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Finite volume scheme and renormalized solutions for nonlinear elliptic Neumann problem with L 1 data

In this paper we study the convergence of a finite volume approximation of a convective diffusive elliptic problem with Neumann boundary conditions and L 1 data. To deal with the non-coercive character of the equation and the low regularity of the right hand-side we mix the finite volume tools and the renormalized techniques. To handle the Neumann boundary conditions we choose solutions having a null median and we prove a convergence result.

Introduction

In the present paper we are interested in the discretization by the cell-centered finite volume method of the following convection-diffusion equation with Neumann boundary conditions and L 1 data:

div(λ(u)∇u -vu) = f in Ω, (λ(u)∇u -vu) • ⃗ n = 0 on ∂Ω.

(1.1)

Here Ω is a bounded polygonal connected open subset of R d , d ≥ 2, ⃗ n is the outer unit normal to ∂Ω and λ is a continuous function such that λ ∞ ≥ λ(u) ≥ µ > 0 with λ ∞ and µ two real numbers. The function v lies in L p (Ω) d with 2 < p < +∞ if d = 2, p = d if d ≥ 3, and f belongs to L 1 (Ω) and satisfies the compatibility condition Ω f = 0. Considering elliptic equations with L 1 data requires a precise meaning of solution. Indeed we cannot expect in general to obtain a usual weak solution which belongs to H 1 0 (Ω) for Dirichlet boundary conditions or to H 1 (Ω) for Neumann boundary conditions. Elliptic equations with L 1 data and Dirichlet boundary conditions are widely studied in the literature. In [START_REF] Boccardo | On some nonlinear elliptic and parabolic equations involving measure data[END_REF] Boccardo and Gallouët have obtained the existence of a solution in the sense of distributions for a fairly class of monotone operator with measure data. However it is known that this solution is not unique in general (see the counter example of Serrin [START_REF] Serrin | Pathological solutions of elliptic differential equations[END_REF]). To overcome the lack of uniqueness results, it is possible to use in the linear case the duality method (see [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus[END_REF]) or, for general nonlinear operators, the notion of entropy solution (see [START_REF] Dal Maso | Renormalization solutions of elliptic equations with general measure data[END_REF]), the notion of solution obtained as limit of approximation (SOLA) (see [START_REF] Dall'aglio | Approximated solutions of equations with L 1 data. Application to the H-convergence of quasi-linear parabolic equations[END_REF]) or the notion of renormalized solution (see [START_REF] Murat | Soluciones renormalizadas de EDP elipticas non lineales[END_REF][START_REF] Dal Maso | Renormalization solutions of elliptic equations with general measure data[END_REF]). The previous three notions of solution are equivalent in the L 1 case and provide existence, stability and uniqueness results for a large class of elliptic equations. As far as the approximation of elliptic equations with Dirichlet boundary conditions and L 1 data is concerned, the method of finite volume (see [START_REF] Eymard | Finite volume methods[END_REF]) allows to consider such equations. In [START_REF] Gallouët | Finite volume approximation of elliptic problems with irregular data[END_REF] the authors have studied equation (1.1) with v = 0 and with a measure data (and Dirichlet boundary conditions). In [START_REF] Droniou | A finite volume scheme for a noncoercive elliptic with measure data[END_REF] the authors have considered a linear noncoercive equation (similar to (1.1)) with measure data (and Dirichlet boundary conditions). In both papers [START_REF] Gallouët | Finite volume approximation of elliptic problems with irregular data[END_REF][START_REF] Droniou | A finite volume scheme for a noncoercive elliptic with measure data[END_REF] the authors have established the convergence of the finite volume approximation to a solution in the sense of distributions. More precisely for the equation -∆u + div(vu) = f in Ω with Dirichlet boundary conditions, the limit u of the finite volume scheme verifies

         u ∈ q<d/(d-1)
W 1,q 0 (Ω)

Ω ∇u∇φ dx - Ω uv∇φ dx = Ω f φ dx, ∀φ ∈ s>d W 1,s 0 (Ω).
Recently mixing the techniques of renormalized solution and the finite volume approximation has been performed in [START_REF] Leclavier | Finite volume scheme and renormalized solutions for a noncoercive elliptic problem with L 1 data[END_REF] for a noncoercive equation with L 1 data and Dirichlet boundary conditions: the author proves that the limit of the finite volume scheme is the renormalized solution of the equation. Concerning the finite elements approximation the model case of the equationdiv(A∇u) = f with Dirichlet boundary conditions is dealt in [START_REF] Casado-Díaz | Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L 1[END_REF].

In the present paper we have to face to a noncoercive equation, to an L 1 data and to Neumann boundary conditions. To our knowledge such a situation is less studied in the literature both in the continuous case and the discrete case. One of the difficulty in the variational and linear case is that the kernel is nontrivial and that we have to impose an additional condition on the solution to insure uniqueness result, which is in general Ω udx = 0. In [START_REF] Droniou | Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions[END_REF] by using the Fredholm theory the authors have been studied the operator associated to the linear version of (1.1). They prove that the linear version of (1.1) with (H 1 ) ′ data verifying a compatibility condition admits a unique weak solution. Moreover they deduce existence and uniqueness results for elliptic and coercive equation of the typediv(A(x, u)∇u)) = µ with Neumann boundary condition, where µ is a bounded Radon measure. The finite volume approximation of (1.1) with f belonging to L 2 (Ω) (with zero mean value) is studied in [START_REF] Chainais-Hillairet | Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions[END_REF]. As in the continuous case the finite volume approximation requires the study of the kernel and for different approximations of the convective terms the authors prove in [START_REF] Chainais-Hillairet | Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions[END_REF] that the finite volume approximation converges to a weak solution of (1.1). For the class of nonlinear elliptic equations -∆ p u = f with Neumann boundary conditions, L 1 data and for small value of p it is well known that the solution is not in general a summable function so that the mean value has no meaning. To overcome this obstacle, in [START_REF] Alvino | Well-posed elliptic Neumann problems involving irregular data and domains[END_REF][START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF] the authors have chosen the median value which is well defined instead of the mean value. In [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF] an appropriate definition of renormalized solutions is given, which gives an existence result (see also [START_REF] Betta | Uniqueness for Neumann problems for nonlinear elliptic equations[END_REF] for the uniqueness question). The main originality of the present paper is to consider noncoercive equation (1.1) with L 1 data and to mix the techniques developed in [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF] and the finite volume method. We choose here the median value instead of the mean value as in [START_REF] Chainais-Hillairet | Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions[END_REF]. Since Poincaré-Wirtinger inequality is crucial in general we state in Proposition 2.8 an appropriate discrete Poincaré-Wirtinger inequality involving the median value (see Appendix for the proof, in the spirit of [START_REF] Bessemoulin-Chatard | On discrete functional inequalities for some finite volume schemes[END_REF]). In Theorem 3.2 we prove that the finite volume approximation of (1.1) converges to the renormalized solution with a null median.

The paper is organized as follows. In Section 2 we recall some definitions, in particular the median of a measurable function. Moreover we present in Section 2 the continuous case and the notion of renormalized solution of (1.1) and, at last the finite volume tools and the scheme. The main results are stated in Section 3. Section 4 is devoted to derive the a priori estimates for the solutions of the scheme. Using Section 4 we prove the existence of a solution of the scheme in Section 5 while the convergence analysis is performed in Section 6. Finally we give in Appendix the proof of the discrete Poincaré-Wirtinger inequality involving the median (instead of the mean value).

Assumptions and definitions

Let Ω be a connected open bounded polygonal subset of R d , d ≥ 2. We consider the following nonlinear elliptic problem with Neumann boundary conditions:

-div(λ(u)∇u -vu) = f in Ω, (λ(u)∇u -vu) • ⃗ n = 0 on ∂Ω, (2.1)
where ⃗ n is the outer unit normal to ∂Ω. We assume that

v ∈ L p (Ω) d with 2 < p < +∞ if d = 2, p = d if d ≥ 3, (2.2) λ is a continuous function such that λ ∞ ≥ λ(r) ≥ µ > 0, ∀r ∈ R, (2.3) 
with λ ∞ and µ two real numbers. Moreover, we assume that

f ∈ L 1 (Ω), (2.4) 
and it satisfies the compatibility condition

Ω f dx = 0. (2.5)
As explained in the Introduction we deal with solutions whose median is equal to zero. Let us recall that if u is measurable function, we define the median of u (with respect to the Lebesgue measure), denoted by med(u) as the set of real numbers t such that

meas{x ∈ Ω : u(x) > t} ≤ meas(Ω) 2 meas{x ∈ Ω : u(x) < t} ≤ meas(Ω) 2 .
It is known that med(u) is non-empty compact interval (see [START_REF] Ziemer | Weakly differentiable functions[END_REF]). Let us explicitly observe that if 0 ∈ med(u) then

meas{x ∈ Ω : u(x) > 0} ≤ meas(Ω) 2 meas{x ∈ Ω : u(x) < 0} ≤ meas(Ω) 2 .
We denote med(u) by

med(u) = inf t ∈ R : meas{x ∈ Ω : u(x) > t} ≤ meas(Ω) 2 , ( 2.6) 
and med(u) by

med(u) = sup t ∈ R : meas{x ∈ Ω : u(x) > t} ≥ meas(Ω) 2 . (2.7)
We observe that if u is an element of H 1 (Ω) (Ω being a connected domain), the median of u is uniquely determined; med(u) = medu = med(u). However it is not the case for the finite volume approximation of (2.18) which is a piecewise-constant function; the median is then the compact interval of R [med(u), med(u)].

In the whole paper, T n , n ≥ 0, denotes the truncation at height n that is

T n (s) = min(n, max(s, -n)), ∀s ∈ R.

