
HAL Id: hal-03674127
https://hal.science/hal-03674127

Submitted on 20 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Hybrid Best-First Search
Abdelkader Beldjilali, Pierre Montalbano, David Allouche, George Katsirelos,

Simon De Givry

To cite this version:
Abdelkader Beldjilali, Pierre Montalbano, David Allouche, George Katsirelos, Simon De Givry. Par-
allel Hybrid Best-First Search. The 28th International Conference on Principles and Practice of
Constraint Programming, Jul 2022, Haifa, Israel. �10.4230/LIPIcs.CP.2022.36�. �hal-03674127�

https://hal.science/hal-03674127
https://hal.archives-ouvertes.fr

Parallel Hybrid Best-First Search1

Abdelkader Beldjilali #2

Université Fédérale de Toulouse, INRAE, UR 875, 31326 Toulouse, France3

Pierre Montalbano #4

Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France5

David Allouche #6

Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France7

George Katsirelos #8

Université Fédérale de Toulouse, ANITI, INRAE, MIA Paris, AgroParisTech, 75231 Paris, France9

Simon de Givry #10

Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France11

Abstract12

While processor frequency has stagnated over the past two decades, the number of available cores in13

servers or clusters is still growing, offering the opportunity for significant speed-up in combinatorial14

optimization. Parallelization of exact methods remains a difficult challenge. We revisit the concept15

of parallel Branch-and-Bound in the framework of Cost Function Networks. We show how to adapt16

the anytime Hybrid Best-First Search algorithm in a Master-Worker protocol. The resulting parallel17

algorithm achieves good load-balancing without introducing new parameters to be tuned as is the18

case, for example, in Embarrassingly Parallel Search (EPS). It has also a small overhead due to its19

light communication messages. We performed an experimental evaluation on several benchmarks,20

comparing our parallel algorithm to its sequential version. We observed linear speed-up in some21

cases. Our approach compared favourably to the EPS approach and also to a state-of-the-art parallel22

exact integer programming solver.23

2012 ACM Subject Classification Computing methodologies → Parallel algorithms24

Keywords and phrases Combinatorial Optimization, Parallel Branch-and-Bound, CFN25

Digital Object Identifier 10.4230/LIPIcs.CP.2022.3626

Supplementary Material https://miat.inrae.fr/degivry/Beldjilali22Supp.pdf27

Funding This work has been partially funded by the French ”Agence Nationale de la Recherche”,28

through grant ANR-19-P3IA-0004. It was performed using HPC resources from CALMIP (Grant29

2022-P21010).30

Carbon footprint The experiments in this paper took approximately 17, 000 hours and emitted31

68kg of CO2, with an estimate of 4g/h per core.32

1 Introduction33

Cost Function Networks (CFNs), also known as Weighted Constraint Satisfaction Problems34

(WCSPs) [17] is a mathematical framework which has been derived from Constraint Sat-35

isfaction Problems by replacing constraints with cost functions. In a CFN, we are given36

a set of variables with an associated finite domain and a set of local cost functions. Each37

cost function involves some variables and associates a non-negative integer cost to each of38

the possible combinations of values they may take. The usual WCSP problem considered39

is to assign all variables in a way that minimizes the sum of all costs. This minimization40

problem is NP-hard, and exact methods usually rely on Branch and Bound (B&B) algorithms41

exploring a binary search tree with soft local consistency maintained at each node in order42

© David Allouche, Abdelkader Beldjilali, Simon de Givry, George Katsirelos, and Pierre Montalbano;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 36; pp. 36:1–36:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kader.beldjilali@free.fr
mailto:pierre.montalbano@inrae.fr
mailto:david.allouche@inrae.fr
mailto:gkatsi@gmail.com
mailto:simon.de-givry@inrae.fr
https://doi.org/10.4230/LIPIcs.CP.2022.36
https://miat.inrae.fr/degivry/Beldjilali22Supp.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Parallel Hybrid Best-First Search

to improve the problem lower bound (represented by c∅) and prune domain values with a43

forbidden cost (represented by a maximum cost k) [5].44

Contraint Programming (CP) exact approaches usually rely on Depth-First Search (DFS)45

methods while Integer Linear Programming (ILP) approaches explore the tree in a best-first46

manner by exploiting strong bounds. We are interested in hybrid methods combining depth-47

first and best-first with possibly weaker bounds but faster to compute. This is the case of the48

