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Spectral equations for scattering by impedance polygons :
properties and solutions

J.M.L. BERNARD

CEA, DIF, 91297 Arpajon, and, LRC MESO, CMLA, ENS Cachan, 94235, France

1) Introduction

The Sommerfeld-Maliuzhinets representation of fields is not limited to the study of the

diffraction by isolated impedance wedges, and we developed in [1]-[2] an analytical method

concerning the determination of spectral function for the scattering by impedance polygonal

object (convex or not). Our method is now quoted and used by other authors, as very recently

in [3] for semi-infinite impedance polygons with three edges, but other approaches exist.

They can be exact for cavities, for perfectly conducting object, or for specific geometries [4]-

[8], or give asymptotic [9] or iterative [10] reduction. Our approach has the advantage to give

rigorous analytical equations in complex plane, which apply for general impedance polygons

with finite, but also infinite faces without being limited to single wedge. For that, we consider

special features of single face expression of spectral function that we defined in [1]-[2],

which leads to exact functional difference equations, and Fredholm integral equations for

finite or infinite polygons that we detail here with novel properties. Existence and uniqueness

of solutions are analysed in an original manner, and approximate asymptotics are discussed.

2) Generalities

Let us consider the case of diffraction in free space of a plane wave

                cos  1

by a scatterer enclosed in a wedge-shaped region, in cylindrical coordinates  asdefined    

the domain complementary to the free space sector of radiation, (figure 1),     

with . The characteristics of the scatterer are supposed to be independent of     

 coordinate. An implicit harmonic dependence on time  is understood and henceforth 

suppressed. In expression (1),  denotes the wave number of the exterior medium with 

    arg arg 
 , and ssume that the total field  is considered as a limit case. We a

in the free space region, , satisfies the Helmholtz equation,    
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            2

that  is analytic with respect to  and  as , except possibly at the origin ,        

that  is finite and  is integrable with respects to  at any point of both faces, while there 
 



exists a constant  such that        
    

figure 1 : a polygonal surface in a wedge shaped sector

The total field  for  can be then represented as a Sommerfeld-Maliuzhinets     

integral [1],[19],[20],

          


 
    





  cos 3

which satisfies  is an analytic function andthe Helmholtz equation. In this representation, 

the path  consists of two branches: one, named , going from arg       


to arg  with , as Im , above all the singularities of            

  

the integrand, and the other, named , obtained by inversion of with respect to .     

After deformation of  to the steepest descent path SDP, we can write

       

      
 

 


  

,

e
  e  , 4


 
 





  

 




 cos

where

- the term  is the incident field  in the illuminated zone and zero in the shadow zone; 
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- the terms  correspond to geometrical optics field, reflected by physical semi-infinite faces

(when present).

- the terms  are terms of guided waves, along physical semi-infinite faces (when present , 


which are the contribution of complex pôles  of  ;  
   

- the last term, named , is principally radiated cylindrically when . Approximating   

         on  by its value at the stationnary phase points , we obtain

           
 

 


  

  
    5

with  the diffraction (or far field) coefficient.              

figure 2 : Complex path of integration

This representation is commonly applied for a wedge. We investigate its use for a scatterer

with several discontinuities as in .[1]-[2], detailing properties and ameliorating the method

This study requires us to express a shift of the origin, and for this, to use particular relations

of  with radiation by one face [1].

3) Single-face expression of  for a scatterer surface with two polygonal faces

Let us consider a polygonal surface located inside the domain  enclosing a scatterer.   

This surface is composed of two joined semi-infinite polygonal faces , denoted  and 


        , respectively with  segments of lengths  with tangent angles , ,  
 

     
  and a semi-infinite plane with tangent angles , . The spectral function   

satisfies a single-face expression [1],  as  and ,   
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  6

where  is the length abscissa on each face, at points  of  from origin to , the   


term   is the unit vector of the direction of observation with angle , and  is the outward  

unit normal to face at .

Considering the geometry of , and the notation . .           
 

   

on straight segments  at , we can write the single-face expression of    
 
       

[1] in the form,
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cos
cos

 

  
 

sin

    
  7

with  and , where  is the analytic continuation of the integral 
 


       

expression

                   
 

 
         
      







 

        sin  cos 8

valid as Re .     cos cos arg  
         

, Re , 

The function  is the spectral function corresponding to the Sommerfeld-Maliuzhinets

representation of the field in cylindrical coordinates , with origin  at the edge      
  

of the semi-plane , radiating in the free space sector           
          

where  is a strictly positive constant determined by the geometry.


The spectral functions  and  have the following properties : 

(a)  has no singularity in the band Re ,                 
           

where , while  has no                 



  



exp cos     

singularity in the band , even at infinity.   

