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Spectral equations for scattering by impedance polygons :
properties and solutions

J.M.L. BERNARD
CEA, DIF, 91297 Arpajon, and, LRC MESO, CMLA, ENS Cachan, 94235, France

1) Introduction

The Sommerfeld-Maliuzhinets representation of fields is not limited to the study of the
diffraction by isolated impedance wedges, and we developed in [1]-[2] an analytical method
concerning the determination of spectral function for the scattering by impedance polygonal
object (convex or not). Our method is now quoted and used by other authors, as very recently
in [3] for semi-infinite impedance polygons with three edges, but other approaches exist.
They can be exact for cavities, for perfectly conducting object, or for specific geometries [4]-
[8], or give asymptotic [9] or iterative [10] reduction. Our approach has the advantage to give
rigorous analytical equations in complex plane, which apply for general impedance polygons
with finite, but also infinite faces without being limited to single wedge. For that, we consider
special features of single face expression of spectral function that we defined in [1]-[2],
which leads to exact functional difference equations, and Fredholm integral equations for
finite or infinite polygons that we detail here with novel properties. Existence and uniqueness

of solutions are analysed in an original manner, and approximate asymptotics are discussed.
2) Generalities

Let us consider the case of diffraction in free space of a plane wave
ui(p, 90) — eikpcos(@—wo), (1)

by a scatterer enclosed in a wedge-shaped region, defined in cylindrical coordinates (p, ) as
the domain complementary to the free space sector of radiation, — ®, < ¢ < &; (figure 1),
with — &, < ¢, < ®;. The characteristics of the scatterer are supposed to be independent of

* is understood and henceforth

z coordinate. An implicit harmonic dependence on time e™
suppressed. In expression (1), k£ denotes the wave number of the exterior medium with
|arg(ik)| < 7, and |arg(ik)| = 7 is considered as a limit case. We assume that the total field

in the free space region, u = u, + u’, satisfies the Helmholtz equation,



(A + E)u(p, ) =0, (2)

that w is analytic with respect to p and ¢ as — @, < ¢ < ®;, except possibly at the origin O,

that v is finite and p%—i’p is integrable with respects to p at any point of both faces, while there

exists a constant s, such that [ |u(p, p)e *|dp < oo.

figure 1 : a polygonal surface in a wedge shaped sector

The total field v for — @, < ¢ < ®; can be then represented as a Sommerfeld-Maliuzhinets
integral [1],[19],[20],

1 ik pcosa
ulpg) = 5 [ Flat )l mda, 3
Y

which satisfies the Helmholtz equation. In this representation, f is an analytic function and
the path + consists of two branches: one, named ., going from (ico + arg(ik) + (a1 + 7))
to (ioo + arg(ik) — (az + 5)) with 0 < a1 < 7, as Ima > d, above all the singularities of
the integrand, and the other, named ~_, obtained by inversion of v, with respect to o = 0.

After deformation of +y to the steepest descent path SDP, we can write

U(P#P) =u; + Zuri + Zusi

et ikp(cosa-+1)
fla+ ) 7 day, (4)

2m Jspp

where

- the term w; is the incident field v’ in the illuminated zone and zero in the shadow zone;
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- the terms " correspond to geometrical optics field, reflected by physical semi-infinite faces
(when present).
- the terms u are terms of guided waves, along physical semi-infinite faces (when present),
which are the contribution of complex péles o of f(a + v);
- the last term, named w4, is principally radiated cylindrically when p — co. Approximating
f(a+ ¢) on SDPy by its value at the stationnary phase points & = =+ 7, we obtain

_ p—im/A—ikp

UdNTkp[f(W'HO)—f(—W‘f‘SO)]» (5)

with F'(p) = f(m+ ¢) — f( — 7+ ¢) the diffraction (or far field) coefficient.

Ima

A} I

—nP Im (kcosa) <0
- TF —7/2
A& @Z "
|

figure 2 : Complex path of integration

This representation is commonly applied for a wedge. We investigate its use for a scatterer
with several discontinuities as in [1]-[2], detailing properties and ameliorating the method.
This study requires us to express a shift of the origin, and for this, to use particular relations

of f with radiation by one face [1].
3) Single-face expression of f for a scatterer surface with two polygonal faces

Let us consider a polygonal surface located inside the domain || > ® enclosing a scatterer.

This surface is composed of two joined semi-infinite polygonal faces L, denoted + and

0,00°
, respectively with m™* segments of lengths d“-—L with tangent angles 4+ ®F, j=1, 2, ...,
m* and a semi-infinite plane with tangent angles & ®*, & < ®F. The spectral function f

satisfies a single-face expression [1], as 7 < ®F F ¢, < Zand I < ®F F o < I,



fErt) =5 [ F @OV = Ty @) a%ds(00), (6

where s(M) is the length abscissa on each face, at points M of Loi,oo from origin to oo, the
term 7 is the unit vector of the direction of observation with angle ¢, and A is the outward
unit normal to face at M.

Considering the geometry of LF ., and the notation 2V, (.) = 0(.)/0n = F9(.)/p;0¢;

on straight segments p; € [0, dji] at p; = £ <I>j-t, we can write the single-face expression of f
[1] in the form,

—ikY. dfcos(aF®iE)

1<i<j d*t
e 1= i . .
o)=Y ; (— iku(p), + @ )sin(a T ©)
1<j<m* 0
ou , +\\ ikl cos(aF Dt . —iky,  dfcos(aF®¥) N
£ C2 (g, £ BT g e 15 Fte(a), )
with 3 =0 and >~ =0, where f© .(a) is the analytic continuation of the integral
1<i<1 1<i<0 K
expression
+ / + L[ . / N\ i du / + —ikplcosa/ 7 1
emi(a + (I)e ) = 5 ( - Zku(ﬂe? + (I)e )Sané + a_(pev + (I)() ))6 pe dpe? (8)
) 0 n

valid as Re(ik(cosa/ — cos(PE F ¢.))) > 0, [Re!| < m, |arg(ik)| < 5.

The function fjmi is the spectral function corresponding to the Sommerfeld-Maliuzhinets

representation of the field in cylindrical coordinates (pF, pF), with origin QF . at the edge
of the semi-plane ¢ = + ®F, radiating in the free space sector ®F — §F < 4+ pF < ¢F

where 6= is a strictly positive constant determined by the geometry.

The spectral functions f and ffmi have the following properties :
(@) £ (o) —u(QF .)/(a — o) has no singularity in the band ®F — §* < 4+ Rea < &%,

e,m* e,m*
where u'(QF .) =exp(ik). dFcos(po FP;)),while f(a)—1/(e—¢,) has no
’ 1<i<m*
singularity in the band — ® < a < @, even at infinity.
(b) f(«) is regular in the band — @, < Re(a) < @, except at o = ¢, and possibly as

Ima| — oo, and thus e (@) f(a) + B*(a) = * .(a) too. As |Ima| — oo, the function

f() is O(1) with f(a) = %u(p =0)+o(at)asIma — £ oo when — ® < Re(a) < P,

and O(e'F(escosatdising)) when @ < 4 Re(a) < ®F, ¢4 and d being constants.



The spectral functions f;-, and fif » attached to shifts of the origin at opposite ends of the

segment p on the face +, with fii(a)=fi,.,(a) for 1<p<m* and

fbj.:mi () = fmi (), are the spectral functions associated with the representations of the

field in coordinates (p, ,, ¥, ,) and (o, ;) With origins at opposite ends @, and Q;, of

segment p. From single-face representation of spectral function (7), we have ,

1 (% ou
i) =3 [ (= ibulpl e plsinta = 0) £ 52 (0l )
X e —ikpy, ,c08(a— (p)dp:z,php::tq’% + e—ik d¥cos(aT @) fb’ (Oé),
1 (% ) . ou
fiske) =5 [ (= ihulph phsin(a = ) F 52(0h,0)
% e—ikp,’,?pcos(u—ap)dp;))p|¢:i(¢%_7r) + e—ikdp cos(aF (P —m)) (i:p(a)' (9)
and we note that the function f;° - and i > combinations of functions and fi -, following,
Fiale) = fiyle) =TT fi o
fp@) = fity(@) = H BTN L (@) = — eF TS (a), (10)

are directly related to the radiation by finite segment p.

Remark : Let define v™ so that v* (M) = 0 at M € L, with non nul finite Vo™ (M) on
regular parts of Ly . We have dv*(M) = d(OM).Vv™(M) = 0 on regular parts of each

face. Considering a constant a and the unit normal Z to 2D plane, with outward unit normal

+  oE aVor (M) _ FEA(OM))
to face LOOO, = WD = o)

ds = |d(OM)| = F 7.2 Ad(OB)), atds = F (3 A d(OM)). (11)

, we note that,

4) Polygonal surface with impedance boundary conditions

4.1) Functional difference equations on ffmi for semi-infinite planes

In the case of an infinite polygonal scatterer with impedance boundary conditions along both

semi-infinite planes o= = + ®F, we have,

ou

n —(po, £ @) —iksinb, u(p,;, £ ;) =0, (12)
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where 9(.)/On™ =7=V(.) = F9()/pFdpF, 0< |Re(6F)| < /2, A* is the outward
normal to the face ¢ = + @7, and from (8), the functions f* . satisfy the functional

e

equations

(sina & sinfF) f= (o £ ®F) — (—sina £sindF) fE . (—a+dF)=0.  (13)

e,m* e,m*

If the scatterer is finite, the segments of both faces form a closed surface so that we can take
e = Qg with @ 4+ &, = 2. The fields on both semi-infinite planes ¢ = + ®7 are

e,m* e

then equal and their normal derivatives are opposite,

_ _. Ou ou , _ _
U(p;—,q):—) = u(pe y q)e )7 W(P?ﬂ’:) = - aF(pe y @e )7 (14)

and we derive from (8) that,
:m+(oz+7r):f;nf(a—7r). (15)

Considering the definition of f(c) and f* . given in (7) with properties (a) and (b), the
functional equations (13) or (15) imply [1] that these functions are meromorphic with simple
poles, regular in the band — &, < Rear < @, except for the pole at & = ¢, and possibly at

infinity when ® < + Rea < ®F.
4.2) Functional equations due to boundary conditions on finite segments

Considering impedance boundary conditions on the segments in the form,

ou o

[%(Pcm + @) — iksinb u(pap, + ;)o<p,,<ar = 0,

ou o

[%(Pb,zm + (@, — 7)) — iksing, u(psp, + (2 — m))lo<p,,<az = 0, (16)

with 0 < [Re(6; )| < m/2, we can use the definition of fi, and f3, in (10) with the

equalities given in (9), and deduce,

Lp
[(sinae F sine;f)fjfp(a +¢) — (—sina F sine;f)fjfp( —a+@)]lp=z@:-m = 0. (17)

[(sina = sine;f)ffp(a + @) — (—sina + sine;f)fi, (—a+9)]|p=taz =0,

+

4.3) A remarkable relation between f;°,

and f;", deriving from (17) when (10) applies

It is known from (10) with (9) that f;", has a 27 period, but it is remarkable that this property

also derives, in an independent manner, from the difference equation (17). Considering (17)
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with (10), this 27 periodicity will then implies the equivalence between the fields represented
with f°, and f;' .