Hybrid Best-First Search (HBFS) method [2]. HBFS is a B&B algorithm for solving WCSPs.49

Dealing with parallel computers or grids to speed-up solving time of exact methods has50

been explored in many different ways. For grids, with slow network interconnection, MapRe-51

duce is a general approach exploiting problem decomposition into independent subproblems52

solved in parallel (map on the grid processors) and then sequentially reduced at the end53

of the resolution. In CP, this decomposition approach is called Embarrassingly Parallel54

Search (EPS) [15]. MapReduce has been applied also in the context of non serial dynamic55

programming in Graphical Models [19] and CFNs [3]. Message-passing approaches, on the56

other hand, take advantage of the low-latency communication of supercomputers, consisting57

of a large number of multiprocessor servers interconnected at high speed and low latency.58

This allows for finer granularity in B&B parallelization. According to a recent survey [9],59

parallelizing the search based on message-passing and parallel B&B in CP are difficult60

problems and still poorly explored. In CP, for example, COMET [18] uses work-stealing61

where workers which have run out of work take unexpanded nodes from other workers, leaving62

them less work to do and keeping all workers busy. In ILP, a recent review on parallel B&B63

was proposed in [21]. We selected the Master-Worker protocol as the basis for our approach.64

Other approaches rely on portfolios.65

In this work we describe a parallel version of HBFS. We give an empirical evaluation66

on combinatorial optimization academic problems from Operations Research and real-life67

Graphical Model problems occuring in genetics and biology. Our experimental study analyses68

solving time and speed-ups of the parallel version compared to the original sequential HBFS.69

We also compare our approach with a parallel ILP solver (IBM Ilog cplex). Moreover, we70

performed experiments on a high-performance cluster to study the scalability of our algorithm71

and compare with EPS.72

2 Hybrid Best-First Search73

The sequential version of HBFS [2] is a B&B method for CFNs that combines Best-First74

Search (BFS) and Depth-First Search (DFS). Like BFS, HBFS provides an anytime global75

lower bound on the optimum, while also providing anytime upper bounds, like DFS. Hence, it76

provides feedback on the progress of search and solution quality in the form of an optimality77

gap. Besides, it exhibits highly dynamic behavior that allows it to perform on par with78

methods like Limited Discrepancy Search [11] and frequent restarting [10, 7] in terms of79

quickly finding good solutions. As in BFS, HBFS maintains a frontier of open search nodes. It80

expands each open node using DFS with a limit on its number of backtracks. Each bounded81

DFS returns a new list of open nodes to be inserted in the BFS frontier.82

The pseudo-code of HBFS is given in Algorithm 1. The main procedure is in charge of the83

BFS frontier of open nodes. Here a node ν corresponds to a sequence of decisions ν.δ. The84

root node has an empty decision sequence (line 1). When a node is explored by DFS (line 5),85

an unassigned variable is chosen and a branching decision to either assign the variable to86

a chosen value (left branch, positive decision) or remove the value from the domain (right87

branch, negative decision) is taken. The number of decisions taken to reach a given node88

A. Beldjilali et al. 36:3

1

2

3 6

4 5 7

8 9

Figure 1 A tree that is partially explored by DFS with a backtrack limit Z = 4. Nodes with a
bold border are leaves, nodes with no border are placed in the open list after the backtrack bound is
exceeded. Nodes are numbered in the order they are visited.

