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Spectral equations for scattering by impedance polygons :
properties and solutions

J.M.L. BERNARD

1) Introduction

The Sommerfeld-Maliuzhinets representation of fields is not limited to the study of the
diffraction by isolated impedance wedges, and we developed in [1]-[2] an analytical method
concerning the determination of spectral function for the scattering in free space by an
impedance polygonal object (convex or not). This method is now quoted and used by other
authors [3], but other approaches exist, as in [4]-[13] for cavities, perfectly conducting object,
and some specific geometries by asymptotic or exact reduction, or as in [14] by iterative
reduction. Our approach is exact for general impedance polygons with finite or infinite
surfaces. For that, we consider special features of single face expression of spectral function,
that we defined in [1]-[2], to develop exact functional difference equations, then Fredholm
integral equations, that can be solved exactly, but also asymptotically, considering small or
large faces. We detail here novel properties. Existence and uniqueness of solutions are, in

particular, analysed in a new original manner, while some refined asymptotics are presented.
2) Generalities

Let us consider the case of diffraction in free space of a plane wave
ui(p, 90) — eikpcos(@—(po), (1)

by a scatterer enclosed in a wedge-shaped region, defined in cylindrical coordinates (p, ) as
the domain complementary to the free space sector of radiation, — ®, < ¢ < &; (figure 1),

with — &, < ¢, < ®;. The characteristics of the scatterer are supposed to be independent of

t

2 coordinate. An implicit harmonic dependence on time e™' is understood and henceforth

suppressed. In expression (1), k£ denotes the wave number of the exterior medium with

|arg(ik)| < §, while |arg(ik)| = T is considered as a limit case. We assume that the total

field in the free space region, u = u, + u’, satisfies the Helmholtz equation,

(A + E)u(p, ) =0, (2)



-

with analyticity with respect to p and ¢ as — ®, < ¢ < ®;, except possibly at the origin O.
Some elementary properties are assumed to hold for the field :

- (a') the only incoming plane wave, from the free space sector with origin O,
— &, < ¢ < Py, is the incident field;

- (b") the field u tends to a finite value independent of ¢ as p — 0, and the derivatives 0,u
and J,u/p are locally summable with respect to p in the vicinity of the origin. This property
applies for an origin taken at any point out of or upon the scatterer;

- (¢') the field, except possibly its geometrical optics part when Im(k) # 0, does not grow at
infinity. In addition, some bounds on the far field are assumed. We consider here that the
field is O(e™reos(¥=¢)) for large p, |arg(ik)| < 7/2, which is a standard assumption [1]-[2]

when the scattering object has impedance boundary conditions.

ui

figure 1 : a polygonal surface in a wedge shaped sector

The total field u for — ®, < ¢ < ®; can be then represented as a Sommerfeld-Maliuzhinets
integral [1]-[2], [17]-[20],

1 .
u(p, @) = %/f(a + @)elreosede, (3)
v

which satisfies the Helmholtz equation. In this representation, f is an analytical function and
the path ~ consists of two branches: one, named 7, going from (ioco + arg(ik) + (a1 + 7))
to (ioo + arg(ik) — (az + 5)) with 0 < a;» < 7, as Ima > d, above all the singularities of
the integrand, and the other, named ~_, obtained by inversion of ;. with respect to o = 0.

We can develop the expression, considering a deformation of 7 to the steepest descent path

SDP for large kp, composed of two paths SD P, centered on the stationary phase points
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a = =+ 7. Assuming that, between v and SDP, f(a + @, @,)e 7% is meromorphic and

vanishes at infinity,

u(p.g) = wi+ Y uf + Y uim+ Y u;

e 't ikp(cosa+1)
f(a + (p)@L p(cosa da, (4)

27 SDP

where

- the terms u;, uF and u, for incident, reflected and transmitted Geometrical Optics plane
waves (if any), correspond to real poles of f(a + ¢) captured during deformation of 7 to
SDP;

- the terms u correspond to complex poles of f(a + ) captured during deformation of v to
S DP, for terms of complex plane guided waves (if any) excited by the edge;

- the last term, named w4, is principally radiated cylindrically when p — oo. Approximating

f(a+ ) on SDPy by its value at the stationnary phase points & = =+ 7, we obtain

_ e*iﬂ'/4*ik‘p

UdNWv@H'(P)—f(—W‘F@)]: (5)

with F'(¢) = f(m+ ¢) — f( — 7™+ ) the diffraction (or far field) coefficient.
ANV
S—n/2 Im (kcosa) < 0
-t —m2 L
' w2 om
Rea
& @Sy ™
I\

figure 2 : Complex path of integration

Ima

 }

This representation is commonly applied for a wedge. We investigate its use for a scatterer
with several discontinuities as in [1]-[2], detailing properties and ameliorating the method.
This study requires us to express a shift of the origin, and for this, to use particular relations
of f with radiation by one face [1]-[2]. By choice, we take in what follows ®, = &; = ®.



3) Single-face expression of f for a scatterer surface with two polygonal faces

Let us consider a polygonal surface located inside the domain || > ® enclosing a scatterer.
This surface is composed of two joined semi-infinite polygonal faces Lgfoo, denoted + and
— , respectively with 7™ straight segments of lengths d;- with tangent angles + @7, j = 1,
2, ..., (m* =0 when no finite segments), and a semi-infinite plane with tangent angles

+oE O < P,

The spectral function f satisfies a single-face expression [1], as § < O F p, < 37” and
F<OEFo<i,
1 ik7.0M
frreg) =3 [ F @OV EON)
0,00
— Var(w(M))e*OMY 7= ds(M), (6)

where s(M) is the length abscissa on each face, at points M of Loi,oo from origin to oo, the
term 7 is the unit vector of the direction of observation with angle ¢, and A is the outward
unit normal to face at M.

Considering the geometry of LF ., and the notation 2V, (.) = 0(.)/0n = F9(.)/p;0¢;

on straight segments p; € [0, dji] atp; = £ <I>j-t, we can write the single-face expression of f

[1] in the form,

—ikY. dfcos(aF®iE) n

1<i<j '

€
flo) =3 5
1<j<m* 0
0 Jy . —iky,  dfcos(aF®¥)
£ oo (6, £ @) T g o Fiue (), (7)

(— iku(p}, = @7 )sin(a F ;)

with m* > 0 (m* = 0 when no finite segments on face ), > =0, > =0, where
1<i<0 1<i<l1

* . (a) is the analytic continuation of the integral expression,
1 oo
o (@f £07) = 5/ (— iku(p,, £ ®7)sine/
0
a N / !
£ L (gl £ @F))e gy ®

valid as Re(ik(cosa/ — cos(PE F ¢.))) > 0, [Re!| < m, |arg(ik)| < 5.
The function ffmi is the spectral function corresponding to the Sommerfeld-Maliuzhinets

representation of the field in cylindrical coordinates (p, pF), with origin QF . at the edge
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of the semi-plane ¢ = + ®F, radiating in the free space sector ®F — §F < + pFf < &F

where 6F is a strictly positive constant determined by the geometry.

In accordance with the conditions (a'), (b'), and (¢') on the field w, the spectral functions f and

£+ have the following properties :

(a) f(a) = 1/(a — o) has no singularity in the band — & < a < @, even at infinity, while
£ () —u'(QF .)/(a — ¢,) has no singularity in the band ®F — §F < 4+ Rea < &F,

where u'(QF, .) = exp(ik ), dicos(p. F ®F)).

’ 1<i<m*
(b) f(«) is regular in the band — @, < Re(a) < @, except at o« = ¢, and possibly as
IIma| — oo, and thus e (@) f(a) + B¥(a) = = (@) too (note : A* and B* are entire

functions). The function f(«) has no singularities, except the poles of Geometrical Optics, in
the region where e”#7°°5(*=¥) diverges as p — oo, [Rea| < =, |p| < ®, and verifies for large
Ima in this domain, f(a) = Fu(p = 0) + O(e*a®) as £ Ima >0, cx >0, di > 0.
Thus, f(a) remains finite when — ® — 7/2 + arg(ik) < £ Re(a) < 7/2 + arg(ik) + P as
Ima — =+ co. The spectral functions f* ., refering to geometry at origin QF ., have

e,m e,m

behaviours of the same type.

+
a,p

The spectral functions and flfp, attached to shifts of the origin at opposite ends of the

segment p on the face =+, with f,fp(a): api(@) for 1<p<m* and

fif (a) = f* .(a), are the spectral functions associated with the representations of the

e,m*

field in coordinates (p; ,, ;) and (pj,, ;) with origins at opposite ends @, and Q;;, of

a,p

segment p. From single-face representation of spectral function (7), we have ,

() = L (— iku(p), . @)sin(a — @) & @(p’ ©))
a,p 2 0 a,p’ on a,p?

—ikp!, cos(a— / —ik dfcos(aF®L) pt
X @ el peos( S”)alpavplgpzﬂppi—i—e i cos( P)fb’p(oz),

. 1 (% ) , ou ,
fb,p(a) = 5 ( - Zku(pb,[ﬂ (p)SlI‘l(Oé - 90) + a_(pb,]ﬁ 90))
0 n
—ikpj a— —ik dEcos(aF (®F—7
T A PSS ) AR () 9)

and we note that the function f;°, and f;, combinations of functions f;-, and f;’, following,

fi (@) = £ (@) — e7hdreoso® ) gt (o)

. + + - + +
(@) = fy(a) — MG 2 ) = (ST e (0) - (10)

are directly related to the radiation by the finite segment p.
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Remark : Let define v* so that v*(M) =0 at M € LT __, with non null finite Vo®(M) on

0,00°

regular parts of LT . We have dv™ (M) = d(OM).Vv*(M) = 0 on regular parts of each
gular p 0,00 g p

face. Considering a constant a and the unit normal Z to 2D plane, with outward unit normal

ds =|d(OM)| = Fa*.(2 Ad(OM)), ads = F (2 Ad(OM)). (11)

4) Polygonal surface with impedance boundary conditions

4.1) Functional difference equations on fjmi for semi-infinite planes

In the case of an infinite polygonal scatterer with impedance boundary conditions along both

semi-infinite planes o= = + ®F, we have,

ou , .

where 9(.)/On* = 7=V () = F9()/pFdpr, 0<|Re(8F)| < 7/2, A* is the outward

normal to the face 7 = + ®F, and from (8), the functions f* . satisfy the functional

e

equations,

(sina £ sinfF) £ . (a4 &F) — ( — sina £ sinfF) f= .(— a £+ dF) = 0. (13)

e,m* e,m*

If the scatterer is finite, the segments of both faces form a closed surface so that we can take
e = Qg with ®F 4 & = 2. The fields on both semi-infinite planes ¢, = + @7 are

e,m* e

then equal and their normal derivatives are opposite,

_ . Ou ou , _ _
u(pj,@j) = u(pe , — @, )7 %(p:,(b:) = = %(ﬂe , — @, )7 (14)
and we derive from (8) that,
e (@ + 1) = fo (o — ). (15)

Considering the definition of f(«) and f:mi given in (7) with properties (a) and (b), the
functional equations (13) or (15) imply [1] that these functions are meromorphic with simple
poles, regular in the band — ®. < Rear < &, except for the pole at « = ¢, and possibly at
infinity when ® < + Rea < ®F (note : for finite scatterers, f(a) — cot(3(a — ¢.)) have

no poles, and this function is an entire function).



4.2) Functional equations due to boundary conditions on finite segments

Considering impedance boundary conditions on the segments in the form,

ou -

[%(pa,p’ + (I)f) - stme;ﬁ:u(pa,pa + q)?):)]OSpa,depi =0,

ou o

[%(pb,p, + ((I)?): - ﬂ-)) - zksm@iu(pb,p, + ((I);: - W))]OS/)b,delf =0, (16)

with 0 < [Re(f,)| < /2, we can use the definition of fi, and f;, in (10) with the

equalities given in (9), and deduce,

[(sina & sin6)) f1, ( + @) — (= sina £ sinf)) i, ( — a + )] | p=ta2 = 0,

[(sina F sinf)) f5, (a + @) — (= sina F sinb,)) f5,( — a + )] | o=@z —m) = 0. (17)

4.3) A remarkable relation between f,°, and f;", deriving from (17) when (10) applies

It is known from (10) with (9) that ffp has a 27 period, but it is remarkable that this property
also derives, in an independent manner, from the difference equation (17). Considering (17)
with (10), this 27 periodicity will then implies the equivalence between the fields represented
with £ and f;7.

Indeed, f5 (a £ ®F) = — €™ djcos(a) fi,(a = @) from (10), and we derive from (17),

[(sina & sin6)) f1-, (o + @) + (sina F sinf,)) fi,( — o + )] |p=+a2 = 0,

[(sina F sind)) f1, (o + @) + (sina £ sinf,)) fi,( — o + ¢)] o=@z -m) =0,  (I8)

then,
(sin(a & @) T sind;)) (e =0
(sin(a & ®F) & sings) "7 ’

(sin(a & @) F sind;) Fa) =0 (19)
(sin(a & ®F) + sing¥) "7 '

ffjp(a + 2@]%) +

ffp(a + 2(<I>;'f —7) +

This allows, after substraction, to deduce the 27 period of ffp,

fipla) = fi,(a+2m), (20)
which gives us, after writing (o) = fi,(a) — e *dresoT®;) () from (10),

ffp(w +a) — fjfp( —T+a)= eikd;ms(“@ﬂi)(flfp(w +a) — flfp( —7T+a)). (21)
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Consequently, the equations (17), when (10) applies, implies that the far field given by f;

the far field given by f;5 -, with phase center shifted by A, so that the field given by f7 + 18 the
one given by fbm , relatively to two distinct origins corresponding to ends of the segment P.

