
HAL Id: hal-03674092
https://hal.science/hal-03674092v2

Preprint submitted on 19 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Supervised Formulation of Reinforcement Learning:
with super linear convergence properties

Amit Parag, Nicolas Mansard

To cite this version:
Amit Parag, Nicolas Mansard. A Supervised Formulation of Reinforcement Learning: with super
linear convergence properties. 2022. �hal-03674092v2�

https://hal.science/hal-03674092v2
https://hal.archives-ouvertes.fr

A supervised formulation of Reinforcement Learning:
with superlinear convergence properties

Amit Parag1,2,∗, Nicolas Mansard1,2

Abstract— Deep reinforcement learning uses simulators as
abstract oracles to interact with the environment. In continuous
domains of multi body robotic systems, differentiable simula-
tors have recently been proposed but are yet under utilized,
even though we have the knowledge to make them produce
richer information. This problem when juxtaposed with the
usually high computational cost of exploration-exploitation in
high dimensional state space can quickly render reinforcement
learning algorithms impractical. In this paper, we propose to
combine learning and simulators such that the quality of both
increases, while the need to exhaustively search the state space
decreases. We propose to learn value function and state, control
trajectories through the locally optimal runs of model based
trajectory optimizer. The learned value function, along with an
estimate of optimal state and control policies, is subsequently
used in the trajectory optimizer : the value function estimate
serves as a proxy for shortening the preview horizon, while
the state and control approximations serve as a guide in policy
search for our trajectory optimizer. The proposed approach
demonstrates a better symbiotic relation, with super linear
convergence, between learning and simulators, that we need
for end-to-end learning of complex poly articulated systems.

I. INTRODUCTION

Reinforcement Learning (RL) [1] sets its goal as the search
for an optimal policy to navigate its immediate environment.
It does so by establishing its interactions with the environ-
ment as a Markov decision process where immediate action
taken in the current state is driven to maximize an expected
reward over a foreseeable future. In turn, it relies on an oracle
to provide it with states, actions and expected rewards, with
implicit assumptions on the overall efficiency of the oracle.
In high dimensional robotic systems, the oracle itself is a
differentiable simulator that can plan over long horizons.
While an end to end RL framework can, in principle, be
applied to robot learning, practical applications of RL on
real world has been less successful.

Simulators, even though can handle non linearities, com-
plex dynamic behaviour and constraints, can become severely
limited by the corresponding computation time, in particular
shooting methods like Differential Dynamic Programming
(DDP) can require a large number of iterations to converge
or fail to converge entirely. This is relatable to the application
of RL solvers in continuous domain, where training can
become prohibitively expensive and is strongly dependent
on the sample efficiency of its exploration strategy.

We argue that in the complex domain of poly articu-
lated systems, combinations of model based and model free

1Artificial and Natural Intelligence Toulouse Institute, France
2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
∗corresponding author: aparag@laas.fr

methods are more suited to explore solutions of a Markov
Decision Process (MDP). The overall goal is to find optimal
solution of a MDP and in the general landscape of robot
learning, this can be done such that either model based help
model free methods find that solution or the opposite. This
point is important. In our work, we attempt to combine
learning and trajectory optimization in a manner such that
the overall combination finds the optimal solution.

A. Our Contributions

We propose an actor-critic esque coupling as a solution
to optimal control problem (ocp) that combines a trajectory
optimizer (TO) with a reinforced learning loop: the rein-
forced learning loop itself is the actor, while the role of
critic is played by the trajectory optimizer. We achieve this
by setting an iterative loop in the backdrop of recursivity
provided by Bellman’s optimality principle [2], [3] such that
learning depends on data provided by TO, while efficient
computation of optimal trajectories over a preview horizon
by the trajectory optimizer depends on accurate learning.

This synergistic coupling can alternately be viewed as
a game between two players where the optimal outcome,
i.e the optimal solution to the Markov Decision Problem,
is contingent upon the strategy chosen by each player to
be optimal, where the strategy of each player depends on
the strategy of the other player. The purpose of utilizing
Bellman’s optimality principle is to ensure that the strategy
of both players remain guided by optimality.