Indeed, f3,(a + @) = — ¢’ djcos(a) fi,(a £ @) from (10), and we derive from (17),

[(sina £ sin@i)ffp(a + @) — (—sina + sine;f)ffp( —a+¢)]|p=ter =0,

[(sina F sin@ﬁ)ffp(a +¢) — (—sina F sine;f)ffp( —a+¢)]lp=t@z-m =0, (18)

then,

(sin(a + @) £ sinf,)) fi, (o £ 2®) + (sin(e £ ) F sinb,)) fi,( — a) =0,
(sin(a + <I>[f) + sinH;)ffp(a + 2(@; — 7)) + (sin(a + @;‘f) F sin@ff)ffp( —a) =0(19)

This allows, after substraction, to deduce the 27 period of ffp,

fip(a) = fi,(a+2m), (20)

which gives us, after writing fi, () = f,(a) —e™™ dy cos(aF®;) () from (10),

a,p
(fp(Tr + Oé) - (i:p( — T+ Oé) = eikdp COS(Q:F(I)p)(flfp(W + Oé) - fb:l,:p( — T+ Oé)) (21)

Consequently, the equations (17), when (10) applies, implies that the far field given by (fp is
the far field given by fzfp with phase center shifted by A, so that the field given by jfp is the
one given by fffp relatively to the two origins at ends of the segment p.

In whole generality, it is remarkable that functional difference equations for boundary
conditions on each segment has for additional consequence the equivalence of fields

represented with any ffm (or fif ), refering to any origins on the impedance polygons.

5) Formulation of the three-part polygonal problem : spectral functions in Sommerfeld-

Maliuzhinets representation and functional difference equations in complex plane.
5.1) Definition

We consider the diffraction of an incident plane wave by a semi-infinite impedance polygon
divided into three parts, each one characterized by relative surface impedances sinf_, sinf,
and sinf, with 0 < Re(f1) < 7/2 and 0 < Re(#;) < /2 (strict passivity). This means that
mt=1, m =0, & =35 O/ =7I4+d, ¢, =-51-0, f,= aflz -

55 e 2 e
fb:fbﬁzf:-



S
o

;1 / /

figure 3 : geometry of the three-part polygon

The functions f, and f, are the spectral functions associated with the Sommerfeld-
Maliuzhinets representation of the field, in coordinate systems (p,, ©,) and (pp, @p), With
origins at opposite ends of the finite segment (see geometry on figure). We have, in (p,, ¢©q)

coordinates,
(pa €10, 00[, 0 = — g — ®,) with du/On — iksinf_u = 0,
(pa €[0,A], 0o = g) with Ou/0n — iksinfyu = 0, (22)

with the incident field u' = e?##c%5(¢a=%2) "and, in coordinates (py, ),
(pp €10,A], 00 = — g) with Ou/0n — iksinfju = 0,

(pp €10, 00][, pp = g + @) with Ou/0On — iksinf,u = 0, (23)

with the incident field u/ = e*(peos(es—pe)+Asing.)

The properties (a) and (b) give us that,

(fala@) = 1/(a = @) and (fy(a) — ™5 /(o = o)) (24)
are regular in the strips — § — ®, < Rea < § and — § < Rea < § + &, respectively, with
— 5 =Py <o < 5 +<I>b, with f, 4 (a) = 7u( Pa) = 0) + o(a™!) as Ima — £ o0 in
these regions from single face expressions of f, and f;.

Considering the definition and f = f,, f." = f,, we obtain, relatively to integration on

piecewise straight faces,



e 1 [A o
fa(a) — e—zkAsmufb(a) _ 5/O ( _ iku(pa, ;—T)COSOé _ %(pm g))e_ka’ISIImdpa,
i i 1 : . T Ou T ik ppsina
fi(a) = eFBsinaf () — 5/0 (tku(pp, — §)Cosa + 8—n(pb, - 5))@+ Fovsiner g oy (25)

for any complex angle «, while, relatively to integration on straight semi-infinite faces,

1 ou

fla =) =5 [ (= hulpn, — p-ysina = T2 s = o g, (26)
0 n

as Re(ik(cos(p, + ¢_) — cosar)) < 0, |[Rea| < m, with p_ = § 4 ®,, and

1

> . . au —ik ppcosa
fola+oy) = 5/0 (—iku(pp, p+)sina + a—n(ﬂb,<,0+))€ kmeos g oy, (27)

as Re(ik(cos(po — ¢4) — cosar)) < 0, [Rea| < m, with o, = T 4 Oy,
5.2) Functional difference equations in complex plane for f, and f;

5.2.1) Functional equations for the central strip and semi-infinite planes

We now derive functional equations on the spectral functions from the boundary conditions
on the central strip (of finite size) and on the semi-infinite planes of the three-part impedance

polygon (figure 3). Using the boundary conditions on the central strip (22), and letting

fl(a/+ E) — fa(a+ E) _ efik:Acosafb(a_i_ E),

2 2 2
hla=3)=hla=p - fla=5) = —e M fia=3), (28)

we obtain, as described in (17),

(sina + sindy ) f1 (a + g) — (= sina + sind) fi( — a + g) —0,
(sina — sindy ) foa — g) — (- sina — sinf)) fo( — a — 721) =0, (29)

while, using the boundary conditions on both semi-infinite planes (23), we obtain, as
described in (13),
(sina + sinf, ) fi, (o + g + @) — (—sina+sinfy) fi( — a+ g +®,) =0,

s s

(sina — sinf_) f (a0 — 3~ ®,) — (—sina —sinf_) f,( — o — 3~ ®,)=0. (30)
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5.2.2) A remarkable relation between f, and f; deriving from (29) when (28) applies

We follow a development similar to the one used to obtain (19)-(21). Considering the

relation between f; and f5 in (28), we have from (29),

(sina + sindy ) f1(a + g) — (= sina + sind) fi(— a + g) —0,
(sina — sindy) fi(a — g) — (- sina — sinfy) f1( — a — 721) =0, (31)

and thus,

(cosa + sinby ) f1(m + a) 4 (cosa. — sinb, ) f1( — ) = 0,
— (cosa + sinby) f1( — 7+ a) — (cosa — sinby ) f1( — a) = 0. (32)

This implies, after substraction,
film+a)— fi(—7m+a) =0, (33)
and, considering the expression of f; with f, and f;, given in (28),

fam+a) = fu( = m+ ) = P (fi(m+ @) — fi( — T+ ). (34)

Consequently, it is worth noticing that the equations (29), when expressed with f, and f;
from (28), which initially concern the impedance boundary condition on the segment, has for
additional remarkable consequence that the far field given by f, is the far field given by f;
with phase center shifted by A, so that the field given by f, is the one given by f;, relatively
to the two origins at both ends of the segment (figure 3).

5.3) Functional difference equations for f(a) = fy(a + 2), fur(a) = fola — %)

We can now derive, from (29)-(30), difference equations on fi.(a) = fy(a+ 2),

far(@) = fola— %), corresponding to both discontinuities when influenced each other.

If we let fiy (o — ) = fy(@) with @ = Z + 2 we have
(

(sina + sinfy ) fi- (. + @) — ( — sina + sinf, ) f,.( — a+ @) =0, (35)

and

(sina — sinby) fi, (. — @) — ( — sinaw — sinby) fi.( — @ — D)
sina — sinf; ) f, (o — g) — (= sina — sinfy) fo( — o — g))

— QefikAcosaSbf (a) (36)

— efikAcosoa ((
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If we let for (o + %) = fu(a) with ®_ = Z + 2=, we have

(sina + sindy) for (@ + P ) — ( — sina + sinby) fo, ( —a+ D)
= ¢~k (sing + sind) ) f (o + g) — (= sina +sind)) f,( — a + g))
— 26—71kAc0sa52—(a), (37)

and
(sinae — sinf_) for (v — @) — ( — sinaw — sinf_) f,,( —a — ®_) = 0. (38)
From the properties of f, and f;, the functions
(far(@) = 1/(a = po) and (for(a) = €™ /(o = o)) (39)
are respectively regular in the bands |[Rea| < ®_ and |[Rea| < &, with ¢, , = o + % and
Pop = Po — %, — 5 — @, <o < § + Py, and, in these regions,

furl0) = F pulpa = 0) + o) and fy,(a) = F culpy =0) +o(0™),  (40)

as Ima — =+ oco. Besides, we remark that, for A = 0, the three-part polygon is reduced to a
wedge with exterior angle 2®; = (2(®, + ®_) — 7) and face impedances sinf.. In this
case, we have fi.(a—®_ + %) = fo,(a+ Py — I) = fi(a), where f§°, refering to the

solution for an impedance wedge (see appendix), is given by

o (0, p0) = o V—(a)eos(Ga, ) (41)
: 20, W, (poq)(sin(ge) — sin(552))’

where po 4 = @o + (Pg — 1) /2, — Py < You < Pg.

6) The integral expressions and integral functional equations for the three-part impedance

polygon
6.1) Elementary integral solutions for difference equations

Considering the theory of functional equations, the analytic function y(«) satisfying,

x(a£®) — x(—ax®) =9 (a), (42)
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and regular as |[Rea| < @, is given in the strip [Rea| < ® [27] [31] by,
~ x(i00) + x(—ic0) - z'/”oo

. ﬁ_(a’)tan(%(a o)), (43)

dd(ﬂ*(o/)tan(%(oz +&—q))

—i00

when the functions ¥*(a) are regular and summable on the imaginary axis, with
X (i00) — x( —i00) = 0. The functional equations (35)-(38) can be reduced into the form
(42), by using the solutions ¥ (a, ®,) (resp. ¥;_(a, ®_)), without pole or zero and
O(cos(ma/2®,)) (resp. O(cos(ma/2®_))) in the band |Rea| < @, =T + % (resp.
[Rea| <@ = 7§ + %), of the equations without second members of the type,

(sina + sind)) Uy, (o + D, @) — ( — sina + sinb)) V. ( — a+ P, ) =0,
(sina — sind, ) ¥y, (a — @, &) — ( — sina — sind, )V, ( — a — @, &) =0, (44)

with I=+, r=1, &=0,=2+2 for V(a, ®;), and =1, r= —,
=0 =7+ % for U_(a, ®_) (see details on ¥;,, named ¥, _(«, ®) in appendix).

6.2) Coupled integral expressions of f,.(«) and f,, ()

Considering (35)-(38), we use the solution for S;” = 0 (resp. S,” = 0) (see appendix A) with
pole due to incident plane wave, and substract them from the general solution. We then
obtain unknowns regular as |Rea| < ®, (resp. |Rea| < ®_) for which we can use the

integral expression (42)-(43).