ν is the depth of the node, ν.depth. HBFS always chooses the next open node to explore89

with minimum lower bound ν.lb (best-first principle) and, in case of ties, maximum depth90

ν.depth (depth-first principle) in the frontier. The minimum of all open node lower bounds,91

denoted lb(open), is a valid global lower bound (kept in clb at line 6) for the problem. HBFS92

also maintains the current upper bound (cub) as the cost of the best solution found so far by93

DFS (line 5). The search ends when the open list is empty or contains nodes with a lower94

bound greater than or equal to cub (line 2).95

Function HBFS(clb,cub): integer ; /* Returns the optimum value */

1 open := {ν(δ = ∅, lb = clb)} ; /* Initializes the open list with a root node */
2 while (open ̸= ∅ and clb < cub) do

ν :=pop(open) ; /* Chooses a node with minimum lower bound and maximum depth */
3 Restores state ν.δ, leading to assignment Aν , maintaining soft local consistency ;
4 NodesRecompute := NodesRecompute + ν.depth ;
5 cub :=DFS(Aν ,cub,Z) ; /* Increase Nodes and put all right open branches in open */
6 clb := max(clb, lb(open)) ;

if (NodesRecompute > 0) then
7 if (NodesRecompute/Nodes > β and Z ≤ N) then Z := 2 × Z;
8 else if (NodesRecompute/Nodes < α and Z ≥ 2) then Z := Z/2;

return cub;
Algorithm 1 Hybrid Best-First Search. Initial call: HBFS(c∅,k) with Z = 1.

DFS increases a counter Nodes at each branching decision. It can backtrack (taking right96

branches) up to a limit of Z backtracks. When this limit is reached, all the unexplored97

right branches are placed in open. HBFS controls the balance between best-first search98

(partially exploring more open nodes) and depth-first search (complete exploration from a99

given starting node). Best-first search requires recomputing the state ν.δ of a node (line 3)100

which can be costly in practice. HBFS uses a simple rule to limit this recomputation effort101

(measured by NodesRecompute at line 4). It tries to keep the ratio NodesRecompute
Nodes in the102

interval [α, β] by increasing (by a power of two) the backtrack limit Z if the ratio value is103

above β or decreasing Z if it is below alpha (lines 7–8). Initially, Z is set to 1. In order to104

avoid exponential DFS behavior, HBFS limits the maximum value taken by Z to N . We kept105

the same value α = 5%, β = 10%, N = 214 in our experiments as in the original paper [2].106

CP 2022

36:4 Parallel Hybrid Best-First Search

3 Parallel HBFS107

The parallel version of HBFS is based on the Master-Worker parallel paradigm [21] where108

the Master is in charge of the open node frontier and dispatches the current best (with109

minimum lower bound) open node plus the current best solution found so far to the next110

available Worker. The Worker performs a bounded DFS starting from the received node and111

returns to the Master the resulting list of open nodes (see Fig. 1, with a DFS limit here of 4112

backtracks). The Worker also returns the best solution found during its restricted search113

if any. Only the Master has a global view of the whole search and reports optimality gaps114

(cub−clb
cub) until the proof of optimality is reached: when the current best lower bound in the115

frontier of open nodes, including active worker starting nodes, is equal or greater than the116

cost of the best solution found so far or the frontier is empty and there are no active workers.117

When the problem is solved, the Master kills all the workers and returns the optimum value.118

According to a round robin schema, the Master sends open nodes to every idle worker119

in a balanced way, ensuring a natural load balancing between the workers as soon as the120

number of open nodes in the frontier is larger than the number of workers. Moreover, an121

initial backtrack limit of Zi = 1 associated to each Worker i favors the production of open122

nodes at the beginning of the search. Each Zi is bounded by N as in sequential HBFS so123

that no worker takes too long.124

The pseudo-code of the Master (resp. Worker) is given in Algorithm 2 (resp. Alg. 3).125

In the implementation, we avoid to send the same solution twice to a Worker. Moreover,126

workers send their solution only if it improves compared to the last solution sent by the127

Master. This strategy allows to shorten messages in the Master-Worker protocol.128

Function HBFS-Master(clb, cub, S): integer ; /* S queue of workers, return the optimum */

open := {ν(δ = ∅, lb = clb)} ; /* Initializes the open list with a root node */
I := S ; /* Queue of idle workers */
A := ∅ ; /* Maps active workers to open nodes currently being processed */
while ((open ̸= ∅ or A ̸= ∅) and clb < cub) do

while (open ̸= ∅ and I ̸= ∅) do
ν :=pop(open) ; /* Chooses a node with minimum lower bound and maximum depth */
i :=popFront(I) ; /* Unqueue the first idle worker */
A := A ∪ {(i, ν)} ;
Send ν and best solution cub to Worker i ;