In whole generality, it is remarkable that functional difference equations for boundary
conditions on each segment has for additional consequence the equivalence of fields

represented with any f (or fb - ), refering to any origins on the impedance polygons.

5) Formulation of the three-part polygonal problem : spectral functions in Sommerfeld-

Maliuzhinets representation and functional difference equations in complex plane.
5.1) Definition

We consider the diffraction of an incident plane wave by a semi-infinite impedance polygon
divided into three parts, each one characterized by relative surface impedances sinf_, sinf,
and sinf, with 0 < Re(f1) < 7/2 and 0 < Re(#;) < 7/2 (strict passivity). This means that
mt=1, m =0, & =35, =5+, & =-5-9, f= fa—fa1 -

2 2 e
fb: bl_f+

i

u

X
s
,’7///'1 7

figure 3 : geometry of the three-part polygon

The functions f, and f, are the spectral functions associated with the Sommerfeld-
Maliuzhinets representation of the field, in coordinate systems (p,, ©,) and (pp, @p), With
origins at opposite ends of the finite segment of length A (see geometry on figure). We have,

n (pa, pq) coordinates,



(pa €10,00[, 00 = — g — &) with Ou/On — iksinf_u = 0,

(pa € 10,7, 0, = g) with 9u/0n — iksinju = 0, (22)

with the incident field v’ = e?*P+°3(?a=%2) "and, in coordinates (py, ©3),
(pp €10,Al, 05 = — g) with du/On — iksinfyu = 0,

(o3 €10, 00[, 05 = g + ®y) with du/On — iksind,u = 0, (23)

with the incident field u! = ei*(Preos(pp—po)+Asing.)

The properties (a) and (b) give us that,
(fa(@) = 1/(a = o)) and (fy(@) — ™55 /(o = p,)) (24)

are regular in the respective strips — 5 — ®, < Rea < § and — § < Rea < § + &, with
— 5= Pa <o <5+ Py, and verify f,, ()= T pap) = )+ O(eFan=qlden=) in
these regions as Ima — =+ 00, ¢4 )+ > 0.

Considering the definitions, we have f, = f,, f.F = f;, and we obtain, relatively to

integration on piecewise straight faces,

A ou —ikpgsina
o — tku(pg, 5)cosa — G4 (pq, 5))e P
fa(Oé) — e—zkAsmafb(Oé) . / ( (pa 2) 5 on (pa 2)) dp{“
0
: . A (Zk"u,(pb7 — )COSOé + Jdu (,Ob _ E))e-i-ik/)bsin()z
fb(Oé) = ezk‘Asm()‘fa(Og) — / 28n 2 dpb, (25)
0

for any complex angle o, while, relatively to integration on straight semi-infinite faces,

1 ou

fa(a - 90—) = 5/0 ( - iku(ﬂm - (P—)Sina - %(pm - w_))e—ikpacosadpm (26)

as Re(ik(cos(p, +¢_) —cosar)) < 0, |[Rea| < m, withp_ = § 4 ®,, and

1

00 ou
—/ ( —iku(pp, @y )sina + — I (pp, p1))e Freosadp,, (27)
0

fola+ey) = 2

as Re(ik(cos(p, — ¢4) —cosar)) < 0, |[Rea| < m, with o, = § + ;.
5.2) About functional difference equations in complex plane

5.2.1) Functional equations for the central strip and semi-infinite planes
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We now derive functional equations on the spectral functions from the boundary conditions
on the central strip (of finite size) and on the semi-infinite planes of the three-part impedance

polygon (figure 3). Using the boundary conditions on the central strip (22), and letting

fl(a/+ E) — fa(a+ E) _ efik:Acosafb(a_i_ E),

2 2 2
™ T —1 o’ ™ —1 o’ ™
fola — 5) = fila — 5) e A 5) = — e RO (o — 5)7 (28)

we obtain, as described in (17),

(sina + sinéy ) f1(a + g) — (= sina + sind) fi( — a + g) —0,
(sina — sind; ) fo(a — g) — (- sina — sinfy) fo( — a — 721) =0, (29)

while, using the boundary conditions on both semi-infinite planes (23), we obtain, as
described in (13),

(sina + sinf, ) fi, (0 + g + @) — (—sina+sinfy) fi( — a+ g +®,) =0,

s s

(sina — sinf_) f, (v — 3~ ®,) — (—sina —sinf_) f,( — o — 3~ ®,)=0. (30)

5.2.2) A remarkable relation between f, and f; deriving from (29) when (28) applies

We follow a development similar to the one used to obtain (19)-(21). Considering the

relation between f; and f5 in (28), we have from (29),

(sina + sindy ) f1(a + g) — (= sina + sind) fi( — a + g) —0,
(sina — sindy) f1(a — g) — (- sina — sinfy) f1( — a — 721) =0, (31)

and thus,

(cosa + sinby ) f1(m + a) 4 (cosae — sinby ) f1( — ) = 0,
— (cosa + sinby) f1( — 7+ a) — (cosa — sinby ) f1( — ) = 0. (32)

This implies, after addition,
Alr+a) = fil =7+ a), (33)
and, from the expression of f; with f, and f, given in (28),

fam+a) = fu( =T+ a) = e (fi(m+ @) — fi( — T+ ). (34)

Consequently, the equations (29), which initially concern the impedance boundary condition
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on the segment, has for additional remarkable consequence (34), which signifies that the far
field given by f, is the one given by f, with phase center shifted by A, so that the field given
by f, is the one given by f; relatively to the two origins at both ends of the segment.

Remark : Let us consider the poles of the meromorphic function f;. They are 27-periodic
from (33), and are, by definition of fi, also poles of f,, or f, or both. The presence of these
2m-periodic poles is in contradiction with the other functional equations due to impedance
conditions on the semi-infinite faces (as (a)-(b) are satisfied), and thus the integral equations
derived from them (note : it is different for finite scatterers, since f(a) — 3cot(3(a — ¢.))
has no pole). It finally implies that f; has no pole, and is then an entire function. This
property is in agreement with the integral expression of f; with u on the finite segment
derived from (9)-(10).

5.3) Functional difference equations for f(a) = fy(a + L), fur(a) = fola — %)

We can now derive, from (29)-(30), difference equations on f,(a) = fy(a+ %),
far(@) = fola— %), corresponding to both discontinuities when influenced each other. If

we let fp (o — %) = fo(a) with @, = T + %, we have

(sina + sinfy ) fi- (. + @) — ( — sina + sinf ) f,.( — a+ @) =0, (35)

and

(sina — sinby) fi, (. — @) — ( — sinaw — sinby) fi,.( — @ — D)
sina — sinfy ) f, (o — g) — (= sina — sinfy) fo( — o — g))

= 2¢kAaG (@), (36)

— e—ikAcosa ((

If we let for (o + %) = fu(a) with ®_ = Z + 2=, we have

(sina + sindy) for (@ + D) — ( — sina + sinby) fo, ( —a+ P_)

= ¢~k (sing + sind) ) f (o + g) — (= sina +sind) f,( — a + g))

— 26—71kAcosas(j—(a), (37)
and

(sina — sinf_) fy (a0 — @) — (— sina — sinf_) for( — v — ®_) = 0. (38)
From the properties of f, and f;, the functions

(fur(@) = 1/(a = po,0) and (for () — €™ [(a — 95)) (39)
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are respectively regular in the bands |[Rea| < ®_ and |[Rea| < @, with ¢, , = o + % and

Pop = o — 2L, — T — P, < o < I+ Py, and, in these regions,

i 1Cy+ QU 4+
far(a) =+ 5“(/)@ = O) + O(ei o ada’ )7

and f, (o) = F %u(pb =0)+ O(eiicb*iaadbi), (40)

as Ima — £ 00, ¢y(p)+ > 0, dy(p)+ > 0.

Besides, we remark that, for A = 0, the three-part polygon is reduced to a wedge with

exterior angle 2®; = (2(®, + ®_) — ) and face impedances sinf., where ®, =  + %,

¢ =7+ %. In this case, we have fy. (o — ®_ 4+ F) = for(a+ @, — I) = f§®(), where
gb, refering to the solution for an impedance wedge (see appendix), is given by

7r U, (ar)cos(55*)

20 U (pea)(sin(3) — sin(552))

ab

0 (Oé, 900)

(41)

where Po,d = Yo + (CI){L — (I)b)/2, — ¢, < Pod < ®,, with &, = ((I)a + ®p + 7T)/2
6) The integral expressions and integral equations for the three-part impedance polygon
6.1) Elementary integral solutions for difference equations

Considering the theory of functional equations, the analytic function y(«) satisfying,
X(@£ @) = x(—at®)=19%a), (42)
and regular as |[Rea| < @, is given in the strip |[Rea| < ® [17], [22], by,

~ x(ioo) + x(—ioco) | —i [*
x(a) = 5 + 8@/

_ ﬁ’(a’)tan(%(a o)), (43)

dd(ﬂ*(a’)tan(%(oz +®—d))

—i00

when the functions ¥*(a) are regular and summable on the imaginary axis, with
X (i00) — x( —i00) = 0. The functional equations (35)-(38) can be reduced into the form
(42), by using the solutions W q(a, ) (resp. ¥;_(cr, _)), without pole or zero and
O(cos(ma /2@, )) (resp. O(cos(ra/2®_))) in the band |Rea| < @, =T + % (resp.
[Rea| <@ = 7§ + %), of the equations without second members of the type,

(sina + sind)) Uy, (o + D, @) — ( — sina + sind)) V. ( — a+ P, ) = 0,

(sina — sinf, ) ¥y, (o — @, &) — ( — sina — sind, )V, ( — a — @, &) =0, (44)
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with 1=+, r=1, =0, =2+2 for U, (o, ), and I=1, r= —,
=0 =7+ % for Uy («, ®_) (see details on ¥y, named ¥, _(«, @) in appendix).

6.2) Coupled integral expressions for fj,(«) and f,.(a)

Considering (35)-(38), we consider first the solution for S;” =0 (resp. S,” = 0) with a
unique pole due to incident plane wave as |[Rea| < @, (resp. [Rear| < ®_), which is directly
related to impedance wedge case (see appendix). Substracting it from the general solution, we
obtain unknowns regular as |Rea| < @ (resp. |[Rea| < ®_). As previously noted, we can
then use ¥, of (44), then (42), and thus obtain integral expression of the type (43).
Therefore, we can write [1], fi(«) for — &, < Rea < 39, following,

do’ + xj(c)

fbr(a) B i /JriooSb( ) zkAcosoztan(M) ( —<I>+—o/))

U,i(a) 49, ) 0 (sina/ — sin@l)\I/H(o/ —d,)
Sy (of —iq fe% e
— i e (sm(;’(slr)l@l) hicose Sll’l( 20, ) d 4+ Xb( )
T 4D, ) T(d — @) cos(m, (a—®,)) + cos(Qq) )
100 T " —ikAcoso/ T
i [T fald -5+ ) “sin(557) do/ + xi(a), (45)
4(b+ —ico \I/+1 (Oé/ — (I)+) COS(2(I> (Oé — q)+)) + COS(;:; ) b ’
and, f,(a) for —3P_ < Rea < ®_,
far() _ _— i /J”OO Sa(a)e” thAcosal tan( g (o + @ — o)) do! + ' (@)
U () 4P_ ) (sina/ +sm91)\111 (o/ +_) “
. 0o Sy () —i o o/
_ 1 /+/ (sina/+sindy ) kAcosal Sln(2<1> ) _|_ % ( )
49 ) oo Wy (o) + @) cos(z2- (a + ®_)) + cos(£2) ¢
_ i /-I—ioo fbr(a, 4 g o %) —Lk‘Acosu Sll’l( 27rq())é ) do/ N Xi (a) (46)
49 Uy (o + @) cos(zo—(a+ D)) + cos() ey

with oy = 0o — 2,88 — 2 <o < T+ @y, and o, = 0o+ L,88 — I — @, < 0o < I,
while the source terms are given by,

i ik Asing, 7T gllasing. COS(2<I> )
() = e X0 = 5 (ml(wo,b)(sin(;;m )
)= T cos( 5% 55 )
X(I,( ) - 2¢7 (\111(9007(1)(511,1(2(1) ) _ Sln( 2((% )))7 (47)

with Re(61) # 0, Re(61) # 0, &4 = 2+ L, and &_ = I + 2.
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Remark : We use, in (45), that (sina/ — sinf; )W ;(o/ — @) is even, and thus,

25, (o) _Juld =5+ %) ful—d - F+ %) (48)
(SinOé/ — Sin91)q1+1 (O/ — (I)+) \D+1(Oé/ — @+) \D+1( —ao — @+) ’
and in (46), that (sina/ + sinf;)¥;_ (o’ + ®_) is even, and thus,
s (] T (028
257 () e+ 5 -3 fu(—d +5-3F) (49)

(sina/ +sinf))¥;_(o/ +®_) U, (¢’ +D_) U, (—o/+P_)

with fbr(a - %) = fb(a)a far(a + %) = fa(a)-
6.3) Integral equations when ®,;, > — 7, as |arg(ik)| < m/2
6.3.1) Definition of integral equations

From previous integral expressions (45)-(46), we can write,

folat§5—%) _ —i /“ Sy (o) 1
T(a+I-2) 40,/ o (sine —sind;) Uy (a/ — @)

—ikAcosa i1n ( O/
e sin( T )

cos(gzg- (o — @) + cos(%)

. d,
da’ + X (o + 721 _ ?l), (50)

+ %) 49_ ;. (sine/ +sind;) ¥i_(o/ 4+ P_)
—ikAcosa/ o3 ( T
sin (22~ .
X - ) do/ + X} (a —
cos(gzg- (o + @q)) + cos(g5-)

e

[\3|g"9*

+—), (51)

ol

as —3®_ <Re(a— 3+ %)< ®_, when —min(3, I+ &,) <, <min(Z, I+ o).