We can then write, fj, () for — ®, < Rea < 39, and f,,(a) for —3P_ < Rea < ®_,

following,

fbr(a) B i /—i-vioo Sb—(al)e—ikAcosa’tan(ﬁ(a o q)+ _ a/))do/ . ,(a)
(o) 40, ) . (sina/ — sind;) W, (o — D) X
i /Hw Si()/(sine/ —singy) e "Esin(gE) i)
- s ! b
49, o Uy(af — ) cos(gzg- (o — @) + cos(55-)
. ico T . —ikAcosa! qj ( TQ
_ - /+ fm(a/ ~z + %) e kAcos sll’l(211>+) dO/—FXi(Oé) (45)
40, ) o Wia(e/ = ®4) cos(zE-(a — D)) + cos(ZE) nen

and,
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fulo) _ =i /Hoosm’)e hdeosclan( 2 (o + B — o))
)4 ) o

d / )
U (« sina/ +sm91)\111 (o +D) @+ x()
i /”OO SH(a)/(sina + sinb) e~ ikAcos g (Zal dol + (o)
= o
40_ J_ U, (o/ +0) cos(5a— (o + ®_)) + cos( ) xa(e
. +i00 . o 4T @, —zkAcosa sin pixed A
- ! / for - ) (53-) —~do + x,(a), (46)
49 ) o Vi (o' + D) cos(gp— (a4 P_)) + cos(32-)
Wlthgoob—goo— ,a8 — 5 < 0o < 5+ Py, and o = 0o + 5 Lo as — 5= Py <o <
while the source terms are given by,
zkAsmgo 0 COS e TPo,b
i __ikAsing, i T 2<1>+
Xp(a) =e X (a — ,
b( ) +1( ) 2@.:,.(\1}4_1(@0())(811'1 o 2@ ))
’ 7
XZ(OK) = ( 2(I> o,a )’ (47)
20_ Uy (po,)(sings- — sin5z)

with Re(6+) # 0 and Re(6;) # 0.

6.3) Integral equations when ®,;, > — 7 (derived from coupled integral expressions)

From previous integral expressions (45)-(46), we can write,

frla+5 %) —z/ﬂoo Sy () 1
l:[14_]‘ (O[ + > %) 4(I)+ —ico (Sina/ — Sinel) \I/+1(Oé/ — @+)

—ikAcosa’ Sll’l( 271'(1?:)

, T
X —do' +xj(a+ = — =), (48
cos(—2g+ (o = ®y)) + cos(35-) X 2 2 ) (48)

fala=F+%) i /+i°° Si(a) 1
U (a— T+ %) 40 ) (sina +sind) U, (a/ + @)
e—ik:Acosa Sln( wo! ) T )
X 20 do/ + —+ ), (49
cos(5a— (o + @,)) + cos(22-) o+ Xalo = 2 2 ) (#9)

as —3(I>_<Re(a—g+

) < ®_, when —min(5, 5+ ®,) < @, <min(j, §+ D).
When &, ;, > —

5, we can take o purely imaginary, where the functions,
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Sy (a 1 T P, — sino — sinby) far( — v — T + L
Gl a- 5 g - ) ul —a=§+7%),
a—sinfy) 2 2 2 (sinae — sinfy)
S« 1 T @ (— sina + sinfy) for(— a + T — )
; ( ) __(fbr( ___b)_ . ! ), (50)
(sina + sinfy) 2 2 2 (sina + sinfy)

vanish at infinity, contrary to fo,(oc — 5 + %) and fy, (o + § — %) in general.

Choosing these functions as unknowns, we derive the integral equations for imaginary a,

Sq (@) —i [T S (o) ~ikicosd’gin (z)
(sinc + sinfy) - 8D, /_ioo (sina/ — sinf ) % ‘I’+1(O/ — D)
(ot 3§ — %) (sina — sinfy) Ui(—a+3 <I>,))
cos(5g- (v — ®y)) +cos(g5-)  (sinor+ sinfy) cos(g5-(a + ;) + cos(35-)
e T- B I- Dy
(sina —sind) Wy (—a+F - %) | T B,

XZ(—'O*+'§ —'ET)L (51)

Jda/

(sina + sinf;)

and

Sb_ (a) B i /-i—ioo S{j-(a/) y e—ik:Acosa sm( 27;)1 )
(sina —sinfy)  8®_ J ;. (sina/ + sinf,) U, (of +P)
[ U (a—34+%) (sinv + sinfy) U (—a— T+
2—(04 + @a)) +cos(Z&)  (sina — sind;) cos(52—(a — @,)) + cos(ZL)
®,. T P,

sina + sinfy) Uy (— o — I + %)

COS

[\J|}—A/—\

—

T P,
Xa(_a__+_

) (52)

(sina — sinfy)

where we remark that S, (— o) = — S, (), S;F(— o) = — SF(a/). We note that,
T Qo) 1 Pa)
2 2 372
(sina F sinfy) + 2sinf;
=1l (53)
(sina =+ sinfy) (sina & sinfy)

- (I)(L(,b) = (I)—(,-l—) - (I)rL(,b)7
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and,

11 (a) = Agcos(ma/2®, )(1 4 O(a’eIHmaly),

@ @ Fird
Va—atF- 2= vt r J- 2T o),
T @a T @a Tindq v — o
U (—a-— 5T 7) = -0 (a— 5T 7)6 (1 + O(a¥ e mmaly), (54)

when Ima — =+ oo, so that the kernels, bounded on the path of integration, are,

—ikAcosa/ ‘

e cos(aa)cos(aa’) dcos(aa)
)

<cos(aa) + ccos(aa’) <cos(aa) + ccos(aa’) 1+ cos(ba

as [Ima/| > A and |Ima| > B, and the source term is O(1/cos(ca)) as |Ima| — oo, with
postive real constants A, B, a, b, ¢, and d.

The kernels are then square integrable as Im(kA) < 0, i.e. |arg(ik)| < 7/2, when kA # 0,
and we can consider this set of coupled equations with,

+oo — (s +00 .
Sy (iz) ) / St (ix) )
/_oo | (sin(iz) — sinf) "z < oo, 0 | (sin(ix) + sinf;) [Fdz < oo, (56)

as a system of Fredholm equations of second kind in L?(iR). Let us note that the solution of
our functional equations for kA = 0 is the one for an impedance wedge, uniquely defined
from [20] with [33].

We now explain how to extend this domain to enclose the case |arg(ik)| = /2, by
deformation of the integration path.

6.4) Modification of integration path, and extension as |arg(ik) — €| < 7/2
6.4.1) The new path of integration C,

We note that e~*#4¢" yanish to infinity when o/ — + ioco as |arg(ik)| < 7/2, kA # 0.
However, it is possible to deform the domain of integration (possible by analyticity), so that
e~ tkAcosa’ _, () at infinity as arg(ik) < 7/2 (even when k is real), without capturing any pole
in particular first singularity of the integrand at |[Rea| = |Re(6;)| with Re(6;) # 0.

For that, we can modify the path, following,

+i00 +i0co+€
I= K(d,a)v(a)da — I = / K(d, a)v(a)dd/, (57)

—i00 —100—¢€
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changing the initial path o/ = ia’ with x € R for the path C. with o/ = g.(z’) following,

. = {d = g.(2') with g.(z") = iz’ + etanha’, 2’ € R, |¢| < |Re(61)]}, (58)
ikcos(ge(:c)) — (e—x+i(arg(ik)+etanhx) + em+i(arg(ik)—etanha:))/2, = R,

Concerning the sign of €, we note that the exponential term e~ in K (o/, a) verifies,
|efikAcoso/| _ O(efRe(ike”f)coshx/) onC,, (59)
and we can then extend the domain of convergence if we take the real constant € with,
larg(ik) — €] < 7/2, i.e. sign(earg(ik)) > 0, |¢| < |Re(61)], (60)

that we can let tend to zero. Thereafter, C. will be considered with the conditions (60) on e.
6.4.2) Analyticity of integral expressions of f,. and f,, with the new path C.

The integral (45) and (46) with new path of integration C. give us expressions of,
fbr(a) and far(a)v (61)

which are O(1) and regular, respectively as,
Re(g.(Im(ar))) — @4 < Re(ar) < Re(ge(Im(ar))) + 3,
Re(g.(Im())) — 3P_ < Re(a) < Re(g(Im(ev))) + ®_, (62)

where Re(g.(Im(a))) = etanh(Im(ar)), Im(a) € R, |Re(g.(Im(cx)))| < |e|]. We note that
these functions satisfy by analytic continuation the functional equations (35)-(38), and that

we have fbr,(z’r( - ZOO) = - fb’r,a,r( + ZOO)
6.4.3) Integral equations with C. become L?*(R) as |arg(ik) — €| < /2

Changing the path for C., the integral term I in (57) becomes,

| ). gl )ong @i (63

—0o0

for |arg(ik) — €| < m/2. Replacing the integration path by C,. in integral equations (51) and
(52), we then derive,
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L ACECH) (9.(2"), 9:(2))Durge (') da’

S (gs( )) _2/
(51n(g5(x))—|—sm91) 80, J_ . (sin(ge(z')) — sinb)

o) + 5~ S + 5 — )
2) m_ % (64)

ﬁﬂﬁgdw))—-mnHQqLH(—-a_+ _ %
(sin(ge(x)) + sinfy) 22 Xb( = ge(z) + 573

and
Sile) i [ Sia) PP
(sin(g.(z)) — sinfy)  SP_ /_OO (sin(g (")) + sin@l)Ka’b(ge( ) 96(2))Dwrge(')d
o (o) — 5+ Ti(ae) — 5+ 50
(sin(ge(x)) + sinf)¥;_(— g(x) — 5 + %) ; T @,
+ (sin(g.(z)) — sind)) Xl = ge@) =5+ 7)) (65)

iz + etanhz. Considering (54), the kernels K (g.(z'), g.(z)) in

for z € R, with g.(z) =
integral terms satisfy,
1K (9e(2"), ge())|
|e—coshe’| ( cosh(ax)cosh(za’)
cosh(ax) + ccosh(ax’)

::()(
cosh(ax) + ccosh(az’)
with positive real constants A, A’

dcosh(ax)
1 + cosh(bx) ) )’ (66)

, a, b, ¢, d, and

as |z| > A and || > A,
v = Re(ike ) > 0, so that we have,
“+00 “+00
[ Kt e)ongte!) P < o (67)

as |arg(ik) —e| < w/2, kA # 0. We then notice that we obtain a system of Fredholm
equations of second kind in L?*(R) on C,, and thus for any k with |arg(ik)| < 7/2.

