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Abstract

In this paper we study the convergence of a finite volume approximation of a convective
diffusive elliptic problem with Neumann boundary conditions and L1 data. To deal with the
non-coercive character of the equation and the low regularity of the right hand-side we mix
the finite volume tools and the renormalized techniques. To handle the Neumann boundary
conditions we choose solutions having a null median and we prove a convergence result.

1 Introduction
In the present paper we are interested in the discretization by the cell-centered finite volume
method of the following convection-diffusion equation with Neumann boundary conditions and
L1 data:

− div(λ(u)∇u− vu) = f in Ω,
(λ(u)∇u− vu) · n⃗ = 0 on ∂Ω.

(1.1)

Here Ω is a bounded polygonal connected open subset of Rd, d ≥ 2, n⃗ is the outer unit normal
to ∂Ω and λ is a continuous function such that λ∞ ≥ λ(u) ≥ µ > 0 with λ∞ and µ two real
numbers. The function v lies in Lp(Ω)d with 2 < p < +∞ if d = 2, p = d if d ≥ 3, and f belongs
to L1(Ω) and satisfies the compatibility condition

∫
Ω f = 0.

Considering elliptic equations with L1 data requires a precise meaning of solution. Indeed we
cannot expect in general to obtain a usual weak solution which belongs to H1

0 (Ω) for Dirichlet
boundary conditions or to H1(Ω) for Neumann boundary conditions. Elliptic equations with L1

data and Dirichlet boundary conditions are widely studied in the literature. In [6] Boccardo and
Gallouët have obtained the existence of a solution in the sense of distributions for a fairly class
of monotone operator with measure data. However it is known that this solution is not unique
in general (see the counter example of Serrin [24]). To overcome the lack of uniqueness results,
it is possible to use in the linear case the duality method (see [25]) or, for general nonlinear
operators, the notion of entropy solution (see [11]), the notion of solution obtained as limit
of approximation (SOLA) (see [12]) or the notion of renormalized solution (see [22, 11]). The
previous three notions of solution are equivalent in the L1 case and provide existence, stability
and uniqueness results for a large class of elliptic equations. As far as the approximation of
elliptic equations with Dirichlet boundary conditions and L1 data is concerned, the method of
finite volume (see [18]) allows to consider such equations. In [19] the authors have studied equation
(1.1) with v = 0 and with a measure data (and Dirichlet boundary conditions). In [15] the authors
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have considered a linear noncoercive equation (similar to (1.1)) with measure data (and Dirichlet
boundary conditions). In both papers [19, 15] the authors have established the convergence of
the finite volume approximation to a solution in the sense of distributions. More precisely for the
equation −∆u + div(vu) = f in Ω with Dirichlet boundary conditions, the limit u of the finite
volume scheme verifies

u ∈
⋂

q<d/(d−1)
W 1,q

0 (Ω)

∫
Ω

∇u∇φ dx−
∫

Ω
uv∇φ dx =

∫
Ω
fφdx, ∀φ ∈

⋃
s>d

W 1,s
0 (Ω).

Recently mixing the techniques of renormalized solution and the finite volume approximation
has been performed in [21] for a noncoercive equation with L1 data and Dirichlet boundary
conditions: the author proves that the limit of the finite volume scheme is the renormalized
solution of the equation. Concerning the finite elements approximation the model case of the
equation − div(A∇u) = f with Dirichlet boundary conditions is dealt in [7].

In the present paper we have to face to a noncoercive equation, to an L1 data and to Neumann
boundary conditions. To our knowledge such a situation is less studied in the literature both in
the continuous case and the discrete case. One of the difficulty in the variational and linear
case is that the kernel is nontrivial and that we have to impose an additional condition on
the solution to insure uniqueness result, which is in general

∫
Ω udx = 0. In [16] by using the

Fredholm theory the authors have been studied the operator associated to the linear version
of (1.1). They prove that the linear version of (1.1) with (H1)′ data verifying a compatibility
condition admits a unique weak solution. Moreover they deduce existence and uniqueness results
for elliptic and coercive equation of the type − div(A(x, u)∇u)) = µ with Neumann boundary
condition, where µ is a bounded Radon measure. The finite volume approximation of (1.1) with
f belonging to L2(Ω) (with zero mean value) is studied in [8]. As in the continuous case the
finite volume approximation requires the study of the kernel and for different approximations of
the convective terms the authors prove in [8] that the finite volume approximation converges to
a weak solution of (1.1). For the class of nonlinear elliptic equations −∆pu = f with Neumann
boundary conditions, L1 data and for small value of p it is well known that the solution is not in
general a summable function so that the mean value has no meaning. To overcome this obstacle,
in [1, 4] the authors have chosen the median value which is well defined instead of the mean
value. In [4] an appropriate definition of renormalized solutions is given, which gives an existence
result (see also [5] for the uniqueness question). The main originality of the present paper is
to consider noncoercive equation (1.1) with L1 data and to mix the techniques developed in [4]
and the finite volume method. We choose here the median value instead of the mean value as
in [8]. Since Poincaré-Wirtinger inequality is crucial in general we state in Proposition 2.8 an
appropriate discrete Poincaré-Wirtinger inequality involving the median value (see Appendix for
the proof, in the spirit of [3]). In Theorem 3.2 we prove that the finite volume approximation of
(1.1) converges to the renormalized solution with a null median.

The paper is organized as follows. In Section 2 we recall some definitions, in particular the
median of a measurable function. Moreover we present in Section 2 the continuous case and the
notion of renormalized solution of (1.1) and, at last the finite volume tools and the scheme. The
main results are stated in Section 3. Section 4 is devoted to derive the a priori estimates for the
solutions of the scheme. Using Section 4 we prove the existence of a solution of the scheme in
Section 5 while the convergence analysis is performed in Section 6. Finally we give in Appendix
the proof of the discrete Poincaré-Wirtinger inequality involving the median (instead of the mean
value).
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2 Assumptions and definitions
Let Ω be a connected open bounded polygonal subset of Rd, d ≥ 2. We consider the following
nonlinear elliptic problem with Neumann boundary conditions:{

− div(λ(u)∇u− vu) = f in Ω,
(λ(u)∇u− vu) · n⃗ = 0 on ∂Ω,

(2.1)

where n⃗ is the outer unit normal to ∂Ω. We assume that

v ∈ Lp(Ω)d with 2 < p < +∞ if d = 2, p = d if d ≥ 3, (2.2)
λ is a continuous function such that λ∞ ≥ λ(r) ≥ µ > 0,∀r ∈ R, (2.3)

with λ∞ and µ two real numbers. Moreover, we assume that

f ∈ L1(Ω), (2.4)

and it satisfies the compatibility condition∫
Ω
f dx = 0. (2.5)

As explained in the Introduction we deal with solutions whose median is equal to zero. Let us
recall that if u is measurable function, we define the median of u (with respect to the Lebesgue
measure), denoted by med(u) as the set of real numbers t such that

meas{x ∈ Ω : u(x) > t} ≤ meas(Ω)
2

meas{x ∈ Ω : u(x) < t} ≤ meas(Ω)
2 .

It is known that med(u) is non-empty compact interval (see [26]). Let us explicitly observe that
if 0 ∈ med(u) then

meas{x ∈ Ω : u(x) > 0} ≤ meas(Ω)
2

meas{x ∈ Ω : u(x) < 0} ≤ meas(Ω)
2 .

We denote med(u) by

med(u) = inf
{
t ∈ R : meas{x ∈ Ω : u(x) > t} ≤ meas(Ω)

2

}
, (2.6)

and med(u) by

med(u) = sup
{
t ∈ R : meas{x ∈ Ω : u(x) > t} ≥ meas(Ω)

2

}
. (2.7)

We observe that if u is an element of H1(Ω) (Ω being a connected domain), the median of u is
uniquely determined; med(u) = medu = med(u). However it is not the case for the finite volume
approximation of (2.18) which is a piecewise-constant function; the median is then the compact
interval of R [med(u),med(u)].

In the whole paper, Tn, n ≥ 0, denotes the truncation at height n that is

Tn(s) = min(n,max(s,−n)), ∀s ∈ R.
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2.1 Continuous Case

In this subsection we precise the notion of solution of equation (2.1). Indeed as explained in
the Introduction, considering elliptic equations with L1 data requires an appropriate notion of
solution which provides existence, stability and uniqueness results. There is a wide literature in
the Dirichlet case. In the Neumann case, due to the lack of regularity of the solution, the mean
value may not exist for nonlinear problems with L1 data, which gives additional difficulties in
deriving estimates and in defining an appropriate notion of renormalized solution. We refer mainly
to [13] for linear problems using the duality method and to [23], [1] and [4] for nonlinear problems.
In [1] and [4] the authors have chosen the median instead of the mean value (which may not exist
if the solution is not integrable) and one of the main tool is the following Poincaré-Wirtinger
inequality, see [26].

Proposition 2.1. If u ∈ W 1,p(Ω), then

∥u− med(u)∥Lp(Ω) ≤ C∥∇u∥(Lp(Ω))d (2.8)

where C is a constant depending on p, d, Ω.

In [4] the authors prove the existence of a renormalized solution for a class of nonlinear
problems and prove in [5] uniqueness results under additional assumptions. In the present paper
we use the framework of renormalized solutions. In the particular case of equation (2.1), let us
recall the following definition (see [4]).

Definition 2.2. A real function u defined in Ω is a renormalized solution to (2.1) if

u is measurable and finite almost everywhere in Ω, (2.9)
Tn(u) ∈ H1(Ω), for any n > 0, (2.10)

lim
n→+∞

1
n

∫
{x∈Ω,|u(x)|<n}

λ(u)|∇u|2 dx = 0, (2.11)

and the following equation holds∫
Ω
S(u)λ(u)∇u · ∇φdx+

∫
Ω
S′(u)λ(u)φ∇u · ∇udx

−
∫

Ω
uS(u)v · ∇φdx−

∫
Ω
uS′(u)φv · ∇udx =

∫
Ω
fφS(u) dx,

(2.12)

for every S ∈ W 1,∞(R) having compact support and for every φ ∈ L∞(Ω) ∩H1(Ω).

