.6)

where Jn is a subset of indices k1, . . . , kM representing the trades of agent n. By Theorem 1 from Man-

gasarian (1979), a solution x̄ of the linear problem {minx c
tx|Ax = b,Cx ≥ d} is unique if and only if

it remains a solution to all linear programs obtained by arbitrary but sufficiently small perturbation of its

cost vector c, or equivalently, for each b in Rn, there exists a real positive number ε such that x̄ remains a

solution of the perturbed linear program {minx(c+ εb)Tx|Ax= b,Cx≥ d}. Thus, to finish the proof, we

order the coefficients cki such that ck1 ≤ ck2 ≤ · · · ≤ ckM , and consider two cases: (i) ∄i, j : cki = ckj or,

equivalently, cki < cki+1
≤ . . . ckM . Then, it is clear that solution q̄t of the original LP is a solution of the

perturbed LP for any vector b, because the order of coefficients cki can be preserved by choosing sufficiently

small ε. In case (ii) in which the ordering of the coefficients is not strict, i.e. ∃i, j : cki = ckj , perturbing the

cost by vector b= (. . . , bki , . . . , bkj , . . . ) with bki ̸= bkj restricts us from preserving the order of coefficients

thus leading to a non unique solution. It remains to conclude that equal coefficients cki among agents lead

to the same trading costs, thus leading to the unique values of Πt
n.
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REMARK EC.1. The implication of the above result is that even if the solution xn at VE is not unique, it

still bears the same individual costs for all the prosumers. Moreover, the condition for having a unique VE in

practice is pretty mild, e.g., it reduces to the agents having non-symmetric coefficients cnm. If the condition

to have symmetric coefficients is crucial, e.g., when they represent taxes, it is possible to achieve uniqueness

of VE by adding a regularization quadratic term ϕq2nm that accounts for transaction costs Vespermann et al.

(2020). This track is discussed later in Section EC.2.6.

EC.2. Completeness of the market

PROPOSITION 1. Under a complete for risk market design, the risk-adjusted probabilities are aligned

across market participants. Furthermore, the risk-adjusted probabilities coincide with those of the least risk

averse agent and are equal to the prices of financial contracts, i.e., γt = pt

1−minn χn

Proof.

pt

1−minχn

pt

1−maxχn

γt

. . .

S ⊆N B ⊆N

Figure EC.1: γt on the risk-aversion scale

From the KKT conditions, we get that pt

1−χn
= τ tn + πt

n.

From the complementarity constraints, we see that the set

of risk adjusted probabilities in the modified problem with

risk-hedging contracts W t
n implies zero probability on the

scenarios with Πt
n −W t

n ≤ ηn and τ tn = pt

1−χn
for scenarios

with Πt
n −W t

n ≥ ηn.

From the KKT conditions, we infer that the τ tn are aligned across agents: τ tn = τ tm = τ t ∀n,m ∈ N . To

show that they coincide with those of the least risk averse agent, assume that the price γt if fixed. Then,

for those agent n′ ∈N for whom γt ≥ pt

1−χn′
, from the form of the objective function (7), it is profitable to

sell the contracts (n′ ∈ S): W t
n′ ≤ 0. The opposite holds for agent n′′ with γt ≤ pt

1−χn′′
, thus making her the

buyer of the financial contracts (n′′ ∈B).

Consider n′′ ∈ B ⊆ N . If ut
n′′ ≥ 0, then ut

n′′ = Πt
n′′ − ηn′′ −W t

n′′ , and the term representing financial

contract trading in (7) becomes W t
n′′(γt − pt

1−χn′′
)≤ 0, which implies that increasing W t

n′′ up to Πt
n′′ − ηn′′

leads to the decrease in the cost of the agent. In other words, taking the sub-derviative ∂Rn′′ [Πt
n′′ ] w.r.t.

W t
n′′ , it is straightforward to establish that 0∈ ∂W t

n′′
Rn′′ [Πt

n′′ ](Πt
n′′ − ηn′′).



e-companion to Author Author: Short Title ec5

On the other hand, for n′ ∈ S ⊆ N we can similarly establish that 0 ̸∈ ∂W t
n′
Rn′ [Πt

n′ ](x) for x ∈ R−,

which means that it is always profitable to sell any amount of financial contracts for agents in S ⊆ N .