(b)  is regular in the band Re , except at  and possibly as             
 



                  Im , and thus  too. As Im , the function        







                  is  with when Re ,
          as Im  

and  when Re ,  and  being  constants.           
  

 cos sin    
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The spectral functions  and , attached to shifts of the origin at opposite ends of the  
 

segment  on the face , with  for  and               
  

       
    , are the spectral functions associated with the representations of the

field in coordinates  and  with origins at opposite ends  and  of               
    

segment . From single-face representation of spectral function 7 , we have ,  

               
 

 

        

    




  
  





          
 








      

 










  
  







sin

    
 

cos cos

          




          

     

 

 
 

           
   

sin

     
  

  
 


 cos cos . 9

and we note that the function  and , combinations of functions  and  following,      
  1 2

           

                   

  
       

   
             

  

   

 
 

   
   

cos

cos cos

 

    10

are directly related to the radiation by finite segment .

Remark : Let define  so that  at , with non nul finite  on            


regular parts of . We have  on regular parts of each       
  

face. Considering a constant  and the unit normal  to 2D plane, with outward unit normal 

to face , , we note that,   
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4) Polygonal surface with impedance boundary conditions

4.1) Functional difference equations on  for semi-infinite planes

In the case of an infinite polygonal scatterer with impedance boundary conditions along both

semi-infinite planes , we have,  
  




             

     
        sin 12
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where . . ,   is the outward                  
    Re ,   

normal to the face , and from 8 , the functions  satisfy the functional   
       

equations

                  sin sin sin sin            
      . 13

If the scatterer is finite, the segments of both faces form a closed surface so that we can take

       


    
       with . The fields on both semi-infinite planes  are    

then equal and their normal derivatives are opposite,

                  
 

 
              
       

 
 14

and we derive from 8  that, 

           
      15

Considering the definition of  and  given in 7  with properties (a) and (b), the     


functional equations 13  or 15  imply [1] that these functions are meromorphic with simple   

poles, regular in the band Re , except for the pole at  and possibly at        
 



infinity when Re .     


4.2) Functional equations due to boundary conditions on finite segments

Considering impedance boundary conditions on the segments in the form,

            




                  




    

      

 
  
    

 
  
    

sin

sin













16

with , we can use the definition of  and  in 10  with the      Re     
  

equalities given in 9 , and deduce, 

                

                 

sin sin sin sin

sin sin sin sin

       

       

   
    

   
      

 

  







. 17

4.3) A remarkable relation between  and  deriving from 17  when 10  applies      
 

It is known from 10  with 9  that  has a  period, but it is remarkable that this property     
 

also derives, in an independent manner, from the difference equation 17 . Considering 17   
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with 10 , this  periodicity will then implies the equivalence between the fields represented  

with  and .  
 

Indeed,  from 10 , and we derive from 17 ,               
   

 
      


 cos 

                

                 

sin sin sin sin

sin sin sin sin

       

       

   
    

   
      

 

  







18

then,

                     

                   

sin sin sin sin

sin sin sin sin

        

         

      
      

      
          19

This allows, after substraction, to deduce the  period of ,  


           
    20

which gives us, after writing  from 10 ,             
  


    

  
 
 cos  

                               
          

 
 cos   21

Consequently, the equations 17 , when 10  applies, implies that the far field given by  is    

the far field given by  with phase center shifted by , so that the field given by  is the  
 

one given by  relatively to the two origins at ends of the segment . 


In whole generality, it is remarkable that functional difference equations for boundary

conditions on each segment has for additional consequence the equivalence of fields

represented with any  (or ), refering to any origins on the impedance polygons.  
 

5) Formulation of the three-part polygonal problem : spectral functions in Sommerfeld-

Maliuzhinets representation and functional difference equations in complex plane.

5.1) Definition

We consider the diffraction of an incident plane wave by a semi-infinite impedance polygon

divided into three parts, each one characterized by relative surface impedances , ,sin sin  

and , with Re  and Re  (strict passivity). This means thatsin                 

                     
       , , , , , ,    1
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figure 3 : geometry of the three-part polygon

The functions  and  are the spectral functions associated with the Sommerfeld-  

Maliuzhinets representation of the field, in coordinate systems  and , with           

origins at opposite ends of the finite segment (see geometry on figure). We have, in     

coordinates,

            


             


   


   


   

  

with  

with 22

sin

sin

with the incident field , and, in coordinates ,         
 

    cos  

            


             


   


   


  

   

 with  

with 23

sin

sin

with the incident field .              cos sin

The properties (a) and (b) give us that,

                      and    sin  24

are regular in the strips Re  and Re        
         respectively, with

           
     


    , with          as Im  in

these regions from single face expressions of  and   

Considering the definition and , , we obtain, relatively to integration on      
  

piecewise straight faces,
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sin sin

sin





cos

cos



 sin     25

for any complex angle , while, relatively to integration on straight semi-infinite faces,

                   
 