When ®,, > — 7, we can take a purely imaginary, where the functions,

Sy (a 1 T P, (sina + sindy) for( — a0 — T + 22)
#:_(far(a__‘i‘_) + . . 2 2 )
(sinae — sinfy) 2 2 2 (sina — sinfy)
SHa 1 T D (sina — sindy ) for( — o 4+ T — )
#:_(fbr(a'i'___)‘k : : —20),  (52)
(sina 4 sinfy) 2 2 2 (sina + sinfy)
vanish at infinity, in contrary to fo,(a — § + %) and fy(a+ 5 — %) in general.

Choosing these functions as unknowns, we derive the integral equations for imaginary «,
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) __ i [ _Sple) e ()
(sina +sinfy) 8@, J ;. (sina/ — sinf,) \I/H(o/ —-d,)
ina—sing
) { Uia(a+§-%) Charsmpg Ui(—a+3 % >} g
cos(g5-(a — @) +cos(35-)  cos(55- (o + p)) + COS(T)
1 s (I)b ; ™ (I)b
V) T2y r_=
+3 [Tl F - Pniar 5 - P
(sina — sinf )V 1 ( —a+ § — %) T D
—at -2t 53
* (sina + sinfy) xi( ot 2 2 )| (53)
and
Sb_ (a) _ i /+ioo 52_(0/) —LkAcosa Sll’l( 27r§ )
(sina —sinfy) 8@ J_ ;.o (sina/ +sind;) U, (o/ + P_)
x (sina+-sinf . x P,
v [ U, (Of -9 + %) (zinafzineigqjl_( a—3 + 2 ):|d0/
cos(57—(a+ ®,)) +cos(2E)  cos(za (o — @,)) + cos(g2-)
1 v (I)a i ™ (I)a
N (=L T2y (- L 2
L RCERRC SRS
(sina + sinf) ¥ _( —a — § + %) , T D,
i(—a—2 2 54
* (sina, — sinfy) Xol —a 2 T3 )| (54)
where we note that S, ( — o) = — S, (), S/ (=) = = S (d).
6.3.1) Equations in L?(iR) x L*(iR) as |arg(ik)| < /2
We begin by noting that,
7T (ba(,b) T (I)a(7b)
5" 9 —3t — Q) = P(4) — Pa()s
(sina Fsinf;) { + 2sinf, (55)
(sina +sinfy) (sina & sinfy)’
and,
U1 (@) = Apeos(——)(1 + O(a”e~lumaly).
23,
@ @ Fird
Ui(—at g - )= —nlat g — e (1+0(ae vml),
2 2 2 2
q)a q)a im’ a
Ui(—a=- S+ =~ (a— T4+ et (140 ™), (s6)
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when Ima — =+ oo, with @, = 5 + %, ¢ =7+ % Letting the kernels in the form,

Ka,b(a/7 O,/) _ ka,b(a/7 a)e—ikAcosa” (57)

then using (55) and (56), we note that the k,;(c’, o), independent of kA, are bounded
functions on ¢R x iR that verify,

cos(ajr)cos(a1 o) dcos(a )

cos(ayar)+ccos(ara’) + 1+b1cos(a)))
cos(aja) + ccos(ar) ’

kmﬂaﬂa):()(( (58)
as [Ima/| > A and |Ima| > B, with positive real constants A, B, ay, by > 0, ¢ > 0, and d,
while the source term is O(1/cos(a1«x)) as |Ima| — oo.

The kernels in (53)-(54) are then square integrable as Im(kA) < 0, i.e. |arg(ik)| < 7/2
when kA # 0, and we can consider the coupled equations (53)-(54) with,

e 8y (ix) o S (ix)
b 2 a 2
[ Vi i <o [ iy gy e <o 69

as a system of Fredholm equations of second kind in L?(iR) x L?(iR). Let us note that the
solution of the functional equations (35)-(38) when kA = 0 is the one for an impedance
wedge, uniquely defined from [18] with [24].

We now explain how to extend this domain to enclose the case |arg(ik)| = 7/2, by
deformation of the integration path.

6.4) Modification of integration path, and extension including k real
6.4.1) The new path of integration C,

We note that the exponential term e~ in the kernels of (53) and (54) vanish at infinity
when o/ — =+ ioo as |arg(ik)| < 7/2, kKA # 0. However, it is possible to deform the domain
of integration (possible by analyticity) so that e=*4¢®’ _ () at infinity on the new path even
when £k is real, providing to not capture any pole during the deformation, while considering
that the first singularities of integrands are for |Rea| > |Re(61)| # 0. For this extension
including £ real, we will modify the path, following,

+i00
I= K(d a)v(a)da — T = /K(o/,a)v(o/)do/, (60)
Ce

—100
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changing the initial path o/ = ia’ with 2’ € R for the path C. with o/ = g.(2') following,
C. = {d' = g.(¢) with g.(2') = iz’ + etanhz’, 2’ € R, |e| < |[Re(6)[},
as |e| < sign(e)arg(ikA) < /2 + |e|/N, kA # 0, with N > 1, ¢ # 0. (61)

where the case |e| = 0 will be considered in the sense of the limit.
6.4.2) Vanishing properties on C, and analysis of Re(ikcos(g.(z)))

To show that e~*#2%" _, () at infinity on C,, we analyse the behaviour of Re(ikcos(g.(x)))
as |x| — oo. We can write,
ikcos(gs(w)) _ |'I,k"( —x+i(arg(ik)+etanhz) + ex—&-i(arg(ik’)—etanhx))/l

1 + e—2le| cos(arg(ik)etanhjz))
Re(ikcos(g.(x))) = |k|cos(arg(ik) — etanh|z|)el?!( COS(;g( ik)—ctanhiz) ). (62)

We then note that we have as 0 < |e| < sign(e)arg(ikA) < 7/2,

. cos(arg(ik) + etanh|z|)
cos(arg(ik) — etanh|z|) > 0, 9, (cos(arg(ik‘) — etanh|xl)> =0,
cos(arg(ik) + etanh|x|)

cos(arg(itk) — etanh|z|)

‘ <1, (63)

while, as /2 < sign(e)arg(ikA) < 7/2 + |e|/N, when tanh|z| > tanh|zy, | = M /N with
1 < M < N, we have,

cos(arg(ik) — etanh|z|) > 0, Oy <ZZ:EZ§§82 i_ Z:ZEEEB) 0
sin(e(1+ M)/N
sin(e(1 — M)/N
(
(

) cos(arg(ik) + €3L)  cos(arg(ik) + etanh|z|)
)
|4 €08 arggik) + etanh|x|; o 2l

cos(arg(ik) — e4)

< <_17

cos(arg(tk) — etanh|z|)
sin(e(M +1)/N) ‘
(

Lhe sin(e(M —1)/N)

(64)

cos(arg(ik) — etanh|x|

Therefore, we can write in whole generality, as 0 < |e| < sign(e)arg(ikA) < 7/2 + |¢|/N,

when [ > max(|Jza x|, $In|$aei A3 ) = acy with 1 < M < N,

el
Re(ikcos(gc(x))) > |k|cos(arg(ik) — etanh|x\) 5 (1 — e 2l#lmaex)y 5 ¢

o}
with %(1 — e Al=e)y = etvsinh(|z!| — ac ). (65)
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Consequently, the term e =45 verifies as |2/| > acy onC,,
|efikAcoso/| < e*ﬂ/(k:A,m/)e”f»Nsinh(|x’|faf,N) with ")/(k‘A, x/) _ Re(ikAefistanh\xﬂ) >0, (66)

and thus, vanishes as |2'| — oo, when € satisfies,

0 < |e| < sign(e)arg(ikA) < w/2 + |e|/N,
with N > 1, kA # 0and 0 < |e] < |Re(6})]. (67)

Reciprocally, at € fixed and thus C, given, we can define

the set 7, of kA # 0 with arg(ikA) verifying (67), (68)

on which, by definition, the exponential term vanishes at infinity on C.. We can note that we
have, for kA belonging to 7,

v(kA, x') increases, as |2’| increases and |arg(ikA)| decreases,
and as |kA| increases when |2'| > ac y. (69)

Remark : we note that, as |arg(ik)| < 7/2,

e—ikACOS(gg(l’)) — h(|x‘, kA)e_ikAeiiFtanh‘;F‘Sinh“TC" |h(|x|7 ]{TA) _ e_ef\ir‘ik;Acos(gtanh“xD| S ]-7
e—ik:Acoso/| < e—fy(kA,x’)sinh|x’| with ")/(k‘A, x/) _ Re(ik‘Ae_iEtanh‘x/'). (70)

6.4.3) Analyticity of integral expressions of f, and f,, with the new path C,

The integrals (45) and (46) with new path of integration C. give us expressions of,

for(@) far(c)
V() and Uy ()’ )

which are regular, respectively as,

Re(ge(Im(a))) — @, < Re(a) < Re(ge(Im(a))) + 3%,
and Re(g.(Im(a))) — 3®_ < Re(a) < Re(ge(Im(a))) + P_, (72)

with Re(g.(Im(«))) = etanh(Im(«)), |Re(g.(Im(cx)))| < |e|, where we can notice that the
functions fy, (o) are O(1) at infinity, with fy, 4 ( —i00) = — fi0r(+i00). These
functions satisfy, by analytic continuation of integrals, the functional equations (35)-(38),

and are meromorphic functions of the complex plane
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Remark : the analytic continuation of complex integrals can be done by adding residues terms
associated to poles crossing the integration path as a parameter varies, or by deformation of
integration path.

6.4.4) Integral equations on C, as |e| < sign(e)arg(ikA) < 7/2 + |e|/N

Changing the path for C., the integral term I in (60) now becomes,
+00
1= [l gl ) d 73)
for |e| < sign(e)arg(ikA) < w/2+ |e|/N, N > 1, with kA #0 and 0 < |e| < |[Re(6;)|.
Replacing the integration path by C. in integral equations (53) and (54), we then derive,

Sa (ge(2)) _ —Z/m Sy (ge(z"))
(sin(

(sin(g.(z)) +sinfy) 8P, J_ ge(x')) — sinby)
Kya(9e(2'), ge(2)) 0w ge (') da" + %[\Pﬂ(ge(x) + ;—T — %)xi(ge(x) + g — %)
(sin(ge(z)) — sind) W ( —a+ T —2) T By
(Sil’l(gf(l‘)) + sin91) - 2 Xb( - gf(x) + 5 - 7)]7 (74)
and
Sy (ge(x)) i /+°° Sy (ge(2))
(sin(ge(x)) —sinby) 80/ (sm(ge( ) + sinf))
Kaal0:(), 9.2 (a)da' + 5[0 (0u(x) — 5 + S xiae(a) — 5 +2)
(sin(ge(z)) +sind) W1 (—ge(x) =T+ F) , T @,
" (sin(g. (z)) — sinfy) Xl=g@ =g+ (79

for z € R, with g.(x) = ix + etanhzx. Following (57), the dependence on kA of kernels is in

exponential term, and we have,
Kop(9e(2"), 9e(2)) 0w ge (') = kap(ge(2'), ge(x))ax’ge(x/)eiikAcos(gf(x,))a (76)

where the k,5(g.(2'), g(x)) are independent of kA, and the exponential term is an entire
function of kA. Considering (55) and (56), the k,; are analytic functions of kA, regular and
bounded by constants independent of kA, which verify,
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cosh(ayx)+ccosh(ai2') 1+b;cosh(z)

cosh(a;x)cosh(a;2) + dcosh(a;z) )
). an

ko (96(2), ge(2)) O ge(2')| = O ((

cosh(ajz) + ccosh(a,z’)

as |x| > A and |2'| > A’, for some positive real constants A, A’, a;, by >0, ¢ > 0, and d

independent of kA, while we note that the source terms are O(1/cosh(az)) as |z| — oo.
6.4.4) Fredholmness on C, x C., in L?(R) x L*(R)

Considering 7. defined in (68), the domain of kA where the integral equations can be
considered on C. x C,, we note that for any closed subset 1" of 7, it exists two complex
values & 9 of 7. with 0 < |&;] < |&2], |arg(i&1)| = |arg(i&2)|, such that,

larg(ikA)| < [arg(i€y)], [€1] < [RA] < [&]. (78)