9 Receive a list of open nodes V and solution cub′ by worker j ; /* Wait for message */
push(open, V) ; /* Adds worker open nodes to the Master open list */
cub := min(cub, cub′) ; /* Checks if a better solution as been found */

10 pushBack(I, j) ; /* Pushes Worker j at the end of the idle worker queue I */
11 A := A \ {(j, A[j])} ; /* Removes Worker j from active workers */

clb := max(clb, min(lb(open), min{lb(ν) for (i, ν) ∈ A})) ; /* Global lower bound */
return cub;
Algorithm 2 Parallel HBFS-Master. Initial call for p workers: HBFS-Master(c∅,k,(1, . . . , p)).

3.1 Improving the ramp-up phase129

We observed that at the beginning of the search the first active worker may take a long time130

to build its list of open nodes when it reaches the initial backtrack limit (equal to one). It131

can be explained by the fact that if it found a new solution then this improved upper bound132

will possibly imply more work in subsequent propagation made later when assessing the133

lower bound of each open node. This has the effect to slow-down the construction of the list134

A. Beldjilali et al. 36:5

Procedure HBFS-Worker(cub,rank) ; /* rank: Worker ID */

while (true) do
openi := ∅ ; /* local open list of Worker i */
Receive an open node ν and solution cub′ by Master ; /* Wait for message */
cub := min(cub, cub′) ; /* Updates cub and best solution if any */
Restores state ν.δ, leading to assignment Aν , maintaining soft local consistency ;
NodesRecompute := NodesRecompute + ν.depth ;

12 cub :=DFS(Aν ,cub,Zi) ; /* Increase Nodes ; put all right open branches in openi */
if (NodesRecompute > 0) then

13 if (NodesRecompute/Nodes > β and Zi ≤ N) then Zi := 2 × Zi;
14 else if (NodesRecompute/Nodes < α and Zi ≥ 2) then Zi := Zi/2;
15 Send openi and best solution cub to the Master ; /* or closing-node mes. in burst

mode */
Algorithm 3 Parallel HBFS-Worker. Initial call for Worker i: HBFS-Worker(k,i) with Zi = 1.

of open nodes when HBFS stops backtracking. During this period, called the ramp-up phase135

(where some workers have not been assigned at least one task), no parallelism is exploited.136

We modified our communication protocol to send a message to the master as soon as an137

open-node has been collected or a new solution has been found by a worker inside its DFS138

subroutine (line 12). Such messages are received by the Master (line 9) which does not139

change the Worker state to idle (lines 10 and 11) until it receives a closing-node message by140

the Worker (sent at line 15). By doing so, it allows the Master to distribute open nodes to141

idle workers earlier before the first active worker has finished its initial DFS. We call this142

modified Master-Worker protocol the burst mode. However, the Worker can potentially send143

O(nd) more messages and it disallows data compression of the open list messages.1144

4 Experimental Results145

We implemented in C++ our parallel HBFS in the CFN solver toulbar2.2 We used the boost146

MPI library for the Master-Worker communication protocol. We kept default parameters147

of toulbar2 except no dichotomic branching in order to explore a binary search tree with148

DFS (option -d:). The variable ordering heuristic is dom/wdeg [4] combined with last149

conflict [14]. The value ordering heuristic exploits the last solution found if any [7] or else150

EDAC existential value [6]. EDAC is also used as soft local consistency during search.151

Instances were preprocessed by VAC [5] and the resulting CFNs saved to files before the152

experiments to reduce the setup sequential time of paralllel HBFS. We compared both the153

sequential and parallel version of HBFS and also with the integer programming solver cplex154

(version 20.1 with non-premature stop parameters EPAGAP=EPGAP=EPINT=0). We set the155

number of threads used by cplex to the desired number of cores.156

Experiments were performed either on medium-scale computers (24-core Intel Xeon157

E5-2687W v4 at 3 GHz and 256 GB) with 1-hour timeout or on a large-scale cluster with158

more than 10, 000 cores (36-core per node of Intel Skylake 6140 at 2.3 GHz and 192 GB)159

with a longer 10-hour timeout for the sequential version only. Solving times are reported in160

seconds and correspond to CPU (resp. wall-clock) time for the sequential (resp. parallel)161

methods. No initial upper bounds were provided.162

1 In non-burst mode, all right branches share a common prefix in their ν.δ and only the deepest δ
information need to be sent to the Master.