6.5) Existence and uniqueness for integral equations on C

6.5.1) Uniqueness
Concerning uniqueness, we consider the solution of integral equations (64)-(65) along
{a =iz + etanhz, x € R} when X/ and x} are nul, i.e. as we have no

integration path C, =
source terms, in L?(R) as |arg(ik)| < /2
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From analyticity of kernels in our integrals, the solutions S, (o/) and S; (a') are odd
meromorphic functions (the only singularities are poles). Therefore, we define two functions
fbrand for, following,

o) S e g o),

= d
Uo(a) 40, ) i . (sina/ — Sin91)\I/+1(o/ 3, «
- i /+ioo+e Sb— (o/)/(sino/ _ sin91) —ikAcosa/ Sll’l( 27rg ) o (68)
49, ) ;. Uy(af — ) cos( - (a - &)+ cos(;rg;) ’
and,
f‘”'(oz) - i /+zoo+6 S-i—( )e—zkAcosu tan( (Oé+ P — ))do/
Uy (o) 49D ) 0. (sine/ —|—s1n91)\111 (o +®_)
_ i ot g+ (o) /(sine + sinf;) —ikAcosa’ sm(2’rg ) o/ (69)
40 .. U (& +®)  cos(5a (a +®_)) +cos(2)
in the respective band,
Re(g.(Im(ar))) — @4 < Re(ar) < Re(ge(Im(ar))) + 3P,
Re(g.(Im(x))) — 3®_ < Re(a) < Re(ge(Im(a))) + P_, (70)

where the functions f*" and f% are meromorphic functions, regular and O(1) at infinity.
Considering the integral equations (64)-(65) satisfied by S,” and S;” when x’, and x} are nul,
we note that

oo Ty 2oy _ (—sina —sinfy)f"(—a—§+%) 25 ()
2 2 (sina — sinfy) (sinae — sinfy)’

o ™o By (—sina+sinf)f"(—a+5-%)  257(a) 1)
2 2 (sinaw + sinfy) ~ (sina 4+ sinfy)

We then deduce, after using elementary properties of kernels of (68)-(69), that
(@) = fr(a— %) and fi(a) = f"(a+ %) in place of fy(@)= fi(a— %) and
fa(@) = for(a+ %), satisfy the functional equations (29)-(30) with (28), and thus the
condition (34). This implies that f® and f° refer to the representation of the same field u
with two distinct origins, which satisfies the boundary conditions for the impedance three-

part polygon, without illumination.

Now, we can use that,
(1) in absence of source terms, from uniqueness theorem on the field u (see appendix C), the

field u and its normal derivative shall be nul on the impedance polygons.
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(i) f* and f° vanish if the field and its normal derivative are nul on the surface of the

polygon, because of single face expression of spectral function (7)-(8).

Consequently, the spectral functions f¢ and f?, and thus S; (o) and S, ('), have to be nul,
and we have uniqueness of solutions for our system of integral equations (64)-(65) in L?(R)
as |arg(ik) — €| < 7/2, and thus as |arg(ik)| < 7/2.

Remark : The solution is also uniquely defined in the case A = 0 (simple wedge) from
Thuzhilin's theory [33].

6.5.2) Existence

Concerning existence, we note first that the kernels are regular functions of kA as
Im(kA) < 0. Considering then the theory of integral equations depending on a parameter in
L?, the resolvent for our system of Fredholm integral equations of second kind is an
analytical function of the parameter kA, which defines a unique solution in L?*(R) as
Im(kA) <0 and kA # 0, except possibly for some discrete values of kA, where the
resolvent is singular and the solution is not unique.

Since the uniqueness of our spectral integral equations has been shown independently, a
unique solution exists in L?(R) for (64)-(65) as |arg(ik)| < w/2, kA # 0

Remark : for A =0, the problem corresponds to the diffraction by a simple impedance

wedge where the spectral function is known to be uniquely defined [20] [33].

7) Some particular features of the system of integral equations for the three-part impedance

polygon and their consequences

Our spectral integral equations can be solved numerically, or analytically by approximations.
In our case, the approximations principally depend on kA, for kA small or kA large. These
integral equations and the integral expressions of the spectral functions have special features
concerning the decoupling of integral equations in important cases that we now first

tlustrate.

7.1) Decoupling in the case of the unsymmetric three-part impedance plane
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In the case of the three-part impedance plane, we have &, = &, =0 and &, = &_ = 7.
Considering that,

5 sina(sind_ — sinf)
2Vii(a—3) 2¥u(-a—3

1) Wii(a — ) (sina + sinf_)(sina — sinf; )
_ C(a)sina(sinf_ — sinf,)
N sina — sinf, ’
\Il+1(oz+ g) . \I/+1(g - O[) . \I/+1(g - O[)
20 _(a+3) 20 (3-a) ¥, (I-0)
= CO(a)sina(sind, — sinf;)

\Ill_(a—g) \Ill—(_ _E) \Ill—(a_%)

sina(sinf, — sinfy)
(sinaw + sinfy ) (sina — sinb )

72
sina — sinf; ’ (72)

and letting N (o) = %, we then derive,

o) (sinfy —sind_)2f,.(o/ — T)

—i00—€ \1117(0/ - g)

(sinfy — sinf )2 fy(a+ %) /-H'oo-l-e
\I;+1(a+ g) — Im

. ;L
efzkAcosoa sina/’

X ——————dao’ + (sinf;, — sind, )'/%y} u
cosa + cosa/ o + (sinf, +) Xb(OH—Q)’

- (sindy — sind, )2 fy,(o/ + 3)
) a ) \\/J / s
100—€ +1(a + 2)

(sinf; — sind_)"2 f,,. (o — T) B /+ioo+e

2
\Ifl_(Oé — %)

—q /
e 1k Acosa

sina/

i i 1/2. i ™
X cosa T cosar 40+ (sinfh = sin )X (o = 5),

(73)
where 7,,, = (sinf; — sinf, )'/?(sinf; — sind_)'/2.
We obtain two uncoupled equations by simple addition (5) and substraction (D) :
+i00 : !
S, D) =, N(o S, —D —ikAcosa/ Sma
( )=n oo (@)(( Je cosa + cosa/

do/ +(S', — D"). (74)

7.2) Decoupling for symmetric three parts polygons (®, = ®, and sinf, = sinf_)

In this case, the system (64)-(65) can also be decoupled. For this, we first express the system

of integral equation (64)-(65) in a new form. We observe that ¥_;(«, ®_) (also denoted
U_(«)) satisfies ¥_q(a, ®_) = U;_( — o, P_). Then we can write
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fulZotioB) _ i[5S

Vy(—a+3— %) AP ) e V(o — D)

—ikAcosa! i ( T
e sin(5g-) . T
X = —dd + ¥ (—a+ = — =),
cos(gzg- (o + ®p)) + cos(55-) i 2 2 )
far(a_%+%) = _i/HOOJrEbe(_O/‘Fg_%)
\I/_l( -+ % — %) 40 | . \11_1(0/ — (I)_)
—ikAcosa’ g3 ( O
e SIN( 57— i (I)(L
S G) gasyia- T+, (75)
cos(gg— (o + @,)) + cos(55-) 2 2

This form is particularly suitable for the case of a symmetric polygon. In this case &, = ®_
(i.e. &, = ®,) and sinf, =sinf_, so that ¥, ; = ¥_; and the equations have the same

kernels. Thus, by addition and substraction, we derive a system of decoupled equations,

(5.D)(@)  _
Va(-—a+5-%)
s pFicote S —D / e—ikAcosu’Sin(ﬂ-_o/) ‘ ‘
= L5, : ) . 2L da + (S', DY) (a), (76)
49, ) i o Uy (a — D) cos(ﬁ(a + ) + cos(2¢+)
where
S(0) = il —a+ T = S0 4 furla— T+ 22
)= Jbr o 2 2 ar 2 9 )
™ (I)b ™ (I)b
D = r = a ar -5 /)
(0)= = firl —a+ s~ )~ fulo— 5 +30)
i g ™ (I)b i ™ (I)b
S (O[) Xbr( o+ 2 2 )+Xa7“(a 2 + 92 )7
; ™ q)b ; ™ q)b
DZ — A1 _ TN A _ __ -
(Oé) Xbr( o+ 2 2 ) Xar(a 2 + 2 )7 (77)

for |po| < min(F, § + @p).
7.3) Partial inversion and new kernels for small kA

Considering the solution known for kA = 0 [1], we can apply the identity
e—ikAcoso/ — (e—ikAcoso/ _ 1) +1 (78)

and invert the part corresponding to unit term, which results in equations with kernels
vanishing as kA — 0, suitable for approximations. To simplify, we detail the developments
in appendix. We then obtain the equations with kernels vanishing as kA — 0 :
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T P Lo W (of + @) (Bi(ef) — By(— o)) :
olat o -y = = LW M, (o
Jowole+ 2 2 ) 872 /_ioo da( sina/ — sinf, +a,af)
Vo = @) (Bun(e) = Bu(= )
sina/ + sinf

T % 1 T U (of + @) (Bo(a') — Bi(— o)) :

Jaro(or — 5T 7) “32) . da'( sina’ — sinf; Ni(a, )
U1 (o — ®.)(Buo(e!) — B — o

_ +1(Of +)( O(Oé) 0( a))N_(Oé,O!/)), (79)

sina’ + sinf,

where M (o, o) = Li(a+ § + w,a’), Ni(a,d) = Li(a— 5 + w,a’),

T+ (2 —=P)/2) )

Li(oz,o/) _ 7TSino/\IJ+_(a) /ioo COS( 55, (COSQD/ + sinel)

20, ioo Ui (@ + (P — By)/2) cos(¢’ + 5) + cose!
1
) T dy¢’, (80)
(Sm(%) — sin( (¢ +(<21>(%d <I>b)/2)))
and
B (O/) _ (faro(O/ — g + %) )(e—ik’Acosa’ _ 1)
0 ‘I’+1(0/ —o4)
+ ( gb(a/ (q) - )/27 900) )(efikA(cosa’Jrsin%) _ l)eikASingoo
‘I’+1(04 - o) ’
Joro (@ + % - %) —ikAcosa/
Binl(a') = ikAcosa’ _ 1
bO( ) ( \111 ( ) )( )
ab( ./
0 (a + 92 ( (l)/2 (Po) —ikA(cosa/ —sing,)
o) —1). 81
e e[ ) (1)

7.4) Asymptotics for large kA

The scattering diagram can been reduced to a combination of values of the spectral functions
fa and f; in the band of validity of integral expressions, with exponential factors depending
on angles. So reduced, the oscillatory nature of the diagram comes principally from

exponential factors. We can write, from previous integral equations,
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Ri(a) = L (oz)/HOOﬂR (o) i Sm(gg ) da/
’ 10, Ciso—e T cos(5E- 5o (@ — ©p)) +cos(%)
™ @
+ma(a)xj e+ 5 — ), (82)
2 2
as — &, <Re(a+ % — %) <3d,,and,
i +ioco+e e—zkAcosa sm( e )
R.(a) = —ma(a Ry 20 —do/
(@) = 49 2( )/_,,;OO_E bla )cos( —(a+ ®,)) +cos(35-)
) ®(L
+ma(a)xi(a— 5 + 1), (83)

as —30_ <Re(a—Z+%)<®_, for —min(3, Z+&,)<p, <min(%, I+ o),

fbr(a+___b) far(a — 5 (I)) \I/H(O“"__%)
Rl = ey =N a e M T e
_r 4 %
o) = 5 Y

where x| and x', are smooth functions previously defined.