We have in T', from (66)-(69), as |z'| > acn,

| —ikAcos(g,(x ‘ <e —y(kA,z")eN sinh(|jz'|—ac x) <e y(&1,2" e N sinh(|z’|—ac x)
’7(517 ) - RG(Z€1€ ietanhz’ ‘) > 07 7(617 ) > ’7(517 a@N) > 07 (79)
and, as 7| < acn,

| —ikAcos(g.(x | < C&Q < C§126 Y(&1,ac.x )e"N sinh(j2’|—a.. v) (80)

where C¢ , only depends on ¢, &1, §» and a. y. Thus, we have in general,
| —ikAcos(ge(z ‘ < D€ e —~sinh(|z’|— afN)

with Dflﬂ - max(l? C&,z)a "= 7(€1> as,N)eaf‘N > O,

where Dy, , and v, depend only on the choice of the subset 7'.
We can then write for kA belonging to 7',

/ oo/ oo|Ka,b(gE(1:’),ge(x))ﬁxfg(:):’ﬂzdx'da: < By,
/ 1K (9:(2"), 9¢(2))Bwg(a’)Pda’ < Fi(a),
/ 1K (9:(2"), 96(2))Bwg(a’)Pda < Fy(a'),

—00

+00 +00
/ Fi(z)dr < BO,/ Fy(2')dz' < By, (81)
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where the functions F; and F5 can be chosen following,

+00 ) ,
Fi(z) = D§, / o (ge(x'), gc () B g (') | 2e2nsinhlie | =ae) g7
- “+00
Fy(a') = D, e 2nsmiel=ean)| g, g 2| / ko (ge ('), ge () [Pdz. (82)

We have then satisfied the conditions, in the theory of integral equations depending of a
parameter [27] [28], to consider our equations as a system of Fredholm equations of second
kind in L*(R)x L*(R) (on C.xC. for «=ix+etanhz, =z € R), as
| < sign(e)arg(ikA) < w/2 + |e|/N, with 0 < |¢| < [Re(61)], kA # 0 and N > 1, which

can be used in particular for k real.

Remark : From the known properties of analyticity of kernels in the complex plane, the
solutions S, («') and S (/) are odd meromorphic functions (the only singularities are
poles).

7) Existence and uniqueness for integral equations on C,

7.1) Uniqueness of spectral integral equations as |arg(ikA)| < /2

Concerning uniqueness, we consider the solution of integral equations (74)-(75) in L?(R)
along integration path C, = {a = iz + etanhz, € R} when x/, and X} are null (we have no
source terms), with |e| < sign(e)arg(ikA) < 7/2,as 0 < |e| < |[Re(61)], kA # 0.

7.1.1) f* and f° from S, (') and S, (') when X, = x} =0

Let us take S, (o) and S, () derived from (74)-(75) when x’, = xi = 0. Considering the

same kernels as the ones used in (45)-(46), we now define two functions f""and fo,

following,
be(Oé) B i /+ioo+s Sb_ (O/)e_ikACOSO‘/tan(&(a - O/))da/
U,i(a) 49, ) 0. (sina/ — sind, )W, (o/ — @)
i /+i°°+f Si(a/)/(sina’ — sinf;) e kheossin () . (s
49, ) i . U(of —Dy) cos(gg- (v — @4)) + cos(;rg;) ’

and,
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far(a) _ - -/+vioo+e S{j'(o/)e_ikAcosa/tan(m%(a + P — O/))do/
U () 4P_ ) ;. (sine + sinfy ) ¥ _(o/ + P_)
i [T SH (o)) /(sind + sind,) e‘imc"s‘)‘/sin(%)

do/, (84)

T . U (o +O) cos(5a— (o + D_)) + cos( )

These expressions are definite in the respective bands,

Re(ge(Im())) — @4 < Re(a) < Re(ge(Im())) + 3P,
Re(ge(Im(r))) — 3®_ < Re(a) < Re(ge(Im(ev))) + ®_, (85)

where, from analytical properties of kernels, the functions f* and f% are analytical
functions, O(1) at infinity and verifying (") (ico) + f*(")( — ico) = 0. Considering the
integral equations (74)-(75) when x/, and x} are null, satisfied by S;” and S, , we have,

f‘”'(a—z %) +(sina+sin91)far(_a_%+%) 25 (a)
22 (since — sinfy) ~ (sina — sinfy)’
o T @y (sina—sind)f"(—a+3-F) 257 ()
G 2 2 )+ (sina + sind) ~ (sina + sind;)’ (86)

which implies, from meromorphic character of kernels, that f® and f* are also
meromorphic functions of the complex plane (note : analytic continuation is done by adding
residues terms associated to poles crossing the integration path as « varies). We can then
consider functional equations attached to (45)-(46). We then deduce, after using elementary
properties of kernels, that f*(a) = f(a — %) and f%(a) = f*(a + %), satisfy, in place
of fy(a) = fyr(a — %) and f,(a) = fu(a+ Z), the functional equations (29)-(30) with
(28), and thus the condition (34) which implies, in particular, that £ and f° refer to the same
fields. Considering the zone of regularity of integral expressions, their asymptotics, and their
analytical continuation, the conditions (a) and (b) are satisfied for f, and f;.

So defined from S, and S, given by (74)-(75) when x’, = x} = 0, we then conclude that,

f®and f° are two spectral functions refering to the representation

of the same field u with two distinct origins of coordinates, which

satisfies the boundary conditions for the impedance three-part polygon,

and the elementary conditions (a'), (b") and (c') without illumination. (87)

7.1.2) Vanishing property of ¢ and f°, then uniqueness

We now consider the following properties :
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(1) in absence of source terms, from uniqueness theorem on the field (see appendix), the field
w and its normal derivative shall be null on the surface of impedance polygons.
(i) because of single face expression of spectral functions (7)-(8), the functions f¢ and f°

vanish when the field and its normal derivative are null on the surface of the polygon.

After use of (i) for (ii), the spectral functions f* and f verifying (87), and thus S;” and S,
satisfyng (86), have to be null, which leads us to conclude, by definition, that the solutions of
our spectral integral equations (74)-(75) when X/, = x} = 0 are too. This property implies by
linearity that we have uniqueness of solutions for our system of spectral integral equations
(74)-(75) in L*>(R) x L*(R) as |arg(ik)| < 7/2, A # 0.

Remark : The solution is also uniquely defined in the case A = 0 (simple wedge) from
Thuzhilin's theory [24] when conditions (a)-(b) are satisfied.

7.2) Existence of a solution

Concerning existence, we note first that the kernels are analytic functions of kA on 7,
verifying (81). Considering then the theory of integral equations depending on a parameter in
L?(R) (from Smirnov [27] or Tamarkin [28]), the resolvent for our system of Fredholm
integral  equations of second kind in L*(R)x L?*(R) is given by
R(x, 2, kA) = Dy(x,2', kA, 1)/ Dy(kA1), where Di(x,2', kA, u) and Dy(kA,u) are
given by entire series of y, which are regular with respect to kA in 7;, kA # 0. It defines a
unique solution in L?(R) x L*(R), except if Do(kA,1) =0 or if Dy(kA,1) = 0 for some
discrete values of kKA. In both cases where the resolvent is singular, the solution is not unique
and we have value of kA where the integral equations without source terms has a non trivial
(non nul) solution.

Therefore, since the uniqueness of our spectral integral equations on C, x C, has been shown
independently in previous section, we deduce that a unique solution of (74)-(75) exists in
L*(R) x L*(R) with |arg(ikA)| < 7/2, kA # 0. In other words, we have derived,

from our system of integral equations, the existence
of a spectral solution which is unique, when considered

in L*(R) x L*(R) on C, x C,, as |arg(ik)| < 7/2, kA # 0. (88)
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Remark : Concerning the case with KA = 0, the solution satisfies the functional difference
equation for a simple impedance wedge, which is known to be uniquely defined from [18],
[24].

8) Some particular features of the system of integral equations for the three-part impedance

polygon and their consequences

Our spectral integral equations can be solved numerically, or analytically by approximations.
In our case, the approximations principally depend on kA, for kA small or kA large. These
integral equations and the integral expressions of the spectral functions have also special
features concerning the decoupling of integral equations in important cases that we first

illustrate.
8.1) Decoupling in the case of the unsymmetric three-part impedance plane

In the case of the three-part impedance plane, we have &, = ¢, =0 and &, = ®_ = 7.

Considering that,

Vi (a=3) Y (—a—7)

2Vig(a—3) 2¥(—a—3) B

Yy (a—3) sina(sinf_ — sinf) _ C(a)sina(sinf_ — sinb,)
Uy (a— %) (sina + sinf_)(sino — sinf;) sina — sinf;
Yala+3)  Ya(f-o)

20 _(a+3) 20 (53-a)

V(5 —a)  —sina(sind; — sinf;) — C(«a)sina(sind;. — sinb )

2 : it Y = : . (89
U,_(§ — «) (sina + sinf, ) (sina — sinf;) sinae — sinfy (89)

Y

1C(a/)sind/ /27
sina/ —sinfy

and letting N (o) = , we then derive,

(sinf; — sind,)Y/2 . (o + ) Fico+e (sinfy — $ind_ )2 £, (o — )
T = Mm N(a ) / o
U (a+ 5) —ico—¢ Uy (of — 5)
e*ikAcoso/SinO/ ' ' . ﬂ—
X Wda/ + (511191 — S]n9+) / Xb(a + 5),
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(sinf — Sine*)l/Qfar(a - g) =n /HOOﬁN(O/) (sinf; — Sin9+)1/2fbr(0/ + %)
\Ifl—(Oé - %) m o \I/_H(Oé, 4 %)
e—ikAcosu’Sina/ . . e .
X cosa T ooser 1+ (sinfl —sinf )P, (0 = 5), (90)

where 7,,, = (sinf; — sinf, )'/?(sinf; — sind_)'/2.
We obtain two uncoupled equations by simple addition (5) and substraction (D) :
+i00+€

(57 D) = 77m/ N(O/)((S, _ D)e—ikAcosu’

/
ico—e COS(x + CcOSx

: /
Y g + (S, — D). (91)

8.2) Decoupling for symmetric three parts polygons (®;, = ®, and sinf, = sinf_)

In this case, the system (74)-(75) can also be decoupled. For this, we first express the system
of integral equation (74)-(75) in a new form. We observe that ¥_;(«, ®_) (also denoted
U_;(«)) satisfies ¥ _q(a, ®_) = U;_( — o, _). Considering (45)-(46), we can write,

for(—a+Z—2) —z‘/”"o“far(a’—g—i—%)

Uy(—a+ g — %) AL ) e V(o — D)

efikAcoso/Sin(ﬂ_a’) . P
X T o o/ do‘/"‘XZ(_O“"z - _b)7
cos(gzg- (o + ®3)) + cos(55-) 2 2

B e e I s s
\1171( -+ g — %) 49 ico—e U (o — (I),)
e—z’kAcosu’Sin(ﬂ'Tﬁx’)
20_

>< !
cos(sg—(a + ®,)) + cos(g5-)

do’ + xila— 3+ =), 52)
This form is particularly suitable for the case of a symmetric polygon. In this case ¢, = ¢_
(i.e. &, = ®,) and sinf, =sinf_, so that ¥, = ¥_; and the equations have the same

kernels. Thus, by addition and substraction, we derive a system of decoupled equations,

(5.D)a)  _
Uo(—a+5-3%)
; S,=D)() i af i (T
— +100+€ \;H(a’)f((l)j)e k{cos Sll’l(ﬁ)

4P, ) cos(gz-(a + ®p)) + 005(27%{)

da’ +(S°, D")(a), (93)

where
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S(@) = fu(—a+ 5 =)+ fula— 3+ 3)

D@)= = ful—a+5 =) = fula— 2+,

§(0) = Xjy(—at 5~ ) 4l 5+ 22,

Di(a) = xhy(—at & = T~ xiy(a— 2+ D), (94)

for |po| < min(F, § + ®y).
8.3) Partial inversion and new kernels for small kA

Considering the solution known for kA = 0 [1], we can apply the identity
efik:Acoso/ — (efik:Acoso/ _ 1) +1 (95)

and invert the part corresponding to unit term, which results in equations with kernels
vanishing as kA — 0, suitable for approximations. To simplify the reading, we will detail the
method in appendix. We then obtain a system of coupled equations with kernels and source
terms vanishing as kA — 0, following :
T B 1t W (of + @) (Byo(o!) — By — o))
r T =)=355 d : -
forola+ 2 2 ) 812 ) o o/( sina/ — sinf,
v "— @) (By(a') — By —
a1(a’ = @) (Bao(e) o( — o ))M,(a, o),
sina’ + sinf,
T @, 1 [ W (of + @) (Byo(o!) — By — o))
ar - 5 P ) d / 3 1
Jaro(a 2 * 2 ) 872 /m o sina/ — sinf,
V(o' — @4 ) (Bao(e) — Bao( — o))
sino’ + siné;

X M+(Oj, O/) -

X N, (a,a') —

N_(a,a)), (96)

where My (o, /) = La(a+ T + @) o) N (o, o) = L (o — T + 22 o1y,

T+ (2 =P /2)

msina/ W, _(a) [ cos(——55—)
L Oé, Of/ == —+/ d
T VR S W RN )
(cosy’ + sinby) 1

T , dy', 97
cos(¢' £ ) + cosa’ (sin(5g;) — sjn(ﬂ(%@ﬂ+;‘1’b)/2))) (97)
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and

farO(O/ - % + %

) \( —ikAcosa’
Ba N — ikAcosa’ 1
0(a ) ( \I/_H(O/ . @+) )(6 )
+ ( (?b(a/ B g + ((I)a - (I)b)/27 (Po) )(e—ikA(cosa’-i-simpo) . 1)€ikAsin<po
Vii(af = @y) ,
Py

Joro(e/ + 5 —
By(a') = )
w(a’) = ( U _(of + D)
(3L[)(O/ + g — (q)b - (I)a)/27 900)
U (o/ +P_)

) )(efikAcoso/ . 1)

+

)(e—ikA(cosa’—sin%) —1). (98)

with @, =2+ 2, & =2+ % and ®y = £ + 25 In the particular case &, = &, = 0,

¢, = 7, the functions L. can be simplified so that we recover the expressions found in [2]
for the three-part impedance plane.