 
      




        sin  cos 26

as Re , Re , with , and            cos cos         


                 
 

 
      




        sin  cos 27

as Re , Re , with .            cos cos         


5.2) Functional difference equations in complex plane for and   

5.2.1) Functional equations for the central strip and semi-infinite planes

We now derive functional equations on the spectral functions from the boundary conditions

on the central strip (of finite size) and on the semi-infinite planes of the three-part impedance

polygon (figure 3). Using the boundary conditions on the central strip 22 , and letting 

              
  

                       
   

  


   
 

  
  

   
   

 

   

cos

cos cos 28

we obtain, as described in 17 , 

                
 

                  
 

sin sin sin sin

sin sin sin sin

     
 

     
 

   

    29

while, using the boundary conditions on both semi-infinite planes 23 , we obtain, as 

described in 13 , 

                  
 

                    
 

sin sin sin sin

sin sin sin sin

       
 

       
 

     

      30
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5.2.2) A remarkable relation between  and  deriving from 29  when 28  applies      

We follow a development similar to the one used to obtain 19 - 21 . Considering the   

relation between  and  in 28 , we have from 29 ,      

                
 

                  
 

sin sin sin sin

sin sin sin sin

     
 

     
 

   

    31

and thus,

              

                  

cos sin cos sin

cos sin cos sin

      

      
   

    32

This implies, after substraction,

                  33

and, considering the expression of  with  and  given in 28 ,      

                          
        sin 34

Consequently, it is worth noticing that the equations 29 , when expressed with  and     

from 28 , which initially concern the impedance boundary condition on the segment, has for 

additional remarkable consequence that the far field given by  is the far field given by   

with phase center shifted by , so that the field given by  is the one given by  relatively   

to the two origins at both ends of the segment (figure 3).

5.3) Functional difference equations for                          

We can now derive, from 29 - 30 , difference equations on                

            , corresponding to both discontinuities when influenced each other.

If we let  with , we have                 

                  sin sin sin sin             35

and

              

                
 

      

sin sin sin sin

sin sin sin sin

       

     
 



     


   

 


 

 

cos

cos 36
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If we let  with , we have                 

              

                
 

      

sin sin sin sin

sin sin sin sin

       

     
 



     


   

 


 

 

cos

cos 37

and

                  sin sin sin sin             . 38

From the properties of  and , the functions  

                   
 and     sin  39

are respectively regular in the bands Re |  and Re | , with             
  and

              
   , , and, in these regions,

               
 

                  and 40

as Im . Besides, we remark    that, for , the three-part polygon is reduced to a  

wedge with exterior angle  and face impedances . In this             sin

case,  we have , where , refering to the                   
 
      

solution for an impedance wedge (see appendix), is given by

       


   

      





 

   






 

 


cos

sin sin





 







 


41

where                 , .

6) The integral expressions and integral functional equations for the three-part impedance

polygon

6.1) Elementary integral solutions for difference equations

Considering the theory of functional equations, the analytic function  satisfying,  

                      42
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and regular as Re , is given in the strip Re  [27] [31] by,        

       
  

 

    




            
      

  

         






   

  

tan

tan 43

when the functions  are regular and summable on the imaginary axis, with  

           . The functional equations 35 - 38  can be reduced into the form

       42 , by using the solutions  (resp. ), without pole or zero and        

            cos cos          (resp. ) in the band Re  (resp. 

    Re ), of the equations without second members of the type,   
 

                

                  

sin sin sin sin

sin sin sin sin

           

           
   

   

, , 

, , 44

with , ,  for , and , ,                        
 

                     
   for  (see details on , named  in appendix).

6.2) Coupled integral expressions of  and        

Considering 35 - 38 , we use the solution for  (resp. ) (see appendix A) with          
 

pole due to incident plane wave, and substract them from the general solution. We then

obtain unknowns regular as Re (resp. Re ) for which we can use the         

integral expression 42 - 43 .   

We can then write,   for Re , and  for Re ,                         

following,

   

        
    

       


      





    

    
  

 
 



 

   
 



       

   
  

 

  





  


cos 


tan

sin sin

sin sin

 





 

 


  





 






  

  

      
   


 

   

       



   
  

   



  


 
 

    


cos

cos

 



 




 



sin

cos cos

sin

cos
  

  

 


 


     

     
 

  
cos

45

and,
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tan

sin sin

sin sin

 





 

 


  




 
  



  

  

      
   




   

       



   
  

   



  


 
 

   




cos

cos

 



 




 



sin

cos cos

sin

cos


 

 


 


 


     

     
 

  
cos

46

with  , and                                 , as , as 

while the source terms are given by,

   


  

 


  

  
 






   








  

        




   

   
   

 
  




 











sin
sin



 



 









cos

sin sin

cos

sin sin





 
  47

with Re  and Re .         