Hence, agent n∗ with the lowest risk aversion can sell contractsW t
n∗ at the lowest prices γt equal (by taking

infinitesimal ε, and setting ε→ 0) to pt

1−χn∗
= pt

1−minχn
. ■

EC.2.1. Two-Stage Problem Preliminaries

First, we will need some standard bilevel optimization notations. We denote the insurance company’s (at

the upper level) variables as xI = (αt
n, J

t
, ut

n,I)n and prosumer n’s (at the lower level) variables as xL
n =

(J t
n,x

t
n). Let Xn(x

L
−n, xI) denote the feasible set of the prosumer n’s optimization problem. In the same

way, XI denotes the feasible set of the upper-level optimization problem. Then, we can first write the

lower-level problem in a compact form ∀n∈N :

min
xLn

Πn(xI , x
L
n)

s.t. xL
n ∈Xn(x

L
−n, xI)

(EC.7)

Let ϕ(xI) denote a value function of the lower level problem (EC.7):

ϕ(xI) :=min
xLn

{Πn(xI , x
L
n)|xL

n ∈Xn(x
L
−n, xI)} (EC.8)

Then, xI , which is a dependent optimal point set of this problem, can be written as

Sn(xI ,x
L
−n) := {xL

n ∈Xn(x
L
−n, xI)|Πn(xI , x

L
n)≤ ϕ(xI)} (EC.9)

Combining these definitions, we can write the bilevel optimization problem as

” min
xI ,x

L
n

” ΠI(xI , x
L
n)

s.t. xI ∈Xi

xL
n ∈ Sn(xI ,x

L
−n) ∀n∈N

(EC.10)

For the KKT conditions, we use the following notation: gLn,i(·) ≤ 0 (hL
n,j(·) = 0) represents the generic

inequality (equality) constraints of the lower-level problem for prosumer n, while ξL
n is the vector of dual
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variables for prosumer n’s problem. In the same manner, we use notations gIi (·), hI
j(·), ξU for the upper-

level problem. Let IL (JL) denote the index set of the market level inequality (equality) constraints and IU

(JU ) denote the index set for the upper level constraints. The optimal dual variable set of prosumer n for

the lower-level problem is denoted as

Ξn(xI ,x
L
−n, x

L
n) :=

{
ξL
n ≥ 0 : ξLn,ig

L
n,i(xI ,x

L
−n, x

L
n) = 0,∇xLn

L(xI ,x
L
−n, x

L
n ,ξ

L
n ) = 0

}
(EC.11)

DEFINITION EC.1 (SLATER’S CONDITION). We say that Slater’s condition holds for prosumer n’s lower

level problem (EC.7) for a given xI , if there exists xL
n such that hL

i (xi,x
L
−n, x

L
n) = 0 and gLi (xi,x

L
−n, x

L
n)<

0.

PROPOSITION EC.2. • Slater’s condition holds for the lower level problem for each n ∈ N and for

each xI ∈XI .

• The lower-level problem (EC.7) is convex ∀n∈N for each xI ∈XI .

• Ξn(xI ,x
L
−n, x

L
n) is upper-semicontinuous.

Proof.

• The first part of the proposition statement simply follows from the structure of the constraints of the

lower-level problem: taking Dt
n =Gt

n > 0, ut
n > 0 and qnm = 0 ∀n,m if κnm > 0 and rewriting constraint

(2) as an equality if κnm = 0 we can guarantee its qualification.

• To show the convexity of the lower level problem (EC.7) we check whether the matrices in the con-

straints are positive semi-definite.