Continuous Case

In this subsection we precise the notion of solution of equation (2.1). Indeed as explained in the Introduction, considering elliptic equations with L 1 data requires an appropriate notion of solution which provides existence, stability and uniqueness results. There is a wide literature in the Dirichlet case. In the Neumann case, due to the lack of regularity of the solution, the mean value may not exist for nonlinear problems with L 1 data, which gives additional difficulties in deriving estimates and in defining an appropriate notion of renormalized solution. We refer mainly to [START_REF] Droniou | Solving convection-diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method[END_REF] for linear problems using the duality method and to [START_REF] Prignet | Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure[END_REF], [START_REF] Alvino | Well-posed elliptic Neumann problems involving irregular data and domains[END_REF] and [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF] for nonlinear problems.

In [START_REF] Alvino | Well-posed elliptic Neumann problems involving irregular data and domains[END_REF] and [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF] the authors have chosen the median instead of the mean value (which may not exist if the solution is not integrable) and one of the main tool is the following Poincaré-Wirtinger inequality, see [START_REF] Ziemer | Weakly differentiable functions[END_REF].

Proposition 2.1. If u ∈ W 1,p (Ω), then ∥u -med(u)∥ L p (Ω) ≤ C∥∇u∥ (L p (Ω)) d (2.8)
where C is a constant depending on p, d, Ω.

In [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF] the authors prove the existence of a renormalized solution for a class of nonlinear problems and prove in [START_REF] Betta | Uniqueness for Neumann problems for nonlinear elliptic equations[END_REF] uniqueness results under additional assumptions. In the present paper we use the framework of renormalized solutions. In the particular case of equation (2.1), let us recall the following definition (see [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF]).

Definition 2.2.

A real function u defined in Ω is a renormalized solution to (2.1) if u is measurable and finite almost everywhere in Ω, (2.9)

T n (u) ∈ H 1 (Ω), for any n > 0, (2.10) 
lim n→+∞ 1 n {x∈Ω,|u(x)|<n} λ(u)|∇u| 2 dx = 0, (2.11) 
and the following equation holds

Ω S(u)λ(u)∇u • ∇φ dx + Ω S ′ (u)λ(u)φ∇u • ∇u dx - Ω uS(u)v • ∇φ dx - Ω uS ′ (u)φv • ∇u dx = Ω f φS(u) dx,
(2.12)

for every S ∈ W 1,∞ (R) having compact support and for every φ ∈ L ∞ (Ω) ∩ H 1 (Ω).

By combining [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF] and [START_REF] Betta | Uniqueness for Neumann problems for nonlinear elliptic equations[END_REF] we have the following existence and uniqueness result.

Theorem 2.3. Let us assume that (2.2)-(2.5) hold true. Then there exists a unique renormalized solution u of (2.1) such that med(u) = 0.

Remark 2.4. As far as the uniqueness is concerned equation (2.1) is not directly in the scope of [START_REF] Betta | Uniqueness for Neumann problems for nonlinear elliptic equations[END_REF]. Indeed uniqueness results are mainly obtained for equations whose prototype isdiv(a(x, ∇u)+ Φ(x, u)) = f with Neumann boundary conditions. The operator a(x, ∇u) does not depend on u. Due to the presence of λ(u) in equation (2.1) the quasilinear character allows one to obtain the uniqueness by a changement of unknow. Since λ(r) is a continuous function such that λ ∞ ≥ λ(r) ≥ µ > 0, by defining λ(r) = r 0 λ(s)ds and w = λ(u), we can verify that the function w has a null median and that w is a renormalized solution of

-div(∇w -v λ -1 (w)) = f in Ω, (∇w -v λ -1 (w)) • ⃗ n = 0 on ∂Ω.
(2.13)

At last since the function λ -1 is Lipschitz continuous, Theorem 4.2 of [START_REF] Betta | Uniqueness for Neumann problems for nonlinear elliptic equations[END_REF] allows one to conclude that w is unique so that u is unique.

Finite Volume

We now introduce the discrete settings. Let us first recall the notion of admissible discretization of Ω , the definitions of the discrete norms and the space of piecewise functions associated to an admissible mesh following [START_REF] Eymard | Finite volume methods[END_REF].

Definition 2.5 (Admissible mesh

). An admissible mesh M of Ω is given by a finite family T of disjoint open convex polygonal subsets of Ω, a finite family E of disjoint subsets of Ω (the edges) consisting in non-empty open convex subsets of affine hyperplanes and a family P = (x K ) K∈T of points in Ω such that

• Ω = ∪ K∈T K, • each σ ∈ E is a non-empty open subset of ∂K for some K ∈ T ,
• by denoting

E K = {σ ∈ E, σ ⊂ ∂K}, ∂K = ∪ σ∈E K σ for all K ∈ T , • for all K ̸ = L in T , either the (d -1)-dimentional measure of K ∩ L is zero or K ∩ L = σ for some σ ∈ E, which is then denoted σ = K|L, • for all K ∈ T , x K ∈ K,
• for all σ = K|L ∈ E, the straight line (x K , x L ) intersects and is orthogonal to σ,

• for all σ ∈ E such that σ ⊂ ∂Ω ∩ ∂K, the line which is orthogonal to σ and goes through x K intersects σ.

In the whole of the present paper, we use the following notations associated with an admissible discretization. In the set of edges E, we distinguish the set of interior edges E int and the set of boundary edges E ext . We denote by m(K) the d-dimensional measure of a control volume K and m(σ) the (d -1)-dimensional measure of σ. For all σ ∈ E K , n K,σ is the unit normal to σ outwards K. If σ = K|L ∈ E int , we denote by d σ the Euclidian distance between x K and x L ,

d σ = d K,σ + d L,σ and d σ = d K,σ if σ ∈ E ext ∩ E K .
The size of the mesh is defined by

h M = sup K∈T diam(K).
We assume that the mesh satisfies the following assumption

∃ ξ > 0 such that d(x K , σ) ≥ ξd σ , ∀T ∈ E, ∀σ ∈ E K .
(2.14)

An example of admissible mesh in the sense of the above definition is shown in Figure 1.

The space of piecewise functions associated to an admissible mesh, denoted by X(M), is defined as the set of functions from Ω to R wich are constant over each control volume of the mesh. Definition 2.6 (Discrete W 1,p norm). Let Ω be an open bounded polygonal subset of R d , d ≥ 2, and let M be an admissible mesh. For u = (u K ) K∈T ∈ X(T ) and p ∈ [1, +∞[, the discrete W 1,p -semi-norm is defined by

|u| 1,p,M =     σ∈E int σ=K|L m(σ) d p-1 σ |u K -u L | p     1 p , ∀u ∈ X(T )
and the discrete W 1,p -norm is defined by

∥u∥ 1,p,M = ∥u∥ 0,p + |u| 1,p,M , ∀u ∈ X(T )
where ∥u∥ 0,p is the L p norm for piecewise constant functions, ∀p ∈ [1, +∞[,

∥u∥ 0,p = Ω |u(x)| p dx 1 p = K∈M m(K)|u K | p 1 p
, ∀u ∈ X(T ).

We present now discrete functional analysis results. We refer the reader to [[8], Lemma 6.1] for a proof of the following discrete Sobolev inequality. Proposition 2.7 (Discrete Sobolev inequality). Let Ω be a bounded polygonal open subset of R d and let M be an admissible mesh satisfying (2.14). Let q < +∞ if d = 2 and q = 2d d-2 if d ≥ 3. Then there exists C = C(Ω, ξ, q) such that, for all u = (u K ) K∈T ∈ X(T ),

∥u∥ 0,q ≤ C (|u| 1,2,M + ∥u∥ 0,2 ) .
(2.15)

In the already cited references discrete Poincaré and Poincaré-Wirtinger inequalities are related to the discrete space W 1,p 0 (Ω) and zero boundary condition or the discrete space W 1,p (Ω) with discrete mean value. We derive here a discrete Poincaré-Wirtinger inequality involving the median. The proof is given in the appendix.

Proposition 2.8 (Discrete Poincaré-Wirtinger median inequality).

Let Ω be an open bounded connected polyhedral domain of R d and let M be an admissible mesh satisfying (2.14). Then for 1 ≤ p < +∞ there exists a constant C > 0 only depending on Ω, d and p such that

∥u -c∥ 0,p ≤ C ξ (p-1)/p |u| 1,p,M , ∀u ∈ X(T ) (2.16)
where c belongs to med(u).

Theorem 2.9 (Discrete Rellich's theorem). Let (M m ) m≥1 be a sequence of admissible meshes satisfying (2.14) and such that

h Mm → 0 as m → ∞. If v m ∈ X(T m ) is such that (|v m | 1,2,M + ∥v m ∥ 0,2 ) is bounded, then (v m ) m∈N is relatively compact in L 2 (Ω). Furthermore, any limit in L 2 (Ω) of a subsequence of (v m ) m∈N belongs to H 1 (Ω).
Let us now define a discrete finite volume gradient introduced equivalently in [ [START_REF] Chainais-Hillairet | Finite volume scheme for multidimensional drift-diffusion equations and convergence analysis[END_REF], Lemma 4.4], [[14], Lemma 6.5] or [ [START_REF] Eymard | H-convergence and numerical schemes for elliptic problems[END_REF], Definition 2]. Definition 2.10 (Discrete finite volume gradient). For K ∈ M and σ ∈ E(K), we define the volume D K,σ as the cone of basis σ and of opposite vertex x K .Then, we define the "diamond-cell" D σ (see Figure 1) by

D σ = D K,σ ∪ D L,σ if σ = K|L ∈ E int , D σ = D K,σ if σ ∈ E ext ∩ E K , and m(D σ ) = 1 d d σ m(σ).
The approximate gradient ∇ M u of a function u ∈ X(T ) is defined as a piece-wise constant function over each diamond cell and given by

∀σ ∈ E int , σ = K|L, ∇ M u(x) = d u L -u K d σ n K,σ , ∀x ∈ D σ , ∀σ ∈ E ext ∩ E K , ∇ M u(x) = 0, ∀x ∈ D σ . σ = K |L • x K • x L K L : D σ dσ |σ | Figure 1: The diamond D σ
Let us then give convergence property of the discrete gradient (see e.g., in the case of Dirichlet boundary condition, [START_REF] Chainais-Hillairet | Finite volume scheme for multidimensional drift-diffusion equations and convergence analysis[END_REF] and [START_REF] Eymard | H-convergence and numerical schemes for elliptic problems[END_REF] in L 2 context, and [START_REF] Larcher | Convergence analysis of a finite element-finite volume scheme for a rans turbulence model[END_REF] in the L 1 context).