In the equations (83)-(84), we can choose to consider or to neglect the influence of complex
poles of R, (a’) (corresponding to guided waves vanishing when A is large) in vicinity of
the integration path. To simplify the presentation, we develop here the second case, and
consider the first case in appendix.

So, we assume that the principal contribution of R,;(a’) comes from the vicinity of the
stationary phase point o/ = 0. Letting cosa/ = 1 — z?/2 with = = 2sin(a//2), and taking
into account the parity of the integration path, we have

m1(a)( OaRa()|azo)e 4

Raler) ~ 2m
+100 Qelk%x | _ q)b
" dz + ot — ), (85
/—z'oo 2(ﬁ)”(lJrcos(ﬁ(oz—q%))) —adetma)lat g —<7), (89)

as — &, <Re(a+ 3% — %) <3d,,and,



-24-

ma(a)( Do Ry ()] amo)e*A

2mi
+100 M 9
e 2 x ‘ @,
% dr +my(a)x! (a — = + =), (86
/—ioo 2(2@, ) (1+COS( (O[+@ ))) — 2 2( )Xa,( 9 9 ) ( )

as —3®_ <Re(a—§ + %) < ®_. After derivation of previous equations, we obtain

2
T (I)b

(0uRo(@)laco) ~ Balmi (@)X 0+ 5 = )laco),
(uRa(@)]eco) ~ Balma(a)xh (e = 5+ 2)laco), (87

so that we get the form

m (@) (O (ma ()X (o — 5+ %))M:O)e*mA

Rala)~ 271
+i00 ikAm2 9
¢ 7 i ™ q)b
/—ioo 2(2<I> ) (1 + COS( (Oé _ (I)b))) _ 2 dx + ml(a)xb(a -+ 5 5 )’ (88)
as — &, <Re(a+ 5 — ) <32, and
ma () (Oa(ma(a)x)(a+ 5 — _))|a_ Yo~ ik
R(L(a) ~ —
211
N 26%27 : i T P,
‘/MQQ e By B T N5+ ). ()

as —3P_ <Re(a— I+ %) <®_, for —min(%, I+ &,) <, <min(%, I+ &,).
Concerning the scattering diagram, we need, the evaluation of R,;(«) for real o = .
Deforming the path of integration to the Steepest Descent Path (without capturing any poles),

we derive

Ry(p) ~ m1(0)0a(ma(a) X, (= 5 + %)Na:o L)
' J2ikA NG

+mi(e)xy(e+ 5 — =), (90)

2¢ A (v e erfo(v) —

as — P, < (p+I—2)<30,,0= ikA(55-) (1 + cos(55-(¢ — ®3))).and,
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mQ((p)au(ml(a)XZ(a + % - %))Lx:O

R(L ~ -
(©) V 2ikA

2¢ A (w e erfo(w) —

; T P,
+ma(@)xaly = 5+ 50, (91)
as  —30_ < (p—IT+L)<d, w=ikA(E) A1+ cos(5E (¢ + D)), for
—min(Z, 2+ ®,) < ¢, <min(Z, 2+ &), with &, = 2+ 2 and ®_ = I + %, where
.2 1 1 —¢2” -1 1
ae erfc(a) — ﬁ = ;/_OO a2 —|—t2 dt = 9 7Ta2 +O(J), (92)

when a is real. In the right-handed sides, note that the first term corresponds to double

diffraction, and the second term to single diffraction.

8) Exact first order expressions for a small cavity in a step, when &, = — ®, and

sinf, = sinf_

Let us consider a step of length A, when the three-part polygon is with ®, = — &, and thus,
the right and the left-handed semi-infinite planes are paralell. We then assume a complex
cavity in this step, composed of m faces of angles ®; between extreme edges 'a' and 'b' (see
figures). We note that,

Z djcos®; = 0, Z d;jsin®; = A, (93)

1<5<m 1<5<m

where d; is the length of face j with angle ®;.

-3 Pa
Pb Pa _
2,
o, // / / 3
b . «
- P ¥ ; P
’ 77 P s d
rd o -
/ - ) Pk . / 7 /

The half-planes, respectively right and left-handed, have relative impedances sinf_ and sinf .

with boundary conditions,

(% — iksinfy)u = 0, (94)
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while the field on each face of angle ®; verifies,

(% — tksinf;)u = 0. (95)

We search to express the diffracted part u,; of u given by,

_ —in/4—ikp,

e

Ud(‘;pl) = \/W [fa(ﬂ- + <;Oa) - fa( — T+ (Pa)] + O(l/(kp)3/2), (96)
when &, = — &,, &; = /2. If semi-infinite planes are parallel and sinf, = sinf_, we can

show that first order of u,; in power of k£ can be determined by only studying our difference
functional equations in combination of single face integral expression of spectral functions,
with no need of integral equations. In what follows, we write p, and ¢, without subscript,

andlet o = @' — @4, o = L — D,.

8.1) Recombination of difference functional equations when &, = — &,

géométrie : complex step with cavity (note : ¢’ = ¢ — ®;)

We have

(sina + sinf ) fy (o + 7/2 + @p) — ( — sina + sinf) fi( — . + 7/2 + @) = 0,
(sina — sinf_) fo(a — /2 — ®,) — ( — sinaw — sinf_) f,(—a — w/2 — &,) =0, (97)

where,
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ik fzkzz dicos(a—2;) d;
@)= 3 e T [ sina - @)+ sing)ulsh, @) )y

1<]<n 0
—ikY.  dicos(a—P;) )
+e 1Sem fb(a) — fl (a) 4+ e—zk Acos(u—ﬂ/Q)fb(a), (98)
Therefore, we can write,

fala+7/2 4+ ®y)

( — sina + Sil]9+) ikA(cos(a—P;)—cos(a+Dy))
i a a (- 24 @
(sina + sind;.) ‘ Jo(—atm/2+®)

— sino +sinfy) o ®)—cos(a
= fl(a + 7T/2 + q)b) _ ( (Sina - Sin9+)+) kA (cos(a—Py)—cos( +<I>b))f1( —a+ 71-/2 + (I)b),

(sinae — sinf_) f (v — /2 — ®,) — ( — sina — sinf_) f,( —a — /2 — ®,) = 0. (99)

8.2) Reduction of far field function when sinf, = sinf_

Considering that f;(a) = O(kA), we then have,

fa(ﬂ' + (,0)
(—cos(p — @) +5inb-) igacos T
(cos(yp — @) + sind,.) a
— ®;) — sinf
ESSZEZ - @Zi T Zﬁej fi(= ¢ +28) + O((kA)?),
(cos(¢ + @,) — sinf_)
(—cos(p + @,) —sinf_)

-+ 2d,)

=f1(7r+90)+

fa(=m+¢) —

fal—p—28,) =0, (100)

then,

fa(m+ @) = fu( =T+ ) =
(cos(yp — @p) — sind;)
Silm+ ) + cos(ip — @) + sinf, )

fi(— ¢ +29,)

(cos(yp — (I>b) — sind, ) 21k Acos(p—@y)sindy ¢ _
" leos(o By Temle)© I = ot 2)
(005(90 + <I>a) — sinf_ ) ,
T (eos(p £ 0. T smp)+(— # ~220) + O((RA)?), (101)
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For &, = — ®,, we have,
fa(m+ @) = fa( =T+ ) '
_ firt o)+ (cos(p — ®y) — sm9+)f1( ot 20y

(cos(ep — @) + sinf., )

(cos(¢ — ®p) — sinf_)
Tl ) sl — @) + sind)
+O((kAY), ™

( _ eszAcos(w—@;,)sm@b )

then, letting ' = o — ®;, and considering that sinf, = sinf_, we can write,

fa(ﬂ— + (P/ + (I)b) - fa,( -7+ SDI + (I)[,)
(cosg’ — sinf.)
(cosy’ + sinf.,)

= filmr+ ¢ +®y) + fil =¢' + @) + Dy, (103)

with,

I Q1 9 )
D= — (-t (cosp’ — sinf,
’ fo(=¢'+®) (cosy’ + sinf.)

fa( - 90, + (I)b) = fO( - (P/ + (I)b + ((I)(z - (I)b)/27900) + O(kA)

2ikAcosy’sindy,

= fo( = ¢',¢0) + O(kA), (104)
where fj is the spectral function for A = 0 given by (41) with ®; = 7/2 and sinf, = sinf_,
following,

(cosa + sinf )cosy),
o) = . . . . 105
fole, @) (cosy!, + sinf, ) (sina — sing?,) (105)
This gives us the following expression of far field function,
fa(m+ @ + @) — fu( =7+ + By)
I Q1 9 )
N s (cosp’ — sinf, S ra,
film+ @'+ @) + (cosgo’+sin9+)f1( o+ )
! _ inf / /
N (106)

(cospl + sinf, ) (sing’ + sing’)

8.3) Exact first order expressions for f; and for far field function

We can write,
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—ikY dicos(a—®;)

dj
fila) = 5 Z e 1= / (—sin(a — @)

1<j<2 0
+ sinf;)u (p;-,q)‘) e ihpjeos(a—®; ))d,oj

kMu .
~ 2 Zd — sin(a — ®;) + sinb;), (107)
for small kA, where M, is a mean value of u for small kA, M) = % as
sinf, = sinf_. We then note that dicos®; =0, d;sin®; = A, which gives us,
j j jSINR
1<j<m 1<j<m
ikcosy! . .
fila) ~ = (cosa Y d;sin®; + Y d;sinf;)
! (cosg!, + sind,) z]: 7 ZJ: I
ikcosy! ,
~ ° A d;sinf; 108
(cosp!, + sinf ) (Acosar+ Z Sinf;). (108)
We then obtain for (106),
fo(m+ ¢ + @) = fu =7+ @'+ ®)
2ikcosy! cosy’ . . :
~ ° — Acos®;sind @, Asing’
(cospl + sind, ) (cosy’ + sin9+)( COSPySINGy o SISy Asing
! _ sind / /
n Zd sind);) 2(cosy’ — sind. Joospocosy’ .\ g,
(cosy!, + sinf, ) (sing’ + sing?,)
2ikcosy! cosy’ ) .
~ ° — Acos®;sind d;sind;
(cosgl, + sinf,, ) (cosy’ + sin9+)( cos®psinG + ZJ: jsind;)
n 21k Asin®jcospl cosy’
(cosy!, + sinf ) (cosy’ + sind ) (sing’ + sing’))
x (sing/(sing’ 4 sing!) 4 (cos’y’ — sin®d.,)), (109)
and thus,
2ikcosy! cosy’
. / (I) — f.(— / @ ~ o %
fo(m+¢"+ @) = ful =7+ @'+ D) cosy! + sinf, )(cosy’ + sinf,
12 12