• Slater’s condition implies MFCQ, then we use Theorem 3.1 from Dempe et al. (2015), Theorem 2.3

from Robinson et al. (1982)

EC.2.2. Proof of Lemma 1

LEMMA 1. The price αt
n of the insurances J t

n for agent n and scenario t does not exceed pt

1−χn
, e.g., we

have the following relationship: αt
n ≤ pt

1−χn
.
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Proof. The objective function of the prosumer at the lower level takes the closed form

Πn =
∑
t∈T

[
ηn +αt

nJ
t
n +

pt

1−χn

ut
n

]

Note that prosumer n can belong to one of the following two groups, at the equilibrium, defined by the two

cases below:

case (i) ut
n = 0 if Πt

n − ηn −J t
n ≤ 0 case (ii) ut

n =Πt
n − ηn −J t

n > 0 (EC.12)

In case (i), we write the cost of prosumer n as Πn =
∑

t∈T

[
ηn + αt

nJ
t
n

]
and in case (ii) as Πn =∑

t∈T

[
ηn(1− pt

1−χn
)+J t

n(α
t
n − pt

1−χn
)+ pt

1−χn
Πt

n

]
.

We aim to compute insurance company I’s strategy, e.g., the insurance prices (αt
n)n. First, consider case

(ii): from the term J t
n(α

t
n−

ptn
1−χn

), it is clear that to have J t
n ≥ 0, I needs to set αt

n ≤
ptn

1−χn
. In case of strict

inequality, J t
n =min{J t

,Πt
n−ηn}, in case of equality agent n is indifferent, so J t

n ∈ [0,min{J t
,Πt

n−ηn}],

and 0 otherwise.

For case (i), it is clear that J t
n = 0 if Πt

n − ηn ≤ 0, and J t
n =Πt

n − ηn otherwise. It means that the total

price paid for the contract αt
nJ

t
n should be smaller than the loss incurred without one:

αt
nJ

t
n ≤

pt

1−χn

(Πt
n − ηn)⇒ αt

n ≤
pt

1−χn

Thus, considering the response of the prosumers to the price settled by the insurance company, we obtain

that in both cases αt
n ≤ pt

1−χn
.

EC.2.3. Pessimistic formulation

Connection between pessimistic formulation and Gch(ω) In the next lemmas, we show the link between

pessimistic formulation (14) and Gch(ω). First, we follow the path established in Lampariello et al. (2019)

and reformulate problem (14) as a one leader, multi-follower game, where the lower level is modeled as a

GNEP with 2N players. Intuitively, at the lower level, each prosumer cares not only about minimization of



ec8 e-companion to Author Author: Short Title

her own cost function, but also about maximization of the cost of insurance company I . To formalize the

setting, we introduce an auxiliary agent who takes care of this maximization task:

min
xI ,(x

L
n ,zL

n )n

ΠI(xI ,x
L
n)

s.t. xI ∈XI

(xL
n , z

L
n )∈E(xI) ∀n∈N

(EC.13)

where E(xI) is the equilibrium set of the following GNEP:

min
xLn

−ΠI(xI ,x
L
n)

s.t. xL
n ∈Xn(xI ,x

L
−n)

Πn(xI ,x
L
n)≤Πn(xI ,z

L
n )

min
zLn

Πn(xI ,x
L
n)

s.t. zLn ∈Xn(xI ,x
L
−n)

(EC.14)

LEMMA EC.2. If solution (x̂I , x̂L
n) of (14) exists and is a local optimal point of this problem, then for any

ẑL
n ∈ Sn(x̂I , x̂

L
−n), the tuple (x̂I , x̂L

n , ẑL
n ) is a local optimal point of (EC.13).

Proof. Denote the optimal value function ψ(xI) := maxxLn∈Sn(xI ,x
L
−n)∀n∈N ΠI(xI ,x

L
n). Suppose by con-

tradiction that (x̂I , x̂L
n , ẑL

n ) is not a local optimal point for (EC.13), i.e., there exists a sequence (xk
I , xLk

n ,

zLk

n ) with xk
I ∈ XI and (xLk

n , zL
k

n ) ∈ E(xk
I ) for all n ∈ N such that (xk

I , xLk

n , zLk

n ) → (x̂I , x̂L
n , ẑL

n ) and

ψ(xk
I ) =ΠI(x

k
I ,x

Lk

n )<ΠI(x̂I , x̂
L
n) =ψ(x̂I). This contradicts the optimality of (x̂I , x̂L

n).