Lemma 2.11 (Weak convergence of the finite volume gradient). Let (M m ) m≥1 be a sequence of admissible meshes satisfying (2.14) and such that h

Mm → 0 as m → ∞. Let v m ∈ X(T m ) and let us assume that there exists α ∈ [1, +∞[ and C > 0 such that ∥v m ∥ 1,α,Mm ≤ C, and that v m converges in L 1 (Ω) to v ∈ W 1,α (Ω). Then ∇ Mm v m converges to ∇v weakly in L α (Ω) d .
We now define the finite volume scheme. Let M be an admissible mesh in the sense of definition 2.5. For K ∈ T and σ ∈ E K , we define v K,σ by

v K,σ = 1 m(D σ ) Dσ v • n K,σ dx. ( 2.17) 
We consider the following finite volume scheme for (1.1)

∀K ∈ T , σ∈E int (K) m(σ) d σ λ(u) σ (u K -u L ) + σ∈E int (K) m(σ)v K,σ u σ,+ = K f dx, (2.18) 
and

∀σ = K|L ∈ E int , u σ,+ = u K if v K,σ ≥ 0, u L otherwise. (2.19)
We denote u σ,-the downstream choice of u, i.e. u σ,-is such that

{u σ,+ , u σ,-} = {u K , u L }, ∀σ ∈ E int . Finally, ∀σ = K|L ∈ E int , min[λ(u K ), λ(u L )] ≤ λ(u) σ ≤ max[λ(u K ), λ(u L )], (2.20) 
where λ(u) σ is for example the mean value of λ(u K ) and λ(u

L ) if σ ∈ E int .

Main results

Our main results on the finite volume scheme are the following. The first one states that there exists at least one solution to the scheme. It is a generalization of Theorem 2.5 in [START_REF] Chainais-Hillairet | Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions[END_REF] in the context of a quasilinear problem with a median value constraint instead of a mean value constraint. The second one gives the convergence of this solution to the unique renormalized solution of the continuous problem with null median, as the size of the mesh tends to 0. 

0 as m → ∞. Let u m = (u m K ) K∈Tm ∈ X(T m
) be a solution of (2.18) such that med(u m ) = 0. Then u m converges to the unique renormalized solution u of (1.1) having med(u) = 0, in the sense that

u m converges to u a.e. in Ω, ∀n ∈ N, ∇ Mm T n (u m ) converges to ∇T n (u), weakly in (L 2 (Ω)) d , as m → ∞. Remark 3.3.
As explained in Introduction we choose in the present paper a constraint on the median value instead of the mean value. It allows one to mix the techniques developed in [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF] and the finite volume. Observe that the median is an appropriate choice in [START_REF] Alvino | Well-posed elliptic Neumann problems involving irregular data and domains[END_REF][START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF] to deal with nonlinear elliptic equations with L 1 data and Neumann boundary conditions since we cannot expect to have a solution u (in the sense of distribution or in the renormalized sense) of -∆ p u = f with p closed to 1 such that the solution belongs to L 1 (Ω). However under the restriction p > 2 -1/N and using the Boccardo-Gallouët estimates it is possible to solve -∆ p u = f with f in L 1 and Neumann boundary conditions in the sense of distributions with a mean value equal to zero, see [START_REF] Prignet | Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure[END_REF]. As far as equation (1.1) is concerned a natural question is to solve its and to approximate its with Ω udx = 0 and not med(u) = 0. To our knowledge the continuous case is not dealt in the literature. Starting from an approximate problem the difficulties are similar in passing to the limit in the continuous case and in the discrete case : the crucial steps are the a priori estimates stated in Section 4. Since we cannot give all the details of a possible proof we refer to [START_REF] Aoun | Approximation of elliptic, parabolic equations with L 1 data and Neumann boundaries condition[END_REF].

A priori estimates

This section is devoted to derive a priori estimates of the solution of the scheme (2.18), which are crucial to extract subsequences using compactness results and then to pass to the limit in the scheme. Let us observe that we adapt the strategy developed in [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF] for the continuous problem (2.1) with Neumann boundary conditions to the discrete case and that we use the techniques developed in [START_REF] Chainais-Hillairet | Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions[END_REF] for the approximation of the solution to problem (2.1) with a more regular data and Neumann boundary conditions and the ones of [START_REF] Droniou | A finite volume scheme for a noncoercive elliptic with measure data[END_REF] and [START_REF] Leclavier | Finite volume scheme and renormalized solutions for a noncoercive elliptic problem with L 1 data[END_REF] which study the approximation of equations with L 1 (or measure data) with Dirichlet boundary conditions. Proposition 4.1 (Estimate on ln(1 + |u M |) with med(u M ) = 0). Let M be an admissible mesh satisfying (2.14). If u M = (u K ) K∈T is a solution to (2.18), such that med(u M ) = 0, then

∥ ln(1 + |u M |)∥ 2 1,2,M ≤ C 2∥f ∥ L 1 (Ω) + d|Ω| p-2 p ∥ v ∥ 2 (L p (Ω)) d , ( 4.1) 
where

C = C(Ω, µ, β, p, ξ) is a positive constant.
Proof. A log-estimate was obtained in [Proposition 3.1, [START_REF] Droniou | A finite volume scheme for a noncoercive elliptic with measure data[END_REF]] in the case of Dirichlet boundary conditions and v ∈ (C( Ω)) d . Since we deal with Neumann boundary conditions, v ∈ (L p (Ω)) d and the specific choice of med(u M ) = 0, we will adapt the proof derived in [START_REF] Droniou | A finite volume scheme for a noncoercive elliptic with measure data[END_REF] and explain the modifications. As in [START_REF] Droniou | A finite volume scheme for a noncoercive elliptic with measure data[END_REF], let φ(s) = s 0 dt (1 + |t|) 2 . Taking φ(u K ) as a test function in the scheme (2.18) and reordering the sums yield

σ∈E int m(σ) d σ λ(u) σ (u K -u L )(φ(u K )-φ(u L )) ≤ ∥f ∥ L 1 (Ω) + σ∈E int m(σ)|v K,σ |u σ,+ (φ(u σ,-)-φ(u σ,+ )). (4.2)
To control the second term of the right-hand side of (4.2) we introduce the set of edges A (see [START_REF] Droniou | A finite volume scheme for a noncoercive elliptic with measure data[END_REF]) by

A = {σ ∈ E int ; u σ,+ ≥ u σ,-, u σ,+ < 0} ∪ {σ ∈ E int ; u σ,+ < u σ,-, u σ,+ ≥ 0}, (4.3) 
Since φ is non-decreasing, as in [START_REF] Droniou | A finite volume scheme for a noncoercive elliptic with measure data[END_REF] we obtain

σ∈E int m(σ)|v K,σ |u σ,+ (φ(u σ,-) -φ(u σ,+ )) ≤ σ∈A m(σ)|v K,σ |u σ,+ (φ(u σ,-) -φ(u σ,+ )). (4.4)
Now using Cauchy-Schwarz and Hölder inequalities, and the following inequality (see Lemma 3.1,

[15]), ∀σ ∈ A, |u σ,+ | 2 |φ(u σ,-) -φ(u σ,+ )| 2 ≤ |u σ,--u σ,+ ||φ(u σ,-) -φ(u σ,+ )|, we obtain σ∈A m(σ)|v K,σ ||u σ,+ |(φ(u σ,-) -φ(u σ,+ )) ≤ σ∈A m(σ)d σ |v K,σ | 2 1 2 × σ∈A m(σ) d σ |u σ,+ | 2 |φ(u σ,-) -φ(u σ,+ )| 2 1 2 ≤ σ∈A m(σ)d σ p-2 p σ∈A m(σ)d σ |v K,σ | p 1 p × σ∈A m(σ) d σ |u σ,+ | 2 |φ(u σ,-) -φ(u σ,+ )| 2 1 2 ≤ σ∈A m(σ)d σ p-2 p σ∈A m(σ)d σ |v K,σ | p 1 p × σ∈A m(σ) d σ |u k -u L ||φ(u K ) -φ(u L )| 1 2
. (

Recalling that σ∈A m(σ)d σ ≤ σ∈E int m(σ)d σ = dm(Ω) and since the term

σ∈E int m(σ)d σ |v K,σ | p 1 p is bounded by d 1 p ∥v∥ (L p (Ω)) d , by Young's inequality we get σ∈A m(σ)|v K,σ ||u σ,+ |(φ(u σ,-) -φ(u σ,+ )) ≤ 1 2β dm(Ω) p-2 p ∥v∥ 2 (L p (Ω)) d + β 2 m(Ω) p-2 p σ∈E int m(σ) d σ (u K -u L )(φ(u K ) -φ(u L )), (4.6 
) where β > 0. Since 0 < µ ≤ λ(u), an appropriate choice of β gives

σ∈E int m(σ) d σ (u K -u L )(φ(u K ) -φ(u L )) ≤ C(Ω, µ, β, p) 2∥f ∥ L 1 (Ω) + d|Ω| p-2 p ∥v∥ 2 (L p (Ω)) d . (4.7)
Moreover we have, for all (x, y) ∈ R 2 , (ln

(1 + |x|) -ln(1 + |y|)) 2 ≤ (x-y)(φ(x)-φ(y)). It follows that σ∈E int m(σ) d σ (ln(1 + |u K |) -ln(1 + |u L |)) 2 ≤ C(Ω, µ, β, p) 2∥f ∥ L 1 (Ω) + d|Ω| p-2 p ∥v∥ 2 (L p (Ω)) d . (4.8) Since med(ln(1 + u M )) = 0, the discrete Poincaré-Wirtinger inequality (2.16) implies that ∥ ln(1 + |u M |)∥ 2 1,2,M ≤ C 2∥f ∥ L 1 (Ω) + d|Ω| p-2 p ∥ v ∥ 2 (L p (Ω)) d .
Let us state a corollary which is a consequence of Proposition 4.1 and is necessary for the proof of the estimate of Proposition 4.3 and for Proposition 4.4. It may be found in [START_REF] Droniou | A finite volume scheme for a noncoercive elliptic with measure data[END_REF] and is recalled here with its proof, for the sake of completeness. Corollary 4.2. Let M be an admissible mesh satisfying (2.14).