6.3) Integral equations when   (derived from coupled integral expressions)   

From previous integral expressions 45 - 46 , we can write,   

    

   


    

      




  

  

      

  

 






       

 

 

  






 




sin sin

sin

cos
                                 

cos

      
       

  
  

 




 


 

  
 

cos
48

as Re , and,           
 

    

   


    

      


  



  

      

  

 








       

 

 

  








 




sin sin

sin

cos
                               

cos

 


 


     

       
  

  
 

 

 




cos
49

as Re , when   .                                
     min min

When , we can take  purely imaginary, where the functions,    
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sin sin sin sin

sin sin

sin sin

sin sin

 

    

  
  



 

 
 





sin sin
50

vanish at infinity, contrary to  and  in general                  

Choosing these functions as unknowns, we derive the integral equations for imaginary ,

       

         
 

  

 
   

      



  
 

    



 




  

 

 

       

 

 

sin sin sin sin

sin

cos cos
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cos  





 



n sin

sin sin cos cos

sin sin

sin

 

 

 

 


   
   

   



 

  

    

      


         


    


       







  

 




 



   

 

 
 

 



 





   
      

sin
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and

      

         
 

  

 
   

      

  
 

    



 




  

 

 

       

 

 

sin sin sin sin

sin

cos cos


  



 

 
 

cos  





 

    
  

  

    

      


         


    


       



sin sin

sin sin cos cos

sin sin

s

 

 

 

 


   
   

   





  

 




 




   

 

 
 

 



 





in sin 
 

 

   
      



 

52

where we remark that , . We note that,                        
      

  
  

  

   

   
      

    

     
     

 
  

 

 

sin sin sin

sin sin sin sin
53
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and,

    

    
   

   
   

  
 

 
   

 
 

          

               
   

          
   

cos   

  

Im

Im
 







 



          Im 54

when Im , so that  the kernels, bounded on the path of integration, are, 

    
        

               
  

 

 

 cos 

cos cos cos cos cos

cos cos cos

    

  
55

as Im  and Im , and the source term is  as Im , with                  cos

postive real constants , , , , and .     

The kernels are then square integrable as Im , i.e. , when ,            arg

and we can consider this set of coupled equations with,

 
 

  
 

 

            
   

       sin sin sin sin 
 56

as a system of Fredholm equations of second kind in  Let us note that the  solution of 

our functional equations for     is the one for an impedance wedge, uniquely defined

from [20] with [33].

We now explain how to extend this domain to enclose the case , by   arg 

deformation of the integration path.

6.4) Modification of integration path, and extension as      arg  

6.4.1) The new path of integration 

We note that  vanish to infinity when  as , .            cos 
  arg

However, it is possible to deform the domain of integration (possible by analyticity), so that

       cos 
 at infinity as  (even when  is real), without capturing any polearg 

in particular first singularity of the integrand at Re Re  with Re .            

For that, we can modify the path, following,

                
 

 
            





 57
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changing the initial path  with  for the path   with  following,              

      


 

                        

          

     


     

 with  Re 58tanh

cos arg tanh arg tanh

Concerning the sign of , we note that the exponential term  in  verifies,       cos 

| | on 59           


cos cosh  Re 



and we can then extend the domain of convergence if we take the real constant  with,

                 arg arg    , i.e. sign Re 60

that we can let tend to zero. Thereafter,  will be considered with the conditions 60  on .   

6.4.2) Analyticity of integral expressions of  and  with the new path    

The integral 45  and 46  with new path of integration  give us expressions of,    

          and 61

which are  and regular,  respectively as,

Re Im Re Re Im

Re Im Re Re Im 62

               

                 
 

 

    

    
 

 

where Re Im Im , Im , Re Im . We note that                         tanh

these functions satisfy by analytic continuation the functional equations 35 - 38 , and that   

we have           

6.4.3) Integral equations with  become  as            arg

Changing the path for , the integral term  in 57  becomes,   





   

                63

for . Replacing the integration path by  in integral equations 51  and       arg   

 52 , we then derive,
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64

and

       

           
         

        


  

  
 

  



  
  







 

 
  

 

sin sin sin sin  

 
 

 

  
 

         
           

      

 

 




 



   



 sin sin

sin sin

 
 






65

for , with . Considering 54 , the kernels  in                 tanh 

integral terms satisfy,

    

     
      

            

 





  

 
  

cosh 

cosh cosh cosh cosh cosh

cosh cosh cosh
66

as  and , with positive real constants , , ,  , , and              

     Re , so that we have,

 
 

 

 
                   67

as , . We then notice that we obtain a system of Fredholm        arg   

equations of second kind in  on , and thus for any  with          arg

6.5) Existence and uniqueness for integral equations on 

6.5.1) Uniqueness

Concerning uniqueness, we consider the solution of integral equations 64 - 65  along   

integration path   when  and  are nul, i.e. as we have no             tanh  
 

source terms, in  as , .      arg 
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From analyticity of kernels in our integrals, the solutions  and  are odd        
  

meromorphic functions (the only singularities are poles). Therefore, we define two functions

  and , following,
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and,
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69

in the respective band,

Re Im Re Re Im

Re Im Re Re Im 70

               

                 
 

 

    

    
 

 

where the functions  and  are meromorphic functions, regular and  at infinity.   