LEMMA EC.3. Stackelberg equilibria of (EC.13) with VE at the lower level belong to the set of equilibria

EGch
of Gch(0).

Proof. First, note that from Proposition (8), VE at the right part of (EC.14) is efficient. From which it

follows that at the left part of (EC.14), instead of the last inequality we have an equality. Fix some αt
n as a

solution of the upper-level problem. Then, we can rewrite (EC.14) as

min
xLn

∑
n∈N

∑
t∈T

[
αt

n − pt
]
J t
n

s.t. xL
n ∈ V E

(EC.15)
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where αt
n − pt > 0. Thus, each agent chooses minimal possible J t

n while satisfying the KKT conditions of

(EC.14). For prosumers n∈N ′′⋃N ′′′, the choice of best response J t
n is fixed, so it follows that we should

consider prosumers n ∈ N ′. The response of this group is fixed unless αt
n = pt

1−χn
, for which, in order to

minimize the profits of the insurance company, each agent in N ′ chooses J t
n = 0.

PROPOSITION 2. In a pessimistic framework, the problem (14) admits no solution.

Proof. Suppose by contradiction that the solution of problem (14) exists. We first state that at optimum

of Gch(0), problem αt
n can not be strictly less than pt

1−χn
. Suppose, by contradiction, that at the optimum,

αt
n <

pt

1−χn
. Then, the insurance company I can always increase its profit by adding sufficiently small ε:

αt
n + ε < pt

1−χn
, and taking the limit ε→ 0, we obtain a contradiction wrt the optimality of αt

n. Then, from

Lemma 1, it follows that αt
n =

pt

1−χn
. In addition, from the definition of problem Gch(0), it follows that the

values of contracts J t
n acquired by agents n ∈ N ′ are equal to 0. Thus, decreasing αt

n by small ε > 0 (see

Figure 2), insurance company can increase its profits. Thus, we obtain a contradiction which concludes the

proof.

EC.2.4. Optimistic formulation

PROPOSITION 3. The set of Stackelberg equilibria of (13) with VE at the lower level coincides with the set

of equilibria EGch
of Gch(1).

Proof. (i) Assume by contradiction that a solution (xG
I ,x

LG
) of Gch(1) is not a solution of (13). It means

that there exists a solution (x̂I , x̂
L) of (13) such that ΠI(x̂I , x̂

L)≤ΠI(x
G
I ,x

LG
). Equivalently:

∑
n∈N

∑
t∈T

Ĵ t
n

[
pt − α̂t

n

]
≤

∑
n∈N

∑
t∈T

[
Πt

n − ηn
]+[

pt −αt
n

]
We showed that α̂t

n = αt
n =

pt

1−χn
. Then, dividing by the term pt − pt

1−χn
, we obtain

∑
n∈N

∑
t∈T

Ĵ t
n ≥

∑
n∈N

∑
t∈T

[
Πt

n − ηn
]+

The set N can be split into three groups: N ′,N ′′,N ′′′, that are defined as follows: (1) Ĵ = Π̂t
n− η̂n > 0, (2)

Ĵ = 0 and (3) Ĵ ∈ [0, Π̂t
n − η̂n], Π̂

t
n − η̂n > 0, thus

∑
n∈N

∑
t∈T

[
Π̂t

n − η̂n
]+ ≥

∑
n∈N

∑
t∈T

[
Πt

n − ηn
]+
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which contradicts Proposition 8.

(ii) We use the fact that αt
n =

pt

1−χn
and write the closed form of the objective function in (13):

min
xI ,x

L
n

∑
n∈N

∑
t∈T

J t
n

[
pt − pt

1−χn

]
from which it follows that each agent n maximizes J t

n, while satisfying the KKT conditions. From Propo-

sition 8, it follows that J t
n = Cht

n(1) for all agents n ∈ N ′ which gives us exactly a solution of Gch(1).