We explicitly focus on learning with high accuracy and
with reduced rollouts. We use Differential Dynamic Pro-
gramming (DDP) [4], [5], a particular class of (direct shoot-
ing) trajectory optimizer, to give us state-value pairs and
state-control trajectories which we learn in the supervised
phase using three neural networks. The estimates of value
function is subsequently used inside DDP as an anchor at
the terminal position, while the approximations of optimal
policies serve as a guide for DDP. We iterate over this process
until convergence.

As DDP also requires the 1st and 2nd order derivatives of
the value function, we explicitly use gradients during training
using a Sobolev Loss. 1st order supervised training also has
the benefit of reducing the dependence of learning on hyper
parameters.

B. Related Work

The algorithmic formulation of RL often requires a large
number of samples [6] followed by considerable tuning. To
mitigate these problems, in [7] an extension to soft actor

mailto:aparag@laas.fr

critic approach [8] was shown to counter over sensitivity to
hyper-parameters [9]. The quality of predictions of the actor
itself, was examined in [10] with the conclusion that the actor
learns better when learning to act optimally over a horizon
rather than learning the next optimal state.

Noting that value functions are unique fixed points of
Bellman operators of the corresponding Markov decision
process and govern interactions of RL agent with its en-
vironment, an extensive analysis in [11] showed that the
mathematical foundations of RL are fully not realised in
the algorithmic implementation of policy gradient methods
[12] : value function estimates never match the true value
function and only marginally guide the search for policy.
The mathematical foundation is the minimization of some
stochastic objective function based on the governing dynam-
ics of the system and RL usually proceeds by estimating the
0th order gradient of that objective [1], [13]. This is where
differentiable simulators differ from RL and other derivative
free methods [14], [15]. In robotic systems it is possible
to compute either analytic [16] or approximate derivatives
through automatic differentiation [17], [18].

However, planning over forecasts of process behaviour
over long horizons by minimizing a cost function or learning
optimal policies by maximizing a reward function are ,
in essence, complementary approaches to the underlying
optimal control (Markov decision process) problem. This
duality has spawned numerous approaches to combine them
more rigorously, typically with the objective of making one
benefit from the other. To overcome lack of consistency of
RL, in [19] suitable guiding samples drawn from a trajectory
optimizer are incorporated to assist direct policy search in
high dimensional system. In [20], the sub optimal trajectories
are refined using a trained policy which are then used as
guiding samples. In [21] trajectory optimizers were used in
exploration of the state space to minimize the risks associated
by the RL agent acting greedily.

On the other hand, various approaches have tried to use
learning to improve trajectory optimizers. This typically
involves learning some quantity to improve the performance
of trajectory optimizers. The learned quantity can be a
dedicated dynamic model of the system [22] or a cost model
for the task as in [23]. Much more closer to our work
are [24], [25], where the authors learn value function : the
learned value function is subsequently used inside trajectory
optimizer either to serve as a stable anchor for the terminal
position or for one step model predictive control.

In our earlier work in learning value functions [26], we
build upon the idea of learning value function at the terminal
state with high fidelity by coupling a trajectory optimizer
with a sobolev supervised learning phase. Using value func-
tion as a terminal proxy rather than a running cost proxy also
minimizes the risk associated with function approximation.
Learning in Sobolev spaces, [27], [28], differs from classical
regression in that it constrains learning to simultaneously
match target derivatives with derivatives of the deep neural
network while minimizing the error between predictions and
target. This form of constrained learning has been shown to

mitigate the additional cost of computing gradients of the
neural network with respect to input, by being more data
efficient and robust [29]–[31]. Supervised Sobolev training
also opens the idea of learning control trajectories by forcing
the learning agent to match the Riccati gains : these gradients
(analytic or inexact) of control are provided by differentiable
simulators.

II. RECURSIVE OPTIMALITY

In this section, we give a brief summary of the different
foundations of our algorithm and establish notations. We
choose to use the optimal control formulation of MDP.

A. Problem formulation and notations

We consider a time discrete formulation of (finite state)
MDP for a system with autonomous dynamics in some
environment. The evolution of such a system can then be
written as

x+ = f(x, u,Ω) (1)

where x+, x are the next state and the current state
respectively in n dimensional vector space such that x ∈ X .
f represents the time independent state transition function.
Ω is a parametrization of the environment where the system
evolves and u ∈ U denotes the controls applied to the system.
For brevity, we will drop Ω from here on.