Considering the integral equations 64 - 65  satisfied by  and  when  and  are nul,        
   

we note that

       
       

           

      
    

        

  


 

 




  


 




    

   


    

 

sin sin

sin sin sin sin

sin sin

sin sin

 

 



   

  
  








 sin sin
71

We then deduce, after using elementary properties of kernels of 68 - 69 , that   

                          
             and  in place of  and

                  , satisfy the functional equations 29 - 30  with 28 , and thus the

condition 34 . This implies that  and  refer to the representation of the same field      

with two distinct origins, which satisfies the boundary conditions for the impedance three-

part polygon, without illumination.

Now, we can use that,

(i) in absence of source terms, from uniqueness theorem on the field  (see appendix C), the

field  and its normal derivative shall be nul on the impedance polygons.
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(ii)  and  vanish if the field and its normal derivative are nul on the surface of the  

polygon, because of single face expression of spectral function 7 - 8 .   

Consequently, the spectral functions  and , and thus  and , have to be nul,            
  

and we have uniqueness of solutions for our system of integral equations 64 - 65  in      

as , and thus as .         arg arg  

Remark : The solution is also uniquely defined in the case    (simple wedge) from

Thuzhilin's theory [33].

6.5.2) Existence

Concerning existence, we note first that the kernels are regular functions of  as

Im    . Considering then the theory of integral equations depending on a parameter in

, the resolvent for our system of Fredholm integral equations of second kind is an

analytical function of the parameter , which defines a unique solution in  as   

Im  and , except possibly for some discrete values of , where the       

resolvent is singular and the solution is not unique.

Since the uniqueness of our spectral integral equations has been shown independently, a

unique solution exists in  for 64 - 65  as ,           arg    

Remark : for   , the problem corresponds to the diffraction by a simple impedance

wedge where the spectral function is known to be uniquely defined [20] [33].

7) Some particular features of the system of integral equations for the three-part impedance

polygon and their consequences

Our spectral integral equations can be solved numerically, or analytically by approximations.

In our case, the approximations principally depend on , .  for  small or  large These  

integral equations and the integral expressions of the spectral functions have special features

concerning the decoupling of integral equations in important cases that we now first

illustrate.

7.1) Decoupling in the case of the unsymmetric three-part impedance plane
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In the case of the three-part impedance plane, we have  and .            

Considering that,
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and letting , we then derive,  
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73

where         
        sin sin sin sin

We obtain two uncoupled equations by simple addition ( ) and substraction ( ) : 

              


  


 





    




 cos  sin

cos cos
74

7.2) Decoupling for symmetric three parts polygons (  and )       sin sin

In this case, the system 64 - 65  can also be decoupled. For this, we first express the system   

of integral equation 64 - 65  in a new form.  We observe that  (also denoted         

                    ) satisfies . Then we can write
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This form is particularly suitable for the case of a symmetric polygon. In this case   

(i.e. ) and , so that  and the equations have the same            sin sin

kernels. Thus, by addition and substraction, we derive a system of decoupled equations,
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where
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for  .         min  

7.3) Partial inversion and new kernels for small 

Considering the solution known for  [1], we can apply the identity  

            cos cos 

78

and invert the part corresponding to unit term, which results in equations with kernels

vanishing as , suitable for approximations. To simplify, we detail the developments  

in appendix. We then obtain the equations with kernels vanishing as    
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where                         
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and
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7.4) Asymptotics for large 

The scattering diagram can been reduced to a combination of values of the spectral functions

   and  in the band of validity of integral expressions, with exponential factors depending

on angles. So reduced, the oscillatory nature of the diagram comes principally from

exponential factors.  We can write, from previous integral equations,
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as Re , and,           
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as Re , for   ,                                
     min min

where
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where  and  are smooth functions previously defined.  
 

In the equations (83)-(84), we can choose to consider or to neglect the influence of complex

poles of  (corresponding to guided waves vanishing when  is large) in vicinity of  
 

the integration path. To simplify the presentation, we develop here the second case, and

consider the first case in appendix.

So, we assume that the principal contribution of  comes from the vicinity of the 
 

stationary phase point . Letting  with , and taking                cos sin

into account the parity of the integration path, we have
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as Re , and,           
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as Re . After derivation of previous equations, we obtain           
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so that we get the form
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as Re , and,           
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as Re , for   .                                
     min min

Concerning the scattering diagram, we need, the evaluation of  for real .     