By combining [4] and [5] we have the following existence and uniqueness result.

Theorem 2.3. Let us assume that (2.2)–(2.5) hold true. Then there exists a unique renormalized
solution u of (2.1) such that med(u) = 0.

Remark 2.4. As far as the uniqueness is concerned equation (2.1) is not directly in the scope of
[5]. Indeed uniqueness results are mainly obtained for equations whose prototype is − div(a(x,∇u)+
Φ(x, u)) = f with Neumann boundary conditions. The operator a(x,∇u) does not depend on
u. Due to the presence of λ(u) in equation (2.1) the quasilinear character allows one to ob-
tain the uniqueness by a changement of unknow. Since λ(r) is a continuous function such that
λ∞ ≥ λ(r) ≥ µ > 0, by defining λ̃(r) =

∫ r
0 λ(s)ds and w = λ̃(u), we can verify that the function

w has a null median and that w is a renormalized solution of{
− div(∇w − vλ̃−1(w)) = f in Ω,

(∇w − vλ̃−1(w)) · n⃗ = 0 on ∂Ω.
(2.13)

At last since the function λ̃−1 is Lipschitz continuous, Theorem 4.2 of [5] allows one to conclude
that w is unique so that u is unique.
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2.2 Finite Volume

We now introduce the discrete settings. Let us first recall the notion of admissible discretization
of Ω , the definitions of the discrete norms and the space of piecewise functions associated to an
admissible mesh following [18].

Definition 2.5 (Admissible mesh). An admissible mesh M of Ω is given by a finite family T of
disjoint open convex polygonal subsets of Ω, a finite family E of disjoint subsets of Ω̄ (the edges)
consisting in non-empty open convex subsets of affine hyperplanes and a family P = (xK)K∈T of
points in Ω such that

• Ω̄ = ∪K∈T K̄,

• each σ ∈ E is a non-empty open subset of ∂K for some K ∈ T ,

• by denoting EK = {σ ∈ E , σ ⊂ ∂K}, ∂K = ∪σ∈EK
σ for all K ∈ T ,

• for all K ̸= L in T , either the (d− 1)−dimentional measure of K̄ ∩ L̄ is zero or K̄ ∩ L̄ = σ̄
for some σ ∈ E, which is then denoted σ = K|L,

• for all K ∈ T , xK ∈ K,

• for all σ = K|L ∈ E, the straight line (xK , xL) intersects and is orthogonal to σ,

• for all σ ∈ E such that σ ⊂ ∂Ω ∩ ∂K, the line which is orthogonal to σ and goes through xK

intersects σ.

In the whole of the present paper, we use the following notations associated with an admissible
discretization. In the set of edges E , we distinguish the set of interior edges Eint and the set of
boundary edges Eext. We denote by m(K) the d-dimensional measure of a control volume K
and m(σ) the (d − 1)-dimensional measure of σ. For all σ ∈ EK , nK,σ is the unit normal to σ
outwards K. If σ = K|L ∈ Eint, we denote by dσ the Euclidian distance between xK and xL,
dσ = dK,σ + dL,σ and dσ = dK,σ if σ ∈ Eext ∩ EK .
The size of the mesh is defined by

hM = supK∈T diam(K).

We assume that the mesh satisfies the following assumption

∃ ξ > 0 such that d(xK , σ) ≥ ξdσ, ∀T ∈ E , ∀σ ∈ EK . (2.14)

An example of admissible mesh in the sense of the above definition is shown in Figure 1.
The space of piecewise functions associated to an admissible mesh, denoted by X(M), is

defined as the set of functions from Ω to R wich are constant over each control volume of the
mesh.

Definition 2.6 (Discrete W 1,p norm). Let Ω be an open bounded polygonal subset of Rd, d ≥ 2,
and let M be an admissible mesh. For u = (uK)K∈T ∈ X(T ) and p ∈ [1,+∞[, the discrete
W 1,p-semi-norm is defined by

|u|1,p,M =

 ∑
σ∈Eint
σ=K|L

m(σ)
dp−1

σ

|uK − uL|p


1
p

, ∀u ∈ X(T )
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and the discrete W 1,p-norm is defined by

∥u∥1,p,M = ∥u∥0,p + |u|1,p,M, ∀u ∈ X(T )

where ∥u∥0,p is the Lp norm for piecewise constant functions, ∀p ∈ [1,+∞[,

∥u∥0,p =
(∫

Ω
|u(x)|pdx

) 1
p

=
( ∑

K∈M
m(K)|uK |p

) 1
p

, ∀u ∈ X(T ).

We present now discrete functional analysis results. We refer the reader to [[8], Lemma 6.1]
for a proof of the following discrete Sobolev inequality.

Proposition 2.7 (Discrete Sobolev inequality). Let Ω be a bounded polygonal open subset of Rd

and let M be an admissible mesh satisfying (2.14). Let q < +∞ if d = 2 and q = 2d
d−2 if d ≥ 3.

Then there exists C = C(Ω, ξ, q) such that, for all u = (uK)K∈T ∈ X(T ),

∥u∥0,q ≤ C (|u|1,2,M + ∥u∥0,2) . (2.15)

In the already cited references discrete Poincaré and Poincaré-Wirtinger inequalities are related
to the discrete space W 1,p

0 (Ω) and zero boundary condition or the discrete space W 1,p(Ω) with
discrete mean value. We derive here a discrete Poincaré-Wirtinger inequality involving the median.
The proof is given in the appendix.

Proposition 2.8 (Discrete Poincaré-Wirtinger median inequality). Let Ω be an open bounded
connected polyhedral domain of Rd and let M be an admissible mesh satisfying (2.14). Then for
1 ≤ p < +∞ there exists a constant C > 0 only depending on Ω, d and p such that

∥u− c∥0,p ≤ C

ξ(p−1)/p
|u|1,p,M, ∀u ∈ X(T ) (2.16)

where c belongs to med(u).

Theorem 2.9 (Discrete Rellich’s theorem). Let (Mm)m≥1 be a sequence of admissible meshes
satisfying (2.14) and such that hMm → 0 as m → ∞. If vm ∈ X(Tm) is such that (|vm|1,2,M +
∥vm∥0,2) is bounded, then (vm)m∈N is relatively compact in L2(Ω). Furthermore, any limit in
L2(Ω) of a subsequence of (vm)m∈N belongs to H1(Ω).

Let us now define a discrete finite volume gradient introduced equivalently in [[9], Lemma 4.4],
[[14], Lemma 6.5] or [[17], Definition 2].

Definition 2.10 (Discrete finite volume gradient). For K ∈ M and σ ∈ E(K), we define the
volume DK,σ as the cone of basis σ and of opposite vertex xK .Then, we define the "diamond-cell"
Dσ (see Figure 1) by

Dσ = DK,σ ∪DL,σ if σ = K|L ∈ Eint,

Dσ = DK,σ if σ ∈ Eext ∩ EK ,

and
m(Dσ) = 1

d
dσm(σ).

The approximate gradient ∇Mu of a function u ∈ X(T ) is defined as a piece-wise constant
function over each diamond cell and given by

∀σ ∈ Eint, σ = K|L, ∇Mu(x) = d
uL − uK

dσ
nK,σ, ∀x ∈ Dσ,

∀σ ∈ Eext ∩ EK , ∇Mu(x) = 0, ∀x ∈ Dσ.

6



σ
=
K

|L

•
xK

•
xL

K

L

: Dσdσ

|σ|
Figure 1: The diamond Dσ

Let us then give convergence property of the discrete gradient (see e.g., in the case of Dirichlet
boundary condition, [9] and [17] in L2 context, and [20] in the L1 context).

Lemma 2.11 (Weak convergence of the finite volume gradient). Let (Mm)m≥1 be a sequence of
admissible meshes satisfying (2.14) and such that hMm → 0 as m → ∞. Let vm ∈ X(Tm) and
let us assume that there exists α ∈ [1,+∞[ and C > 0 such that ∥vm∥1,α,Mm ≤ C, and that vm

converges in L1(Ω) to v ∈ W 1,α(Ω). Then ∇Mmvm converges to ∇v weakly in Lα(Ω)d.

We now define the finite volume scheme. Let M be an admissible mesh in the sense of
definition 2.5. For K ∈ T and σ ∈ EK , we define vK,σ by

vK,σ = 1
m(Dσ)

∫
Dσ

v · nK,σ dx. (2.17)

We consider the following finite volume scheme for (1.1)

∀K ∈ T ,
∑

σ∈Eint(K)

m(σ)
dσ

λ(u)σ(uK − uL) +
∑

σ∈Eint(K)
m(σ)vK,σuσ,+ =

∫
K
f dx, (2.18)

and
∀σ = K|L ∈ Eint, uσ,+ =

{
uK if vK,σ ≥ 0,
uL otherwise.

(2.19)

We denote uσ,− the downstream choice of u, i.e. uσ,− is such that {uσ,+, uσ,−} = {uK , uL},
∀σ ∈ Eint.

Finally,

∀σ = K|L ∈ Eint, min[λ(uK), λ(uL)] ≤ λ(u)σ ≤ max[λ(uK), λ(uL)], (2.20)

where λ(u)σ is for example the mean value of λ(uK) and λ(uL) if σ ∈ Eint.

3 Main results
Our main results on the finite volume scheme are the following. The first one states that there
exists at least one solution to the scheme. It is a generalization of Theorem 2.5 in [8] in the context
of a quasilinear problem with a median value constraint instead of a mean value constraint. The
second one gives the convergence of this solution to the unique renormalized solution of the
continuous problem with null median, as the size of the mesh tends to 0.