2 https://toulbar2.github.io/toulbar2 version 1.2.

CP 2022

https://toulbar2.github.io/toulbar2

36:6 Parallel Hybrid Best-First Search

We tested the methods on four benchmarks selected from [12] with a total of 134 instances:163

two academic benchmarks taken in Operations Research, uncapacitated warehouse location164

problem (Warehouses) with 15 instances [13] and DIMACS maximum clique problem with165

62 instances (MaxClique)3 and two real-life Graphical Model benchmarks, linkage analysis166

problem occuring in genetics (Linkage) with 22 instances coming from UAI Evaluation 2008 4
167

and computational protein design problem in biology (CPD) with 35 instances [1]. We168

applied the tuple encoding to convert Linkage and CPD to integer linear programs [12]. For a169

comparison on MaxClique with another parallel branch and bound implementation, see [16].170

4.1 Comparison of parallel HBFS with its sequential version171

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 0.05 0.1 0.15 0.2

HBFS 1-core
10-core without burst

10-core with burst
20-core without burst

20-core with burst

Figure 2 Comparison on a medium-scale computer between sequential versus parallel HBFS
with or without burst mode. The x-axis represents normalized time (with 0.2 corresponding to 720
seconds). The y-axis corresponds to normalized lower and upper bounds on 134 instances (with 1
corresponding to the optimum or best known cost, see the text description).

We compared the anytime behavior of sequential (HBFS-1) and parallel HBFS (with 10172

or 20 cores) with or without burst mode (see Sec. 3.1) on a medium-scale computer. We173

summarize the evolution of lower (clb in Alg. 1 and 2) and upper bounds (cub) for each174

method over all instances in Fig. 2. Specifically, for each instance we normalize all costs175

as follows: the initial lower bound c∅ produced by EDAC is 0; the best but potentially176

suboptimal solution found by any method is 1; the worst solution is 2. This normalization177

is invariant to translation and scaling. Additionally, we simply normalize time from 0 to178

1, corresponding to 1 hour. A point x, y on the lower bound line for method M in Fig. 2179

means that after normalized runtime x, method M has proved on average over all instances180

a normalized lower bound of y and similarly for the upper bound.181

First, we observed that all parallel versions significantly outperformed the sequential182

HBFS lower bound curve. Concerning upper bound curves, the burst mode gave a clear183

advantage to parallel HBFS especially at the beginning of the search. In the sequel of the184

paper, we always report results of parallel HBFS with burst mode. As shown in the figure,185

increasing the number of cores from 10 to 20 slightly improved the bounds.186

In Table 1 we report the number of instances solved by sequential and parallel HBFS187

for each benchmark. Parallel HBFS solved 1 more instance than the single core version in188

3 We removed the largest instances keller6 and p_hat1500-1,2,3 from the original 66 DIMACS instances.
4 Linkage instances were further preprocessed by variable elimination limited to at most 8 neighbors [8].

A. Beldjilali et al. 36:7

Linkage and 1 (resp. 3) in MaxClique using 10 (resp. 20) cores. We made local comparisons189

of solving times (shown in parentheses) by averaging on the subset of instances solved by the190

three methods (HBFS-1, HBFS-10, HBFS-20). It allows us to display overall speed-up of191

parallel approaches by giving the ratio of total sequential over parallel time. Parallel HBFS192

obtained near linear speed-up on MaxClique. Recall that 1 core is used by the master and the193

rest by the workers in the Master-Worker approach preventing us from full linear speed-up.194

On CPD and Linkage the speed-up was halved. For Warehouses, only 50% of reduction in195

overall time was observed. This can be explained partly by the limited number of search196

nodes (Table 4 in Supplementary Material).We also observed that the evaluation of right197

branches made by the first active worker starting from the root node took most of the time.198