Asin®,,
(sing’ 4 sing))

x (— Acos®,sinf, + Zdjsinej + (cos*,. + siny'sing)), (110)
J
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or more generally, letting > _d;sinf; = | OO "sinf(1)dl,
j a

2ikcospl cosy’
a ' D) — a\ — ' (I)) ~ . - .
Jam+¢ + @) = fo =7+ 0"+ Dy) (cospl + sinf, )(cosy’ + sind, ) x
. O Asin®;, .
x (— Acos®,sinf, + /o sinf(1)dl + (Sing/ + singl) (cos20, + sing'sing’)), (111)

Using (96), we obtain for the diffracted field at large distance,

— 2ikAcosy!,cosy e i/ A=ikpa

\/2mkp(cosy!, + sinf ) (cosy’ + sind.)
sin®,,
(sing’ + sing))

Ug ~ ( — cos®ysind, + sind]

(cos6, + siny'sing))), (112)

where I} = Yd; = [5"dl, sing} = ["sind(1)dl/A.
j a a

It is worth noticing that this expression is the exact first order of the asymptotics for small
kA, and that it satisfies the reciprocity theorem, i.e. it remains the same when we change ¢’

for ! (contrary to the one we would obtain by Physical Optics approximation).
Appendix A : about U, _(«, ®) and the solution for an impedance wedge

A.1) ¥, _(«) in passive case

The function ¥, _(«), also denoted ¥, _(«, ®), has been defined by Maliuzhinets, for its

spectral function f,_(«) = ‘},P:((g,))a(a) used in its integral representation of field in

presence of a passive impedance wedge illuminated by a unit plane wave with direction ¢’
[20]. The spectral function f, _ is the solution of the equations

(sina + sinf ) f+_ (o + ) — (— sina+sinf; ) f1_(— a+ @) =0,
(sinaw — sinf_) f1 (o — @) — (—sinaw —sinf_) fy_(—a—P) =0, (113)

regular in the strip |[Rea| < @, except for the pole with unit residue at o« = ¢', and O(1) at
infinity in this band, where sinf_ (resp. sinf_) corresponds to the relative impedance attached
to the face o = + @ (resp. ¢ = — ®). The function ¥, () is the solution of (113) without
poles or zeros as |Rea| < @, when Re(sinf; ) > 0 with 0 < Re(6*) < 7/2 (passive case),
O(cos(ma/2®)) in this band, and () = ﬁcos(g—g)/(sin(%) - sin(g—g)) has the unit pole
for incident field at & = ¢ in the band |Rea| < ® [20]. The function ¥, _(«) has numerous
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properties. We have,
™ T
U, (a) = AVg(a+@+ (5 —0,)Tg(a—B— (5 —0.))
X Wa(at @ = (5 = 0.)Tala — @+ (5 —0.)),

= AV} (2)(005(4q)(a + o — 9+))cos(4q)(a o )

\I/(D(Oé+(1)——+9+)\:[/q>(a—¢+——9 )
\I/q)(Oé—F(I)———e_,_)\Ifq)(Oé—(I)‘F —|-9)

(114)

where Vg is the Maliuzhinets function [20], 0 < Ref. < 7, A is an arbitrary constant. This
even function satisfies Ug () = Ape™™/5%(1 + O(a”|e***|)) when Ima — + oo, where
A} and v are constants, p’ = min(g5,1) (see [32] for more details), and we can write
U, (a) = Agcos(ma/2®)(1 + O(a’e #™al)) for |[Ima| large, Ay a constant. Since
Up(a) =Ug(—a) and TUg(a+ 5)¥s(a— %) =T;(5)cos(ra/4®), we have
\Ij+_( — Oé) = \I}__i_(Oé) and

40, (a+ )\I/+ (a — 5) A2\118( )(cos(m (— —6,)/2®) — sin(wa/2P))

X (cos(7r(§ —6_)/2®) + 51n(7ra/2<1>)), (115)

with AU (%) = 2A,. Besides, from [27], we can write, for |[Rea| < ® + (N + 1),

1
= B, H ,,1,_[0 4(1)(ai¢+9¢+mw))

r(l—i( LD — (05 + mIND(= 4 — (a0t B+ 17— Oy + m))

5~ 18 @ L+ mr 5+t 18(@ T—0L +mm

1 1 1

- - _ (71)777#
F(2 4¢(ai(1> (m— 01 +mm)))] )

—vhy —v(r—0) _
Cur N4l € +e (1 — cosh(v(a £+ ®)))
— 11

* exp (/ (=e™) (14 evm) vsinh(2v®) av), (116)

0

where 6, and 6_, N is an arbitrary positive integer and B, is a constant. For the applications,
we choose IV fixed and define W, _ with B, = 1. This expression is suitable for numerical
calculus (with N =1 or 2) or to derive the analytical properties of ¥, _(a) (with N — o0)
from those of I'.

The zeros which are the closest to the imaginary axis are a = ® + 0, anda = — ¢ —0_,
and the closest polesarea = ® + 60, + randa= — P —0_ — 7.
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Remark : From [20], the zeros of g which are the closest to o = 0 and the corresponding
poles are the points v = + (5 + 2®) and @ = =+ (27 + 2®). In other respects, U satisfies

\I/(I)(Oé + 2(1))
\I/q) (a — 2@)

by
o+ 5

= cot
cot( 5

), Uo(a+ @)Vg(a — @) = U5 () Vg o().

Notice that, using (113) in (115), we deduce that,

U (@F (@20 (—aF(@-1)

= A2(cos(ma/2®) + cos(w(g —0.)/2®))(cosa + sinf- )
y (cos(ma/2®) — cos(m(§ — 9¢)/2<I>)).

(cosa — sinf+)

(117)

A.2) Some miscellaneous properties in general case (passive or active)

The solution is more complex when we want to consider arbitrary face impedances in whole
generality, passive (0 < Re(6*) < 7/2) or active (0 < — Re(#*) < 7/2). For that, we begin

to consider,
U, (a,sinf",sinf~) = ¥ (a,sinf") ¥ (a, sinf ™), (118)
where the U™ verifies,

(sina & sinfy)U* (o = @) — ( — sina & sinfy) U+ ( — a4+ &) = 0,
U5(aF @) - (—aF®) =0, (119)

with U, _ remaining without any zero or pole in the band |Rea| < @, and thus,
T* (o, sinf*) = 1/U*(a, — sinf*) as Re(6F) # 0. (120)

The function ¥+ with an active sinf* then directly derives from ¥* with passive one, and,
noting s* = sign(sinf*), we remark that, when s* = 1 (resp. s = — 1), ¥*(q, sinf*) has
zeros (resp. poles) at o = + (sT0* + ®) and a = & (7 — sT0* + @), and poles (resp.
zeros) at = + (7 + sT6F + @),

W (0) = Au(cos(jg)” (14 Ofa"e e, (121)

for large |Ima|, with constants A and p/ > 0.

A.3) The solution for the diffraction by a wedge with passive or active impedance
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We can then express the spectral solution fy(«) for the diffraction by a wedge with passive or

active impedance faces with the following general definition,

fola) =¥, (a,sinf,sinf" )o(a) /P, (p.,sinf*, sinf ™),
o(a) = peos(pps) Py (sin(pa))/ (sin(par) — sin(peps)), (122)

where P, is a polynomial of order n, u = 7/2®. Since we have fy(a) ~1/(a — ¢,) in
vicinity of incidence pole o = ¢, and, from unique definition of u at p = 0, fo(a) = O(1)

as |[Ima| — oo, we can write,
: IZ +
PH(SIH(NSOO)) = 17 n = 5 - (1 - S )7 (123)

with s* = sign(Re(sinf*)), and thus n = 0 when both impedances are passive. In addition,
the n zeros of P, (sin(uc)) have to suppress, when s* = — 1, the pole af of U*(a, sinf*)
with =+ sign(arg(ik))Ima® > 0, among i = =+ (s*0* + ®) and of = + (7 — s50F + P),
which give poles of fy(a+ ) within the region |Rea| < 7 with Re(ikcosa) > 0, as
|Rep| < @, and thus non physical contribution e'kreos(a7 =) which can diverge at infinity as
|Rep| < ®. We then have,

P, (sin(ua)) = [ |

( (sin(pa) — sin(pay)

(sin(pps) — sin(pay)

)¥, (124)

which completes the definition of fj for arbitrary impedance (passive or active).
Appendix B : Principle of semi-inversion for our system of integral equations

We can modify equations and derive integral equations with kernels vanishing as kA — 0 for
the three-part semi-infinite impedance polygon, for approximations when kA is small.

For this, we begin with changing the unknowns in the equations, vanishing when A = 0, and
take,

™

faro(@) = [far(a) — gb(a — (@4 — 5))]7
i in ab ™
foro(@) = [for(a) — e has %fol(a +(®- - 5))]7 (125)
with @, = J + %, ¢ =7+ %. The function f*(«, ¢,), corresponds to the solution for

A = 0, i.e. for a simple wedge of exterior angle 2¢,; = ®, + ®;. It is given by
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P W (a)eos()

284 U (o.q) (sin(£2) — sin(F52))’

0 (. o) = (126)

with @ 4 = @o + (Py — Dp) /2, — Py < Yo < P4. The functions f,,0 and fiyo vanish as
A = 0, and satisfy, from (45)-(46),
foola+ 35— %) =i (/”OO faro(@/ = + %)
U (a + 35— g) 49, ") i Ui(a —D,)

sin( -

)

20, ) /
X —do
cos( g5 (a — ®p)) + cos(35-)
+/+zoo Bao(o/) sin(%&)

—ico €O8( g5 (ar — ®y)) + cos(;rg;)

da’), (127)

where,

A s $, ' )
Bao(O/) _ (fmo(Oé 2 T3 ) )(e—zkAcosu —1)

‘I’+1(Oé - o)
ab
0 ( 2 + ( q)b)/27 900) —ikA(cosa’+sing,) ik Asi
i ol singo) 1)l iny, 128
o ‘I’H(Oé —o,) e ) , (128)

as — &, <Re(a+ % —2)<3P.,and

faoola =5 +%) i T foo(o! + 5 — )
\Ifl_(a—%‘F%) B 4(1)—(/100 ( qjl (Oé +(I) ) )
sin(;rg/) do
cos(55—(a + P, ))+COS(27T<}—?’)
rico BbO( )Sln( 20 ) /
+/_m cos( 55— (o + @, ))+cos(2“§i)da)’ (129)
where