EC.2.5. KKT conditions for the lower level problem

In this subsection we provide KKT formulation for two-level framework with insurance company on the

upper-level and with no inter-agent financial contract trading on the lower-level. KKT conditions for the

case with inter-agent trading are derived in a similar way.

EC.2.5.1. Optimistic formulation The Lagrangian function of the lower-level problem is given by

L(xU , xL, ξL) =
∑
t∈T

αt
nJ

t
n + ηn +

1

(1−χn)

∑
t∈T

ptut
n +

∑
t∈T

τ tn (Π
t
n −J t

n − ηn −ut
n)−

∑
t∈T

πt
nu

t
n

+
∑
t∈T

µt

n
(Dn −Dt

n)+
∑
t∈T

µt
n(D

t
n −Dn)+

∑
t∈T

νtn(Gn −Gt
n)

+
∑
t∈T

νtn(G
t
n −Gn)+

∑
m∈Γn,m ̸=n

∑
t∈T

ξtnm(q
t
nm −κnm)−

∑
t∈T

σt
nJ

t
n +

∑
t∈T

σt
n(J

t
n −J

t
)

+
∑

m∈Γn,m̸=n

∑
t∈T

ζtnm(q
t
nm + qtmn)+

∑
t∈T

λt
n(D

t
n −Gt

n −∆Gt
n −Qt

n)

Computation of the first order stationarity conditions give:

∂L
∂Dt

n

= 0⇔ 2τ tnãn(D
t
n − D̂t

n)−µt

n
+µt

n +λt
n = 0 (EC.16a)

∂L
∂Gt

n

= 0⇔ τ tnan(G
t
n + bn)− νtn + νtn −λt

n = 0 (EC.16b)

∂L
∂qtmn

= 0⇔ ζtnm + ξtnm + τ tncnm −λt
n = 0 (EC.16c)

∂L
∂ut

n

= 0⇔ pt

1−χn

− τ tn −πt
n = 0 (EC.16d)

∂L
∂J t

n

= 0⇔ αt
n − τ tn −σt

n +σt
n = 0 (EC.16e)
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EC.2.5.2. Pessimistic formulation At the lower level (EC.14) of the pessimistic problem, we have two

types of agents: those who behave adversarially to the leader and those who minimize the objectives of the

prosumers. We first write the KKT for the second category, with the notation zLn := (D̃t
n, G̃

t
n, q̃

t
n, ũ

t
n, J̃

t
n).

They coincide with (EC.16a) - (EC.16e):

∂L
∂D̃t

n

= 0⇔ 2τ tnãn(D̃
t
n − D̂t

n)−µt

n
+µt

n +λt
n = 0 (EC.17a)

∂L
∂G̃t

n

= 0⇔ τ tnan(G̃
t
n + bn)− νtn + νtn −λt

n = 0 (EC.17b)

∂L
∂q̃tmn

= 0⇔ ζtnm + ξtnm + τ tncnm −λt
n = 0 (EC.17c)

∂L
∂ũt

n

= 0⇔ pt

1−χn

− τ tn −πt
n = 0 (EC.17d)

∂L
∂J̃ t

n

= 0⇔ αt
n − τ tn −σt

n +σt
n = 0 (EC.17e)

For the first category that means the agents, who behave adversarially to the insurance company I , the

objective writes as

min
xL
n

−
∑
n∈N

∑
t∈T

[
−αt

nJ
t
n +

pt

1−χI

J t
n

]
(EC.18)

and additional constraint

∑
t∈T

[
αt

nJ
t
n + ηn +

pt

1−χn

ut
n

]
≤
∑
t∈T

[
αt

nJ̃
t
n + ηn +

pt

1−χn

ũt
n

]
(ϕn) (EC.19)

Thus, first-order conditions (EC.16a) - (EC.16c) remain the same, but for J t
n and ut

n we write

∂L
∂ũt

n

= 0⇔ pt

1−χn

ϕn − τ tn −πt
n = 0 (EC.20a)

∂L
∂J̃ t

n

= 0⇔ αt
n −

pt

1−χI

+αt
nϕn − τ tn −σt

n +σt
n = 0 (EC.20b)