8.4) Asymptotics for large kA

We can write, from previous integral expressions in (45)-(46),

Ro() = o) [ Rafel) S
o)== —milo alC ! @
b %, ™ . cos(ﬁ(a — D)) + cos(%)
A T &
+m(a)xplat 5 - 71;)’ 9)

as — &, <Re(a+ % — 2)<3d,,and,

; +ico efikAcoso/sin(LJ/)
Ra(0) = —ma(a Ry (o 20 ~dao/
( ) 1D 2( ) e b( )Cos(ﬁ(a+¢a))+005(%)
7 ®(l
+ma(a)xi(a— 2+ 20), (160)

as —3®_ <Re(a— 2+ L)< ®_, for —min(Z, 4+ ®,) < o < min(%, Z + &), where

. forla+35 - %) _ farla =5+ %)
Rola) = \Ill,(a-Ql-(I)f) Rala) = \Ifﬂ(of— <1>+2) ’
(et 5 - ) U (a—5+ %)
mie) = 5t M@ = — ot (101)

To consider asymptotic evaluations of R, () from the equations (99)-(101) as kA is large,

we can choose to take account or to neglect the influence of complex poles of R, ()
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(corresponding to guided waves) in vicinity of the integration path. To simplify the
presentation, we develop here the second case, and consider the first case in appendix.

We begin by assuming that the principal contribution of R,;(a’) comes from the vicinity of
the stationary phase point o/ = 0. Letting cosa’ = 1 — z?/2 with z = 2sin(a’/2), and taking
into account the parity of the integration path, we have

Riy(a) ~ my(« )Xb(Oé + 5 _ %) n <m1(01)(aaR2a7(T?)|a_0)e—ikA
oo PR
g /—joo (ﬁ)2(1+co€s(g(a_q)b))) _:Egdx>, (102)
05 o < Refat § - %) <3,
Ral) ~ ma(a)x: (o — ;_T n %) B ( mQ(OJ)(auRQb’/(T?)M_O)e@'kA
. J:O(T) (1+CO‘Z(T$(QQ+¢{L))) _xde), (103)

as —3®_ <Re(a— 7 + %) < ®_. After derivation of previous equations, we obtain

(OaRp(a)]a=0) ~ 8@(m1(a)Xé(Oé + g _ %))‘a_o)
(aaRa(Oé”a:O) ~ 8@(m2(a)Xé(Oé — g + %))‘a—o) (104)
and we get,
Ry () ~ ml(“)(aa(mﬂa)xé(;;; T+ 2))]azo)e A
- s d D, 105
/—ioo (587)72(1 + cos(5g- (o — ®p))) — 2 v+ ma(a)xo+ 5 5= 5) (109)

as — &, <Re(a+ 3% — 2) < 3d,,and,

ma () (Do (ma (@) xh(a+ T — 2))|omp)e A

s
2

Rola) ~ —
(@) 2
+i0o imz? 9
(& T . T i}
d Wa— o+ =75, (106
/_,L-OO (55=)72(1 + cos(z5—(a + ®,))) — a2 z + ma(a)x, (a 5 + 5 ), (106)

as —3®_ <Re(a— 5§+ 3)<d_, for —min(§, §+P,) <o <min(F, §+ Py),
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Concerning the diffracted field ugb( Pab, Pab), refering to origins at p, , = 0, we have,

_ p—im/A—ikpay
a,b € '
’ aby Pab) ~ — ——— |Jab + ab) = Jab\ — ab)ly
Uy (Pabs Pap) T [fap(m+ @ap) = fap(— T+ @ap)]
. s q)b T
Wlthllll,(a+fl>,)73 ( ) fbr(Oé+§ — ?) fb(Oé+§),
T &, T
and V(o — @, )Ro(a) = for(a 5"‘7) :fa(a_g)' (107)

The determination of f,;( £ 7+ ¢, ) can be reduced, after the use of functional difference
equation on f,;, to the evaluation of R, () for real o = ¢, (see appendix on scattering
diagram), provided we are in the domains of regularity of integral expressions respectively
—®, <Re(p, + I — L) < 3®, for Ry(p,), and —30_ < Re(p, — 2+ L) < @_ for
Ra(epr).

For that, we can deform the path of integration to the Steepest Descent Path, while neglecting

the contribution of complex poles, and we derive,

)0a 0= 5+ %) la=0, _iga, 2
() (ma()xe(0 = 5+ $)lecty s o) —

1
Rb(@’r) ~ \/m 7%)7

s (I)b

+ma () x5 (r + 5 7), (108)
as — @y < (pr+5— %) <3007 ikA(ﬁ)ﬂ(l + cos(5g-(r — ®5))).and,
r 8(1 9 7 9 a= i 1

Ralpr) ~ — ma(r)Oalmi(exilo + 5 = 3))| O26‘“‘3A(w e erfe(w) — —=),

V2ikA NG
; T P,

+ mQ(SOT)Xa(QOT - 5 + 7)7 (109)
as  —30_ < (o —Z+L)<d ., w=ikA(5E) 731+ cos(52 (i, +<1>))) for
—min(3, 5 + ®,) < o < min(g, g+¢b),with<1>+—§—|—%and®_— + “ , where

.2 1 1 —2" -1 1
ae erfc(a) — ﬁ = ;/_OO a2 —|—t2 dt = 9 7Ta2 + O(J), (110)

when a is real. In the right-handed sides, note that the first term corresponds to double
diffraction, and the second term to single diffraction (note : see appendix for contributions of

complex poles).

9) Exact first order expressions for a small complex cavity in a step, when &, = — &, and
sinf, = sinf_
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We consider a step of length A, when we have ®, = — ®, in the three-part polygon
geometry, so that the right and the left-handed semi-infinite planes are paralell, then we
assume a complex cavity in this step. This cavity is composed of m faces, of angles ®; and
length d;, between extreme edges 'a' and 'b' (see figures).

ul

3 Pa
P Pa o
7 /‘/" '/// ;,/ ) 4 // ~
P 5 /"/ T T 0
sy -
i / r -

Figure 4 : geometry of complex cavity in a step

-~

We will search to express the diffracted part u; of u for this complex cavity, given by,

- o—im/A=ikp, .

Ug = Tk‘pa[fa(ﬂ— +@a) = fa( =7+ @a)] + O/ (kp)*?), (111)
when we have impedance boundary conditions and the cavity dimension is small. We will
show that, when sinf, = sinf_, the first order of u, in power of k£ can be determined by only
studying difference functional equations, in combination of single face integral expression of
spectral functions, with no need of integral equations. In what follows, we write p, and ¢,
without subscript as p and o, and let p = ¢’ — @, o, = @, — P,,.

Figure 5 : complex step when &, = — &, and ¢’ = o — P,

9.1) Impedance boundary conditions and elementary equations for spectral functions
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The semi-infinite planes, respectively right and left-handed, have relative impedances sinf_

and sinf with boundary conditions,

(% — iksinfy)u = 0, (112)

while the field on each face of angle ®; verifies,

(% — tksinf;)u = 0, (113)

Using single-face representation of spectral function (7) for spectral functions, and noting
o = fur .5 = f», we can write,

(sina + sinf ) fy(a + 7/2 + @p) — ( — sina + sinf) fi,( — o + 7/2 + @) = 0,
(sinae — sinf_) fo(a — /2 — ®,) — ( — sinaw — sinf_) f,( — a — 7/2 — &,) = 0, (114)

where,
Zk' —ikY dicos(a—®;)
— Z e 1<i<y
1<J<n
g : ) N / N ,—tkpicos(a—P;) /
x [ (= sin(a— ®;) + sind;)u(p), ®;)e """ Ndp
0
—ikY.  dicos(a—P;) )
+e 1= fole) = fi(a) + e HAes@m2) £ (@), (115)
with,
Z djcos®; =0, Z d;sin®; = A, (116)
1<js<m 1<j<m

Thus, we have,

fola) = FETR(f () — fi(),

(sina + sinf )eFAOOH®) o (f (o 4+ 7/2 + By)

— fila+7/2 4 ®)) + (sina — sinf )eFAcos(®—)

X (fol—a+7m/24+®) — fi( —a+7/2+Py)) =0,

(sinoe — sinf_) f, (o — /2 — ®,) + (sina + sinf_) f,( —a — 7/2 — ®,) = 0. (117)



that we can formulate following,

fola+7/2 4+ By)
(sina —sinf.) joa
(sina + sind,. )

= fi(a+7/2+ Byp)
(sina — sinf, ) ihA(
(sina + sind. ) c

(sina — sinf_) f, (v — /2 —

cos(a7<1>b)fcos(oz+‘1>b))fa( — a4+ 7T/2 + q)b)

cos(a—@b)—cos(a—&-@b))fl( — a4+ 71./2 + (I)b),

9.2) Reduction of far field function when sinf, = sinf_ and &, = — &,

Considering that f;(a)) = O(kA), we then have,

fa(m+ )

. ( — COS((:O - (I)b) + Sil](9+) €2ikAcos(
(cos(yp — @p) + sind, )

B (cos(p — @) — sind.,)

= hir+e)+ (cos(p — P@yp) + sind., )

(cos(p + @,) — sinf_)

<P—‘I’b)SiH‘1>bfa( — 4+ Q(I)b)

a\ — - . a\ — ¥ — 2(I)(L =Y,
Jo(=m+¢) (—cos(<,0+(1>a)—sm9_)f( 7 ) =0
and thus,
fa(m+ @) = fa( =T+ ) =
cos(¢p — ) — sinf,
— 2P,
Jilm )+ cos(p — ®p) + sin9+fl( @+ 20)
cos(¢ — Pp) = SiN04 9 Acos(o—dy)sind
. 1kAcos p)sin®,, (- 20
cos(¢p — ;) + sinf, ¢ fo( = +2%)
cos(¢ + ®,) — sinf_
+ cos(p + @) + sinf_ fol = @ = 280) + O((RA)),
For &, = — ®;, sinf, = sinf_, we can then write,
fa(m+ @) = fa( =T+ )
cos(p — ®p) — sinb
:fl(ﬂ""(P)‘i‘( ((P 1) +)fl(_§0‘|’2q)b)

(cos(¢ — Pyp) + sinf)
(cos(¢p — Pp) — sinf.;)
(cos(¢p — Pp) + sinb.,)

+ fa( — @ +20;)

+O0((kA)?),
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®,) + (sina +sinf_) fo( —a—7/2 — ®,) = 0.

il =@ +28,) + O((kA)?),

(1 _ e?ikAcos(gof%)sin(I)b)

(118)

(119)

(120)

(121)
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then, letting ¢’ = ¢ — @y,

with,

fo(m+ ¢ + @) = fu( =7+ " + @)
(cosp’ — sinf.,)
(cosy’ + sinf.;)

= film+ ¢ + ) + fil ="+ @) + Dy,

B , (cosp’ — sinf.,)
Du= = fu( = ¢+ D) (cosy’ + sinf)
fal =@+ @) = fol = &' + By + (0 — $1) /2, 00) + O(kA)
= fO( - 90/7 900) + O(kA)7

2ikAcosy’sin®;, + o(kA),

(122)

(123)

where fj is the spectral function for kA = 0 given by (41) with, in our case, ®; = 7/2 and

sinf, = sinf_, which gives us,

(cosar + sinf; )cospl,

fO(aa 900) -

(cosp!, + sinf, ) (sina — sing!)

This leads us to the following expression of the far field function,

ffl(ﬂ- + 90, + (I)b) - fa( — T+ (,0/ + (I)b)
(cosy’ — sinf.;)
(cosy’ + sinf.;)
(cosy’ — sinf)cosyp! cosy’
(cosp!l, + sind, ) (sing’ + sing’)

= film+ ¢ + @) + fil =@ + @)

2ikAsin®; + o(kA).

