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1ENS Rennes
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In this report we present the procedure that we set up to try to solve a
mathematical problem proposed by Scalian. We work in the context of reduced
order models for wind turbine applications. The objective is to improve a part
of the algorithm developed by the company, in order to make the wind turbine
blades more reactive.

The equation and its discretization

The reduced order model under location uncertainty used for this problem gives
us stochastic differential equations for resolved modes denoted by b “ pbiqiPv1,nw:

dbiptq “Fipbptqq ` pα¨i¨dBtq
T bptq ` pθi¨dBtq

“Fipbptqq `

n
ÿ

j“1

˜

n
ÿ

k“1

αkijbkptq ` θij

¸

dBj
t .

(1)

In this equation Fi is a polynomial function of order two, and Bt “ pBj
t qjPv1,nw is

a vector composed of Brownian motions. In the algorithm of the company, these
stochastic differential equations are solved using a Euler-Maruyama numerical
scheme. In order to improve the algorithm, we chose to change the numerical
scheme implemented for these equations, and to implement a Milstein scheme.
We rewrite the (1) under a more general form:

dbptq “ F pbptqq ` σpbptqqdBt, (2)

where F pbq “ pFipbqqiPv1,nw and

σpbq “

˜

n
ÿ

k“1

αkijbkptq ` θij

¸

i,jPv1,nw

“ pσijqi,jPv1,nw.
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We discretize t in the interval r0, T s and consider N P N, and ∆t “ T
N . Let

pγkqkPv0,Nw be a sequence of vector pγj
kqjPv1,nw such that all the γj

k are indepen-
dent identically distributed standard Gaussian random variables. The Milstein
numerical scheme is the following:

bptk`1q “bptkq ` F pbptkqq∆t ` σpbptkqqγk
?
∆t

`
1

2
pσ, Bσqpbptkqqγ2

k∆t ´
1

2
pσ, Bσqpbptkqq1∆t.

(3)

In this scheme, 1 denotes a vector with 1 as coefficients, and pσ, Bσqpbptkqq

denotes a matrix such that

pσ, Bσqpbptkqqij “

n
ÿ

k“1

σik
Bσij

Bσik
.

Procedure and results

The aim is to compare the efficiency of the scheme (3) with the classical Euler-
Maruyama scheme. First, we need to be sure that the Milstein scheme approx-
imates the solution of (2), so we compare it with a reference solution, obtained
using the Euler-Maruyama scheme with ∆t very small and a very large number
of simulations. We denote this reference solution bref . The idea is to compare
the strong error between bref and the Euler-Maruyama scheme for larger values
of ∆t

E
„

sup
tk

}bref ptkq ´ bEM ptkq}2

ȷ

to the strong error between bref and the Milstein scheme for the same values of
∆t

E
„

sup
tk

}bref ptkq ´ bMilptkq}2

ȷ

.

This comparison allows us to find the time-step size where the Milstein scheme
becomes closer to the reference solution than the Euler-Maruyama scheme.
Then we compare the execution time for the two schemes, for several values
of ∆t. We compute the strong errors with 100 simulations for each scheme, and
Figure 1 shows that the Milstein scheme is slower than the Euler-Maruyama
scheme. It makes sense since this scheme is more complex than the intuitive
Euler-Maruyama scheme. The strategy is to think that we will need a larger
∆t for the Milstein scheme than for the Euler-Maruyama scheme, and that the
execution time of the Milstein scheme for this larger ∆t will be smaller than the
execution time of the Euler-Maruyama scheme with the smaller ∆t.

The strong error is represented by Figure 2. On this figure we can not
observe any visible difference between the two schemes. Hence it does not prove
our theory, but it can be due to the number of simulations which is only 100, and
it could be good to increase it or to run other tests on these schemes. It could
also be interesting to try other schemes like the Runge-Kutta or the multi-step
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scheme. The other possibility is that the regime that we studied in Figure 2
is already a regime where Euler-Maruyama and Milstein are close, so il could
be interesting to compute the strong error with N P v0, 50w. Finally, we do
not control the influence of the variance, which creates a Monte-Carlo error in
addition to the discretization error. This could be a problem and one can try
to use variance reduction methods to improve the algorithm.

Figure 1: Execution time for the Milstein and Euler-Maruyama schemes, for
100 simulations and several values of ∆t.

Figure 2: Strong error for the Milstein and Euler-Maruyama schemes, for 100
simulations and several values of ∆t.

For variance reduction techniques one can refer to [3] [2] [7]
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