Theorem 3.1 (Existence of the solution of the scheme). Let us assume that (2.2)–(2.5) hold.
Let M be an admissible mesh in the sense of Definition 2.5 satisfying (2.14). Then there exists a
solution uT = (uK)K∈M to (2.18)–(2.20) having med(uT ) = 0.
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Theorem 3.2 (Convergence of the solution of the scheme). Let (Mm)m≥1 be a sequence of
admissible meshes in the sense of Definition 2.5, which satisfy (2.14) and such that hMm goes to
0 as m → ∞. Let um = (um

K)K∈Tm ∈ X(Tm) be a solution of (2.18) such that med(um) = 0. Then
um converges to the unique renormalized solution u of (1.1) having med(u) = 0, in the sense that

um converges to u a.e. in Ω,
∀n ∈ N, ∇MmTn(um) converges to ∇Tn(u), weakly in (L2(Ω))d,

as m → ∞.

Remark 3.3. As explained in Introduction we choose in the present paper a constraint on the
median value instead of the mean value. It allows one to mix the techniques developed in [4] and
the finite volume. Observe that the median is an appropriate choice in [1, 4] to deal with nonlinear
elliptic equations with L1 data and Neumann boundary conditions since we cannot expect to have
a solution u (in the sense of distribution or in the renormalized sense) of −∆pu = f with p
closed to 1 such that the solution belongs to L1(Ω). However under the restriction p > 2 − 1/N
and using the Boccardo-Gallouët estimates it is possible to solve −∆pu = f with f in L1 and
Neumann boundary conditions in the sense of distributions with a mean value equal to zero, see
[23]. As far as equation (1.1) is concerned a natural question is to solve its and to approximate
its with

∫
Ω udx = 0 and not med(u) = 0. To our knowledge the continuous case is not dealt in

the literature. Starting from an approximate problem the difficulties are similar in passing to the
limit in the continuous case and in the discrete case : the crucial steps are the a priori estimates
stated in Section 4. Since we cannot give all the details of a possible proof we refer to [2].

4 A priori estimates
This section is devoted to derive a priori estimates of the solution of the scheme (2.18), which
are crucial to extract subsequences using compactness results and then to pass to the limit in the
scheme. Let us observe that we adapt the strategy developed in [4] for the continuous problem
(2.1) with Neumann boundary conditions to the discrete case and that we use the techniques
developed in [8] for the approximation of the solution to problem (2.1) with a more regular data
and Neumann boundary conditions and the ones of [15] and [21] which study the approximation
of equations with L1 (or measure data) with Dirichlet boundary conditions.

Proposition 4.1 (Estimate on ln(1 + |uM|) with med(uM) = 0). Let M be an admissible mesh
satisfying (2.14). If uM = (uK)K∈T is a solution to (2.18), such that med(uM) = 0, then

∥ ln(1 + |uM|)∥2
1,2,M ≤ C

(
2∥f∥L1(Ω) + d|Ω|

p−2
p ∥ v ∥2

(Lp(Ω))d

)
, (4.1)

where C = C(Ω, µ, β, p, ξ) is a positive constant.

Proof. A log-estimate was obtained in [Proposition 3.1, [15]] in the case of Dirichlet boundary
conditions and v ∈ (C(Ω̄))d. Since we deal with Neumann boundary conditions, v ∈ (Lp(Ω))d

and the specific choice of med(uM) = 0, we will adapt the proof derived in [15] and explain the
modifications. As in [15], let φ(s) =

∫ s

0

dt

(1 + |t|)2 . Taking φ(uK) as a test function in the scheme

(2.18) and reordering the sums yield

∑
σ∈Eint

m(σ)
dσ

λ(u)σ(uK −uL)(φ(uK)−φ(uL)) ≤ ∥f∥L1(Ω)+
∑

σ∈Eint

m(σ)|vK,σ|uσ,+(φ(uσ,−)−φ(uσ,+)).

(4.2)
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To control the second term of the right-hand side of (4.2) we introduce the set of edges A (see
[15]) by

A = {σ ∈ Eint ; uσ,+ ≥ uσ,−, uσ,+ < 0} ∪ {σ ∈ Eint ; uσ,+ < uσ,−, uσ,+ ≥ 0}, (4.3)

Since φ is non-decreasing, as in [15] we obtain∑
σ∈Eint

m(σ)|vK,σ|uσ,+(φ(uσ,−) − φ(uσ,+)) ≤
∑
σ∈A

m(σ)|vK,σ|uσ,+(φ(uσ,−) − φ(uσ,+)). (4.4)

Now using Cauchy-Schwarz and Hölder inequalities, and the following inequality (see Lemma 3.1,
[15]), ∀σ ∈ A, |uσ,+|2|φ(uσ,−) − φ(uσ,+)|2 ≤ |uσ,− − uσ,+||φ(uσ,−) − φ(uσ,+)|, we obtain

∑
σ∈A

m(σ)|vK,σ||uσ,+|(φ(uσ,−) − φ(uσ,+)) ≤
(∑

σ∈A
m(σ)dσ|vK,σ|2

) 1
2

×
(∑

σ∈A

m(σ)
dσ

|uσ,+|2|φ(uσ,−) − φ(uσ,+)|2
) 1

2

≤
(∑

σ∈A
m(σ)dσ

) p−2
p
(∑

σ∈A
m(σ)dσ|vK,σ|p

) 1
p

×
(∑

σ∈A

m(σ)
dσ

|uσ,+|2|φ(uσ,−) − φ(uσ,+)|2
) 1

2

≤
(∑

σ∈A
m(σ)dσ

) p−2
p
(∑

σ∈A
m(σ)dσ|vK,σ|p

) 1
p

×
(∑

σ∈A

m(σ)
dσ

|uk − uL||φ(uK) − φ(uL)|
) 1

2

. (4.5)

Recalling that∑σ∈A m(σ)dσ ≤
∑

σ∈Eint
m(σ)dσ = dm(Ω) and since the term

(∑
σ∈Eint

m(σ)dσ|vK,σ|p
) 1

p

is bounded by d
1
p ∥v∥(Lp(Ω))d , by Young’s inequality we get∑

σ∈A
m(σ)|vK,σ||uσ,+|(φ(uσ,−) − φ(uσ,+)) ≤ 1

2βdm(Ω)
p−2

p ∥v∥2
(Lp(Ω))d

+ β

2 m(Ω)
p−2

p
∑

σ∈Eint

m(σ)
dσ

(uK − uL)(φ(uK) − φ(uL)),

(4.6)
where β > 0. Since 0 < µ ≤ λ(u), an appropriate choice of β gives∑

σ∈Eint

m(σ)
dσ

(uK − uL)(φ(uK) − φ(uL)) ≤ C(Ω, µ, β, p)
(

2∥f∥L1(Ω) + d|Ω|
p−2

p ∥v∥2
(Lp(Ω))d

)
. (4.7)

Moreover we have, for all (x, y) ∈ R2, (ln(1 + |x|) − ln(1 + |y|))2 ≤ (x−y)(φ(x)−φ(y)). It follows
that∑

σ∈Eint

m(σ)
dσ

(ln(1 + |uK |) − ln(1 + |uL|))2 ≤ C(Ω, µ, β, p)
(

2∥f∥L1(Ω) + d|Ω|
p−2

p ∥v∥2
(Lp(Ω))d

)
.

(4.8)
Since med(ln(1 + uM)) = 0, the discrete Poincaré-Wirtinger inequality (2.16) implies that

∥ ln(1 + |uM|)∥2
1,2,M ≤ C

(
2∥f∥L1(Ω) + d|Ω|

p−2
p ∥ v ∥2

(Lp(Ω))d

)
.
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Let us state a corollary which is a consequence of Proposition 4.1 and is necessary for the
proof of the estimate of Proposition 4.3 and for Proposition 4.4. It may be found in [15] and is
recalled here with its proof, for the sake of completeness.
Corollary 4.2. Let M be an admissible mesh satisfying (2.14). If uM = (uK)K∈T ∈ X(T ) is a
solution to (2.18) and, for n > 0, En = {|uM| > n}, then there exists C > 0 only depending on
(Ω,v, f, d, p, ξ) such that

meas(En) ≤ C

(ln(1 + n))2 . (4.9)

Proof. On the one hand, using Proposition 4.1 we have

∥ ln(1 + |uM|)∥2
1,2,M ≤ C

(
2∥f∥L1(Ω) + d|Ω|

p−2
p ∥ v ∥2

(Lp(Ω))d

)
. (4.10)

On the other hand, since med(ln(1 + |uM|)) = 0, by the discrete Poincaré-Wirtinger median
inequality (2.16), we have that there exists C > 0 only depending on (Ω, d, ξ) such that

∥ ln(1 + |uM|)∥0,2 ≤ C|uM|1,2,M. (4.11)

Therefore, using (4.10) and (4.11), there exists C > 0 only depending on (Ω,v, f, d, p, ξ) such
that

∥ ln(1 + |uM|)∥2
0,2 ≤ C. (4.12)

Finally, due to the fact that meas(En) = meas ({ln(1 + |uM|) ≥ ln(1 + n)}), the Chebyshev in-
equality and (4.12) lead to the result.