9.3) Exact first order expressions for f; and for the far field function

We can write,

ik —iky. dicos(a—®;) d;
fl(a) = il Z e 1<i<i / (_ Sin(a _ (I)j)
0

2 S
+ sinf); )u(p), <I>j)e_ik”3'°°s(“_¢f))dp;-

kM, ) )
! 5 Zdj( — sin(a — ®;) + sinf;),
J

~Y

(124)

(125)

(126)

for small kA, where M, is a mean value of u for small kKA. Considering the solution for
kA =0, we have M, ~ M = 200500 __ ag sinf; = sinf_, and using ), djcos®; =0

u (cosyl,+sinf.; ) S
sJjs=m

and ) d;sin®; = A, we have,

1<j<m
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ikcospl,

fila) ~ ] (cosaZdjsinq)j + Zdjsinﬁj)
J J

(cosy!, + sinf

ikcosy! .
~ = (Acosa + Zdjsm&j). (127)
(cosy!, + sinf ) -

We then obtain for (125),
fa(m+ @'+ @) = fa =7+ @' + ©y)
2ikcosy! cosy’
(cosp!l, + sind, )(cosy’ + sind, )
. 2(cosy’ — sinf, )cosy! cosp’
d;sinf; >
+ ZJ: jsind;) + (cosy!, + sinf., ) (sing’ + sing!,)
2ikcosy! cosy’

- (cosp!l, + sind, )(cosy’ + sind, )

( — Acos®ysind + sin®, Asing’

1k Asin®,,

(— Acos®ysind, + Zdjsinﬁj)
J

21k Asin®;cospl cosy’
+ - . - ;
(cospl + sinf, ) (cosy’ + sind ) (sing’ + sing’,)
x (sing’(sing’ + sing) + (cos*¢’ — sin*f,)), (128)
and thus,
2ikcosy! cosy’
a ' (I)) — Ja\ — ' (I)) ~ . - - X
Jo(m @+ &) = fol =7+ @'+ D) (cosp!, + sind, )(cosy’ + sind, )

Asin®,
(sing’ + sing’))

X ((— Acos®,sinf, + Zd]’Sinej + (cos?0, + singsingl)), (129)
J

or more generally, letting Y d;sinf; = |, OO "sinf(1)dl,
j a

2ikcosy’ cosy’
u "+ @) — fu(— "+ @) ~ , ° , X
Ja(m 9"+ @) = ful =7+ @'+ D) (cospl + sinf, )(cosy’ + sind,.)
. % Asin®, 9 , .
X (— Acos®,sin, + /Oa sinf(1)dl + (Sing + singl) (cos?d, + siny'sing’)). (130)

9.4) Exact first order expressions for the diffracted field
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Using (130) in (111), we then obtain for the diffracted field at large distance,

— 2ikAcosy! cosy’e ™/ Ak

\/27mkp(cosy!, + sinf ) (cosy’ + sinf.)
Sil’l@b
(sing’ 4 sing))

Ug ~ ( — cos®ysinf, + sind]

(cos*6,. + sing'sing))), (131)

where

Ob Ob
h=)Y di= /O dl, sinf, = / sinf(1)dl/A,
j a

O,
Pa = SO/ + q)ba Po = 90:) + (I)ba ¢b = - (I)Cw Sil’l9+ = sinf._. (132)

It is worth noticing that this expression is the exact first order of the asymptotics for small
kA, and that it satisfies the reciprocity theorem, i.e. it remains the same when we change ¢’

for ¢! (in contrary to the one that we would obtain by Physical Optics approximation).
Appendix A : about ¥, _(«, ) and the solution for an impedance wedge

A.1) U, _(«) in passive case

The function ¥, (), also denoted ¥, (v, @), has been defined by Maliuzhinets [18], for

the spectral function f, (a) = 5:((3))0(04) attached to the representation of the field, in

presence of a passive impedance wedge illuminated by a unit plane wave of direction ¢’. The
spectral function f, _ is the solution of the equations

(sina +sinf, ) fy_(a+ @) — (—sina +sinfy ) f1_(—a+ P) =0,
(sinae — sinf_) f_(a — @) — (—sina —sinf_) fy_(—a—P) =0, (133)

regular in the strip |[Rea| < @, except for the pole with unit residue at a = ¢’, and O(1) at
infinity in this band, where sinfl_ (resp. sinf_) corresponds to the relative impedance attached
to the face ¢ = + @ (resp. ¢ = — ®). The function ¥, _(«) is the solution of (133) without
poles or zeros as |Rea| < @, when Re(sinf; ) > 0 with 0 < Re(6*) < 7/2 (passive case),
O(cos(ma/2®)) in this band, and o () = %cos(g—g)/(sin(%) - sin(g—g)) has the unit pole
for incident field at & = ¢’ in the band |[Rea| < @ [18].
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The function ¥, () has numerous properties. We have,
0 ™
U, (a) = AVg(a+@+ (5 —0,)Tg(a—B— (5 —0.))
X Ta(a+®— (5 —60.)Ts(a— @+ (5 —6.)),

= AV} (2)(005(4q)(a + o — 9+))cos(4q)(a o )

\I/(D(Oé+(1)——+9+)\:[/q>(a—¢+——9 )
\I/q)(Oé—F(I)———e_,_)\Ifq)(Oé—(I)‘F —|-9)

(134)

where Vg is the Maliuzhinets function [18], 0 < Ref+ < 7, A is an arbitrary constant. This
even function satisfies Ug () = Ape™™/5%(1 + O(a”|e***|)) when Ima — + oo, where
Aj and v are constants, p' = min(g5,1) (see [23] for more details), and we can write
U, (a) = Agcos(ma/2®)(1 + O(a’e #™al)) for |[Ima| large, Ay a constant. Since
Up(a) =Ug(—a) and TUg(a+ 5)¥s(a— %) =T;(5)cos(ra/4®), we have
\Ij+_( — Oé) = \I}__i_(Oé) and

40, (a+ )\I/+ (a — 5) A2\118( )(cos(m (— —6,)/2®) — sin(wa/2P))

X (cos(7r(§ —0.)/29) + sm(7ra/2<1>)), (135)

with AU (%) = 2A,. Besides, from [27], we can write, for |[Rea| < ® + (N + 1),

1
BH ,,1,_[0 4(1)(ai¢+9¢+mw))

r(l—i( LD — (05 + mIND(= 4 — (a0t B+ 17— Oy + m))

5~ 18 @ L+ mr 5+t 18(@ T—0L +mm

1 1 1

- - _ (71)777#
F(2 4¢(ai(1> (m— 01 +mm)))] )

—vhy —v(r—0) _
Cur N4l € +e (1 — cosh(v(a £+ ®)))
— 1

* exp (/ (=e™) (14 evm) vsinh(2v®) av), (136)

0

where 6, and 6_, N is an arbitrary positive integer and B, is a constant. For the applications,
we choose IV fixed and define W, _ with B, = 1. This expression is suitable for numerical
calculus (with N =1 or 2) or to derive the analytical properties of ¥, _(a) (with N — o0)
from those of I'.

The zeros which are the closest to the imaginary axis are a = ® + 0, anda = — ¢ —0_,
and the closest polesarea = ® + 60, + randa= — P —0_ — 7.

A.2) Some miscellaneous properties in general case (passive or active)
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The solution is more complex when we want to consider arbitrary face impedances in whole
generality, passive (0 < Re(6*) < 7/2) or active (0 < — Re(0*) < 7/2). For that, we begin

to consider,
U, (a,sinf",sinf~) = U (a,sind") ¥~ (a, sinf ), (137)
where the U™ verifies,
(sina & sinfy)U* (o & @) — ( — sina & sinfy) U+ ( — a4+ &) = 0,
UH(aF @) - (—aFd) =0, (138)
with U, _ remaining without any zero or pole in the band |Rea| < @, and thus,
T+ (a, sinf*) = 1/T*(a, — sinf*) as Re(6F) # 0. (139)
The function ¥+ with an active sinf* then directly derives from ¥* with passive one, and,

noting s* = sign(sinf*), we remark that, when s* = 1 (resp. s = — 1), ¥*(q, sinf*) has

zeros (resp. poles),

a= FO+e(s50F 4+ (4p+2)® + 2mn),
anda = F &+ ¢(m — 570 4+ (4p + 2)® + 2mn),

and poles (resp. zeros) at,

a= FO+e(r+ 507+ (4p +2)® + 2mn),
anda = F &+ ¢(2m — s70F + (4p + 2)® + 2m),

form >0,p>0,¢e =1and — 1, while we have,

U (a) = Ax(cos(2))" (14 O(a”e ™)), (140)

for large |Ima|, with constants A and p/ > 0.
A.3) The solution for the diffraction by a wedge with passive or active impedance

We can then express the spectral solution fy(«) for the diffraction by a wedge with passive or

active impedance faces with the following general definition,

fol@) = xol@) = 5 (xa(i0) + xol — 00)),
xo(a) =¥, (a,sinf", sinfd ") P, (sin(ua))o(a) /Y (p,,sinfd™, sinf ™),
o(a) = peos(up')/(sin(ucr) — sin(ug')), (141)
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where P, is a polynomial of order n, u = 7/2®, and ¢’ is the incidence angle. Since we have
fo(a) ~ 1/(ae — ¢') in vicinity of incidence pole o = ¢’, and, from unique definition of u at

p =0, fo(ae) = O(1) as |Ima| — oo, we can write,

Py(sin(us')) = 1, n = %Za s, (142)

with s* = sign(Re(sinf*)), and thus n = 0 when both impedances are passive. In addition,
the n zeros of P, (sin(uc)) have to suppress, for each active face with s* = — 1, the pole
af of U*(a,sinfd*) with =+ sign(arg(ik))Imas > 0, among af = + (sT6* + ®) and
ay = & (7 — st0* + @), that give poles of fy(a + @) within the region |Rea| < 7 with
Re(ikcosar) > 0, as [Rey| < @, which leads to cancel non physical contribution e/#7¢os(e: —¢)
that can diverge at infinity as |[Rep| < ®. We then have,

1-st

P,(sin(pa)) = H( (s.in(,ua) — sin(,uasi) ) 2 , (143)

2\ (sin(ue’) — sin(pay)

which completes the definition of f; for arbitrary impedance (passive or active).

Remark : From [18], the zeros of Wg which are the closest to o = 0 and the corresponding
poles are the points w = + (5 + 2®) and @ = =+ (35 + 2®). In other respects, U satisfies

1\ s
@(CY—F 2@) _ Cot(a+ b}
\I/(I)(Oé—Q(I)) 2

), Ug(a+ @) Ug (o — D) = U5 (D) Ugpp().  (144)

Using (133) in (135), we deduce that,

U, (aF (®— 721))\If+_( —aT (- ;—T))

= A%(cos(ma/2®) + cos(vr(g —0.)/2®))(cosa + sinf)
(cos(ma/2®) — cos(m(§ — 65)/2®))

(cosa — sinf) (145)
and,
U (—aF (@)=
= A%(cos(m(a F 7/2)/2®) + cos(w(;—r —601)/2®))( £ sina + sinf+)
(cos(m(a F 7/2)/2®) — cos(n(§ — 6+)/2®)) (146)

+ ¥, (o F ®)(sina F sinfz)

then,
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+cos(m(5 — 0+)/2®))

U, (—aF (®—m) (cos(m(aFm/2)/20)
U (aF(@—m)  (cos(m(a=£m/2)/2®) + cos(m(E — 61)/2P))
(cos(m(a F m/2)/2®) — cos(m(§ — 05)/2®)) (sina =+ sinfz)
(cos(m(a £7/2)/2®) — cos(m(5 — 6+)/2®)) ( — sina £ sinfy )

(147)

Appendix B : Principle of semi-inversion for our system of integral equations

We can modify equations and derive integral equations with kernels vanishing as kA — 0 for
the three-part semi-infinite impedance polygon, which allows approximations when kA is
small. For this, we begin with changing the unknowns in the equations, vanishing when
A = 0. For that, we consider,

u ™
faro(@) = [far(a) — Ob(a — (@4 — 5))]7
i in a m
Joro(@) = [for(@) = 50 fi¥(a + (D = )], (148)
with &, =7 + , =35+ ” . The function f§°(c, .) corresponds to the solution for

A =0,i.e. for a s1mple Wedge of exterior angle 2&,; = &, + &, + 7w, given by

P W ()eos()

204 W (po.q)(sin(55;) — sin(552))’

0" (. o) = (149)

with 9o g = Yo + (P — ®5) /2, — Py < @04 < Py, which, we note, satisfies the system of
coupled equations as A = 0. Multiplying first one by e?*25"?- and second one by 1, we can
substract them from initial equations, and then deduce a new system. So, the functions f,,
and f3,0 which vanish as A = 0, then satisfy,

fb70(a+ 9 %) _ _l(/-HOO farO(O/_ 2 + o ) )
Uo(a+I-2) 49, ) i Py(a —y)

sin( -

224 ) — do/
cos(z5—(c — @) + cos( 2
N /+w<> Bao(a) sin(gg )

Cico cos(m (a0 — D)) —I—(:os(;r(i)l )

X

da'), (150)
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where,

fa,rO(O/ -7 + &) i /
Ba N — 2 2 ikAcosa/ 1
0= S )
gb(a 9 + ( (I)b)/27 (Po) )(e—ikA(cosa’-i-simpo) . 1)€ikAsin<po
‘I’+1(04 —o,) ,

+( (151)

as — &, <Re(a+ % —2)<3P,,and

far()(a_g—i_%) o { (/—Hoo fbrO(a,+g_ %)

\Ijl_(Oé — % + &) N 49 —ioco ( \Ijl_(Oé, + (I)_)
sm( e )