This is due to the fact that a first solution has been found by the worker resulting in more199

propagation on the right branches especially near the root. This pathological phenomenon200

did not appear on the other benchmarks.201

Method CPD (35) Warehouses (15) Linkage (22) MaxClique (62)
Speed-up Speed-up Speed-up Speed-up

HBFS-1 30 (43.44s) 15 (128.96s) 20 (23.24s) 37 (364.25s)
HBFS-10 30 (8s) 5.43 15 (80.174s) 1.61 21 (3.5s) 6.64 38 (40.24s) 9.05
HBFS-20 30 (4.43s) 9.81 15 (85.39s) 1.51 21 (2s) 11.62 40 (19.9s) 18.3
cplex-1 24 (331.2s) 15 (123.83s) 22 (8.04s) 42 (282.16s)
cplex-10 24 (226.51s) 1.46 15 (68.82s) 1.8 22 (2.56s) 3.14 45 (55.48s) 5.08
cplex-20 24 (198.49s) 1.67 15 (72.06s) 1.72 22 (2.29s) 3.51 46 (71.47s) 3.95

HBFS-1 (cluster) 30 (66.46s) 15 (392.30s) 21 (427.21s) 37 (504s)
HBFS-180 (cluster) 30 (3.7s) 17.96 15 (126s) 3.11 22 (4.15s) 102.94 45 (6.44s) 78.26

Table 1 Number of solved instances within 1 hour (except for sequential HBFS-1 run on the
cluster with a larger timeout of 10 hours) and average time in seconds in parentheses. To compute
the mean we only consider for a given method (toulbar2 HBFS or cplex) the instances solved with
any number of cores on the same computer (server with 3 GHz cores or cluster with 2.3 GHz cores).

4.2 Comparison of parallel HBFS with integer programming202

In Table 1 we also report the number of instances solved and their average solving time203

(as explained above) by cplex using multithreading. It clearly dominates HBFS on Linkage204

(Supp. Fig. 5).For Warehouses, the differences are less important still in favor of cplex.205

For MaxClique, although the global picture shows that it solved six more instances than206

HBFS with 20 cores, both methods performed well on different subsets of instances (e.g.,207

HBFS-20 solved two instances – brock400_4 and sanr400_0.7 – unsolved by cplex-20 whereas208

cplex-20 solved eight instances unsolved by HBFS-20). For CPD, the CFN approach largely209

dominates the integer programming approach for all the instances. Concerning anytime210

curves shown in Fig. 3 (see also Supp. Fig. 4 and 5), the CFN approach is also significantly211

superior to cplex on average in producing good upper bounds faster, HBFS-20 being the best212

method. Concerning overall speed-up, cplex had difficulties to benefit from parallelism on213

CPD, Linkage, and Warehouses where it usually develops a small amount of search nodes214

(less than 7, 059 nodes except on Linkage/pedigree19 and pedigree40), resulting in poor215

speed-up except in a few cases. The speed-up is better on MaxClique but seems to stagnate216

when going from 10 to 20 cores (it was even slower on four instances).217

CP 2022

36:8 Parallel Hybrid Best-First Search

4.3 Comparison of parallel HBFS with EPS on a cluster218

The EPS approach is a two-phase procedure. First, the problem to be solved is decomposed219

into a list of l independent subproblems. Next, all the subproblems are solved in parallel220

(with at most p workers running at the same time) based on a particular scheduling strategy221

with no communication between the workers. For optimization problems, we need to provide222

a good initial upper bound. Otherwise the search tree can be much larger than needed. In223

the first phase, we used the original HBFS method to collect l subproblems. As soon as224

HBFS has more than l open nodes in its frontier it stops and returns the current upper225

bound (cub) and the list of open nodes (without those having a lower bound lb(ν) ≥ cub).226

Each open node ν defines an independent subproblem with partial assignment ν.δ. In order227

to collect open nodes more rapidly we fix the (maximum) backtrack limit Z = N = 1. Ideally228

l should be 30 × p with p the number of available cores [15]. In the second phase, we schedule229

on the cluster the subproblems that are solved by the original HBFS method using a simple230

scheduling heuristic based on increasing |ν.δ|.231

In Table 2 we report for nine difficult instances their optimum value, the upper bound232

found at the end of EPS Phase-1, the actual number of generated subproblems, the average233

solving time of all subproblems, the maximum solving time, the number of failed subproblems234