Bulal) = (P8 2wt )
+ ( (()Lb(a/, +q}1_(( ‘)1)/27 wo))(efisz(cosa’fsincpo) _ 1), (130)

as —3%_ <Re(a— I+ %)< @, for —min(3, %+ ®,) < ¢, <min(%, I+ &), with
@+:g+%and¢,=§+%.
We then notice some similarity with the integral expressions (45)-(46) when A = 0, directly

related to spectral function f$° for an impedance wedge. Thus, we let,
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/ E _ % _ +ZOOG / ab z (D _@ / d /
T (I)a +100 . T
fuola =5+ 5= [ GOa- 5+ (@ - w)/2gdd, (13D

as |Re(a)| < 3. The functions fi*(a+3%+ (®,—®)/2,¢') are regular and
O(1/cos(my’ /2®4)) on the imaginary axis, and a pole at ¢’ = « £ 7 ensures that we have,

even if &, = @, = 0, generally f o # f..,

We search to define G(¢'), regular in the band |Re(¢’)| < Z, so that f}, = fi0 and

f10 = faro verifies (127)-(130) for arbitrary A. We consider the integral expressions (45)-

(46) of fur and fyy as A = 0, when fi (@ — @_ + 3) = fur(a +®; — T) = fo(a) and,

T @, ;
ar - a —) =1 - = (I) (I), 2
furlon = 54 50 = fia— 5 + (B~ 9)/2,¢),
T & u T
frla+ 3= 50 = @+ 5+ (@0 = )2, (130
We then multiply by G(¢’), integrate following (131), and we obtain,
fmo(a + 3 2 = _) —1 /—HOO arO(a Y + )SIH(Q(p ) o
Vola+§-%) 40 i Uio - %)(COS(Q@ (= ®y)) + cos(35-))
; . m(¢'+5)
+i00 sin 2
_|_ L ( ) [ ﬂ—(u_q) ) 2‘1’+ ﬂ_(w,_"_i) d(p/, (132)
20 J ioo Wia(yp' — ) (cos =5 + cos =55 =)
and,
c,er( % %) i /HOO fbro(a + 2 )Sln( 26_ ) do/
U (a— 5+ %) 40_ ) o W1 (o +P_)(cos(5g- (a + ®,)) + cos(72))
; . m(¢'~3)
100 G / 2
n e / (Qp)q) S;)l’l 20 R Cl(,Ol (133)
20 Jio Ui (¢ + ) (cos™5 (a+ ) 1 cos )

In the case where G(¢') is regular in the band [Re(y’)| < %, we can shift the integral paths in
the integrals containing G(¢'). Comparing (127)-(130) with (132)-(106), we notice that
(fir0, fh.0) 1s a solution of the system of equations (127)-(130) if G satisfies the conditions

G(a'+3) G(—o' +75) :
Uy (o + 3’7) U (o + 3IL) 27r(Bb0( o) = Bi( — o)),
G(O/—g) G(_a,_g) . —1 / /
Tl —0y) U —ay) 2 (Deo(@) = Bul=ah) o (139)

Taking account of the properites of W,; and W;_ (see appendix A), and letting
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G (/) = (cosa’ + sinfy)g(a’), (134) can be written
v . i\Ill_(Oél + (I)_)(BbQ(O/) — BbO( — O/))

2 2 27r( — sina/ + sinf) ’
)T ;oW (a = @4)(Ba(a') — Bao(— o))
—Y—g(—-a - =)= . 1
gla 2) 9(—a 2) 27( — sina/ — sinf ) (135)

Since G/(a') is regular in the band |[Rea/| < 7 and Re(sind;) > 0, g(c) is regular in this
band. We can then use (42)-(43), and write, as |[Rea| < Z,

o [T il (@ 4 @) (B (o) — Bu(—d)), 1 T,
gla) = E/m dac( 27 (sina/ — sinfy) tan(ﬁ(a * 2 “ )
- Wale —Qizzi(iz’oiaszn;fao( —“ ))tan(%(oé -5 -a)),  (136)

Using (131) and (136), we obtain the equations with kernels vanishing as kA — 0 :

T P 17 W (o 4 ) (By(a!) — By — o

oo+ = d : :
Joro(or + 5 9 - )= snz ) . ( sina/ — sinf;

V(@ = @4)(Bao(a') — Bao(— ) .
- sina’ + sinds M- (e, a')), (137)

R M, (a, o)

4100 ! N _ )
faro(a — g + %) = #/_ da/(\lllf(a/ + (I)Si)n(jbo_(oséil)lel BbO( o ))N+(a,o/)
V(@ = @) Bap(@)) = Buo( =) s (138

sina/ + sinf

where My (o, /) = Lu(a+ 5 + @) o) Ny (a,0/) = Lo(a — T + @) o),

) ico (P +(Pa—Dp)/2)
Li(a,a') = msina’ ¥, (a) /+ cos( 2w, )

29, i Ui (@' + (D0 — B)/2)
(cosy’ + sinb) 1

T / dgp/ﬂ
cos(¢' & §) + coso/ (sin(zg;) — sin( T T —0)/2) H?&',;q)b)ﬂ)))

(139)

In the particular case ®, = &, = 0, &; = 7, the functions L. can be simplified so that we

recover the expressions found in [2] for the three-part impedance plane (see remark below).

Remark : It exists analytical expressions of L. when ®, = &, = 0. For this, we consider
U, for & = 7/2, where we have,
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(—sina+sinf_)  (sino + sinf_)
T (a+3) W, (—a+t])
1 1
= (sinf_ — sinf —
( NG ar D) T (—ar )
(sina +sinf_)  ( — sina + sinf_)

)7

_ =0. 140
U, (a-5) ¥, (—a-3) (140)
Using that U, (—a)¥, (a) = A3(cosa + sinf, )(cosa + sinf_), and
U, (a)/cosa — Apas a — ioco , we can let x(«) = %J{fglw in (42)-(43), and derive,
(cosa +sinf_) 1 (sind_ —sind,) [T | 1 T
= H(a)tan(= (o + = — o/))d
V. () A 4 | H@)an(G(ad 5 —af)da,
U, (—a)/A2 1  (sinf_ —sinfy) [T 1 T
S H(d))tan(=(a + & — o/))do/, (141
(cosa+sinf,) Ay 47y iso () an(2(a + 9 ¢ ))de, (141)

for =% < Re(a) < %, where H (/) = 2sine/ /(¥ _(o/ + %)(sina’ + sinf,)) and

H(a) = 1 _ 1 __ sina/sin@: sinoz/sinQJr7r (142)
Ui (a+3) ¥i(-a+3) VYi(a+3) ¥i(-a+i)
From oddness of H (), tan(3(a 4+ Z — ) can be replaced by %, and we note
2
that, after deformation of integration path, we have,
; ina+sing
/“O" 1 cosy’ Jo! o Sw@ig) — ALO
= —2mi———
Cico UL () cosa + sing! 7 (sinf; — sinf,.)’
oo cos! cosy’ Sigﬁs‘ig? -4 in
dy' = 2mising)— o — 143
/_,L-OO U, _(¢') cosa + sing’ 7 B "(sinf, —sinf_) = Ay’ (143)

as |Rea| < 7. Similar expressions with — siny’ in place of sing’ can be obtained from
U, (—a)— VY_,(«) when 6, — 6 (or by continuation with capture of pole). This
permits, by elementary combinations, to have analytical expressions of L. terms when
o, =P, =0.

Appendix C : Uniqueness of fields in the boundary value problem for piecewise regular
geometry

We analyse here the uniqueness of solutions for boundary value problem, that we give in [28]
for picewise regular geometry in 2D and 3D. In [41], Levine develops an uniqueness theorem

for the field p, 1.e. a proof that p;,. = 0 implies p =0, in the case of a scatterer with
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impedance boundary conditions. He considers piecewise C'?*" surface (with no zero
exterior angle), A > 0, without auxiliary 'edge conditions' at edges or corner points, except
that p is continuous. He studies at first bounded scatterers, but he also gives, in section 7 of
his paper, the elements to generalize his results to scatterers with infinite boundaries, in
particular by the use of Jones' uniqueness theorem [42], that we follow.

We begin to notice first that the conditions given by Levine to apply the Green's first theorem
are satisfied: the scatterer surface is piecewise analytic (with no zero exterior angle), the field

is countinuous and satisfies impedance boundary conditions

(Ou/On — ikg(s)u)|ses = 0, (144)
on it, and the conditions at infinity. So, we can write,
|07 0)80(0) + grad (r)eradp(r))a = — [ ()3 eradr))) a5 +

T lim p*(r)(ap(r)

=0 Jr=q, z>0 or

)dsS, (145)

where 2 is the infinite domain bounded by S, 7 is the inward normal to 2, and, from

impedance boundary conditions,

Re(/Q—ik:|p(7")|2+7|graipi(g)| dg) :/SRe(g)|p(T)|2dS+Ioc, (146)
where

I, = Re lim O(e™**) = 0 for |arg(ik)| < 7/2,

a—00

I, = lim Ip(r)|?dS > 0 for |arg(ik)| = 7/2. (147)

=0 Jr=q, 2>0

For Re(g) > 0 and |arg(ik)| < 7/2, the left-hand term is negative since Re(ik) > 0, while
the right-handed term is positive, and thus both terms vanish. Consequently, we have, when
|arg(ik)| < 7/2,

p(r) = 0in £, for Re(g) > 0, (148)

and, when |arg(ik)| = 7/2,

p(r) =0on S, forRe(g) > 0,
Onp(r) =0on S, for Re(g) > 0, or for g = g. = 0. (149)
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In the latter case, we can use, as suggested by Levine, the Jones' uniqueness theorem [42] for
surfaces conical at infinity, when Neumann boundary condition (9, p(r)|s = 0) is satisfied,
which implies u = 0 in the entire domain (2, and thus completes the proof of uniqueness.

Appendix D : Evaluation of R, («) and Ry () taking account of complex poles

For large kA, we consider (45)-(46) and use the method of Steepest Descent Path taking
account of the influence of complex poles of R, (). During the deformation of the initial
path of integration along imaginary axis to SDP, where Im(ik(sin(c//2))?) =0 and
Re(ik(sin(a//2))?) < 0, poles of R, (') and Ry () can be captured, and we have

—LkACOS(Jé Sll’l( 27rg )

Ryla) = —my (o R, (c —ao
(@) 40 (@) SDP ( )COS( 55 (@ — ®)) + cos(3g-)
—ikAcosc’, oy
o e *sin(55*) .
+ - o, ea.SReSIdue(Ra(a/))‘O/:O‘S,R as<0
4‘1’+Z:COS(2¢ (a0 — @) +cos(g5-) :
+my (@)X} (a4 7/2 — ©y/2) (150)

as a + m/2 — ®,/2 is in the domain limited by SDP — &, and SDP + 3%, and,

i —ikAcosa/ Sll’l( fixed )

Rofa) = 1 R 20_ /
() = 1D ma() . b(a )cos( ~(a+ ®,)) +cos(55-) “
20

27
"o Zcos( ~(a+®,)) + cos (o)
+ma(a)x’ (o — /2 + ®,/2), (151)

/

e zkAcosoagSln( moy, )