If u M = (u K ) K∈T ∈ X(T ) is a solution to (2.18) and, for n > 0, E n = {|u M | > n}, then there exists C > 0 only depending on (Ω, v, f, d, p, ξ) such that meas(E n ) ≤ C (ln(1 + n)) 2 .
(4.9)

Proof. On the one hand, using Proposition 4.1 we have 

∥ ln(1 + |u M |)∥ 2 1,2,M ≤ C 2∥f ∥ L 1 (Ω) + d|Ω| p-2 p ∥ v ∥ 2 (L p (Ω)) d . ( 4 
M = (u K ) K∈T ∈ X(T ) is a solution to (2.18) having med(u M ) = 0, then for any n ≥ 0, there exists C > 0 only depending on (Ω, v, f, n, d, ξ) such that ∥T n (u M )∥ 1,2,M ≤ C. (4.13)
Let (M m ) m≥1 be a sequence of admissible meshes satisfying (2.14) and such that h Mm goes to zero as m → ∞ and let u m = (u m K ) K∈Tm ∈ X(T m ) be a solution to (2.18) having med(u m ) = 0. Then there exists a measurable function u finite a.e. in Ω such that, up to a subsequence (still indexed by m), T n (u) ∈ H 1 (Ω), for any n > 0, (4.14) med(u) = 0, (

T n (u m ) → T n (u) strongly in L 2 (Ω) and a.e , (4.16)

∇ Mm T n (u m ) ⇀ ∇T n (u) in (L 2 (Ω)) d , ∀n > 0. (4.17)
Proof. The proof is divided into 2 steps. First, we prove that T n (u M ) satisfies the a priori estimate (4.13). In the second step, considering a sequence of admissible meshes M m , we prove that the solution u m to the scheme (2.18) converges to a function u as m goes to infinity and that (4.14)-(4.17) hold true.

Step 1. Estimate on T n (u M ).

After multiplying each equation of the scheme by T n (u K ), summing over each control volume and reordering the sums, we obtain T 1 + T 2 = T 3 with

T 1 = σ∈E int m(σ) d σ λ(u) σ (u K -u L )(T n (u K ) -T n (u L )), T 2 = σ∈E int m(σ)v K,σ u σ,+ (T n (u K ) -T n (u L )), T 3 = K∈T K f T n (u K ) dx.
Since T n is bounded by n, we obtain that

|T 3 | ≤ n∥f ∥ L 1 (Ω) . Then T 1 ≤ n∥f ∥ L 1 (Ω) -T 2 . (4.18)
Let σ ∈ E. By the definition (2.19) of u σ,+ and recalling that u σ,-is the downstream choice of u,

if v K,σ ≥ 0 it gives v K,σ (T n (u K ) -T n (u L )) = v K,σ (T n (u σ,+ ) -T n (u σ,-)), and if v K,σ < 0 it gives v K,σ (T n (u K ) -T n (u L )) = -v K,σ (T n (u σ,+ ) -T n (u σ,-)).
In consequence, T 2 can be written as

-T 2 = 1 n σ∈E int m(σ) |v K,σ | u σ,+ (T n (u σ,-) -T n (u σ,+ )). (4.19)
As in the proof of estimate (4.1), we use the set of edges

A = {σ ∈ E int ; u σ,+ ≥ u σ,-, u σ,+ < 0} ∪ {σ ∈ E int ; u σ,+ < u σ,-, u σ,+ ≥ 0}. Since T n is non decreasing we have -T 2 ≤ 1 n σ∈A m(σ) |v K,σ | u σ,+ (T n (u σ,-) -T n (u σ,+ )). (4.20) Due to the fact that ∀σ ∈ A, if |u σ,+ | ≥ n then |u σ,-| ≥ n we deduce that u σ,+ (T n (u σ,-) -T n (u σ,+ )) = T n (u σ,+ )(T n (u σ,-) -T n (u σ,+ )), ∀σ ∈ A.
It follows that

-T 2 ≤ σ∈A m(σ) |v K,σ | T n (u σ,+ ) (T n (u σ,-) -T n (u σ,+ )) .
Moreover, using Cauchy-Schwarz and Young inequalities, taking into account that

σ∈E int m(σ)d σ |v K,σ | 2 1 2
is bounded by

d 1 2 ∥v∥ (L 2 (Ω)) d , we obtain -T 2 ≤ σ∈A m(σ) |v K,σ | T n (u σ,+ ) (T n (u σ,-) -T n (u σ,+ )) ≤   σ∈E int m(σ)d σ |v K,σ | 2   1 2 σ∈A m(σ) d σ T n (u σ,+ ) 2 (T n (u σ,-) -T n (u σ,+ )) 2 1 2 ≤ n d 1 2 ∥v∥ L 2 (Ω) d σ∈A m(σ) d σ (T n (u σ,-) -T n (u σ,+ )) 2 1 2 ≤ 1 2β n 2 d∥v∥ 2 L 2 (Ω) d + β 2 σ∈A m(σ) d σ (T n (u σ,-) -T n (u σ,+ )) 2 ≤ 1 2β n 2 d∥v∥ 2 L 2 (Ω) d + β 2 σ∈E int m(σ) d σ (T n (u K ) -T n (u L )) 2 ,
where

β > 0. Since T n (u K ) -T n (u L ) ≤ u K -u L , we have -T 2 ≤ 1 2β n 2 d∥v∥ 2 (L 2 (Ω)) d + β 2 σ∈E int m(σ) d σ (u K -u L ) (T n (u K ) -T n (u L )) ,
and we can deduce that

σ∈E int λ(u) σ m(σ) d σ (u K -u L ) (T n (u K ) -T n (u L )) ≤ n∥f ∥ L 1 (Ω) + 1 2β n 2 d∥v∥ 2 (L 2 (Ω)) d + β 2 σ∈E int m(σ) d σ (u K -u L ) (T n (u K ) -T n (u L )) .
Recalling that med(T n (u M )) = 0 and 0 ≤ µ ≤ λ(u), an appropriate choice of β and the Poincaré-Wirtinger inequality (2.16) lead to the result.

Step 2. In this step we consider sequence of admissible meshes (M m ) m≥1 satisfying (2.14) and such that h Mm goes to zero as m → ∞. If u m = (u m K ) K∈Tm ∈ X(T m ) denotes a solution to (2.18) having med(u m ) = 0, we show that there exists a measurable function u finite a.e. in Ω such that (4.14)-(4.17) hold true.

The method is widely used for elliptic equations with L 1 (or measure data) (see e.g. [START_REF] Dal Maso | Renormalization solutions of elliptic equations with general measure data[END_REF]) and consists in proving that, up to subsequence, u m is a Cauchy sequence in measure. For the convenience of the reader we give the complete arguments. For any n, in view of Step 1 we know that the sequence ∥T n (u m )∥ 1,2,Mm ) m≥1 is bounded (uniformly with respect to m). By Theorem 2.9 and a diagonal process (n being a natural number), up to a subsequence still indexed by m, we deduce that, for any n ∈ N, there exists v n belonging to H 1 (Ω) such that

T n (u m ) → v n , a.e. in Ω, as m → ∞. (4.21) 
We now prove that u m is a Cauchy sequence in measure. Let ω > 0. For all n > 0, and all m, p ≥ 0 , we have

{|u m -u p | > ω} ⊂ {|u m | > n} ∪ {|u p | > n} ∪ {|T n (u m ) -T n (u p )| > ω}.
Let ε > 0 fixed. By Corollary 4.2, let n > 0 such that, for all m, p ≥ 0,

meas({|u m | > n}) + meas({|u p | > n}) < ε 2 .
Once n is chosen, since T n (u m ) converges almost everywhere to v n as m goes to infinity we obtain

∃m 0 > 0 ; ∀m, p ≥ m 0 meas({|T n (u m ) -T n (u p )| > ω}) ≤ ε 2 .
Therefore, we deduce that ∀m, p ≥ m 0 

meas{|u m -u p | > ω} < ε. Hence (u m ) m∈N is a
∇ Mm T n (u m ) ⇀ ∇T n (u) in (L 2 (Ω)) d , as m → ∞.
It remains to prove that med(u) = 0. Due to the point-wise convergence of u m to u, the sequence 1 {um>0} 1 {u>0} converges to 1 {u>0} a.e. as h M goes to zero. Recalling that med(u m ) = 0 Fatou's lemma leads to

meas{u(x) > 0} ≤ lim inf Ω 1 {um>0} 1 {u>0} dx ≤ lim inf meas{u m (x) > 0} ≤ meas(Ω) 2 .
Analogously from the convergence of 1 {um<0} 1 {u<0} to 1 {u<0} a.e. as m → ∞ meas{u(x) < 0} ≤ meas(Ω) 2 .

It follows that 0 ∈ med(u). Since we have for n large enough med(T n (u)) = med(u) and since T n (u) belongs to H 1 (Ω), the median of u is unique and it is equal to 0.