(timeout of 1 hour) and the overall solving time of EPS Phase-2 using 180 cores on the cluster.235

We compare with HBFS using the same number of cores. Our EPS strategy failed on 4/9236

instances. In parentheses, we indicate the maximum depth ν.depth of failed subproblems.237

Clearly, finding the right number l of not-too-difficult subproblems corresponding to partial238

assigments greater than a given depth is a challenging task. In our experiments, we tried239

with different values for l ∈ [50, 6000], selecting the largest threshold value with a Phase-1240

duration being less than 1 second for Linkage (l = 6000), 6 seconds for MaxClique (l = 6000)241

and 44 seconds for CPD (l = 1000). On the opposite, we did not tune any specific parameter242

for our parallel HBFS method.243

In Table 1 we also report the overall speed-up of HBFS-180 compared to HBFS-1 on the244

cluster. HBFS-180 got a two-order-of-magnitude speed-up on Linkage.245

5 Conclusion246

Although the speed-up offered by the parallel version of HBFS was very instance dependent,247

we observed significant gain on several instances, outperforming in some cases state-of-the-248

art solvers like cplex. Even if the scalability of our approach must be subject of deeper249

investigation, due to the minimal size of the information shared between the Master and the250

Workers, our approach is very likely compliant with a larger number of cores.251

A more challenging task which remains as future work is to exploit the structure of252

CFNs by parallelizing Backtrack with Tree Decomposition (BTD-HBFS) [2]. Shared memory253

protocols may be more suitable for this task to make learnt nogoods available to all Workers.254

On the practical side, our parallel HBFS could ran in conjunction with a parallel large255

neighborhood search strategy [20] offering even better anytime lower and upper bounds.256

References257

1 D Allouche, J Davies, S de Givry, G Katsirelos, T Schiex, S Traoré, I André, S Barbe,258

S Prestwich, and B O’Sullivan. Computational protein design as an optimization problem.259

Artificial Intelligence, 212:59–79, 2014.260

A. Beldjilali et al. 36:9

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 0.05 0.1 0.15 0.2

HBFS 1-core
10-core
20-core

cplex 1-core
10-core
20-core

Figure 3 Comparison on a medium-scale computer between toulbar2 using parallel HBFS (with
burst mode) and cplex using multiple threads. The x-axis represents normalized time (with 0.2
corresponding to 720 seconds). The y-axis corresponds to normalized lower and upper bounds on
134 instances (with 1 corresponding to the optimum or best known cost, see the text description).

instance n d opt. cub l av. time max. t. #fail(depth) EPS-180 HBFS-180
linkage/pedigree19 259 5 4625 5684 5114 20.57 - 1 (4) - 69.1
linkage/pedigree40 274 6 7300 8838 5641 101.99 - 49 (21) - 1680
linkage/pedigree51 295 5 6406 6802 5798 0.61 497.38 0 499 5.7

cpd/1BRS 38 178 4007610 4007679 956 2.94 38.90 0 44 37.5
cpd/1CDL 38 170 3590514 3590825 1001 6.66 79.04 0 79 18.3
cpd/1GVP 52 170 5196719 5196841 979 14.59 170.66 0 171 17.0

maxcl./brock400_1 400 2 373 379 6010 63.95 - 12 (149) - 1812
maxcl./brock400_2 400 2 371 379 5975 65.27 - 18 (149) - 880

maxcl./san400_0.5_1 400 2 387 392 6073 5.07 414.96 0 3652 1220
Table 2 EPS and HBFS-180 results on hard instances (with n variables and maximum domain

size d). A ’-’ indicates that some (see #failed) subproblems could not be solved in less than 3, 600sec.