€h,s Residue (Rb (a/ ) ) | o' =ag4,Rea >0

as a — /2 + ®,/2 is in the domain limited by SDP — 3®_ and SDP + ®_, where
fbr(a+77/2_q)b/2) f(”-(Oé—ﬂ'/Q—l—(I)a/Z)
Ryla) = , Ra ) = )
(0) = (PG, Rale) = (FR )
Vo (a+7/2—Dp/2) U (a—7/2+D,/2)

mi(a) = U (a+ ) » mal ) = Vi(a—2y) ’
l( ) - ( eik}ASinWocos%f )
Xp\&¥) = L TQ ’
b 20, q’+1(900,b)(51n2¢ 2<I> °)
TPo.a
. T CcOoS 23
_ : 152
Xa(@) 2<I>7(\I/1—(90o,a)(smﬁ in ‘g )) "

with 0o = 0o — ®4/2, Yoo = @o+ Pu/2, and €,4), =1 if the pole s is captured,

€av),s = 0 else.
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For large kA, the residue terms are principally given by

Residue(Rq (o)) |a—a, ~ Residue(ma(a/)x’ (o — /2 + ,/2))|w=—0,
Residue(Ry(a'))|a—a, ~ Residue(my(a’)x}(a/ + 7/2 — ®;/2))| w0, (153)

where & = — 61 and o = 6, are the zeros of ¥ 1 (a — @) and ¥;_(a + P_) the closest to
the imaginary axis, that can be captured. Letting t = — i1/2ikA sin(a//2), we then derive,

ml(Oé)(8@Ra(a)|a:0)2e—ikA(v ¢ erfe(v) — L)
V2ikA v
—ikAcosf; sin w0 Xa 0, —mw/2+ d,/2
2m € (25, ) (6, / — / )eaResidue(mg(o/))|u'——91
49 cos(gg- (o — y)) + cos(5g5-)

+mi(a)x,(a+ /2 — ©,/2), (154)

Rb(a) ~

_|_

with v? = ikA(ﬁ)‘Q(l + cos(5g5-(a — ®))), a4+ m/2 — ®,/2 in the domain limited by
SDP — ®, and SDP + 39, and,

ma (@) (JaRi()]a=0)

vV 2ikA

1
—\/—)
T
9 —ikAcosal, 701\ i — 0, +7/2— D, /2
_ e sin(zg5) X, (— 01 + 7/ . b/ )e;,Residue:(ml(o/))|a/:_91
40 _ cos( g (o + @,)) + cos(55-)

+m2(a)xi(a—7r/2+‘1>a/2), (155)

Ra(a) ~ — 24 (w e erfe(w) —

with w? = ikA(55-)"3(1 4 cos(z5—(a + P,))), @ — /2 + ®,/2 in the domain limited by
SDP —3%_and SDP + ®_, for —min(7/2, 7/2 4+ ®,) < ¢, < min(7/2, 7/2 4+ ®;).
To obtain 9, Rp()|a=0 and 9, R4()|a=o, We derivate the previous expressions and solve
the linear system of equations. In this case, v|,—o and w|,—o are large, and using
1 —1 1
= + O(—
ﬁ 2\/mz? (

24

z e erfe(z) — ), (156)

we obtain, for large kA,

aosz(a)'oz:O ~ aa(ml(a)X?)(a + 71-/2 - (I)b/z))|a 0
aozRa(O‘”oz:O ~ aa(m2(a)XZ(O‘ - 71'/2 + ¢a/2))|a 0 (157)

In consequence, we can write
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m1(a)da(ma(a)xi(a = 7/2 + @4/2))]a=0
vV 2ikA
o e kacostigin (T )Xa(91 —7/2+®,/2)

40, cos(zg- (o — @) + COS(%)

Ry(a) ~ 2¢ A (v eV erfe(v) —

.
NG

+ e.Residue(ma(a’))|w—g,

S

+my(a)xi(a+7/2 — 0,/2), (158)

with v? = ikA(ﬁ)‘Q(l + cos(5g5-(a — ®))), a4+ m/2 — ®,/2 in the domain limited by
SDP —®, and SDP + 3%, and,

ma () 0n (M (@) xi (o + /2 — ®/2))|azo

vV 2ikA

o e —ikAcosel, gin mh 0 +7/2— /2
o em (35°)x( =61+ 7/ 9 b/ )e;,Residue(ml(o/))|a':—91
49 cos(55— (o + @,)) + cos(55-)

+m2(a)xi(a—7r/2+‘1>a/2), (159)

Ra(a) ~ — 22 (w e erfe(w) —

.
NG

with w? = ikA(F5-) (1 4 cos(z5—(a + P,))), @ — /2 + ®,/2 in the domain limited by
SDP —3%_and SDP + ®_, while —min(7/2, 7/2 + ®,) < ¢, < min(7w/2, /2 + D).
In right-handed sides of previous expressions, the first term corresponds to double diffraction
mechanism, the second term to the influence of guided waves, and the third term to single

diffraction mechanism.

Remark :

When kA is large, the highly oscillatory nature of the kernels exponential term leads to
simple approximations. The spectral functions as the source terms are smooth functions,
except when we approach the limits of validity of integrals, and the Steepest Descent Path
method [1],[2] can be used to approximate analytically the integral terms. Letting

cosa/ =1 — x?/2 with x = 2sin(a’/2), we have elementary integrals of the type

‘ +ico l ] ‘ 1 +'L'ool — (= o
e—zkA/ (.’E) . wezkAa,z/de — _/ (x)—(Qx)xelkA'EQ/de7 (160)
i (224 22) 2) e (2% + x5)

The integration path being deformed to S D P, certain poles @ = «; are captured during the

deformation and the integral term is developed in vicinity of the saddle point, which gives us

: 2 kA2 :
e_"kAax(l(a:))|x_o/ x—2€ S dr + Zcie_"mc"s‘”, (161)

spp (T + ) o
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The integral term can be calculated, using that,

i [P et i [ 22 i ) i
- dt = — dt — — = ze “erfe( — iz) — —, 162
7T/oo 22 — 2 7T/oo 22 — 12 Vs ( ) VT (162)

where erfc(z) = 1 — erf(z) ~ e %' (1/2 — 1/(22%) ))/+/m for large z, erf(z) being the error
function [34],[39] Imz > 0. Notice that, in the approx1mat10n (161), the contribution of

complex poles «; with non nul imaginary part correspond to exponentially decreasing waves

guiding along the central plate. They are negligible in first approximation when kA is large.
Appendix E : The scattering diagram from the solutions of the integral equations

In a previous section, we have reduced the problem to a system of non-singular integral
equations. When the solutions of the integral equations are known, the different elements of
the decomposition of the field can be evaluated from the integral expressions (45)-(46),
where the integral terms can be considered as smooth coupling terms between both edges. In
this case, the difference functional equations (0)-(28) have to be used to reduce the calculus
in the band of validity of integral expressions.

Here, we study the reduction of the field term with radial dependence
exp( — ikpayp)/ \/Wpab for large p,;. Its angular dependence F,; in the direction

. = @p = @ 1s commonly called the scattering diagram (or directivity), given, from (5), by

Fas(p) = — e ™ (fup(m+ @) — fup(— T+ ), (163)

where, from (25), F,(¢) = e*25% Fy ().

We illustrate the development by the one of F; () in the case where &, > — 7, &, > 0,
and —min(f, §+®,) <@, <min(§, 74 @), when — § < ¢, < § + &), (similar to
Falpa) when — 5 < —p, < T+ @4, &, > — 7, > 0).

We consider at first the reduction of fy(m+ ) in (163). If &, >0, then
— 2 < T4 ¢y < 3+ 29, and we are in the domain of Vahdlty of (45)- (46) If &, <0,
then we have a concave part and there are two cases. If — § <+ ¢, < 3T 5 + 29y, (45)-
(46) directly applies. In contrary, if 27 4+ 2®, < 7+ ¢, < 3T + ®;,, we use (30) and write

(—sin(§ — @y + ) + sm@+)
(sin(§ — @, + pp) + sind)

So(m+ @) = Jo( = b +28y), (164)
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Then we use (0),

(sin(§ — p + 2®;) + sindy )
—pp +20) = - - — — 20
Jol = 2 (—sin(§ — ¢y + 2®y) + sind; ) (ho(=m+ ¢ 2

_ eyzkAsin(zcb,,—%)fa( g — 28y)) + eikAsin(Qq)b—%)fa( — oy +28), (165)

where the terms in right handed-side of (165) can be expressed with (45)-(46).

Then, we reduce f,(—m+ @) in (163). If —Z < — 7+ < 3 + 28, ie. ¢, > 3,
which implies ®, > 0, we are in the domain of validity of (45)-(46). In contrary, when
— 5 < @y < 5, which is obliged when ®; < 0, we first have to use (30),

(sin(§ — ¢p) — sinf;)

— sin(§ — ) — sindy )

X (fol = o) — e AL (— ) e FEIOf(— w4 ). (166)

fb(—W+90b)=(

In this case, since —37”—2<I>a< —pp < 5 and —37”—2tl>a< — T+ @y < 5 when
¢, >0,and —§ < —g0b<37”+2(1>b when @, > — 7, fo(—7+ ) and f,(— ¢p) can

be expressed with (46), and f,( — ¢3) with (45), which ends the reduction.
Appendix F : Approximated second order ameliorations
F.1) Amelioration of equivalent cavity impedance sinf}

Using our works in [28], we can modifiy and add a second order to the expressions of siné.

We can write,

sind) = d;sind; /A +ik(S — S_)/A, (167)
J

where S, is the total surface of cavities below the straight line between the exterior
discontinuities 'a' and 'b', while S_ is the total surface of cavities above the straight line. In
the case where some elements would be filled with materials of impedance Z; = | /ezp12/ €
(mode H when v = H.) or admittance Y; = \/% /2 (mode E when u = E.), and with

wave number k,,,, we can write,
ZTIL
Sin9/1|m0deH = ZdjSinHj/A + Zizkm(smﬁ— - Sm—)/Aa
ki m

Y
Sine/l‘modeE = ZdjSinej/A + ZZ?Okm(Sm—I— - Sm—)/A7 (168)
J

m
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where the sinfl; remain the relative surface in free space.
F.2) A change of M,

We can refine, from [1],[2],[28], the expression of the mean value M, of u on the cavity,

(1 — L Bysing,sin®;) 2c0s(¢)))

‘ : = DyM!
1 4 £ By(sind} — sinfcos®;) (cos(¢),) + sinfy) 0w

M, ~

+i00 /(e—ik:Acoso/ o 1)
By = / da 2cosa’ ~ — kA(In(kEA) +~vo — 1 4 i7/2)

(1 — L Bysing,sin®;)

- o A 57T, 169
1 + £ By(sind| — sinf, cos®;) o (169)

Dy

and write,

fa(ﬂ' + 90/ + (I)b) - fa( — T+ 90, + (I)b)
2ikAcosp! cosy’
(cospl + sinf, )(cosy’ + sind, )
2ikAsin®y(cosy’ — sinf )cosy’cosy),
(cosp! + sinf, ) (sing’ + sinpl)

( — cos®,sinf, + sin®;sing’

+sinf}) x Dy + (170)

A more refined expression could be found by semi-inversion (see appendix B).
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