Let us recall that in the renormalized framework the decay of the energy (2.11) plays an important role to derive stability or uniqueness results. In the following proposition we show a discrete version of the decay of the energy (uniformly with respect to the sequence of the admissible meshes). Having (4.23) ans (4.24) is crucial to pass to the limit in the scheme. Proposition 4.4 (Discrete estimate on the energy). Let (M m ) m≥1 be a sequence of admissible meshes satisfying (2.14) and such that h Mm → 0 as m → ∞. For any m ≥ 0, let us consider u m = (u m K ) K∈Tm ∈ X(T m ) a solution to (2.18) and let u be a measurable function finite a.e. in Ω such that, up to a subsequence still indexed by m, the second part of Proposition 4.3 holds. Then we have lim

n→+∞ lim h Mm →0 1 n σ∈E int m(σ) d σ λ(u m ) σ (u m K -u m L )(T n (u m K ) -T n (u m L )) = 0, (4.23) 
where u L = 0 if σ ∈ E ext , and

lim n→+∞ lim h Mm →0 1 n σ∈E int m(σ) |v K,σ | |u m σ,+ | |T n (u m σ,+ ) -T n (u m σ,-)| = 0. (4.24) 
Proof. Let m ≥ 1 and u m = u m K K∈Tm be a solution of (2.

18). Multiplying each equation of the scheme by

Tn(u m K ) n , summing over K ∈ M and gathering by edges we find

T 1 + T 2 = T 3 with T 1 = 1 n σ∈E int m(σ) d σ λ(u m ) σ (u m K -u m L )(T n (u m K ) -T n (u m L )), (4.25 
)

T 2 = 1 n σ∈E int m(σ)v K,σ u m σ,+ (T n (u m K ) -T n (u m L )), (4.26 
)

T 3 = 1 n K∈M K f T n (u m K ) dx. (4.27)
According to the definition of u m , we have

T 3 = Ω f T n (u m ) n dx.
Due to (4.22), T n (u m ) converges to T n (u) as m goes to infinity in L ∞ (Ω) weak-⋆ and a.e. Since f belongs to L 1 (Ω) it follows that lim

h Mm →0 T 3 = Ω f T n (u) n dx.
Recalling that u is finite almost everywhere in Ω, Tn(u) n converges to 0 a.e. in Ω as n goes to infinity.

Therefore, since f belongs to L 1 (Ω) and We now study the term T 2 . We know from (4.19) that it can be written as

T
T 2 = 1 n σ∈E int m(σ) |v K,σ | u m σ,+ (T n (u m σ,+ ) -T n (u m σ,-)). (4.29)
Recalling the definition of the subset of edges

A A = {σ ∈ E int ; u m σ,+ ≥ u m σ,-, u m σ,+ < 0} ∪ {σ ∈ E int ; u m σ,+ < u m σ,-, u m σ,+ ≥ 0}, (4.30) 
we denote by B the subset of edges such that

B = {σ ∈ E int ; u m σ,+ ≥ u m σ,-, u m σ,+ ≥ 0} ∪ {σ ∈ E int ; u m σ,+ < u m σ,-, u m σ,+ < 0}. (4.31)
Then T 2 can be written as

T 2 = 1 n σ∈A m(σ) |v K,σ | u m σ,+ (T n (u m σ,+ ) -T n (u m σ,-)) + 1 n σ∈B m(σ) |v K,σ | u m σ,+ (T n (u m σ,+ ) -T n (u m σ,-)) = T 2,1 + T 2,2 .
(4.32)

Using the fact that T n is non decreasing and T n (0) = 0, we notice that

|T 2,1 | = -T 2,1 = - 1 n σ∈A m(σ) |v K,σ | u m σ,+ (T n (u m σ,+ ) -T n (u m σ,-)), |T 2,2 | = T 2,2 = 1 n σ∈B m(σ) |v K,σ | u m σ,+ (T n (u m σ,+ ) -T n (u m σ,-)),
and

|T 2 | = -T 2,1 + T 2,2 .
As far as -T 2,1 is concerned, we observe that for any σ ∈ A, |u m σ,+ | ≥ n implies |u m σ,-| ≥ n. To deal with this term, as in [START_REF] Leclavier | Finite volume scheme and renormalized solutions for a noncoercive elliptic problem with L 1 data[END_REF], we split the sum on {|u m σ,+ | ≤ r} and on {r ≤ |u m σ,+ | ≤ n} where r is a positive real number which will be chosen later. We have

-T 2,1 = I 1 + I 2 with I 1 = 1 n σ∈A |u m σ,+ |≤r m(σ) |v K,σ | u m σ,+ (T n (u m σ,-) -T n (u m σ,+ )), (4.33 
)

I 2 = 1 n σ∈A r≤|u m σ,+ |≤n m(σ) |v K,σ | u m σ,+ (T n (u m σ,-) -T n (u m σ,+ )). (4.34) Recalling that σ∈A m(σ)d σ |v K,σ | 2 1 2
is bounded by d 1 2 ∥v∥ (L 2 (Ω)) d , the Cauchy-Schwarz inequality and the Young inequality yield that

|I 1 | = 1 n σ∈A |u m σ,+ |≤r m(σ) |v K,σ | u m σ,+ (T n (u m σ,-) -T n (u m σ,+ )) ≤ 1 n      σ∈A |u m σ,+ |≤r m(σ)d σ |v K,σ | 2      1 2      σ∈A |u m σ,+ |≤r m(σ) d σ (u m σ,+ ) 2 (T n (u m σ,-) -T n (u m σ,+ )) 2      1 2 ≤ r n      σ∈A |u m σ,+ |≤r m(σ)d σ |v K,σ | 2      1 2      σ∈A |u m σ,+ |≤r m(σ) d σ (u m K -u m L )(T n (u m K ) -T n (u m L ))      1 2 ≤ 1 n      r 2 d ∥ v ∥ 2 (L 2 (Ω)) d 2β + β 2 σ∈A |u m σ,+ |≤r m(σ) d σ (u m K -u m L )(T n (u m K ) -T n (u m L ))      , (4.35)
where β > 0 (to be chosen later). To control the second term I 2 , we distinguish the case d ≥ 3 and d = 2. We know that for any

σ ∈ A, |u m σ,+ | ≥ r implies |u m σ,-| ≥ r; if d ≥ 3 the equality 1 d + d -2 2d + 1 2 = 1,
and the Hölder inequality give

|I 2 | ≤ 1 n σ∈A r≤|u m σ,+ |≤n r≤|u m σ,-| m(σ) |v K,σ | T n (u m σ,+ ) (T n (u m σ,-) -T n (u m σ,+ )) ≤ 1 n σ∈A r≤|u m σ,+ |≤n r≤|u m σ,-| m(σ) d σ |v K,σ | d 1 d σ∈A r≤|u m σ,+ |≤n r≤|u m σ,-| m(σ) d σ |T n (u m σ,+ )| 2d d-2 d-2 2d × σ∈A r≤|u m σ,+ |≤n r≤|u m σ,-| m(σ) d σ (T n (u m σ,-) -T n (u m σ,+ )) 2 1 2 ≤ 1 n σ∈A r≤|u σ,+ |≤n r≤|u m σ,-| m(σ) d σ |v K,σ | d 1 d σ∈E int m(σ) d σ |T n (u m σ,+ )| 2d d-2 d-2 2d × σ∈E int m(σ) d σ (T n (u m σ,-) -T n (u m σ,+ )) 2 1 2
.

Recalling that med(T n (u m )) = 0, the discrete Poincaré-Wirtinger inequality (2.16) and the dis-crete Sobolev inequality (2.15) lead to

|I 2 | ≤ C 1 d 1 2 ∥v∥ (L d (Er)) d n σ∈E int m(σ) d σ (T n (u m K ) -T n (u m L )) 2 , (4.36)
where E r is the set where |u m σ,+ | ≥ r and C 1 > 0 is a constant independent of n and M. If d = 2, similar arguments lead to 

|I 2 | ≤ C 2 d 1 2 ∥v∥ (L p (Er)) d n σ∈E int m(σ) d σ (T n (u m K ) -T n (u m L ))
|I 2 | ≤ C 3 2n σ∈E int m(σ) d σ (u m K -u m L )(T n (u m K ) -T n (u m L )). (4.39)
Recalling that -T 2 ≤ -T 2,1 , the inequalities (4.39) and (4.35) lead to

-T 2 ≤ |I 1 + I 2 | ≤ 1 n r 2 d ∥ v ∥ 2 (L 2 (Ω)) d 2β + C 4 2n σ∈E int m(σ) d σ (u m K -u m L )(T n (u m K ) -T n (u m L )), (4.40) 
where C 4 is a positive constant depending on β and C 3 . Since 0 < µ ≤ λ(u m ), we choose β > 0 such that the second term of the right-hand side of (4.40 

) is ≤ T 1 2 . It follows that -T 2 ≤ 1 n r 2 d ∥ v ∥ 2 (L 2 (Ω)) d 2β + T 1 2 ≤ R(n, h Tm ) + T 1 2 , ( 4 
1 n σ∈E int m(σ) d σ λ(u m ) σ (u m K -u m L )(T n (u m K ) -T n (u m L )) = 0, ( 4 

Existence of a solution to the scheme

In this section we prove that there exists at least one solution to the discrete scheme. Since the scheme is nonlinear we use a fixed point argument together with the study of the linear version of our problem for which we adapt the arguments developed in [START_REF] Chainais-Hillairet | Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions[END_REF] for a linear problem with Neumann boundary conditions and mean value.

Proof of Theorem 3.1. The proof is divided into 2 steps. In Step 1 with the help of [START_REF] Chainais-Hillairet | Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions[END_REF] we construct a map in view of the fixed point argument. In Step 2 using estimates in Proposition 4.1 we conclude with the Brouwer fixed point theorem the existence of a solution.