Deforming the path of integration to the Steepest Descent Path (without capturing any poles),

we derive
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as , ,and,                            
   

 


 
cos
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as , , for                            
   

 


 
cos

              min min      
                , with  and , where 
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when  is real. In the right-handed sides, note that the first term corresponds to double

diffraction, and the second term to single diffraction.

8) Exact first order expressions for a small cavity in a step, when      and

sin sin  

Let us consider a step of length , when the three-part polygon is with      , and thus,

the right and the left-handed semi-infinite planes are paralell. We then assume a complex

cavity in this step,  betweencomposed of  faces of angles  extreme edges ' ' and ' ' (see  

figures). We note that,

 
 

          cos sin   93

where  is the length of face  with angle .  

       

The half-planes, respectively right and left-handed, have relative impedances  and sin sin  

with boundary conditions,

       



sin 94
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while the field on each face of angle  verifies,

       



sin 95

We search to express the diffracted part  of  given by, 
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when          , . If semi-infinite planes are parallel and we cansin sin   , 

show that first order of  in power of  can be determined by only studying our difference 

functional equations in combination of single face integral expression of spectral functions,

with no need of integral equations. In what follows, we write  and  without subscript,  

and let , .         
  

8.1) Recombination of difference functional equations when    

                                       

géométrie : complex step with cavity (note : )  
 

We have

                    

                      

sin sin sin sin

sin sin sin sin
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where,
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Therefore, we can write,
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8.2) Reduction of far field function when sin sin  

Considering that , we then have,     1  
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then,
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For , we have,   
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then, letting  and considering that , we can write,    
    sin sin
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with,
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where  is the spectral function for  given by 41  with  and ,              sin sin

following,
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This gives us the following expression of far field function,
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cos sin sin sin
    sin  106

8.3) Exact first order expressions for  and for far field function

We can write,
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for small , where  is a mean value of  for small ,  as     
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 . We then note that  , which gives us,
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We then obtain for 106 , 
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and thus,
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or more generally, letting ,
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Using 96 , we obtain for the diffracted field at large distance, 
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where , .      
 





   
 

 sin sin  

It is worth noticing that this expression is the exact first order of the asymptotics for small

 , and that it satisfies the reciprocity theorem, i.e. it remains the same when we change 

for  (contrary to the one we would obtain by Physical Optics approximation).

Appendix A : about      and the solution for an impedance wedge

A.1)  in passive case  

The function , also denoted , has been defined by Maliuzhinets, for its         

spectral function  used in its integral representation of field in     
 
   

 
 






presence of a passive impedance wedge illuminated by a unit plane wave with direction 

[20]. The spectral function  is the solution of the equations

                

                  

sin sin sin sin

sin sin sin sin

       

       
   

    113

regular in the strip Re , except for the pole with unit residue at , and  at       

infinity in this band, where  (resp. ) corresponds to the relative impedance attachedsin sin  

to the face  (resp. ). The function  is the solution of (113) without          

poles or zeros as Re , when Re  with ,          sin  Re  (passive case)    

             cos cos sin sin    in this band, and  has the unit pole 
   

 
   

 

for incident field at  in the band Re  [20]  The function  has numerous           
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properties. We have,
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where  is the Maliuzhinets function [20], Re ,  is an arbitrary constant. This 
    

even function satisfies  when Im , where   
                  




     
  and  are constants,  (see [32] for more details), and we can write  min 



       
               cos    Im  for Im  large,  a constant. Since
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 cos

          and
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with . Besides, from [27], we can write, for Re ,              
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where  is an arbitrary positive integer and    and ,  is a constant. For the applications, 


we choose  fixed and define  with . This expression is suitable for numerical    

calculus (with  or ) or to derive the analytical properties of  (with )         

from those of  .

The zeros which are the closest to the imaginary axis are  and ,          

and the closest poles are  and                
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Remark : From [20], the   zeros of which are the closest to  and the corresponding   

poles are the points  and . In other respects,                
 

   satisfies
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Notice that, using 113  in 115 , we deduce that,   
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A.2) eneral case (passive or active)Some miscellaneous properties in g

The solution is more complex when we want to consider arbitrary face impedances in whole

generality, passive ( or active ( ). For that, we begin    Re  Re           

to consider,

         
               sin sin sin sin  118

where the  verifies,

                

           

sin sin sin sin         
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with  remaining without any zero or pole in the band Re , and thus,     

                        sin sin  as Re 120

The function  with an active sin  then directly derives from  with passive one, and,    

noting sign sin , we remark that, when  (resp. ), sin                        has

zeros (resp. poles) at  and , and poles (resp.                   

zeros) at ,         
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for large Im , with constants  and .     