Proposition 4.3 (Estimate on Tn(uM)). Let M be an admissible mesh satisfying (2.14). If
uM = (uK)K∈T ∈ X(T ) is a solution to (2.18) having med(uM) = 0, then for any n ≥ 0, there
exists C > 0 only depending on (Ω,v, f, n, d, ξ) such that

∥Tn(uM)∥1,2,M ≤ C. (4.13)

Let (Mm)m≥1 be a sequence of admissible meshes satisfying (2.14) and such that hMm goes to
zero as m → ∞ and let um = (um

K)K∈Tm ∈ X(Tm) be a solution to (2.18) having med(um) = 0.
Then there exists a measurable function u finite a.e. in Ω such that, up to a subsequence (still
indexed by m),

Tn(u) ∈ H1(Ω), for any n > 0, (4.14)
med(u) = 0, (4.15)

Tn(um) → Tn(u) strongly in L2(Ω) and a.e , (4.16)
∇MmTn(um) ⇀ ∇Tn(u) in (L2(Ω))d, ∀n > 0. (4.17)

Proof. The proof is divided into 2 steps. First, we prove that Tn(uM) satisfies the a priori
estimate (4.13). In the second step, considering a sequence of admissible meshes Mm, we prove
that the solution um to the scheme (2.18) converges to a function u as m goes to infinity and that
(4.14)–(4.17) hold true.
Step 1. Estimate on Tn(uM).
After multiplying each equation of the scheme by Tn(uK), summing over each control volume and
reordering the sums, we obtain T1 + T2 = T3 with

T1 =
∑

σ∈Eint

m(σ)
dσ

λ(u)σ(uK − uL)(Tn(uK) − Tn(uL)),

T2 =
∑

σ∈Eint

m(σ)vK,σuσ,+(Tn(uK) − Tn(uL)),

T3 =
∑

K∈T

∫
K
f Tn(uK) dx.

10



Since Tn is bounded by n, we obtain that |T3| ≤ n∥f∥L1(Ω). Then

T1 ≤ n∥f∥L1(Ω) − T2. (4.18)

Let σ ∈ E . By the definition (2.19) of uσ,+ and recalling that uσ,− is the downstream choice of u,
if vK,σ ≥ 0 it gives

vK,σ(Tn(uK) − Tn(uL)) = vK,σ(Tn(uσ,+) − Tn(uσ,−)),

and if vK,σ < 0 it gives

vK,σ(Tn(uK) − Tn(uL)) = −vK,σ(Tn(uσ,+) − Tn(uσ,−)).

In consequence, T2 can be written as

−T2 = 1
n

∑
σ∈Eint

m(σ) |vK,σ|uσ,+(Tn(uσ,−) − Tn(uσ,+)). (4.19)

As in the proof of estimate (4.1), we use the set of edges A = {σ ∈ Eint ; uσ,+ ≥ uσ,−, uσ,+ <
0} ∪ {σ ∈ Eint ; uσ,+ < uσ,−, uσ,+ ≥ 0}. Since Tn is non decreasing we have

−T2 ≤ 1
n

∑
σ∈A

m(σ) |vK,σ|uσ,+(Tn(uσ,−) − Tn(uσ,+)). (4.20)

Due to the fact that ∀σ ∈ A, if |uσ,+| ≥ n then |uσ,−| ≥ n we deduce that

uσ,+(Tn(uσ,−) − Tn(uσ,+)) = Tn(uσ,+)(Tn(uσ,−) − Tn(uσ,+)), ∀σ ∈ A.

It follows that

−T2 ≤
∑
σ∈A

m(σ) |vK,σ|Tn(uσ,+) (Tn(uσ,−) − Tn(uσ,+)) .

Moreover, using Cauchy-Schwarz and Young inequalities, taking into account that( ∑
σ∈Eint

m(σ)dσ|vK,σ|2
) 1

2

is bounded by d 1
2 ∥v∥(L2(Ω))d , we obtain

−T2 ≤
∑
σ∈A

m(σ) |vK,σ|Tn(uσ,+) (Tn(uσ,−) − Tn(uσ,+))

≤

 ∑
σ∈Eint

m(σ)dσ|vK,σ|2
 1

2 (∑
σ∈A

m(σ)
dσ

Tn(uσ,+)2 (Tn(uσ,−) − Tn(uσ,+))2
) 1

2

≤ nd
1
2 ∥v∥L2(Ω)d

(∑
σ∈A

m(σ)
dσ

(Tn(uσ,−) − Tn(uσ,+))2
) 1

2

≤ 1
2βn

2 d∥v∥2
L2(Ω)d + β

2
∑
σ∈A

m(σ)
dσ

(Tn(uσ,−) − Tn(uσ,+))2

≤ 1
2βn

2 d∥v∥2
L2(Ω)d + β

2
∑

σ∈Eint

m(σ)
dσ

(Tn(uK) − Tn(uL))2,

where β > 0. Since Tn(uK) − Tn(uL) ≤ uK − uL, we have

−T2 ≤ 1
2βn

2 d∥v∥2
(L2(Ω))d + β

2
∑

σ∈Eint

m(σ)
dσ

(uK − uL) (Tn(uK) − Tn(uL)) ,
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and we can deduce that∑
σ∈Eint

λ(u)σ
m(σ)
dσ

(uK − uL) (Tn(uK) − Tn(uL)) ≤ n∥f∥L1(Ω) + 1
2βn

2 d∥v∥2
(L2(Ω))d

+ β

2
∑

σ∈Eint

m(σ)
dσ

(uK − uL) (Tn(uK) − Tn(uL)) .

Recalling that med(Tn(uM)) = 0 and 0 ≤ µ ≤ λ(u), an appropriate choice of β and the Poincaré-
Wirtinger inequality (2.16) lead to the result.
Step 2. In this step we consider sequence of admissible meshes (Mm)m≥1 satisfying (2.14) and
such that hMm goes to zero as m → ∞. If um = (um

K)K∈Tm ∈ X(Tm) denotes a solution to (2.18)
having med(um) = 0, we show that there exists a measurable function u finite a.e. in Ω such that
(4.14)–(4.17) hold true.

The method is widely used for elliptic equations with L1 (or measure data) (see e.g. [11])
and consists in proving that, up to subsequence, um is a Cauchy sequence in measure. For the
convenience of the reader we give the complete arguments. For any n, in view of Step 1 we
know that the sequence

(
∥Tn(um)∥1,2,Mm)

)
m≥1 is bounded (uniformly with respect to m). By

Theorem 2.9 and a diagonal process (n being a natural number), up to a subsequence still indexed
by m, we deduce that, for any n ∈ N, there exists vn belonging to H1(Ω) such that

Tn(um) → vn, a.e. in Ω, as m → ∞. (4.21)

We now prove that um is a Cauchy sequence in measure. Let ω > 0. For all n > 0, and all
m, p ≥ 0 , we have

{|um − up| > ω} ⊂ {|um| > n} ∪ {|up| > n} ∪ {|Tn(um) − Tn(up)| > ω}.

Let ε > 0 fixed. By Corollary 4.2, let n > 0 such that, for all m, p ≥ 0,

meas({|um| > n}) + meas({|up| > n}) < ε

2 .

Once n is chosen, since Tn(um) converges almost everywhere to vn as m goes to infinity we obtain

∃m0 > 0 ; ∀m, p ≥ m0 meas({|Tn(um) − Tn(up)| > ω}) ≤ ε

2 .

Therefore, we deduce that ∀m, p ≥ m0

meas{|um − up| > ω} < ε.

Hence (um)m∈N is a Cauchy sequence in measure. Consequently, up to a subsequence still indexed
by m, there exists a measurable function u such that

um → u a.e. in Ω. (4.22)

It follows from Corollary 4.2 that u is finite a.e. in Ω.
Moreover by the pointwise convergence (4.21) of Tn(um) for any n ∈ N we deduce that Tn(u) =

vn ∈ H1(Ω). Applying Theorem 2.11 we obtain that

∇MmTn(um) ⇀ ∇Tn(u) in (L2(Ω))d, as m → ∞.

It remains to prove that med(u) = 0. Due to the point-wise convergence of um to u, the
sequence 1{um>0}1{u>0} converges to 1{u>0} a.e. as hM goes to zero. Recalling that med(um) = 0

12



Fatou’s lemma leads to

meas{u(x) > 0} ≤ lim inf
∫

Ω
1{um>0}1{u>0}dx

≤ lim inf meas{um(x) > 0}

≤ meas(Ω)
2 .

Analogously from the convergence of 1{um<0}1{u<0} to 1{u<0} a.e. as m → ∞

meas{u(x) < 0} ≤ meas(Ω)
2 .

It follows that 0 ∈ med(u). Since we have for n large enough med(Tn(u)) = med(u) and since
Tn(u) belongs to H1(Ω), the median of u is unique and it is equal to 0.

Let us recall that in the renormalized framework the decay of the energy (2.11) plays an
important role to derive stability or uniqueness results. In the following proposition we show
a discrete version of the decay of the energy (uniformly with respect to the sequence of the
admissible meshes). Having (4.23) ans (4.24) is crucial to pass to the limit in the scheme.

Proposition 4.4 (Discrete estimate on the energy). Let (Mm)m≥1 be a sequence of admissible
meshes satisfying (2.14) and such that hMm → 0 as m → ∞. For any m ≥ 0, let us consider
um = (um

K)K∈Tm ∈ X(Tm) a solution to (2.18) and let u be a measurable function finite a.e. in Ω
such that, up to a subsequence still indexed by m, the second part of Proposition 4.3 holds. Then
we have

lim
n→+∞

lim
hMm →0

1
n

∑
σ∈Eint

m(σ)
dσ

λ(um)σ(um
K − um

L )(Tn(um
K) − Tn(um

L )) = 0, (4.23)

where uL = 0 if σ ∈ Eext, and

lim
n→+∞

lim
hMm →0

1
n

∑
σ∈Eint

m(σ) |vK,σ| |um
σ,+| |Tn(um

σ,+) − Tn(um
σ,−)| = 0. (4.24)

Proof. Let m ≥ 1 and um =
(
um

K

)
K∈Tm

be a solution of (2.18). Multiplying each equation of the
scheme by Tn(um

K)
n , summing over K ∈ M and gathering by edges we find

T1 + T2 = T3

with

T1 = 1
n

∑
σ∈Eint

m(σ)
dσ

λ(um)σ(um
K − um

L )(Tn(um
K) − Tn(um

L )), (4.25)

T2 = 1
n

∑
σ∈Eint

m(σ)vK,σu
m
σ,+(Tn(um

K) − Tn(um
L )), (4.26)

T3 = 1
n

∑
K∈M

∫
K
f Tn(um

K) dx. (4.27)

According to the definition of um, we have

T3 =
∫

Ω
f
Tn(um)
n

dx.