Step 1. Let u = ( u K ) K∈T ∈ X(T ) and let us consider the linear scheme

∀K ∈ M, σ∈E int m(σ) d σ λ( u) σ (u K -u L ) + σ∈E int m(σ)v K,σ u σ,+ = K f dx, ( 5.1) 
where u = (u K ) K∈T ∈ X(T ) is the unknown. Following [START_REF] Chainais-Hillairet | Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions[END_REF], it can be rewritten as the linear system

AU = F (5.2)
where U = (u K ) K∈T , F = ( K f dx) K∈T and A is the square matrix of size card(T ) × card(T ) with

                 A K,K = σ∈E K,int m(σ) λ( u σ ) d σ + v + K,σ , ∀K ∈ T , A K,L = m(σ) - λ( u σ ) d σ -v - K,σ , ∀K ∈ T , ∀L ∈ N (K), with σ = K|L, A K,L = 0, ∀K ∈ T , ∀L / ∈ N (K).
At this step having f belonging to L 1 (Ω) or f ∈ L 2 (Ω) does not play any role. From Proposition 3.1 in [START_REF] Chainais-Hillairet | Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions[END_REF] (see also Remark 2.4 in [START_REF] Chainais-Hillairet | Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions[END_REF] when -∆u is replaced bydiv(a(x)∇u), which is the isotropic case) it follows that

• dim(ker(A)) = 1 and any (non zero) element U belonging to ker(A) verifies either u K > 0 for all K ∈ T or u K < 0 for all K ∈ T .

• ker

(A ⊤ ) = R(1, 1, • • • , 1) ⊤ and thus Im(A) = (F K ) K∈T ; K∈T F K = 0 .
Since Ω f dx = 0, F belongs to Im(A) and then there exists at least U solution of AU = F . If V = (v K ) K∈T denotes an element of ker(A) such that v k > 0 for any K ∈ T , for any λ ∈ R, the vector U + λV is a solution of (5.2). Since v K > 0, ∀K ∈ T , the function λ → med(U + λV ) is continuous and increasing while lim λ→+∞ med(U + λV ) = +∞ and lim λ→-∞ med(U + λV ) = -∞. It follows that there exists at least one solution u ∈ X(T ) verifying the scheme (5.1) and med(u) = 0. The uniqueness is a consequence of the characterization of ker(A). As a conclusion we can define the map Γ from X(T ) into X(T ) by

∀ u ∈ X(T ), Γ u = u
where u ∈ X(T ) is the unique solution of (5.1) such that med(u) = 0.

Step 2. In this step we prove that

∃C > 0, ∀ u ∈ X(T ), ∥Γ( u)∥ L ∞ ≤ C, ( 5.3) 
Γ is a continuous map (5.4) in order to apply the Brouwer fixed point theorem.

The boundedness of Γ relies on Proposition 4.1. Indeed by replacing λ(u) σ by λ( u) σ in the proof of Proposition 4.1 it can be shown that there exists C > 0 (not depending on u) such that

∥ ln(1 + |Γ( u)|)∥ 2 1,2,M ≤ C 2∥f ∥ L 1 (Ω) + d|Ω| p-2 p ∥ v ∥ 2 (L p (Ω)) d , ( 5.5) 
Since Γ( u) lies in a finite dimension vector space we obtain that (5.3) holds true. We now prove that Γ is a continuous map. Let ( u n ) n∈N and u belonging to X(T ) such that u n goes to u as n goes to infinity. In view of (5.3) up to a subsequence, still indexed by n, there exists w ∈ X(T ) such that Γ( u n ) tends to w as n goes to infinity. Recalling that the coefficient of the matrix A are continuous with respect to u we obtain that w is a solution to the scheme

∀K ∈ M, σ∈E int m(σ) d σ λ( u) σ (w K -w L ) + σ∈E int m(σ)v K,σ w σ,+ = K f dx. (5.6) 
The mesh T being fixed since we consider constant piecewise functions the fact that med Γ( u n ) = 0 for any n ∈ N implies that med(w) = 0. Recalling that u = Γ( u) is the unique solution of (5.1) with med(u) = 0 we conclude that u = w. Since the limit does not depend on the subsequence we obtain that Γ is a continuous map. In view of (5.3) and (5.4) the Brouwer fixed point theorem allows one to conclude the proof of Theorem 3.1.

Convergence of the scheme

In this section we prove using Section 4 that the function u obtained in Proposition 4.3 is a renormalized solution to equation (2.1). The main difficulty is the equation (2.12): in short the test functions in (2.12) are of the kind φS(u) which is nonlinear in u. The strategy is to mix renormalized techniques and finite volume with the use of a discrete version of φS n (u Mm ) (see below the definition of S n ) where φ belongs to D(Ω) (see [START_REF] Leclavier | Finite volume scheme and renormalized solutions for a noncoercive elliptic problem with L 1 data[END_REF] in the case of Dirichlet boundary condition). Before proving Theorem 3.2 we give in Lemma 6.1 a convergence result concerning S n (u Mm ) (see e.g. [START_REF] Larcher | Convergence analysis of a finite element-finite volume scheme for a rans turbulence model[END_REF][START_REF] Leclavier | Finite volume scheme and renormalized solutions for a noncoercive elliptic problem with L 1 data[END_REF]) and in Corollary 6.2 the asymptotic behavior of an extra term (with respect to the continuous case) which appears when we pass to the limit in the discrete equation.

First, let us define the function S n , n ≥ 1, by 

S n (s) =                        0 if s ≤ -2n, s n + 2 if -2n ≤ s ≤ -n, 1 if -n ≤ s ≤ n, -s n + 2 if n ≤ s ≤ 2n, 0 if s ≥ 2n.
∀σ = K|L ∈ E int , ∀x ∈ D σ , S m n (x) = S n (u m K ) + S n (u m L ) 2 , ∀σ ∈ E ext , ∀x ∈ D σ , S m n (x) = S n (u m K ),
and the function λ m by

∀σ ∈ E, ∀x ∈ D σ λ m (x) = λ(u m ) σ .
Then the functions S m n and λ converge respectively to S n (u) and λ(u) in L q (Ω) ∀q ∈ [1, +∞[ and in L ∞ (Ω) weak- * , as h Mm → 0, where u is the limit of u Mm . Proof. Since the functions S m n is bounded with respect to m it is sufficient to prove that the convergence holds true in L 2 (Ω). By Proposition 4.3 u m converges to u a.e. in Ω. Since S n is a continuous and bounded function, the Lebesgue dominated convergence theorem gives that S n (u m ) → S n (u) in L 2 (Ω), so that it is sufficient to study the behavior of S m n -S n (u m ). Recalling that S n is Lipschitz continuous and has a compact support, we have

∥S m n -S n (u m )∥ 2 L 2 (Ω) = Ω |S m n -S n (u m (x))| 2 d x = σ∈E Dσ |S m n (x) -S n (u m (x))| 2 d x = σ∈E int Dσ S n (u m K ) + S n (u m L ) 2 -S n (u m (x)) 2 d x = 1 4 σ∈E int m(D σ ) |S n (u m K ) -S n (u m L )| 2 ≤ 1 4n 2 σ∈E int m(D σ )|T 2n (u m K ) -T 2n (u m L )| 2 = 1 4dn 2 σ∈E int m(σ)d σ T 2n (u m K ) -T 2n (u m L ) d σ 2 (d σ ) 2 ≤ 1 4dn 2 |T 2n (u m )| 2 1,2,M (h Mm ) 2 , so that ∥S m n -S n (u m )∥ 2 L 2 (Ω)
goes to zero as h Mm → 0. As far as λ m is concerned let us first define the function u m by

∀σ = K|L ∈ E int , ∀x ∈ D σ , u m (x) = u m K + u m L 2 , ∀σ ∈ E ext , ∀x ∈ D σ , u m (x) = u m K .
In view of the definition of λ(u) σ we have in Ω 

min(λ(u m ), λ(2u m -u m )) ≤ λ m ≤ max(λ(u m ), λ(2u m -u m )). ( 6 
-u m L )(T 4n (u m K ) -T 4n (u m L )) ≥ u m L 2 2n ≥ 0.
On the other hand, if

|u m K | ≤ 2n and u m L < -4n then (u m K -u m L )(T 4n (u m K ) -T 4n (u m L )) ≥ -u m L 2 2n ≥ 0.
It follows that

σ∈E int |u m K |≤2n |u m L |>4n m(σ) d σ λ(u m ) σ |u m L | ≤ 1 4n σ∈E int m(σ) d σ λ(u m ) σ (u m L -u m K )(T 4n (u m K ) -T 4n (u m L )). (6.4)
Using the discrete estimate on energy (4.23), we have

lim n→+∞ lim h Mm →0 1 4n σ∈E int λ(u m ) σ m(σ) d σ (u m L -u m K )(T 4n (u m K ) -T 4n (u m L )) = 0, (6.5) 
so that (6.4) and (6.5) give (6.3).

We are now in a position to prove Theorem 3.2. Proof of Theorem 3.2 Let m ≥ 1 and let us consider u m = (u m K ) K∈Tm be a solution of the scheme (2.18).