20 . do
cos( g (o + @, ))-I—cos(%)

e Byo(a)sin(£2-) /
+ /_m cos(52—(a + ®,)) + cos( 22" )da )

)

/

(152)

where

beO(O/ + T — 2
B / — 2 2
bO(a) ( \Ifl_(O/—F(I)_)

ab( ./ T
n ( 0 (Of + 9 ((I)b /2 @O))(efik;A(cosa’fsingao) _ 1)

) )(efik:Acoso/ _ 1)

, (153)

as —30_ <Re(a—Z+ L)< ®_, for —min(Z,Z+®,) < g, <min(Z,Z + d;), with
¢, =75+ ) and®_ = 7 + %
We then notlce some 51m11arity with the equations satisfied when A = 0, related to spectral

function fgb for an impedance wedge. Thus, we let,

T P +i00 T
fuala+ 5= = [ GO+ T+ (20— 2)/2.¢)d
T (I)a 4100 . T
faro(cr — s t5)= / G(o) f5"(a - 5 T (Pa—Py)/2, ¢y, (154)

as |Re(a)| < 3. The functions fi*(a+3%+ (®,—®)/2,¢') are regular and

O(1/cos(my’ /2®4)) on the imaginary axis, and a pole at ¢’ = « £ 7 ensures that we have,

even if ®, = @, = 0, generally f;,, # f1.o-

We search to define G(¢'), regular in the band |Re(y’)| < Z, so that f},, = fi0 and
!0 = Jaro verifies (150)-(153) for arbitrary A. For that, we consider the integral expressions

(45)-(46) for f,. and f, as A = 0, then multiply by G(¢’), integrate following (154), and we

obtain,
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40, Jar0 _+ )Sln(2q> )

—dd/
—ico lI’Jrl(O/—‘I)Jr)(cos(m (@ = By)) + cos(35))

—dy, (155)
20: Joioo a9 = %) (cos 552 + o5 L)

oo+ — %) _/H‘O@ . Jaro (@

and,

) i Fho(e! + 5 — S)sin(

) “ice W1 (o + @_)(cos (55—

Ry
—J—ico qjl_(@, + q)a) (Cosm

—dy' (156)
55 +cosﬂ(§¢,72))

%)

—(a+®,)) + cos(zﬂg )

do/

2

In the case where G(¢') is regular in the band [Re(y’

)| < %, we can shift the integral paths in
the integrals containing G (¢’

). Comparing (150)-(153) with (155)-(156), we notice that
fir0, foo) 18 a solution of the system of equations (150)-(153) if (G satisfies the conditions
br0s Jar0

Gld'+3)  G(-d+3)

1— ((1/ + o ) ‘1’1—(—04’-1—(1)_) = %(B[’O(O/)_BbO(—O/)),
‘I’i({; : ) miiiil_él) = o (Bu(e) = Bu( =) (157)

Taking account of the properites of W,

and W,_
G(a/) = (cosa/ + sinfy)g(a/

(see appendix), and letting
), (157) can be written

e+ )=l ol ) = RIS
el = Dot o) = B 0

Since G'(a') is regular in the band |[Rea’| < 7 and Re(sind;) > 0, g(c) is regular in this
band. We can then use (42)-(43), and write, as |[Rea| < Z,

o) = [ a2 Bl — B =)

m /
t — -
—ico 27 (sine/ — sinfy) an(2 (a+ 9 a))
V() — @4)(Ba(e) = Boo(—¢)) 1 7
27 (sina’ + sinfy) tan(2 (a 9 a'))), (159)

Using (154) and (159), we obtain the equations with kernels vanishing as kA — 0
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forola+ 2 7) ) sina/ — sinf;

- 2 (By(@) = Bu(— )

ico U (/+9)
T o /+ 57— (Bo(a/) = By(— o)) M, (0, 0)

M_ ! 160
sina/ + sinf, (o, @), (160)
and,
T @ i D) (Byo(a) — Byo( — o))
ol — =+ =2 = do/ (—=22 . Ny (a,o
faro( 2 + 2 ) /_7;00 o/( sina/ — sinf, +a, )
\P+1((1’—‘I’+)(B (o) = By — o
Sn2 a0\ & ) (LO( o )) /
— N_ 161
sina/ + sinf, (o, @), (161)
((I)af(bb) ((I)a,f(bb)

where My (o, o) = Li(a+ § 4+ —5,0d'), Ni(a,d) = Li(a = § + =52, 4),

et fo) [ cos(HE G )

29, —ico Vi (' + (B0 — 3)/2)
(cosy’ + sind) 1 ,

T . (4 — L
cos(¢' £ §) + cosa/ (sin(3g) — sin(TEHDamD)/2) +(§$d 22))

Li(a,a) =

(162)

In the particular case ®, = &, = 0, &; = 7, the functions L. can be simplified so that we

recover the expressions found in [2] for the three-part impedance plane (see remark below).

Remark : It exists analytical expressions of L. when ®, = ®, = 0. For this, we consider

U, for & = 7/2, where we have,
(—sina+sinf_)  (sina + sinf_)
T (a+3) W, (—a+t])

1 1
= (sinf_ — sinf -
( NG ar D) T (—ar )

(sina +sinf_)  ( — sina + sinf_)

)7

— =0. 163

U, (a-5) ¥, (—a—3) (163)

Using that U, (—a)¥, (a) = A3(cosa + sinf, )(cosa + sinf_), and
U, (a)/cosa — Apas a — ioco, we can let x(«) = %ﬁ;ﬂw in (42)-(43), and derive,

(cosa+sinf_) 1  (sinf_ —sinf,) [T
Uy (a) A 4mi —ico

U, (—a)/A3 1  (sinf_ —sinf,) [

(cosa +sinf,) Ay A7i

1
H (o )tan( (o + 721 —o))do,

H(a’)tan(%(a + 7o), (164)

—100
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for =" < Re(a) < I, where H(a/) = 2sine/ /(¥ _(a/ 4+ I)(sina/ + sinf. )) and
1 1
U (at+]) Vi (—a+])
_ sina/sinf, sina/sinf
Ui (a+3) T (-a+i)

H(a)

(165)

From oddness of H (), tan(3(a+ I — o)) can be replaced by ( —sine’___ "and we note

cos(a+5)+cosa’)

that, after deformation of integration path, we have,

; sina+sinfg_ 1
Hieo 1 cosy’ o' o Ve Ay
5 Y = — LTl »
—ico Wi _(¢') cosa + sing (sinf, —sinf_)’
sina+sinf_ 1 .
\I/((Jé—g) AU 17T

(166)

+i00 / /
cos cos .
/ 1 14 dy¢' = 2mising,

—ico UL _(¢) cosa + sing’ (sinf, — sinf_) + Ay’

as |Rea| < 7. Similar expressions with — siny’ in place of sing’ can be obtained from
U, (—a)— V_,(«) when 0. — 6+ (or by continuation with capture of poles). After
noticing that we have,

1 ! Lt
(z +sing’)(2/ +sing’)  ‘z +sing’ 2 + sing’

167
2 — 2’ (167)
the equalities (166) permits, by elementary combinations, to obtain analytical expressions of

L. terms when &, = &, = 0.

Appendix C : Uniqueness of fields when impedance boundary conditions on piecewise
regular geometry

C.1) A use of first Green theorem for uniqueness : nullity of field outside S’ when

larg(ik)| < 7/2, and nullity of surface fields on any regular parts of S’ when |arg(ik)| = 7/2

We analyse here the uniqueness of solutions for boundary value problem, that we previously
use in [21], in the domain (2 outside a picewise regular boundary S’ in 2D and 3D (finite or
infinite), when the field is a real-analytic function of coordinates satisfying the Helmholtz
equation in €2, except possibly at discontinuity of S’. In [30], Levine develops an uniqueness
theorem for the scalar acoustic field p, i.e. a proof that p;,. = 0 implies p = 0, in the case of
a scatterer with impedance boundary conditions on S’, when no primary source is present. He
considers piecewise C'**) boundary S’ (with no zero exterior angle), A > 0, without

auxiliary 'edge conditions' at edges or corner points, except that p is continuous. He studies at
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first bounded scatterers, but he also gives, in section 7 of his paper, the elements to generalize
his results to scatterers with infinite boundaries and general conical points (detailed in [31]),
in particular by the use of Jones' uniqueness theorem [32].

We begin to notice first that the conditions given by Levine to apply the Green's first theorem
are : the scatterer surface is piecewise analytic (with no zero exterior angle), the field is

countinuous at discontinuities of S’ and satisfies impedance boundary conditions,
(9p/On —ikg(s)p)|sesr = 0, (168)

with Re(g) > 0, and Re(g) # 0 on a regular part Sy of S’, the conditions at infinity, no
sources outside S/, and harmonic dependence on time e’“*. From Green's first theorem, we

can write,
[ 701 80(0) + exad (r)gradp(r)) i = — [ ()@ (o)) +

+ lim p*(r)(ap(r)

4= Jirl=a,reQ a|,'n|

)dS, (169)

where (2 is the infinite domain outside S’, 7 is the inward normal to 2. Besides, from the

impedance boundary conditions, we have,

d 2
Re( [ —ip(r)? + E2 LD 40y - [ Re(g)prfas + 1, (170)
Q - s
where,
. . Op(r)
I, = Re(lim 1) with [, = * ——=—)d
egll)ngo ) W /|7'—(L,7'€Qp (r)( - ija|,'ﬂ|) S
As |arg(ik)| < 7/2 (space with losses), we can assume,
Io = Re(lim O(e%)) = 0 as |arg(ik)| < 7/2. (171)

a—00

As |arg(ik)| = w/2 (without losses), the field at large distance (when no primary source) is
principally the sum of a diffracted term radiating longitudinally from origin and a term p;
which includes possible guided wave along S’, following,
—iklr
p(r) = F(H)H(—'V + (I with P
P02 (1) and [P D/29,,py(r)] — Oas|r| — oo in Q\S,
|ps(r)| and |0}, ps(r)] = O(1) on S as |r| > ay,

)=0(1)inQ,

with m = 2 in 2D and m = 3 in 3D, and thus,
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I, = lim Ip(r)[*dS > 0.
=0 J |r|=a, reN
For Re(g) > 0 and |arg(ik)| < /2, the left-hand term of (170) is negative since Re(ik) > 0,
while the right-handed term is positive, and thus both terms vanish. Consequently, we have,
when |arg(ik)| < 7/2,

p(r) = 0in 2, for Re(g) > 0, (172)

while, when |arg(ik)| = 7/2, the far field radiation function F' like I, is nul, Re(g)|p(r)|?
vanish on S’, and thus,

Onp(r) = ikgp(r) = 0 on any regular part Sy of S” with Re(g) > 0. (173)

In the latter case, we can use the second Green theorem to conclude that p vanishes in €2 (see
next section) to complete the proof of uniqueness. We could also use when Sy = S5’, as
suggested by Levine, the Jones' uniqueness theorem theorem [32] for surfaces conical at
infinity (conical outside a sphere of large radius), when Neumann boundary condition
(Onp(r)|sr = 0) is satisfied, which implies p = 0 in the entire domain (). This uniqueness
proof is also possible for electromagnetic field, from the use of expressions with surface
tangential components (note : the use of Cauchy-Kovalevskaia theorem, the Colton results for

elliptic operator [33], or the demonstration given in [3] lead to the same result).
C.2) Uniqueness for |arg(ik)| < 7/2 comes from nullity on a regular part of boundaries

Let a field p’ satisfying Ap’ 4+ k?p’ = 0 in a subdomain Q; C €, without sources, bounded
by a surface 0€2;, and a Green function G verifying,

(A+EHG(klr —7'|) = 6(r — 1), (174)

like G(k|r|) = — %T:I‘ as |r|=+/a2+y>+22 and 6(r) =6(x)é(y)é(z) in 3D for
|arg(ik)| < 7/2, or like G(k|r|) = LH® (k|r|) as |r| = /22 + y? and é(r) = §(x)6(y) in
2D. We can then use the second Green theorem (or identity), to express the field p’ as a

combination of simple and double layer expressions on 0€2; following,

/ / . /%_ 8_19/ .
/Ql(pAg—gAp)dQ— /(pan gan)dS—

oY

’ (175)

’ p,(,rl)v TIEQI

07 T’¢Ql

with the normal vector here directed inside 0€2;, where it is worth noticing the nullity outside
0. If we have 0,p(r) = p(r) = 0 on a analytic part H of 02;, we have a hole in the
surface field expression, and we can write,
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8g 0 o (r),re
[ e -g%as = , (176)
O\ H n 0,7¢Q
which implies by analyticity that nullity outside 9€2; continues inside 921, i.e. p’ = 0 in 4
and thus everywhere in €25.