Due to (4.22), Tn(um) converges to Tn(u) as m goes to infinity in L∞(Ω) weak-⋆ and a.e. Since
f belongs to L1(Ω) it follows that

lim
hMm →0

T3 =
∫

Ω
f
Tn(u)
n

dx.
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Recalling that u is finite almost everywhere in Ω, Tn(u)
n converges to 0 a.e. in Ω as n goes to infinity.

Therefore, since f belongs to L1(Ω) and
∣∣∣∣Tn

n

∣∣∣∣ is bounded by one, the Lebesgue dominated theorem
allows one to conclude that

lim
n→+∞

lim
hMm →0

T3 = 0. (4.28)

We now study the term T2. We know from (4.19) that it can be written as

T2 = 1
n

∑
σ∈Eint

m(σ) |vK,σ|um
σ,+(Tn(um

σ,+) − Tn(um
σ,−)). (4.29)

Recalling the definition of the subset of edges A

A = {σ ∈ Eint ; um
σ,+ ≥ um

σ,−, u
m
σ,+ < 0} ∪ {σ ∈ Eint ; um

σ,+ < um
σ,−, u

m
σ,+ ≥ 0}, (4.30)

we denote by B the subset of edges such that

B = {σ ∈ Eint ; um
σ,+ ≥ um

σ,−, u
m
σ,+ ≥ 0} ∪ {σ ∈ Eint ; um

σ,+ < um
σ,−, u

m
σ,+ < 0}. (4.31)

Then T2 can be written as

T2 = 1
n

∑
σ∈A

m(σ) |vK,σ|um
σ,+(Tn(um

σ,+) − Tn(um
σ,−))

+ 1
n

∑
σ∈B

m(σ) |vK,σ|um
σ,+(Tn(um

σ,+) − Tn(um
σ,−))

= T2,1 + T2,2.

(4.32)

Using the fact that Tn is non decreasing and Tn(0) = 0, we notice that

|T2,1| = −T2,1 = − 1
n

∑
σ∈A

m(σ) |vK,σ|um
σ,+(Tn(um

σ,+) − Tn(um
σ,−)),

|T2,2| = T2,2 = 1
n

∑
σ∈B

m(σ) |vK,σ|um
σ,+(Tn(um

σ,+) − Tn(um
σ,−)),

and |T2| = −T2,1 + T2,2.
As far as −T2,1 is concerned, we observe that for any σ ∈ A, |um

σ,+| ≥ n implies |um
σ,−| ≥ n. To

deal with this term, as in [21], we split the sum on {|um
σ,+| ≤ r} and on {r ≤ |um

σ,+| ≤ n} where r
is a positive real number which will be chosen later. We have

−T2,1 = I1 + I2

with

I1 = 1
n

∑
σ∈A

|um
σ,+|≤r

m(σ) |vK,σ|um
σ,+(Tn(um

σ,−) − Tn(um
σ,+)), (4.33)

I2 = 1
n

∑
σ∈A

r≤|um
σ,+|≤n

m(σ) |vK,σ|um
σ,+(Tn(um

σ,−) − Tn(um
σ,+)). (4.34)
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Recalling that
( ∑

σ∈A
m(σ)dσ|vK,σ|2

) 1
2

is bounded by d 1
2 ∥v∥(L2(Ω))d , the Cauchy-Schwarz inequal-

ity and the Young inequality yield that

|I1| = 1
n

∑
σ∈A

|um
σ,+|≤r

m(σ) |vK,σ|um
σ,+(Tn(um

σ,−) − Tn(um
σ,+))

≤ 1
n

 ∑
σ∈A

|um
σ,+|≤r

m(σ)dσ|vK,σ|2


1
2
 ∑

σ∈A
|um

σ,+|≤r

m(σ)
dσ

(um
σ,+)2(Tn(um

σ,−) − Tn(um
σ,+))2


1
2

≤ r

n

 ∑
σ∈A

|um
σ,+|≤r

m(σ)dσ|vK,σ|2


1
2
 ∑

σ∈A
|um

σ,+|≤r

m(σ)
dσ

(um
K − um

L )(Tn(um
K) − Tn(um

L ))


1
2

≤ 1
n

r
2d ∥ v ∥2

(L2(Ω))d

2β + β

2
∑
σ∈A

|um
σ,+|≤r

m(σ)
dσ

(um
K − um

L )(Tn(um
K) − Tn(um

L ))

 , (4.35)

where β > 0 (to be chosen later). To control the second term I2, we distinguish the case d ≥ 3
and d = 2. We know that for any σ ∈ A, |um

σ,+| ≥ r implies |um
σ,−| ≥ r; if d ≥ 3 the equality

1
d

+ d− 2
2d + 1

2 = 1,

and the Hölder inequality give

|I2| ≤ 1
n

∑
σ∈A

r≤|um
σ,+|≤n

r≤|um
σ,−|

m(σ) |vK,σ|Tn(um
σ,+) (Tn(um

σ,−) − Tn(um
σ,+))

≤ 1
n

( ∑
σ∈A

r≤|um
σ,+|≤n

r≤|um
σ,−|

m(σ) dσ |vK,σ|d
) 1

d
( ∑

σ∈A
r≤|um

σ,+|≤n

r≤|um
σ,−|

m(σ) dσ|Tn(um
σ,+)|

2d
d−2

) d−2
2d

×
( ∑

σ∈A
r≤|um

σ,+|≤n

r≤|um
σ,−|

m(σ)
dσ

(Tn(um
σ,−) − Tn(um

σ,+))2
) 1

2

≤ 1
n

( ∑
σ∈A

r≤|uσ,+|≤n
r≤|um

σ,−|

m(σ) dσ |vK,σ|d
) 1

d
( ∑

σ∈Eint

m(σ) dσ|Tn(um
σ,+)|

2d
d−2

) d−2
2d

×
( ∑

σ∈Eint

m(σ)
dσ

(Tn(um
σ,−) − Tn(um

σ,+))2
) 1

2

.

Recalling that med(Tn(um)) = 0, the discrete Poincaré-Wirtinger inequality (2.16) and the dis-
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crete Sobolev inequality (2.15) lead to

|I2| ≤ C1
d

1
2 ∥v∥(Ld(Er))d

n

∑
σ∈Eint

m(σ)
dσ

(Tn(um
K) − Tn(um

L ))2, (4.36)

where Er is the set where |um
σ,+| ≥ r and C1 > 0 is a constant independent of n and M. If d = 2,

similar arguments lead to

|I2| ≤ C2
d

1
2 ∥v∥(Lp(Er))d

n

∑
σ∈Eint

m(σ)
dσ

(Tn(um
K) − Tn(um

L ))2, (4.37)

where C2 > 0 is a constant independent of n and M.
In view of Corollary 4.2 and since v ∈ (Lp(Ω))d (2 < p < +∞ if d = 2, p = d if d ≥ 3), the
absolute continuity of the integral implies that there exists r > 0 (independent of m) such that
for all m

d
1
2 ∥v∥(Lp(Er))d ≤ 1

2 . (4.38)

Then from (4.36), (4.37) and (4.38) we obtain

|I2| ≤ C3
2n

∑
σ∈Eint

m(σ)
dσ

(um
K − um

L )(Tn(um
K) − Tn(um

L )). (4.39)

Recalling that −T2 ≤ −T2,1, the inequalities (4.39) and (4.35) lead to

−T2 ≤ |I1 + I2|

≤ 1
n

r2d ∥ v ∥2
(L2(Ω))d

2β + C4
2n

∑
σ∈Eint

m(σ)
dσ

(um
K − um

L )(Tn(um
K) − Tn(um

L )), (4.40)

where C4 is a positive constant depending on β and C3. Since 0 < µ ≤ λ(um), we choose β > 0
such that the second term of the right-hand side of (4.40) is ≤ T1

2 . It follows that

−T2 ≤ 1
n

r2d ∥ v ∥2
(L2(Ω))d

2β + T1
2

≤ R(n, hTm) + T1
2 , (4.41)

with R verifying lim
n→+∞

lim
hTm →0

R(n, hTm) = 0.

Since T1 + T2 = T3, (4.41) allows one to conclude that

lim
n→+∞

lim
hMm →0

1
n

∑
σ∈Eint

m(σ)
dσ

λ(um)σ(um
K − um

L )(Tn(um
K) − Tn(um

L )) = 0, (4.42)

which gives (4.23). We are now in a position to prove (4.24). Recalling that T1 + T2 = T3, we
have T1 + T2,2 ≤ |T2,1| + T3. Since T2,2 is non negative, using (4.28), (4.41) we get

T1 ≤ C5
2 T1 +R+ T3 with

lim
n→+∞

lim
hTm →0

R = 0,

lim
n→+∞

lim
hTm →0

T3 = 0.
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As a consequence we obtain
lim

n→+∞
lim

hTm →0
|T2,1| = 0. (4.43)

Moreover, writing again T1 + T2,2 ≤ |T2,1| + T3, (4.43), (4.28) and (4.23) imply that

lim
n→+∞

lim
hTm →0

T2,2 = 0. (4.44)

Therefore from (4.43) and (4.44) we deduce (4.24).

5 Existence of a solution to the scheme
In this section we prove that there exists at least one solution to the discrete scheme. Since the
scheme is nonlinear we use a fixed point argument together with the study of the linear version
of our problem for which we adapt the arguments developed in [8] for a linear problem with
Neumann boundary conditions and mean value.