For φ a function belonging to D(Ω) we denote by φ m the function defined by φ K = φ(x K ) for all K ∈ T m . For n ∈ N, multiplying each equation of the scheme by φ(x K )S n (u m K ) (which is a discrete version of the test function used in the renormalized formulation), summing over the control volumes and gathering by edges, we get

T 1 + T 2 = T 3 with T 1 = σ∈E int m(σ) d σ λ(u m ) σ (u m K -u m L )(φ(x K )S n (u m K ) -φ(x L )S n (u m L )), T 2 = σ∈E int m(σ)v K,σ u m σ,+ (φ(x K )S n (u m K ) -φ(x L )S n (u m L )), T 3 = K∈T K f φ(x K )S n (u m K ).
Since S n (u m ) → S n (u) a.e. and L ∞ weak ⋆, by the regularity of φ, φ m → φ uniformly and |f φ m S n (u m )| ≤ C φ |f | ∈ L 1 (Ω), the Lebesgue theorem ensures that

T 3 = Ω f φ m S n (u m ) d x -----→ h Mm →0 Ω f φ S n (u) d x. (6.6)
We now study the convergence of the diffusion term. We write

T 1 = σ∈E int m(σ) d σ λ(u m ) σ (u m K -u m L )(φ(x K )S n (u m K ) -φ(x L )S n (u m L )) = T 1,1 + T 1,2 with T 1,1 = σ∈E int m(σ) d σ λ(u m ) σ S n (u m K ) (u m K -u m L ) (φ(x K ) -φ(x L )), T 1,2 = σ∈E int m(σ) d σ λ(u m ) σ φ(x L ) (u m K -u m L ) (S n (u m K ) -S n (u m L )).
According to the definition of S n we have

|T 1,2 | ≤ 1 n σ∈E int m(σ) d σ λ(u m ) σ φ(x L ) (u m K -u m L ) (T 2n (u m K ) -T 2n (u m L )),
so that (4. [START_REF] Prignet | Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure[END_REF] give lim

n→+∞ lim h Mm →0 T 1,2 = 0. ( 6.7) 
The main difference with respect to the continuous case is that u m K is truncated while u L is not in T 1,1 . To control this term we have to write

T 1,1 = σ∈E int m(σ) d σ λ(u m ) σ S n (u m K ) (T 2n (u m K ) -u m L ) (φ(x K ) -φ(x L )), = I + II + III with I = σ∈E int m(σ) d σ λ(u m ) σ S n (u m K ) + S n (u m L ) 2 (T 4n (u m K ) -T 4n (u m L )) (φ(x K ) -φ(x L )), II = σ∈E int m(σ) d σ λ(u m ) σ S n (u m K ) (T 4n (u m L ) -u m L ) (φ(x K ) -φ(x L )), III = σ∈E int m(σ) d σ λ(u m ) σ S n (u m K ) -S n (u m L ) 2 (T 4n (u m K ) -T 4n (u m L )) (φ(x K ) -φ(x L ))
We first study the asymptotic behavior of II and III as the parameter h Mn goes to zero. Since

|II| ≤ σ∈E int m(σ) d σ λ(u) σ |S n (u m K )| |T 4n (u m L ) -u m L | |φ(x K ) -φ(x L )| ≤ 2∥φ∥ L ∞ (Ω) σ∈E int |u m K |≤2n |u m L |>4n m(σ) d σ λ(u m ) σ |u m L |,
and due to Corollary 6.2 we obtain that lim

h M →0 |II| ≤ ω(n)∥φ∥ L ∞ (Ω) , (6.8) 
where ω(n) tends to zero as n goes to infinity. In the sequel of the present proof ω(n) is a generic positive quantity such that lim n→+∞ w(n) = 0. According to the definition of S n we have |III| ≤ ω(n)∥φ∥ L ∞ (Ω) . (6.9)

|III| ≤ ∥φ∥ L ∞ (Ω) n σ∈E int m(σ) d σ λ(u m ) σ |u m K -u m L | |T n (u m K ) -T n (u m L )|, recalling (4 
We now turn to I. By rewriting I as integral over the diamonds D σ (see e.g. [START_REF] Chainais-Hillairet | Finite volume scheme for multidimensional drift-diffusion equations and convergence analysis[END_REF][START_REF] Eymard | H-convergence and numerical schemes for elliptic problems[END_REF][START_REF] Droniou | Study of the mixed finite volume method for Stokes and Navier-Stokes equations[END_REF]) we have

I = σ∈E int m(σ)d σ λ(u m ) σ S n (u m K ) + S n (u m L ) 2 T 4n (u m K ) -T 4n (u m L ) d σ φ(x K ) -φ(x L ) d σ = σ∈E int Dσ λ m (x)S m n (x)∇ Mm T 4n (u m ) • ∇φ d x + σ∈E int dm(D σ )λ(u m ) σ S n (u m K ) + S n (u m L ) 2 T 4n (u m K ) -T 4n (u m L ) d σ × φ(x K ) -φ(x L ) d σ + 1 m(D σ ) Dσ ∇φ • η K,σ d x = I 1 + I 2 . By Lemma 6.1 S m n → S n (u) in L q (Ω) for all q ∈ [1, +∞[ and λ m → λ(u) in L ∞ weak ⋆, while ∇ Mm T 4n (u m ) tends to ∇T 4n (u) weakly in (L 2 (Ω)) d . Since φ belongs to C ∞ c (Ω) we conclude that lim h Mm →0 I 1 = Ω λ(u)S n (u)∇T 4n (u) • ∇φ dx.
By the regularity of φ we see that

|I 2 | ≤ σ∈E int dm(D σ )λ(u m ) σ S n (u m K ) + S n (u m L ) 2 |T 4n (u m K ) -T 4n (u m L )| d σ × φ(x K ) -φ(x L ) d σ + 1 m(D σ ) Dσ ∇φ • η K,σ d x ≤ λ ∞ ∥φ∥ W 2,∞ (Ω) h M ∥T 4n (u m )∥ 1,1,M , thus lim h Mm →0 I 2 = 0. ( 6 

.10)

We now study the convergence of the convection term T 2 . We have

T 2 = σ∈E int m(σ)v K,σ u m σ,+ (φ(x K )S n (u m K ) -φ(x L )S n (u m L )) = σ∈E int v K,σ ≥0 m(σ)v K,σ u m σ,+ (φ(x K )S n (u m σ,+ ) -φ(x L )S n (u m σ,-)) + σ∈E int v K,σ <0 m(σ)v K,σ u m σ,+ (φ(x K )S n (u m σ,-) -φ(x L )S n (u m σ,+ )) = σ∈E int v K,σ ≥0 m(σ)v K,σ u m σ,+ S n (u m σ,+ )(φ(x K ) -φ(x L )) + σ∈E int v K,σ ≥0 m(σ)v K,σ u m σ,+ φ(x L )(S n (u m σ,+ ) -S n (u m σ,-)) - σ∈E int v K,σ <0 m(σ)v K,σ u m σ,+ S n (u m σ,+ )(φ(x L ) -φ(x K )) - σ∈E int v K,σ <0 m(σ)v K,σ u m σ,+ φ(x K )(S n (u m σ,+ ) -S n (u m σ,-)) = T 2,1 + T 2,2 + T 2,3 with T 2,1 = σ∈E int m(σ)v K,σ u m σ,+ S n (u m σ,+ )(φ(x K ) -φ(x L )) T 2,2 = σ∈E int v K,σ ≥0 m(σ)v K,σ u m σ,+ φ(x L )(S n (u m σ,+ ) -S n (u m σ,-)) T 2,3 = - σ∈E int v K,σ <0 m(σ)v K,σ u m σ,+ φ(x K )(S n (u m σ,+ ) -S n (u m σ,-)) Since |T 2,2 + T 2,3 | ≤ ∥φ∥ L ∞ (Ω) n σ∈E int m(σ) |v K,σ | |u m σ,+ | |T 2n (u m σ,+ ) -T 2n (u m σ,-)|,
we deduce from (4.24) that lim

n→+∞ lim h Mm →0 T 2,2 + T 2,3 = 0. (6.11)
For the term T 2,1 , we have

T 2,1 = σ∈E int m(σ)v K,σ u m σ,+ S n (u m σ,+ )(φ(x K ) -φ(x L )) = σ∈E int m(σ)d σ d m(D σ ) u m σ,+ S n (u m σ,+ ) d φ(x K ) -φ(x L ) d σ Dσ v • η K,σ dx = - σ∈E int Dσ T 2n (u m σ,+ )S n (u m σ,+ )v • ∇ M φ M dx.
We define the function G m n defined over the diamonds by

∀σ = K|L ∈ E int , ∀x ∈ D σ , G m n (x) = T 2n (u m σ,+ )S n (u m σ,+ )
Then T 2,1 reads as

T 2,1 = - Ω G m n v • ∇ Mm φ m dx.
Since the function r → T 2n (r)S n (r) is Lipschitz continuous and bounded, with the help of arguments already used in the proof of Lemma 6.1, we can show that G

m n converges to T 2n (u)S n (u) in L ∞ weak ⋆, as h Mm → 0. Recalling that ∇ Mm φ m converges weakly in (L 2 (Ω)) d we obtain lim h Mm →0 T 2,1 = - Ω T 2n (u)S n (u)v • ∇φ dx.
(6.12)

We now pass to the limit in the scheme first as h Mm goes to zero and then as n goes to infinity. Gathering equations (6.6) to (6.12), allows one to conclude that

Ω λ(u)S n (u) ∇u • ∇φ dx - Ω u S n (u) v • ∇φ dx - Ω f φ S n (u) dx = lim h Mm →0 T (n, φ) (6.13)
where lim

h Mm →0 |T (n, φ)| ≤ ∥φ∥ L ∞ (Ω) ω(n) with ω(n) → 0 as n → +∞. Since S n (u)λ(u)∇u, uS n (u)v
and f S n (u) belongs respectively to (L 2 (Ω)) d , L 2 (Ω) and L 1 (Ω) a density argument gives that (6.13) holds true for any φ lying in

H 1 (Ω) ∩ L ∞ (Ω). Let S be a function in W 1,∞ (R) with compact support, contained in the interval [-k, k], k > 0 and let ψ ∈ H 1 (Ω) ∩ L ∞ (Ω).
Using the function S(u)ψ in (6.13), we deduce that

Ω λ(u)∇u S n (u)S(u)∇ψ dx + Ω λ(u)∇u S n (u)ψ∇u S ′ (u) dx - Ω u S n (u) S(u) v • ∇ψ dx - Ω u S n (u) S ′ (u) ψ v • ∇u dx - Ω ψS(u)S n (u)f dx ≤ ∥φ∥ L ∞ (Ω) ω(n).
By observing that S n (u)S(u) = S(u) and S n (u)S ′ (u) = S ′ (u) a.e. in Ω for n sufficiently large, by passing to the limit as n goes to infinity we obtain the condition (2.12) of Definition 2.2, that is

Ω λ(u)∇u S(u)∇ψ dx + Ω λ(u)∇u ψ∇u S ′ (u) dx - Ω u S(u) v • ∇ψ dx - Ω u S ′ (u) ψ v • ∇u dx = Ω ψS(u) f dx.
We now turn to the decay of the energy. As a consequence of (4. [START_REF] Prignet | Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure[END_REF] Since u is finite almost everywhere in Ω and since T n (u) ∈ H 1 (Ω) for any n > 0 we can conclude u Mm converges to u which is is the unique renormalized solution with null median. □

A Appendix

Discrete functional inequalities are useful for the study of finite volume schemes. Discrete Sobolev inequalities are proved in [START_REF] Coudière | Discrete sobolev inequalities and lp error estimates for finite volume solutions of convection diffusion equations[END_REF] for Dirichlet boundary conditions and in [START_REF] Chainais-Hillairet | Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions[END_REF] for non Dirichlet boundary conditions. In [START_REF] Bessemoulin-Chatard | On discrete functional inequalities for some finite volume schemes[END_REF] discrete Gagliardo-Nirenberg-Sobolev and Poincaré-Sobolev inequalities for some finite volume schemes are proved. There does not seem to be any proof of Discrete Poincaré-Wirtinger median inequality. The authors in [START_REF] Bessemoulin-Chatard | On discrete functional inequalities for some finite volume schemes[END_REF] use the continuous embedding of the space BV (Ω) into L d d-1 (Ω) for a Lipschitz domain Ω ⊂ R d , with d ≥ 2 to establish discrete inequalities. We will use this method to prove the Discrete Poincaré-Wirtinger median inequality (2.16).