C.3) Some extension in electromagnetism

In electromagnetism, we have similar results. Let us consider fields £ and H verifying,

rot(H) = iweE, rot(F) = —iwpH,
(A+K)H = (A+K)E = 0,div(E) = div(H) = 0, (177)

in a domain €2y without sources, with homogenous isotropic media of permittivity ¢ and
permeability u, k = w,/eu, and a subdomain €2; C €29. Considering the Helmholtz equations

alone, we could write,

I P £ 0G ‘9‘5
/Ql(lHAg ~ GA[)d = /aszl |H3n on o 45 =

but we can also obtain expressions only related to tangential surface components. For that, we

TEQl

()

0,T’¢Ql

use the electromagnetic Green functions F¢ and H; radiated by dirac sources jo6 and my6 in
9 which satisfy,

rot(Hg) = iweEg + j06(r — 1'), rot(Eg) = — iwpHg — mod(r — '), (179)

then the identities div(e; A hy) = hy.rote; — ej.rothy and [, div(a)dV = [, n..a dS, and we

obtain,

/ (Eg.(ns/\H)-l-Hg.(ns/\E))dS:
o

mo. H(r')—jo.E(r'), ey
!/OméH—méEdQ_‘ , (180)
Ql 0 7“/¢91
where n; is the unit outward normal to £2; (W = — ny is the unit inward normal to €2;). In a

similar manner than in scalar case, we then obtain that if the tangential components of £ and
H vanishes on a regular part of 92, then we have a hole in expression (180) on 9€2;, and by
analyticity, the fields continue to be zero from outside to inside 0€2;, and thus are null in all
parts of 2.
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Remark : When Eg and H are the free space Green functions in electromagnetism, we note
that we have,

(A+ k) Eg = (grad(div(ijsi')
imo(.

)) + iwpgo(.))é + rot(mo(.))8,

~—

(A + k*)Hg = (grad(div(

)) + iwemg(.))d — rot(jo(.))d, (181)

This implies, after using G verifying (A + k?)G(k|r — r'|) = §(r — 1), that,

6 = [(grad (div, (D)) o)) + vt (ma ()]GKIr — ).

j(r)-E = [ o 2 (grad, (divy (j(r)(.))) + K25(r))
+ oty (GO (NG (klr — o).
He = ((grad, (v (")) 4 dwerna()) = 1ot (o (DG k= '),

m(r).Hy = [T—j.(gradr/(divrf(m(r)(.)) + k2m(r).
— Jolroty (m(r) ()]G (k|r —r']) (182)

Appendix D : Asymptotics for R, («) and R;(«) taking account of complex poles

When kA is large, the highly oscillatory nature of the exponential terms in kernels leads to
simple approximations. We can then consider (99)-(101) and use the method of Steepest
Descent Path, taking, this time, account of the influence of complex poles of R, ().
During the deformation of the initial path of integration along imaginary axis to S D P, where
Im(ik(sin(a’/2))?) = 0 and Re(ik(sin(a’/2))?) <0, poles of R,(a’) and Ry(c’) can be
captured, and we have,

—ikAcosa/ Sln(;g )

a
2(1) (a—Dyp)) + cos(gg )

—1

Rif0) = Jg-m(a o) ( - W“)cos(

—LkAcosaé Sll’l( LA )

25, , ,
+ 271 €asResidue(R, () |w=a, Rea,< )
Zcos a—<1>b))+005(§§ ) (Ra(@))]or=a.Rea,<0
+ mi(a )Xb(Oé+7r/2—<I>b/2) (183)

as o + m/2 — ®, /2 is in the domain limited by SDP — &, and SDP + 3%, and,
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. —ikAcosa’ e

; e sin( Z&-)

R, _ i Ro(d 26 _ : /
() = 4(1)_m2( )( op b(a)cos( (o + By)) + cos(Z2)

zkAcosoagSln( o )

2 - € SReSidue Rb a/ o/ =a,,Rea> )
Zcos (a+ @, ))+COS(;§ ) b, (Ro () lov=a,Rea,>0
+my(a )xa(a—vr/2+<1>a/2), (184)

as a — /2 + ®,/2 is in the domain limited by SDP — 3®_ and SDP + ®_, where
Jor(a+m/2 — @, /2) Jarla = 7/2+ @4/2)

Rofe) = (PG Rale) = (PR ),
(o) = Yr@FT2=@/2) W= n/2+ @/2)
Uifatrd) Uala—@,)
i . eikAsing. o g gﬁ)
xp(a) = 2®+(\IJ+1(gooyb)(sin27f1§* 2<1> ))7
@) = 25 G o <sm§§ ) (185)

Wlth on,b = Yo — (Db/Q, Spo@ = ¥o + @a/2, @— - g + %, @J,- - g + %, and E(L(b),s =1 or
— L if the pole s is captured, €, s = 0 else.

For large kA, the residue terms are principally given by

Residue(Rq (o)) |a—a, ~ Residue(ma(a/)x’ (o — /2 + ,/2))|w=—0,
Residue(Ry(a'))|a—a, ~ Residue(my(a’)x}(a/ + 7/2 — ®;/2))| w0, (186)
where o = — 61 and o = 6, are the zeros of ¥ 1 (a — @, ) and ¥;_(a + P_) the closest to

the imaginary axis, that can be captured. Letting t = — i1/2ikA sin(a//2), we then derive,

Rp(ar) ~ ml(a)(aaR“(O‘”a:O)ze—ikA 2 1

ve' erfc(v) — —
N (veerte(u) ~ =)
o € LkACOS@lSl ( 7r91) ( 0, — T + @,

2 2 ) ,
+ e,Residue(ma(a’))|w——
42, cos(5p-(a - q%)) + cos(3g-) (ma(0)lor=-s,
+my(a)xp(a+7/2 — <I>,,/2), (187)

with v? = ikA(ﬁ)‘Q(l + cos(5g5-(a — ®))), a4+ m/2 — @,/2 in the domain limited by
SDP — &, and SDP + 3%, and,
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mQ(a)( 8(1Rb(05) |a:0) —ikA 2 1
Rola) ~ — 2e "2 (we" erfe(w) — —=
() v/ 2ikA ( (w) \/%)
—ikAcosal, mh 9 T P
_ 2m e sm( )Xb( 1+ 3 i )6;,R6$1due(m1(o/))|a,:91
4P cos(5g— (o + @,)) + cos(;q)i)
—|—m2(oz)xa(oz—7r/2—|—<1>a/2), (188)

with w? = ikA(55-)"3(1 4 cos(z5—(a + P,))), @ — /2 + ®,/2 in the domain limited by
SDP —3%_and SDP + ®_, for —min(7/2, 7/2 4+ ®,) < ¢, < min(7/2, 7/2 4+ ®;).
To obtain 9, Rp()|a=0 and 9, R4()|a=o, We derivate the previous expressions and solve
the linear system of equations. We obtain, for large kA,

5{1731)(04)\(1:0 ~ a()z (ml (Oé)X;)(Oé + 7T/2 - q)b/z))|oz:07
9aRa(a)|a=0 ~ da(ma(a)x(a — /2 + @4 /2)) a0 (189)

In consequence, we can write,

ml(a)aa(m2(a)XZ(a -5+ %))‘azo eiikA( 2 1 )

JikA2 ve”erfe(v) — ﬁ

—ikAcosty qi (=701 i 2
2 € sin( g5 )xa(— 01— 5 + %) :
n T 20, :9 2 eoResidue(ma(a’))|w=—_g,
40, cos(gzg- (o — y)) + cos(55-)
+mi(a)xj(a+ /2 — ©,/2), (1%0)

with v? = ikA(ﬁ)_Q(l + co8(55-(a — ®))), a4+ m/2 — ®,/2 in the domain limited by
SDP — ®, and SDP + 3%, and,

8a ‘ r_ % a= ; 2
ms(a) (ml(a)Xb(a +35 -3 Oe*lm(w " erfe(w) — L)
VikA/2 VT
9 —ikAcosa sy 0 T _ &
_r e sin(gp )X, (01 + 3 oy 2 )ebResidue(ml(o/))|af:91
49_ cos(zr—(a+ P,)) + cos(;r@ )

+ma(a)x’ (o — m/2 + ®,/2), (191)

Ro(a) ~ —

with w? = ikA(F5) (1 + cos(z5—(a + @,))), &« — /2 + P, /2 in the domain limited by
SDP —3®%_and SDP + ®_, while — min(7/2, 7/2 + ®,) < ¢, < min(7w/2, 7/2 + Dy).
In right-handed sides of previous expressions, the first term corresponds to double diffraction
mechanism, the second term to the influence of guided waves, and the third term to single

diffraction mechanism.

Remark :



-50-

The integral term is calculated, using that,

. 00 t2 _tQ . 00 2 _tQ . .
1/ ‘ dtzi/ O dt— — = zePerfe( —iz) — ——,  (192)

TS oo 22— t2 TS oo 22— t2 Vs Vo

as Imz > 0, with erfc(a) = 1 — erf(a) ~ e % (1/a — 1/(2a®))/+/m for large a, erf(a) being
the error function [25],[26].

Appendix E : The scattering diagram from the solutions of the integral equations

In a previous section, we have reduced the problem to a system of non-singular integral
equations. When the solutions of the integral equations are known, the different elements of
the decomposition of the field can be evaluated from the integral expressions (45)-(46),
where the integral terms can be considered as smooth coupling terms between both edges. In
this case, the difference functional equations (28)-(30) have to be used to reduce the calculus
in the band of validity of integral expressions.

Here, we study the reduction of the field term with radial dependence
exp( — ikpayp)/ \/Wpab for large p,;. Its angular dependence F,; in the direction
. = @p = @ 1s commonly called the scattering diagram (or directivity) [15][16][29], given
from (5) by,

Fas(p) = — e ™ (fup(m+ @) — fap(— T+ ), (193)

where, from (25), F,(¢) = e*25% Fy ().

We illustrate the development by the one of F;(y;) in the case where &, > — 5, @y >0,
and —min(f, §+®,) <@, <min(§, 74 &), when — § < ¢, < § + &, (similar to
Falpa) when — 5 < —p, < 5T+ @4, &, > — 7, > 0).

We consider at first the reduction of fy(m+ ) in (193). If &, >0, then
— 2 <74y < 3 +29,, and we are in the domain of validity of (45)-(46). If @, < 0,
then we have a concave part and there are two cases. If — § <7+ ¢ < 37” + 2, (45)-

(46) directly applies. In contrary, if 2 4+ 2@, < 7+ ¢}, < 2 + ®,, we use (30) and write

(—sin(5 — @y + ) +sind;)
(sin(§ — @, + ¢p) + sinf,)

So(m+ @) = Jo( = o +28y), (194)
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Then we use (28)-(29),

(sin(§ — p + 2®;) + sindy )
—pp +20) = - - — — 20
Jol = 2 (—sin(§ — ¢y + 2®y) + sind; ) (ho(=m+ ¢ 2

_ eyzkAsin(zcb,,—%)fa( g — 28y)) + eikAsin(Qq)b—%)fa( — oy +2B), (195)

where the terms in right handed-side of (195) can be expressed with (45)-(46).

Then, we reduce f,(—m+¢p) in (193). If — 2 < — 7+ < 3 + 28, ie. ¢ > 3,
which implies ®, > 0, we are in the domain of validity of (45)-(46). In contrary, when
— 5 < @y < 5, which is obliged when &, < 0, we first have to use (28)-(29),

(sin(§ — ¢p) — sinf;)

— sin(§ — ) — sindy )

X (fol = o) — e AL (— ) e FEIOf(— w4 ). (196)

fb(—W+90b)=(

In this case, since —37”—2<I>a< —pp < 5 and —37”—2tl>a< — T+ @y < 5 when
¢, >0,and —§ < —g0b<37”+2(1>b when @, > — 7, fo(—7+ ) and f,(— ¢p) can

be expressed with (46), and f,( — ¢3) with (45), which ends the reduction.
Appendix F : Approximated second order ameliorations for small cavity
F.1) Amelioration of equivalent cavity impedance sinf}

Using our works in [21], we can modifiy and add a second order to the expressions of siné.

We can write,

sind) = d;sind; /A +ik(S — S_)/A, (197)
J

where S, is the total surface of cavities below the straight line between the exterior
discontinuities 'a' and 'b', while S_ is the total surface of cavities above the straight line. In
the case where some elements would be filled with materials of impedance Z; = | /ezp12/ €
(mode H when v = H.) or admittance Y; = \/% /2 (mode E when u = E.), and with

wave number k,,,, we can write,
ZTIL
Sin9/1|m0deH = ZdjSinHj/A + Zizkm(smﬁ— - Sm—)/Aa
ki m

Y
Sine/l‘modeE = ZdjSinej/A + ZZ?Okm(Sm—I— - Sm—)/A7 (198)
J

m
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where the sinfl; remain the relative surface in free space.
F.2) A change of M,

We can refine in (126), from [1],[2],[21], the expression of the mean value M, of u on the

cavity,

(1 — LBysinglsind;) 2c0s,

Mu ~ 7 ; ] ;
1+ L By(sinf] — sinf .cosd;) (cosy;, + sind, )

= Dy M

+i00 /(e—ik:Acoso/ o 1)
By = / da 2cosa’ ~ — kA(In(kEA) + vy — 1 4 i7/2)

B (1 — L Bysing,sin®;)
1+ L By(sing} — sinf cos®; )

DO , Yo = 577, (199)

and then write, in place of (130),

f(L(7T + 90/ + (I)b) - fa,( - T+ SDI + (I)b)
2ikAcosp! cosy’
(cospl + sinf, )(cosy’ + sind, )
2ikAsin®y(cosy’ — sinf; )cosy’cosy),
(cosp!l + sinf, ) (sing’ + sinpl)

( — cos®,sinf, + sin®;sing’

+sinf}) x Dy + (200)

A more refined expression could be found by semi-inversion (see previous appendix).
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