CP 2022

36:10 Parallel Hybrid Best-First Search

2 D Allouche, S de Givry, G Katsirelos, T Schiex, and M Zytnicki. Anytime Hybrid Best-First261

Search with Tree Decomposition for Weighted CSP. In Proc. of CP-15, pages 12–28, Cork,262

Ireland, 2015.263

3 D. Allouche, S. de Givry, and T. Schiex. Towards parallel non serial dynamic programming264

for solving hard weighted csp. In Proc. of CP-10, St Andrews, Scotland, 2010.265

4 F Boussemart, F Hemery, C Lecoutre, and L Sais. Boosting systematic search by weighting266

constraints. In ECAI, volume 16, page 146, 2004.267

5 M. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner. Soft arc268

consistency revisited. Artificial Intelligence, 174(7–8):449–478, 2010.269

6 S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa. Existential arc consistency: Getting270

closer to full arc consistency in weighted csps. In Proc. of IJCAI-05, pages 84–89, Edinburgh,271

Scotland, 2005.272

7 E Demirovic, G Chu, and P J. Stuckey. Solution-based phase saving for CP: A value-selection273

heuristic to simulate local search behavior in complete solvers. In Proc. of CP-18, pages274

99–108, Lille, France, 2018.275

8 A Favier, S de Givry, A Legarra, and T Schiex. Pairwise decomposition for combinatorial276

optimization in graphical models. In Proc. of IJCAI-11, Barcelona, Spain, 2011.277

9 I Gent, I Miguel, P Nightingale, C McCreesh, P Prosser, N Moore, and C Unsworth. A278

review of literature on parallel constraint solving. Theory and Practice of Logic Programming,279

18(5-6):725–758, 2018.280

10 C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through randomization.281

In Proc. of AAAI’98, Madison, WI, 1998.282

11 W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Proc. of IJCAI’95, Montréal,283

Canada, 1995.284

12 B Hurley, B O’Sullivan, D Allouche, G Katsirelos, T Schiex, M Zytnicki, and S de Givry. Multi-285

Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization. Constraints,286

21(3):413–434, 2016.287

13 J Kratica, D Tošic, V Filipović, and I Ljubić. Solving the simple plant location problem by288

genetic alg. RAIRO, 35(1):127–142, 2001.289

14 C. Lecoutre, L Saïs, S. Tabary, and V. Vidal. Reasoning from last conflict(s) in constraint290

programming. Artificial Intelligence, 173:1592,1614, 2009.291

15 A Malapert, J-C Régin, and M Rezgui. Embarrassingly parallel search in constraint program-292

ming. Journal of Artificial Intelligence Research, 57:421–464, 2016.293

16 C McCreesh and P Prosser. The shape of the search tree for the maximum clique problem and294

the implications for parallel branch and bound. ACM Trans. Parallel Comput., 2(1), 2015.295

17 P. Meseguer, F. Rossi, and T. Schiex. Soft constraints processing. In F. Rossi, P. van Beek,296

and T. Walsh, editors, Handbook of Constraint Programming, chapter 9. Elsevier, 2006.297

18 L Michel, A See, and P Van Hentenryck. Parallelizing constraint programs transparently.298

In C Bessière, editor, Principles and Practice of Constraint Programming – CP 2007, pages299

514–528, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.300

19 L Otten and R Dechter. And/or branch-and-bound on a computational grid. JAIR, 59:351–435,301

2017.302

20 Abdelkader Ouali, David Allouche, Simon de Givry, Samir Loudni, Yahia Lebbah, Francisco303

Eckhardt, and Lakhdar Loukil. Iterative Decomposition Guided Variable Neighborhood Search304

for Graphical Model Energy Minimization. In Proc. of UAI-17, pages 550–559, Sydney,305

Australia, 2017.306

21 T Ralphs, Y Shinano, T Berthold, and T Koch. Parallel solvers for mixed integer linear307

optimization. In Handbook of parallel constraint reasoning, pages 283–336. Springer, 2018.308

	1 Introduction
	2 Hybrid Best-First Search
	3 Parallel HBFS
	3.1 Improving the ramp-up phase

	4 Experimental Results
	4.1 Comparison of parallel HBFS with its sequential version
	4.2 Comparison of parallel HBFS with integer programming
	4.3 Comparison of parallel HBFS with EPS on a cluster

	5 Conclusion