Proof of Theorem 3.1. The proof is divided into 2 steps. In Step 1 with the help of [8] we construct
a map in view of the fixed point argument. In Step 2 using estimates in Proposition 4.1 we conclude
with the Brouwer fixed point theorem the existence of a solution.
Step 1. Let ũ = (ũK)K∈T ∈ X(T ) and let us consider the linear scheme

∀K ∈ M,
∑

σ∈Eint

m(σ)
dσ

λ(ũ)σ(uK − uL) +
∑

σ∈Eint

m(σ)vK,σuσ,+ =
∫

K
f dx, (5.1)

where u = (uK)K∈T ∈ X(T ) is the unknown. Following [8], it can be rewritten as the linear
system

AU = F (5.2)

where U = (uK)K∈T , F = (
∫

K fdx)K∈T and A is the square matrix of size card(T ) × card(T )
with 

AK,K =
∑

σ∈EK,int

m(σ)
(λ(ũσ)
dσ

+ v+
K,σ

)
, ∀K ∈ T ,

AK,L = m(σ)
(

− λ(ũσ)
dσ

− v−
K,σ

)
, ∀K ∈ T ,∀L ∈ N(K), with σ = K|L,

AK,L = 0, ∀K ∈ T ,∀L /∈ N(K).

At this step having f belonging to L1(Ω) or f ∈ L2(Ω) does not play any role. From Proposi-
tion 3.1 in [8] (see also Remark 2.4 in [8] when −∆u is replaced by − div(a(x)∇u), which is the
isotropic case) it follows that

• dim(ker(A)) = 1 and any (non zero) element U belonging to ker(A) verifies either uK > 0
for all K ∈ T or uK < 0 for all K ∈ T .

• ker(A⊤) = R(1, 1, · · · , 1)⊤ and thus

Im(A) =
{
(FK)K∈T ;

∑
K∈T

FK = 0
}
.

Since
∫

Ω f dx = 0, F belongs to Im(A) and then there exists at least U solution of AU = F . If
V = (vK)K∈T denotes an element of ker(A) such that vk > 0 for any K ∈ T , for any λ ∈ R, the
vector U + λV is a solution of (5.2). Since vK > 0, ∀K ∈ T , the function λ 7→ med(U + λV )
is continuous and increasing while limλ→+∞ med(U + λV ) = +∞ and limλ→−∞ med(U + λV ) =
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−∞. It follows that there exists at least one solution u ∈ X(T ) verifying the scheme (5.1) and
med(u) = 0.

The uniqueness is a consequence of the characterization of ker(A). As a conclusion we can
define the map Γ from X(T ) into X(T ) by

∀ũ ∈ X(T ), Γ
(
ũ
)

= u

where u ∈ X(T ) is the unique solution of (5.1) such that med(u) = 0.
Step 2. In this step we prove that

∃C > 0, ∀ũ ∈ X(T ), ∥Γ(ũ)∥L∞ ≤ C, (5.3)
Γ is a continuous map (5.4)

in order to apply the Brouwer fixed point theorem.
The boundedness of Γ relies on Proposition 4.1. Indeed by replacing λ(u)σ by λ(ũ)σ in the

proof of Proposition 4.1 it can be shown that there exists C > 0 (not depending on ũ) such that

∥ ln(1 + |Γ(ũ)|)∥2
1,2,M ≤ C

(
2∥f∥L1(Ω) + d|Ω|

p−2
p ∥ v ∥2

(Lp(Ω))d

)
, (5.5)

Since Γ(ũ) lies in a finite dimension vector space we obtain that (5.3) holds true.
We now prove that Γ is a continuous map. Let (ũn)n∈N and ũ belonging to X(T ) such that

ũn goes to ũ as n goes to infinity. In view of (5.3) up to a subsequence, still indexed by n, there
exists w ∈ X(T ) such that Γ(ũn) tends to w as n goes to infinity. Recalling that the coefficient
of the matrix A are continuous with respect to ũ we obtain that w is a solution to the scheme

∀K ∈ M,
∑

σ∈Eint

m(σ)
dσ

λ(ũ)σ(wK − wL) +
∑

σ∈Eint

m(σ)vK,σwσ,+ =
∫

K
f dx. (5.6)

The mesh T being fixed since we consider constant piecewise functions the fact that med
(
Γ(ũn)

)
=

0 for any n ∈ N implies that med(w) = 0. Recalling that u = Γ(ũ) is the unique solution of (5.1)
with med(u) = 0 we conclude that u = w. Since the limit does not depend on the subsequence
we obtain that Γ is a continuous map.

In view of (5.3) and (5.4) the Brouwer fixed point theorem allows one to conclude the proof
of Theorem 3.1.

6 Convergence of the scheme
In this section we prove using Section 4 that the function u obtained in Proposition 4.3 is a
renormalized solution to equation (2.1). The main difficulty is the equation (2.12): in short the
test functions in (2.12) are of the kind φS(u) which is nonlinear in u. The strategy is to mix
renormalized techniques and finite volume with the use of a discrete version of φSn(uMm) (see
below the definition of Sn) where φ belongs to D(Ω) (see [21] in the case of Dirichlet boundary
condition). Before proving Theorem 3.2 we give in Lemma 6.1 a convergence result concerning
Sn(uMm) (see e.g. [20, 21]) and in Corollary 6.2 the asymptotic behavior of an extra term (with
respect to the continuous case) which appears when we pass to the limit in the discrete equation.

First, let us define the function Sn, n ≥ 1, by

Sn(s) =



0 if s ≤ −2n,
s

n
+ 2 if − 2n ≤ s ≤ −n,

1 if − n ≤ s ≤ n,

−s
n

+ 2 if n ≤ s ≤ 2n,

0 if s ≥ 2n.

(6.1)
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Sn(s)

−2n −n n 2n
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Figure 2: The function Sn

Lemma 6.1. Let (Mm)m≥1 be a sequence of admissible meshes satisfying (2.14) such that hMm →
0 as m → ∞ and let um = (um

K)K∈Tm ∈ X(Tm) be a sequence of solution of (2.18) such that the
conclusions of Proposition 4.3 hold true. We define the function S

m
n over the diamonds by

∀σ = K|L ∈ Eint,∀x ∈ Dσ, S
m
n (x) = Sn(um

K) + Sn(um
L )

2 ,

∀σ ∈ Eext,∀x ∈ Dσ, S
m
n (x) = Sn(um

K),

and the function λ
m by

∀σ ∈ E , ∀x ∈ Dσ λ
m(x) = λ(um)σ.

Then the functions Sm
n and λ converge respectively to Sn(u) and λ(u) in Lq(Ω) ∀q ∈ [1,+∞[ and

in L∞(Ω) weak-∗, as hMm → 0, where u is the limit of uMm.

Proof. Since the functions Sm
n is bounded with respect to m it is sufficient to prove that the

convergence holds true in L2(Ω). By Proposition 4.3 um converges to u a.e. in Ω. Since Sn

is a continuous and bounded function, the Lebesgue dominated convergence theorem gives that
Sn(um) → Sn(u) in L2(Ω), so that it is sufficient to study the behavior of Sm

n −Sn(um). Recalling
that Sn is Lipschitz continuous and has a compact support, we have

∥Sm
n − Sn(um)∥2

L2(Ω) =
∫

Ω
|Sm

n − Sn(um(x))|2 dx

=
∑
σ∈E

∫
Dσ

|Sm
n (x) − Sn(um(x))|2 dx

=
∑

σ∈Eint

∫
Dσ

∣∣∣∣Sn(um
K) + Sn(um

L )
2 − Sn(um(x))

∣∣∣∣2 dx

= 1
4
∑

σ∈Eint

m(Dσ) |Sn(um
K) − Sn(um

L )|2

≤ 1
4n2

∑
σ∈Eint

m(Dσ)|T2n(um
K) − T2n(um

L )|2

= 1
4dn2

∑
σ∈Eint

m(σ)dσ

∣∣∣∣T2n(um
K) − T2n(um

L )
dσ

∣∣∣∣2 (dσ)2

≤ 1
4dn2 |T2n(um)|21,2,M (hMm)2,

so that ∥Sm
n − Sn(um)∥2

L2(Ω) goes to zero as hMm → 0.
As far as λm is concerned let us first define the function um by

∀σ = K|L ∈ Eint, ∀x ∈ Dσ, um(x) = um
K + um

L

2 ,

∀σ ∈ Eext, ∀x ∈ Dσ, um(x) = um
K .
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In view of the definition of λ(u)σ we have in Ω

min(λ(um), λ(2um − um)) ≤ λ
m ≤ max(λ(um), λ(2um − um)). (6.2)

In view of already used arguments for Sm, since the function Tn is Lipschitz continuous, Tn(um)
converges to Tn(u) in Lq(Ω), ∀q ∈ [1,+∞[ and in L∞ weak-∗. By the diagonal process, up
to a subsequence still index by m, um goes to u a.e. in Ω as hMm goes to zero. Since λ is a
bounded continuous function we obtain, up to a subsequence, that λm converges to λ(u) in Lq(Ω),
∀q ∈ [1,+∞[ and in L∞ weak-∗ as hMm goes to zero. To conclude it is sufficient to observe that
the limit of λm is independent of the subsequence.

Corollary 6.2. Let (Mm)m≥1 be a sequence of admissible meshes satisfying (2.14) such that
hMm → 0 as m → ∞. Let um = (um

K)K∈Tm ∈ X(Tm) be a sequence of solution of (2.18) such that
the conclusions of Proposition 4.3 hold true. Then we have

lim
n→+∞

lim
hMm →0

∑
σ∈Eint

|um
K |≤2n

|um
L |>4n

λ(u)σ
m(σ)
dσ

|um
L | = 0. (6.3)

Proof. For m ∈ N, let us consider K ∈ Tm and n ∈ N. On one hand if |um
K | ≤ 2n and um

L > 4n
then

(um
K − um

L )(T4n(um
K) − T4n(um

L )) ≥ um
L

2 2n ≥ 0.