Let us first recall some results concerning functions of bounded variation (more details about these functions can be found in [START_REF] Ziemer | Weakly differentiable functions[END_REF]). Let Ω be an open set of R d and u ∈ L 1 (Ω). The total variation of u in Ω, denoted by T V Ω (u), is defined by

T V Ω (u) = sup Ω u(x)div(ϕ(x)) dx, ϕ ∈ C 1 c (Ω), |ϕ(x)| ≤ 1, ∀x ∈ Ω .
The function u ∈ L 1 (Ω) belongs to BV (Ω) if and only if T V Ω (u) < +∞. The space BV (Ω) is endowed with the norm ∥u∥ BV (Ω) := ∥u∥ L 1 (Ω) + T V Ω (u).

The space BV (Ω) is a natural space to study finite volume approximations. Indeed, for u = (u K ) K∈T ∈ X(T ), we have

T V Ω (u) = σ∈E int σ=K|L m(σ)|u L -u K | = |u| 1,1,M < +∞.
The discrete space X(T ) is included in L 1 (Ω) ∩ BV (Ω) and we have ∥u∥ BV (Ω) = ∥u∥ 1,1,M .

Our starting point for the discrete Poincaré-Wirtinger median inequality is the continuous embedding of BV (Ω) into L d d-1 (Ω) for Lipschitz bounded connected domain Ω of R d , d ≥ 2, written in the following theorem (see [START_REF] Ziemer | Weakly differentiable functions[END_REF] for more details).

Theorem A.1 ([26]

). There exists a constant C(Ω) > 0 only depending on Ω such that, for all u ∈ BV (Ω), where m ∈ med(u).

In the spirit of [START_REF] Bessemoulin-Chatard | On discrete functional inequalities for some finite volume schemes[END_REF] (which studied Discrete Poincaré-Wirtinger mean inequality), let us prove now the following proposition Proposition A.2 (Discrete Poincaré-Wirtinger median inequality). Let Ω be an open bounded connected polyhedral domain of R d and let M be an admissible mesh satisfying (2.14). Then for 1 ≤ p < +∞ there exists a constant C > 0 only depending on Ω, d and p such that ∥u -c∥ 0,p ≤ C ξ (p-1)/p |u| 1,p,M , ∀u ∈ X(T ) (A.2)

where c is in med(u).

Proof of Proposition A.2. Let u = (u K ) K∈T be a function of X(T ) and let m be an element of med(u). We define v ∈ X(T ) by v K = (u k -m)|u k -m| p-1 for all K ∈ T . Since m ∈ med(u), we have 0 ∈ med(v), using inequality (A.1), we obtain where the constant C depends on Ω and d.

Moreover, for all K, L ∈ T , we have (A.9)

|v K -v L | = |u K -u L ||v ′ (w LK )|, ∀w LK ∈ [u k , u L ], ≤ p|u K -u L ||w LK -m| p-1 ≤ p|u K -u L | |u K -m| p-1 + |u L -m| p-1 .
Then we obtain the general result ∥u -m∥ 0,p ≤ C ξ (p-1)/p |u| 1,p,M , ∀u ∈ X(T ).
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∥v∥ 0, d d- 1 ≤

 1 C(Ω)|v| 1,1,M , (A.3)and using the inclusion ofL d d-1 (Ω) into L 1 (Ω), we get ∥v∥ 0,1 ≤ C(Ω, d)|v| 1,1,M , (A.4)

(A. 5 ) 1 p 7 )

 517 Therefore, gathering (A.4) and (A.5), we obtain∥v∥ 0,1 = ∥|u -m| p ∥ 0,1 = ∥u -m∥ p p|u k -u L | |u K -m| p-1 + |u L -m| p-1 . (A.6)Using Hölder's inequality we get,∥u -m∥ p 0,p ≤ pC |u K -m| p-1 + |u L -m| p-K -m| p + |u L -m| p )The regularity constraint (2.14) on the mesh ensures thatσ∈E int m(σ)d σ ≤ 1 ξ K∈T σ∈E K m(σ)d(x K , σ) = N ξ K∈T m(K). (A.8)Then applying the previous inequality (A.8) and a discrete integration by parts, we get ∥u -m∥ p 0,p ≤ pC(Ω)|u -m| 1,1,p,M ∥u -m∥ p-1 0,p .

  .10) On the other hand, since med(ln(1 + |u M |)) = 0, by the discrete Poincaré-Wirtinger median inequality (2.16), we have that there exists C > 0 only depending on (Ω, d, ξ) such that∥ ln(1 + |u M |)∥ 0,2 ≤ C|u M | 1,2,M .

		(4.11)
	Therefore, using (4.10) and (4.11), there exists C > 0 only depending on (Ω, v, f, d, p, ξ) such
	that	
	∥ ln(1 + |u M |)∥ 2 0,2 ≤ C.	(4.12)

Finally, due to the fact that meas(E n ) = meas ({ln(1 + |u M |) ≥ ln(1 + n)}), the Chebyshev inequality and (4.12) lead to the result. Proposition 4.3 (Estimate on T n (u M )). Let M be an admissible mesh satisfying (2.14). If u

  Cauchy sequence in measure. Consequently, up to a subsequence still indexed by m, there exists a measurable function u such that

	u m → u a.e. in Ω.	(4.22)
	It follows from Corollary 4.2 that u is finite a.e. in Ω.	
	Moreover by the pointwise convergence (4.21) of T n (u m ) for any n ∈ N we deduce that T n (u) =
	v n ∈ H 1 (Ω). Applying Theorem 2.11 we obtain that	

  .42) which gives(4.23). We are now in a position to prove(4.24). Recalling thatT 1 + T 2 = T 3 , we have T 1 + T 2,2 ≤ |T 2,1 | + T 3 . Since T 2,2 is non negative, using (4.28), (4.41) we get Moreover, writing again T 1 + T 2,2 ≤ |T 2,1 | + T 3 , (4.43), (4.28) and (4.23) imply that

	As a consequence we obtain			
	lim n→+∞	lim h Tm →0	|T 2,1 | = 0.	(4.43)
	lim n→+∞	lim h Tm →0	T 2,2 = 0.	(4.44)
	Therefore from (4.43) and (4.44) we deduce (4.24).
	T 1 ≤	C 5 2	T 1 + R + T 3 with
	lim n→+∞	lim h Tm →0	R = 0,
	lim n→+∞	lim h Tm →0	T 3 = 0.

  .2)In view of already used arguments for S m , since the function T n is Lipschitz continuous, T n (u m ) converges to T n (u) in L q (Ω), ∀q ∈ [1, +∞[ and in L ∞ weak- * . By the diagonal process, up to a subsequence still index by m, u m goes to u a.e. in Ω as h Mm goes to zero. Since λ is a bounded continuous function we obtain, up to a subsequence, that λ m converges to λ(u) in L q (Ω), ∀q ∈ [1, +∞[ and in L ∞ weak- * as h Mm goes to zero. To conclude it is sufficient to observe that the limit of λ m is independent of the subsequence.Proof. For m ∈ N, let us consider K ∈ T m and n ∈ N. On one hand if |u m

	Corollary 6.2. Let (M m ) m≥1 be a sequence of admissible meshes satisfying (2.14) such that
	h Mm → 0 as m → ∞. Let u m = (u m K ) K∈Tm ∈ X(T m ) be a sequence of solution of (2.18) such that
	the conclusions of Proposition 4.3 hold true. Then we have		
	lim n→+∞	lim h Mm →0 σ∈E int L |>4n |u m K |≤2n |u m	λ(u) σ	m(σ) d σ	|u m L | = 0.	(6.3)
						K | ≤ 2n and u m L > 4n
	then					
	(u m K					

  |∇ Mm T 2n (u m )| 2 dx. |∇ Mm T 2n (u m )| 2 dx = 0. Since ∇ Mm T 2n (u m ) converges weakly in (L 2 (Ω)) d , we have also 1 n Ω |∇T 2n (u)| 2 dx ≤ lim inf |∇ M T 2n (u M )| 2 dx,

	so that lim n→∞	lim h Mm →0	1 n Ω		
								1
								h M →0	n Ω
	which leads to					lim n→∞	1 n Ω	λ(u)|∇T 2n (u)| 2 dx = 0.
								we get
				lim n→∞	lim h Mm →0	1 n σ∈E int	λ(u)	m(σ) d σ	(T 2n (u m K ) -T 2n (u m L )) 2 = 0,
	and						
	σ∈E int	m(σ) d σ	(T 2n (u m K ) -T 2n (u m L )) 2 =	σ∈E int	m(σ)d σ	d σ K ) -T 2n (u m T 2n (u m L )	2
								=	σ∈E int	dm(D σ )	d σ K ) -T 2n (u m T 2n (u m L )	2
								=	1 d Ω