A.3) The solution for the diffraction by a wedge with passive or active impedance
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We can then express the spectral solution  for the diffraction by a wedge with passive or   

active impedance faces with the following general definition,

             

              
   

   

  

          

      

sin sin sin sin

122cos sin sin sin

where  is a polynomial of order , . Since we have  in                 

vicinity of incidence pole , and, from unique definition of  at ,             

as Im , we can write,   
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with sign Re sin , and thus  when both impedances are passive  In addition,         

the  zeros of when              
   

sin      have to suppress , the pole  of sin

with sign Im , among       arg   
          

            and ,

which give poles of  within the region Re  with Re , as               cos

   Re , and thus non physical contribution  which can diverge at infinity as       cos 


  Re . We then have, 
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which completes the definition of   for arbitrary impedance (passive or active).

Appendix B : Principle of semi-inversion for our system of integral equations

We can modify equations and derive integral equations with kernels vanishing as  for  

the three-part semi-infinite impedance polygon, for approximations when  is small.

For this, we begin with changing the unknowns in the equations, vanishing when , and  

take,
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with The function  to the solution for      

          , . , corresponds

  , i.e. for a simple wedge of exterior angle       . It is given by
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with                 , . The functions  and   vanish as  

      , and satisfy, from 45 - 46 ,
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where,
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as Re , and          
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where
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as Re , for , with                                
     min min

        

  and  .

We then notice some similarity with the integral expressions (45)-(46) when , directly  

related to spectral function  for an impedance wedge. Thus, we let 




                                                                                                                               -35-

               
 

                 
 

    
 





 

    
 







 

      
 

      
 













 131

as Re The functions  are regular and                
 

 
  . 

     cos   
  on the imaginary axis, and a pole at    ensures that we have,

even if , generally .  
 
      

We search to define , regular in the band Re , so that  and           
  


  
  verifies (127)-(130) for arbitrary . We consider the integral expressions (45)-

(46) of                           and  as , when  and,      
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We then multiply by , integrate following 131 , and we obtain,   
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and,
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In the case where  is regular in the band Re , we can shift the integral paths in       



the integrals containing . Comparing (127)-(130) with (132)-(106), we notice that 

     
   is a solution of the system of equations (127)-(130) if  satisfies the conditions
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Taking account of the properites of  and  (see appendix A), and letting  
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cos sin , (134) can be written
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Since  is regular in the band Re  and Re ,  is regular in this               
 
 sin

band. We can then use , and write, as Re ,   42 - 43    
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Using 131  and 136 , we obtain the equations with kernels vanishing as        

           
  

          

     
         



  



    

  


  

  







   
     

  

    

 
 






sin sin

sin sin


137

           
  

          

     
         



 
    

 



 

  


  

  







   
     

  

    

 
 






sin sin

sin sin


138

where                         
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In the particular case , , the functions  can be simplified so that we         

recover the expressions found in [2] for the three-part impedance plane (see remark below).

Remark : It exists analytical expressions of  when For this, we consider      

   for , where we have, 
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Using that , and                    
 cos sin cos sin

  
   

            cos  as  , we can let  in 42 - 43 , and derive,    
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for Re , where 
  

  
 

           sin sin sin          and

  
   

             
     

       

   

      

 
   

sin sin sin sin
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From oddness of  ,  can be replaced by , and we note        tan  
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that, after deformation of integration path, we have,
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as Re . Similar expressions with from    


 sin sin  in place of  can be obtained 

               when  (or .by continuation with capture of pole)  This

permits, by elementary combinations, to have analytical expressions of  terms when

    

Appendix C : Uniqueness of fields in the boundary value problem for piecewise regular

geometry

We analyse here the uniqueness of solutions for boundary value problem, that we give in [28]

for picewise regular geometry in 2D and 3D. In [41], Levine develops an uniqueness theorem

for the field , i.e. a proof that  implies , in the case of a scatterer with      
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impedance boundary conditions. He considers piecewise  surface (with no zero 

exterior angle), , without auxiliary 'edge conditions' at edges or corner points, except  

that  is continuous. He studies at first bounded scatterers, but he also gives, in section 7 of

his paper, the elements to generalize his results to scatterers with infinite boundaries, in

particular by the use of Jones' uniqueness theorem [42], that we follow.

We begin to notice first that the conditions given by Levine to apply the Green's first theorem

are satisfied: the scatterer surface is piecewise analytic (with no zero exterior angle), the field

is countinuous and satisfies impedance boundary conditions
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on it, and the conditions at infinity. So, we can write,
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where  is the infinite domain bounded by ,  is the inward normal to , and, from  

impedance boundary conditions,

Re Re  146
grad

              
 

 
 


  
 






where

      

           





  



Re  for 

  for 147

lim arg
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For ,Re  and  the left-hand term is negative since Re , while     arg  

the right-handed term is positive, and thus both terms vanish. Consequently, we have  when

arg   ,

      148in for  Re  

and, ,when arg  
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on for 

on for 

Re  

Re or for 
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In the latter case, we can use, as suggested by Levine, the Jones' uniqueness theorem [42] for

surfaces conical at infinity, when Neumann boundary condition (  is satisfied,     )

which implies  in the entire domain , and thus completes the proof of uniqueness.   