EC.2.6. Regularized lower level problem

In this section, we modify the risk-adjusted costs of the agents in order to ensure the strict convexity of the

lower-level problem:

R[Πt
n] =

∑
t∈T

[αt
nJ

t
n +β1J

t2

n ] + ηn +
1

(1−χn)

∑
t∈T

pt[Πt
n −J t

n − ηn]
+. (EC.21)
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with the costs Πt
n redefined as ΠtR

n := Πt
n + 1

2
β2

∑
m∈Γn

cnmq
2
nm + β1J

t2

n for some small β1, β2 > 0 and

ΠR
n :=

∑
t∈T ΠtR

n . The regularization formulation is common in the literature; for example, in Vespermann

et al. (2020), authors interpret the regularizer β2

∑
m∈Γn

cnmq
2
nm as a transaction cost arising from trades.

In Moret et al. (2020) the regularizer β1J
t2

n is introduced as a transaction cost for financial contracts. These

terms allow us to obtain a unique solution (J t
n,x

t
n) for all n∈N , for all values of xI . With this modification,

we can write the KKT conditions of the lower-level problem (EC.7) with modified Πt
n, in which the only

changes appear in (EC.16c):

∂L
∂qtmn

= 0⇔ ζtnm + ξtnm + τ tncnm(1+β2qnm)−λt
n = 0

∂L
∂J t

n

= 0⇔ αt
n +β1J

t
n − τ tn −σt

n +σt
n = 0

PROPOSITION EC.3. For any ε > 0, there exists β1, β2 > 0 s.t. ΠR
n ≤ Πn + ε, i.e., we can approximate

any ε-GNE of the lower level using a regularized formulation. Moreover, there exists a sequence βk
1 , β

k
2 s.t.

xk → x̂∈ELL for some x̂.

Proof. We first observe that 1
2
β2

∑
m∈Γn

cnmq
2
nm+β1J

t2

n is non-negative, and that |qnm| ≤ κnm∀n,m∈N ,

from which it follows that the difference between the objective functions for agent n can be bounded by

β2

∑
m∈Γn

cnmκ
2
nm. Fixing other decision variables at the equilibrium and taking β2 =

ε∑
m∈Γn

cnmκ2
nm

, we

obtain the first statement.

Second, we note that from (EC.2.6), boundeness of |qnm| and Proposition EC.2.3, that for each βk
2 there

exists a set of dual variables s.t.

|ζt
k

nm + ξt
k

nm + τ t
k

n cnm −λtk

n | ≤ βk
2κnm −−−→

βk
2→0

0,

which approaches exactly the set of solutions described by KKT (EC.16c). We note that from the refor-

mulation (EC.14), the set of equilibria solutions of the lower-level problem in PBP is a subset of equilibra

solutions of the lower level of OBP. Thus, the bound is proved for both formulations.

EC.2.7. Numerical results supplement
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RN RA No I OBP PBP

CS 0.7 1.21 1.2 1.28 1.28

DS ∼1200 ∼1600 ∼1600 ∼1600 ∼1600

Table EC.1: Average computational time in sec-

onds

Computational approaches In general, computing

a GNE can be a challenging task. Many algorithms

have been proposed, especially in recent years, but

the conditions that guarantee their convergence, such

as strong monotonicity of the pseudo-gradient of the

game, aggregative structure, potential structure, etc.

Facchinei et al. (2011), Paccagnan et al. (2016),

Tatarenko et al. (2019), Yin et al. (2011), might be to strong to justify in practice. Computing solutions

of bilevel problems, especially in the pessimistic framework, can be even more challenging Sinha et al.

(2018), Basilico et al. (2016), Liu et al. (2018). Reformulation as a centralized optimization problem might

lead to the inefficiency of the solution Ralph et al. (2015) and also, due to computational and communica-

tion limitations, it is not always possible to solve a large-scale optimization problem, and it is preferable to

decompose the problem so that it can be solved by a distributed algorithmic approach. Using reformulation

Gch with choice function, we can implement both centralized and distributed approaches to solve the two-

level problem. To solve the problem in a distributed fashion, we use gradient-descent method discussed for

e.g. in Yin et al. (2011) implemented using PyTorch and for the centralized solution we use Gurobi Opti-

mizer 9.5. The comparison of the computational time for centralized (CS) and decentralized (DS) solutions

of different models with 100 scenarios are given in Table EC.1.