On the other hand, if |um
K | ≤ 2n and um

L < −4n then

(um
K − um

L )(T4n(um
K) − T4n(um

L )) ≥ −um
L

2 2n ≥ 0.

It follows that∑
σ∈Eint

|um
K |≤2n

|um
L |>4n

m(σ)
dσ

λ(um)σ|um
L | ≤ 1

4n
∑

σ∈Eint

m(σ)
dσ

λ(um)σ(um
L − um

K)(T4n(um
K) − T4n(um

L )). (6.4)

Using the discrete estimate on energy (4.23), we have

lim
n→+∞

lim
hMm →0

1
4n

∑
σ∈Eint

λ(um)σ
m(σ)
dσ

(um
L − um

K)(T4n(um
K) − T4n(um

L )) = 0, (6.5)

so that (6.4) and (6.5) give (6.3).

We are now in a position to prove Theorem 3.2.
Proof of Theorem 3.2 Let m ≥ 1 and let us consider um = (um

K)K∈Tm be a solution of the
scheme (2.18).

For φ a function belonging to D(Ω) we denote by φm the function defined by φK = φ(xK)
for all K ∈ Tm. For n ∈ N, multiplying each equation of the scheme by φ(xK)Sn(um

K) (which is
a discrete version of the test function used in the renormalized formulation), summing over the
control volumes and gathering by edges, we get

T1 + T2 = T3
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with

T1 =
∑

σ∈Eint

m(σ)
dσ

λ(um)σ(um
K − um

L )(φ(xK)Sn(um
K) − φ(xL)Sn(um

L )),

T2 =
∑

σ∈Eint

m(σ)vK,σu
m
σ,+(φ(xK)Sn(um

K) − φ(xL)Sn(um
L )),

T3 =
∑

K∈T

∫
K
f φ(xK)Sn(um

K).

Since Sn(um) → Sn(u) a.e. and L∞ weak ⋆, by the regularity of φ, φm → φ uniformly and
|f φm Sn(um)| ≤ Cφ|f | ∈ L1(Ω), the Lebesgue theorem ensures that

T3 =
∫

Ω
f φm Sn(um) dx −−−−−→

hMm →0

∫
Ω
f φSn(u) dx. (6.6)

We now study the convergence of the diffusion term. We write

T1 =
∑

σ∈Eint

m(σ)
dσ

λ(um)σ(um
K − um

L )(φ(xK)Sn(um
K) − φ(xL)Sn(um

L ))

= T1,1 + T1,2

with

T1,1 =
∑

σ∈Eint

m(σ)
dσ

λ(um)σSn(um
K) (um

K − um
L ) (φ(xK) − φ(xL)),

T1,2 =
∑

σ∈Eint

m(σ)
dσ

λ(um)σφ(xL) (um
K − um

L ) (Sn(um
K) − Sn(um

L )).

According to the definition of Sn we have

|T1,2| ≤ 1
n

∑
σ∈Eint

m(σ)
dσ

λ(um)σφ(xL) (um
K − um

L ) (T2n(um
K) − T2n(um

L )),

so that (4.23) give
lim

n→+∞
lim

hMm →0
T1,2 = 0. (6.7)

The main difference with respect to the continuous case is that um
K is truncated while uL is

not in T1,1. To control this term we have to write

T1,1 =
∑

σ∈Eint

m(σ)
dσ

λ(um)σSn(um
K) (T2n(um

K) − um
L ) (φ(xK) − φ(xL)),

= I + II + III

with

I =
∑

σ∈Eint

m(σ)
dσ

λ(um)σ
Sn(um

K) + Sn(um
L )

2 (T4n(um
K) − T4n(um

L )) (φ(xK) − φ(xL)),

II =
∑

σ∈Eint

m(σ)
dσ

λ(um)σSn(um
K) (T4n(um

L ) − um
L ) (φ(xK) − φ(xL)),

III =
∑

σ∈Eint

m(σ)
dσ

λ(um)σ
Sn(um

K) − Sn(um
L )

2 (T4n(um
K) − T4n(um

L )) (φ(xK) − φ(xL))
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We first study the asymptotic behavior of II and III as the parameter hMn goes to zero. Since

|II| ≤
∑

σ∈Eint

m(σ)
dσ

λ(u)σ|Sn(um
K)| |T4n(um

L ) − um
L | |φ(xK) − φ(xL)|

≤ 2∥φ∥L∞(Ω)
∑

σ∈Eint
|um

K |≤2n

|um
L |>4n

m(σ)
dσ

λ(um)σ|um
L |,

and due to Corollary 6.2 we obtain that

lim
hM→0

|II| ≤ ω(n)∥φ∥L∞(Ω), (6.8)

where ω(n) tends to zero as n goes to infinity. In the sequel of the present proof ω(n) is a generic
positive quantity such that limn→+∞w(n) = 0. According to the definition of Sn we have

|III| ≤
∥φ∥L∞(Ω)

n

∑
σ∈Eint

m(σ)
dσ

λ(um)σ|um
K − um

L | |Tn(um
K) − Tn(um

L )|,

recalling (4.23) of Proposition 4.4 we obtain that

lim
hT →0

|III| ≤ ω(n)∥φ∥L∞(Ω). (6.9)

We now turn to I. By rewriting I as integral over the diamonds Dσ (see e.g. [9, 17, 14]) we have

I =
∑

σ∈Eint

m(σ)dσλ(um)σ
Sn(um

K) + Sn(um
L )

2
T4n(um

K) − T4n(um
L )

dσ

φ(xK) − φ(xL)
dσ

=
∑

σ∈Eint

∫
Dσ

λ
m(x)Sm

n (x)∇MmT4n(um) · ∇φ dx

+
∑

σ∈Eint

dm(Dσ)λ(um)σ
Sn(um

K) + Sn(um
L )

2
T4n(um

K) − T4n(um
L )

dσ

×
[
φ(xK) − φ(xL)

dσ
+ 1

m(Dσ)

∫
Dσ

∇φ · ηK,σ dx
]

= I1 + I2.

By Lemma 6.1 S
m
n → Sn(u) in Lq(Ω) for all q ∈ [1,+∞[ and λ

m → λ(u) in L∞ weak ⋆, while
∇MmT4n(um) tends to ∇T4n(u) weakly in (L2(Ω))d. Since φ belongs to C∞

c (Ω) we conclude that

lim
hMm →0

I1 =
∫

Ω
λ(u)Sn(u)∇T4n(u) · ∇φ dx.

By the regularity of φ we see that

|I2| ≤
∑

σ∈Eint

dm(Dσ)λ(um)σ

∣∣∣∣Sn(um
K) + Sn(um

L )
2

∣∣∣∣ |T4n(um
K) − T4n(um

L )|
dσ

×
∣∣∣∣φ(xK) − φ(xL)

dσ
+ 1

m(Dσ)

∫
Dσ

∇φ · ηK,σ d x

∣∣∣∣
≤ λ∞∥φ∥W 2,∞(Ω)hM∥T4n(um)∥1,1,M,

thus
lim

hMm →0
I2 = 0. (6.10)
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We now study the convergence of the convection term T2. We have

T2 =
∑

σ∈Eint

m(σ)vK,σu
m
σ,+(φ(xK)Sn(um

K) − φ(xL)Sn(um
L ))

=
∑

σ∈Eint
vK,σ≥0

m(σ)vK,σu
m
σ,+(φ(xK)Sn(um

σ,+) − φ(xL)Sn(um
σ,−))

+
∑

σ∈Eint
vK,σ<0

m(σ)vK,σu
m
σ,+(φ(xK)Sn(um

σ,−) − φ(xL)Sn(um
σ,+))

=
∑

σ∈Eint
vK,σ≥0

m(σ)vK,σu
m
σ,+Sn(um

σ,+)(φ(xK) − φ(xL))

+
∑

σ∈Eint
vK,σ≥0

m(σ)vK,σu
m
σ,+φ(xL)(Sn(um

σ,+) − Sn(um
σ,−))

−
∑

σ∈Eint
vK,σ<0

m(σ)vK,σu
m
σ,+Sn(um

σ,+)(φ(xL) − φ(xK))

−
∑

σ∈Eint
vK,σ<0

m(σ)vK,σu
m
σ,+φ(xK)(Sn(um

σ,+) − Sn(um
σ,−))

= T2,1 + T2,2 + T2,3

with

T2,1 =
∑

σ∈Eint

m(σ)vK,σu
m
σ,+Sn(um

σ,+)(φ(xK) − φ(xL))

T2,2 =
∑

σ∈Eint
vK,σ≥0

m(σ)vK,σu
m
σ,+φ(xL)(Sn(um

σ,+) − Sn(um
σ,−))

T2,3 = −
∑

σ∈Eint
vK,σ<0

m(σ)vK,σu
m
σ,+φ(xK)(Sn(um

σ,+) − Sn(um
σ,−))

Since
|T2,2 + T2,3| ≤

∥φ∥L∞(Ω)
n

∑
σ∈Eint

m(σ) |vK,σ| |um
σ,+| |T2n(um

σ,+) − T2n(um
σ,−)|,

we deduce from (4.24) that
lim

n→+∞
lim

hMm →0
T2,2 + T2,3 = 0. (6.11)

For the term T2,1, we have

T2,1 =
∑

σ∈Eint

m(σ)vK,σu
m
σ,+Sn(um

σ,+)(φ(xK) − φ(xL))

=
∑

σ∈Eint

m(σ)dσ

dm(Dσ) u
m
σ,+ Sn(um

σ,+) dφ(xK) − φ(xL)
dσ

∫
Dσ

v · ηK,σ dx

= −
∑

σ∈Eint

∫
Dσ

T2n(um
σ,+)Sn(um

σ,+)v · ∇MφM dx.