Appendix  D : Evaluation of  and         taking account of complex poles

For large , we consider 45 - 46  and use the method of Steepest Descent Path taking    

account of the influence of complex poles of . During the deformation of the initial 
 

path of integration along imaginary axis to , where Im  and      sin  

Re , poles of  and  can be captured, and we have         sin        
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,Re <

as  is in the domain limited by  and , and,              
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,Re >

as  is in the domain limited by  and , where              
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with                  , , and  if the pole  is captured,

   else.
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For large , the residue terms are principally given by

Residue Residue

Residue Residue 153

           

             

      

      

    
   



    
   



   

   

 
 

 
 

where                        and  are the zeros of  and  the closest to

the imaginary axis, that can be captured. Letting , we then derive,        sin 
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with ,  in the domain limited by               
         
  

cos

                              and , for   .min min

To obtain  and , we derivate the previous expressions and solve              

the linear system of equations. In this case,  and  are large, and using   
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we obtain, for large ,
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In consequence, we can write
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with ,  in the domain limited by               
         
  

cos

       and , and,
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with ,  in the domain limited by               
         
  

cos

                              and , while   .min min

In right-handed sides of previous expressions, the first term corresponds to double diffraction

mechanism, the second term to the influence of guided waves, and the third term to single

diffraction mechanism.

Remark :

When  is large, the highly oscillatory nature of the kernels exponential term leads to

simple approximations. The spectral functions as the source terms are smooth functions,

except when we approach the limits of validity of integrals, and the Steepest Descent Path

method [1],[2] can be used to approximate analytically the integral terms. Letting

cos sin             with , we have elementary integrals of the type
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The integration path being deformed to , certain poles  are captured during the  

deformation and the integral term is developed in vicinity of the saddle point, which gives us
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The integral term can be calculated, using that,
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where erfc erf  for large , erf  being the error              

function [34],[39] Im . Notice that, in the approximation 161 , the contribution of    

complex poles  with non nul imaginary part correspond to exponentially decreasing waves

guiding along the central plate. They are negligible in first approximation when  is large 

Appendix E : The scattering diagram from the solutions of the integral equations

In a previous section, we have reduced the problem to a system of non-singular integral

equations. When the solutions of the integral equations are known, the different elements of

the decomposition of the field can be evaluated from the integral expressions 45 - 46 ,   

where the integral terms can be considered as smooth coupling terms between both edges. In

this case, the difference functional equations 0  to reduce the calculus - 28  have to be used 

in the band of validity of integral expressions.

Here, we study the reduction of the field term with radial dependence

exp            for large . Its angular dependence  in the direction

      is commonly called the scattering diagram (or directivity), given, from (5), by

       
                  163

where, from (25),         sin

We illustrate the development by the one of  in the case where , ,           

and   , when           min min     
                (similar to

              when ,         , ).

We consider at first the reduction of  in (163). If , then         

            
 

     , and we are in the domain of validity of 45 - 46 . If ,

then we have a concave part and there are two cases. If , 45 -        
 

   

         46  directly applies. In contrary, if  , we use 30  and write 
 
      

        
       

      
     

sin sin

sin sin
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Then we use 0 ,
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     sin sin         165

where the terms in right handed-side of (165) can be expressed with .   45 - 46

Then, we reduce ,                        in 163 . If , i.e.   
  



which implies , we are in the domain of validity of 45 - 46 . In contrary, when      

     
   , which is obliged when , we first have to use , 30
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In this case, since  and  when           
    
        

    
       , and  and  can                      when , 

be expressed with , and  with , which ends the reduction.    46 45   

Appendix F : Approximated second order ameliorations

F.1) Amelioration of equivalent cavity impedance sin

Using our works in [28], we can modifiy and add a second order to the expressions of .sin
We can write,

sin sin  
           



   167

where  is the total surface of cavities below the straight line between the exterior

discontinuities ' ' and ' ', while  is the total surface of cavities above the straight line. In  

the case where some elements would be filled with materials of impedance         

(mode  when ) or admittance  (mode  when ), and with                 

wave number , we can write,

sin sin

sin sin
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where the  remain the relative surface in free space.sin

F.2) A change of 

We can refine, from [1],[2],[28], the expression of the mean value  of  on the cavity, 
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sin sin
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and write,

           

   


    

   
   

   
 

 


 
  

  



 

 


     

 

   
   


    

cos cos

cos sin cos sin
cos sin sin sin

sin
sin cos sin cos  


  
 

cos

cos sin sin sin
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A more refined expression could be found by semi-inversion (see appendix B).
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