Figure EC.2: Parameters’ weights

Parameters’ impact We want to assess the agents’

parameters’ impact on their costs in different frameworks.

To that purpose, we use linear regression on a set of 2000

parameters sampled from the uniform distribution and

extract the weights corresponding to the parameters, sum-

ming them over all agents. The result is depicted in Figure

EC.2. The R2 scored obtained are > 0.75. It might seem

surprising that the main weights are put on b̃n and Dt
n,
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which are the constant terms in agent’s demand and generation costs. This is due to the fact that these terms

are not affected by the decisions of the prosumers, and, while prosumers minimize the terms in their costs

that depend on Dt
n,G

t
n, these constants remain unchanged. Coefficients an, bn of generation cost Cn(G

t
n)

as well as risk aversion χn affect a lot RA and Only I while not having a significant impact in OBP and PBP

frameworks. This is due to the equity property of the latter, i.e., the price for the financial contracts being

the same (and minimal possible) for all the prosumers.

EC.2.7.1. Uncertainties Scenario approach considered in the paper can be supplemented with a dis-

tinction between the correlated and independent random variables reflecting prosumers’ generation, demand

etc. It is possible to adapt the notion of the general types of individual risk and collective risk investigated

in Cass et al. (1996), where authors accounted for both of them and investigated the effects of the combina-

tion of both Arrow-Debreu and Malinvaud’s models of insurances on this type of uncertainty. In our work

we can employ the former ones, while considering the same type of uncertainty division. Thus, each agent

faces two sorts of uncertainty: individual uncertainty and collective uncertainty. It allows to speak about the

independence of the random variables we focus on.

For each agent, there are possible Sn individual states (1, . . . , Sn) and T possible collective states

(1, . . . , T ). Each agent correctly believes that her probability of being in a joint state (s, t) is given by

pn(s, t) > 0 s.t.
∑

(s,t) pn(s, t) = 1. We denote the corresponding random variables as Sn and T . Agents

view T as a possible state of nature (e.g. weather conditions) which are common knowledge for everyone.

Sn, on the other hand, reflects individual uncertainties conditioned on the state of nature (e.g. the demand

of agent n). It is natural to assume that after the state of nature t is observed by the agents, their individual

r.v. Sn are independent i.e. Sn are conditionally independent given T and the conditional probabilities are

given by

p(s|t)n =
pn(s, t)∑
s′ pn(s

′, t)
(EC.22)

All the results in the paper can be proven for this modified scenario approach. Additional constraints are

introduced due to the trading in the electricity market. For pairs of agents n,m∈N,n ̸=m, in order to align

their trading decisions, we have to consider pairs of individual scenarios (si, sj)∈ Sn×Sm, given collective
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state t. Under the assumption of conditional independence of individual scenarios, we can write the joint

probabilities of individual scenarios conditionally to the state of nature, as p(si, sj|t) = p(s
i|t)

n ·p(sj |t)m . Given

a scenario (si, sj, t), we impose an equality on the trading reciprocity:

q(s
i,sj ,t)

nm + q(s
i,sj ,t)

mn = 0, ∀m∈ Γn, (EC.23)

which couples the agents’ bilateral trading decisions. It means that in the case where q(s
i,sj ,t)

nm > 0, the

quantity that n buys fromm should be equal to the quantity q(s
i,sj ,t)

mn thatm is willing to offer to n. Individual

uncertainties sets Sn are unknown by other agents in the network, thus it follows that the trades of agent n

decided for scenario si should be equal for all the scenarios sj, sk of the agent m∈ Γn:

q(s
i,sj ,t)

nm = q(s
i,sk,t)

nm , ∀sj, sk ∈ Sm (EC.24)
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