We define the function G
m
n defined over the diamonds by

∀σ = K|L ∈ Eint,∀x ∈ Dσ, G
m
n (x) = T2n(um

σ,+)Sn(um
σ,+)
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Then T2,1 reads as
T2,1 = −

∫
Ω
G

m
n v · ∇Mmφm dx.

Since the function r 7→ T2n(r)Sn(r) is Lipschitz continuous and bounded, with the help of argu-
ments already used in the proof of Lemma 6.1, we can show that Gm

n converges to T2n(u)Sn(u)
in L∞ weak ⋆, as hMm → 0. Recalling that ∇Mmφm converges weakly in (L2(Ω))d we obtain

lim
hMm →0

T2,1 = −
∫

Ω
T2n(u)Sn(u)v · ∇φ dx. (6.12)

We now pass to the limit in the scheme first as hMm goes to zero and then as n goes to infinity.
Gathering equations (6.6) to (6.12), allows one to conclude that∫

Ω
λ(u)Sn(u) ∇u · ∇φdx −

∫
Ω
uSn(u) v · ∇φdx −

∫
Ω
f φSn(u) dx = lim

hMm →0
T (n, φ) (6.13)

where lim
hMm →0

|T (n, φ)| ≤ ∥φ∥L∞(Ω)ω(n) with ω(n) → 0 as n → +∞. Since Sn(u)λ(u)∇u, uSn(u)v

and fSn(u) belongs respectively to (L2(Ω))d, L2(Ω) and L1(Ω) a density argument gives that
(6.13) holds true for any φ lying in H1(Ω) ∩ L∞(Ω).

Let S be a function in W 1,∞(R) with compact support, contained in the interval [−k, k], k > 0
and let ψ ∈ H1(Ω) ∩ L∞(Ω). Using the function S(u)ψ in (6.13), we deduce that
∣∣∣∣ ∫

Ω
λ(u)∇uSn(u)S(u)∇ψ dx+

∫
Ω
λ(u)∇uSn(u)ψ∇uS′(u) dx

−
∫

Ω
uSn(u)S(u) v · ∇ψ dx−

∫
Ω
uSn(u)S′(u)ψ v · ∇udx

−
∫

Ω
ψS(u)Sn(u)f dx

∣∣∣∣ ≤ ∥φ∥L∞(Ω)ω(n).

By observing that Sn(u)S(u) = S(u) and Sn(u)S′(u) = S′(u) a.e. in Ω for n sufficiently large, by
passing to the limit as n goes to infinity we obtain the condition (2.12) of Definition 2.2, that is∫

Ω
λ(u)∇uS(u)∇ψ dx+

∫
Ω
λ(u)∇uψ∇uS′(u) dx

−
∫

Ω
uS(u) v · ∇ψ dx−

∫
Ω
uS′(u)ψ v · ∇udx =

∫
Ω
ψS(u) f dx.

We now turn to the decay of the energy. As a consequence of (4.23) we get

lim
n→∞

lim
hMm →0

1
n

∑
σ∈Eint

λ(u)m(σ)
dσ

(T2n(um
K) − T2n(um

L ))2 = 0,

and

∑
σ∈Eint

m(σ)
dσ

(T2n(um
K) − T2n(um

L ))2 =
∑

σ∈Eint

m(σ)dσ

(
T2n(um

K) − T2n(um
L )

dσ

)2

=
∑

σ∈Eint

dm(Dσ)
(
T2n(um

K) − T2n(um
L )

dσ

)2

= 1
d

∫
Ω

|∇MmT2n(um)|2 dx.
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so that lim
n→∞

lim
hMm →0

1
n

∫
Ω

|∇MmT2n(um)|2 dx = 0. Since ∇MmT2n(um) converges weakly in (L2(Ω))d,
we have also

1
n

∫
Ω

|∇T2n(u)|2 dx ≤ lim inf
hM→0

1
n

∫
Ω

|∇MT2n(uM)|2 dx,

which leads to
lim

n→∞
1
n

∫
Ω
λ(u)|∇T2n(u)|2 dx = 0.

Since u is finite almost everywhere in Ω and since Tn(u) ∈ H1(Ω) for any n > 0 we can conclude
uMm converges to u which is is the unique renormalized solution with null median. □

A Appendix
Discrete functional inequalities are useful for the study of finite volume schemes. Discrete Sobolev
inequalities are proved in [10] for Dirichlet boundary conditions and in [8] for non Dirichlet bound-
ary conditions. In [3] discrete Gagliardo-Nirenberg-Sobolev and Poincaré-Sobolev inequalities for
some finite volume schemes are proved. There does not seem to be any proof of Discrete Poincaré-
Wirtinger median inequality. The authors in [3] use the continuous embedding of the space BV (Ω)
into L

d
d−1 (Ω) for a Lipschitz domain Ω ⊂ Rd, with d ≥ 2 to establish discrete inequalities. We

will use this method to prove the Discrete Poincaré-Wirtinger median inequality (2.16).
Let us first recall some results concerning functions of bounded variation (more details about

these functions can be found in [26]). Let Ω be an open set of Rd and u ∈ L1(Ω). The total
variation of u in Ω, denoted by TVΩ(u), is defined by

TVΩ(u) = sup
{∫

Ω
u(x)div(ϕ(x)) dx, ϕ ∈ C1

c (Ω), |ϕ(x)| ≤ 1, ∀x ∈ Ω
}
.

The function u ∈ L1(Ω) belongs to BV (Ω) if and only if TVΩ(u) < +∞. The space BV (Ω) is
endowed with the norm

∥u∥BV (Ω) := ∥u∥L1(Ω) + TVΩ(u).

The space BV (Ω) is a natural space to study finite volume approximations. Indeed, for u =
(uK)K∈T ∈ X(T ), we have

TVΩ(u) =
∑

σ∈Eint
σ=K|L

m(σ)|uL − uK | = |u|1,1,M < +∞.

The discrete space X(T ) is included in L1(Ω) ∩BV (Ω) and we have

∥u∥BV (Ω) = ∥u∥1,1,M.

Our starting point for the discrete Poincaré-Wirtinger median inequality is the continuous em-
bedding of BV (Ω) into L

d
d−1 (Ω) for Lipschitz bounded connected domain Ω of Rd, d ≥ 2, written

in the following theorem (see [26] for more details).

Theorem A.1 ([26]). There exists a constant C(Ω) > 0 only depending on Ω such that, for all
u ∈ BV (Ω), (∫

Ω
|u−m|

d
d−1 dx

) d−1
d

≤ C(Ω)TVΩ(u), (A.1)

where m ∈ med(u).
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In the spirit of [3] (which studied Discrete Poincaré-Wirtinger mean inequality), let us prove
now the following proposition

Proposition A.2 (Discrete Poincaré-Wirtinger median inequality). Let Ω be an open bounded
connected polyhedral domain of Rd and let M be an admissible mesh satisfying (2.14). Then for
1 ≤ p < +∞ there exists a constant C > 0 only depending on Ω, d and p such that

∥u− c∥0,p ≤ C

ξ(p−1)/p
|u|1,p,M, ∀u ∈ X(T ) (A.2)

where c is in med(u).

Proof of Proposition A.2. Let u = (uK)K∈T be a function of X(T ) and let m be an element of
med(u). We define v ∈ X(T ) by vK = (uk −m)|uk −m|p−1 for all K ∈ T . Since m ∈ med(u), we
have 0 ∈ med(v), using inequality (A.1), we obtain

∥v∥0, d
d−1

≤ C(Ω)|v|1,1,M, (A.3)

and using the inclusion of L
d

d−1 (Ω) into L1(Ω), we get

∥v∥0,1 ≤ C(Ω, d)|v|1,1,M, (A.4)

where the constant C depends on Ω and d.
Moreover, for all K,L ∈ T , we have

|vK − vL| = |uK − uL||v′(wLK)|, ∀wLK ∈ [uk, uL],
≤ p|uK − uL||wLK −m|p−1

≤ p|uK − uL|
(
|uK −m|p−1 + |uL −m|p−1

)
.

(A.5)

Therefore, gathering (A.4) and (A.5), we obtain

∥v∥0,1 = ∥|u−m|p∥0,1 = ∥u−m∥p
0,p

≤ C
∑

σ∈Eint
σ=K|L

m(σ)p|uk − uL|
(
|uK −m|p−1 + |uL −m|p−1

)
. (A.6)

Using Hölder’s inequality we get,

∥u−m∥p
0,p ≤ pC

 ∑
σ∈Eint
σ=K|L

m(σ)
dp−1

σ

|uK − uL|p


1
p

×

 ∑
σ∈Eint
σ=K|L

m(σ)
(
d

p−1
p

σ

) p
p−1 (

|uK −m|p−1 + |uL −m|p−1
) p

p−1


p−1

p

≤ pC|u−m|1,p,M

 ∑
σ∈Eint
σ=K|L

m(σ)dσ
p

p− 1 (|uK −m|p + |uL −m|p)


p−1

p

.

(A.7)

The regularity constraint (2.14) on the mesh ensures that∑
σ∈Eint

m(σ)dσ ≤ 1
ξ

∑
K∈T

∑
σ∈EK

m(σ)d(xK , σ) = N

ξ

∑
K∈T

m(K). (A.8)
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Then applying the previous inequality (A.8) and a discrete integration by parts, we get

∥u−m∥p
0,p ≤ pC(Ω)|u−m|1,p,M

(
p

p− 1

) p−1
p

∑
K∈T

∑
σ∈EK

m(σ)dσ|uK −m|p


p−1
p

≤ C(Ω, p, d)
ξ

p−1
p

|u−m|1,p,M∥u−m∥p−1
0,p .

(A.9)

Then we obtain the general result

∥u−m∥0,p ≤ C

ξ(p−1)/p
|u|1,p,M, ∀u ∈ X(T ).
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