The solution to the corresponding optimal control problem
would then be to find a pair X : t → x(t) ∈ X and U :
t → u(t) ∈ U which minimizes a cost functional L(X,U).
In a discretized transcription, L(X,U) can be written as an
infinite sum of running cost, l(x, u):

L(X,U) =

+∞∑
k=0

l(xk, uk) (2)

For finite time horizon problems of length T , the L(X,U)
is split in two parts:

L(X,U) =

T−1∑
k=0

l(xk, uk) + lf (xT) (3)

where lf (xT) is the cost at the terminal position. We denote
X∗, U∗ as the optimal solution to this minimization problem
over a finite time horizon T and from the initial starting state
x0.

B. Value function

Assuming that the solution pairs to Eq 3 are optimal, then
we can define a value function, V : x → V (x), as the optimal
value of the cost functional when the system at the starting
state x0 moves along the optimal trajectory, x ∈ X∗, while
following an optimal policy u : x → u(x) ∈ U∗.

We can further define Vk as the cost-to-go over the horizon
T − k from any starting state x by rewriting Eq. 3 as:

VT−k(x) = min
U

T−1∑
j=k

l(xj , uj) + lf (xT) (4)

If lf can be replaced with value function, then the cost-
to-go over the horizon T − k can be reformulated to obtain
recursive optimality. In that case, the minimization problem
becomes:

VT−k(x) = min
u

l(x, u) + VT−k−1(f(x, u)) (5)

If a fair estimate of the value function can be provided,
them this problem transforms into an infinite horizon prob-
lem while remaining solvable with finite resources. Further-
more, the cost-to-go is now independent of timestep and is
equal to value function: VT (x) = V (x) ∀T > 0.

C. Differential Dynamic Programming

DDP is a second order iterative algorithm [4], [32] that
takes advantage of the recursivity of Bellman’s Optimality
Principle by adding the boundary condition, VT (x) = lf (xT)
to Eq. 5. In each iteration, it numerically solves the optimal
control problem described above by performing a backward
and a forward pass on the current estimate of the state-control
trajectories : a backward phase to estimate the value function
as quadratic fit along the current candidate trajectory, a
forward phase to refine the candidate trajectory based on
the value function.

To construct a quadratic fit of the value function, DDP
measures the deviations from the current candidate trajectory
through Taylor’s expansion [33], discards terms beyond
second-order. It then returns an estimation of the cost-to-go
and the hessian and gradient at every step along the preview
horizon.

This implies that for the neural network that approximates
the value function to be substituted as a proxy for lf (xT),
it has to be sufficiently accurate and twice differentiable,
since, in the backward pass, DDP requires a estimate of value
function along with its first and second order derivatives.

III. DIFFERENTIAL POLICY VALUE PROGRAMMING

a) Algorithmic Principles: Eq 5 immediately shows
that the global value function, V ∗, can be approximated
through the locally optimal rollouts of DDP if V is known.
With this in view, we propose Differential Policy Value Pro-
gramming, ∂PVP, that iteratively estimates the global time
independent value function and state-control trajectories.

We use three neural networks : a residual network, V n
α ,

to approximate the value function through Gauss Newton
decomposition, a state network, Xn

β , to learn the state trajec-
tory, and a final control network, Un

γ , to estimate the control
trajectory1. α, β, γ are the parameters of the respective neural
networks at the nth iteration.

At the beginning of ∂PVP, we generate a batch of trajec-
tories for a predefined horizon length T, but without any
terminal cost model, i.e lf = 0. We use this for offline
training of V n=1

α , Xn=1
β , Un=1

γ . At the end of the first
iteration, V n=1

α approximates the cost-to-go for a horizon of
length T, Xn=1

β approximates the state trajectory and Un=1
γ

1see Sec VI for use of Riccati Gains during training

approximates the control to be applied at each step along the
preview horizon.

b) Iterative Episodic Learning: ∂PVP then proceeds to
iteratively build upon its estimates of the value function, state
and control trajectories. In subsequent iterations V n

α acts as
the proxy for terminal cost function. So at the end of every
iteration, Eq. 4 is changed to:

V n(x) = min
u

T−1∑
k=0

l(xk, uk) + V n−1
α (xT) (6)

where n is the iteration number, n ≥ 2, V n−1
α is the value

function approximated in the previous iteration, while Xn
β ,

Un
γ are used online in DDP to provide candidate trajectories

in the forward pass.
With each iteration n, the learning should approximate the

cost-to-go, state-control trajectories over a horizon (n+1).T .
This in turn should provide a stable anchor for DDP at the
terminal position, and drive it toward steady state solutions.
Simultaneously, Xn

β , Un
γ provide precise enough guesses of

the steady state solutions.
By setting a reinforced loop between V n

α , Xn
β , Un

γ and
DDP, the convergence of the algorithm should depend on
(n + 1)T . Therefore as n increases, V n

α , Xn
β , Un

γ should
tend toward global V ∗, X∗, U∗. and the algorithm should
achieve super linear convergence in the number of attempts
required to find optimal trajectories.

IV. SUPERVISED TRAINING PROCEDURE

A. Architecture of Trainable Models

Vα, Xβ , Uγ were initially implemented as the outcome
of a three headed feed forward network with common
hidden layers. This was specifically done to test the trade-
off between the training time of a multi headed network and
the theoretical advantages of enabling the multiple heads to
benefit from the rich information encoded in the common
hidden layers. However, this resulted in bloated computation
time of parameter updates during the training phase. The
practical benefits of shorter training time far outweighed the
theoretical advantages of common hidden layers. We do not
include those results in this paper. For our experiments, we
decided to learn the three different quantities - value function,
state trajectory and control trajectory - on three different feed
forward networks.

a) State-Control Approximators : Xβ and Uγ are im-
plemented with simple deep feed forward networks with 6
hidden layers with ReLU, ELU, Tanh alternately applied .
The output and input shape depends on the dimensions of
the optimal control problem. These two approximators are
trained in the classical supervised manner as opposed to
Sobolev Regression for learning the value function described
next.

b) Value Function Approximator : DDP as mentioned
in Sec II-C, is a second order algorithm. It computes the 2nd

and 1st order derivatives of value function in the backward
pass and therefore requires V

′

α and V
′′

α in every iteration of
our algorithm. Since computing V

′′

α is not feasible, especially

Fig. 1: Illustration of the relation between accuracy during training and size
of dataset. The different colors of training curves represent different size of
datasets.

Fig. 2: Quality of gradients of Vα, with and without Sobolev Training.

in higher dimensional systems like manipulator arm, we use
Gauss Newton approximation to design Vα as squared sum
of residuals:

V (x|α) = R(x|α)2 (7)

This immediately allows us to write the 1st and 2nd order
derivatives as :

V ′(x|α) = 2R′(x|α)TR(x|α) (8)

V ′′(x|α) ≈ 2R′(x|α)TR′(x|α) (9)

We implement this with a feed forward network with three
hidden layers and tanh activation. The final layer outputs
a three-vector residual. Modeling the value function as the
output of Gauss Newton Approximation seemingly imparts a
more physical interpretation to the hidden layers as compared
to a simple feedforward network. We also find that R(x|α)2
performs better during training as compared to a one output
feedforward network as shown in Fig 1.

c) Sobolev Regression for Vα : The trainable param-
eters of Vα during the learning phase are consequently
changed in response to cumulative errors accrued by two
losses - 0th and 1st order. The 0th order loss is identical to
canonical losses used in functional regression that penalizes
the difference in observations and target with some norm λd,
while the 1st order loss forces the neural network to match
its derivatives (w.r.t input) with the corresponding derivatives
of the target. The corresponding difference between only 0th

order training and Sobolev training in seen quite clearly in
Fig 2. Theoretically Sobolev regression can involve higher
order derivatives, however in our experiments we choose to
stay at 1st order with norm d = 2 to offset the increased
workload on the automatic differentiation engine.

V. EMPIRICAL EVALUATIONS

We benchmark2 our algorithm on three classical control
problems: unicycle [34], cartpole [35], [36] and inverted
pendulum [36], along with a torque-controlled 7 degrees of
freedom (dof) manipulator arm3 where the ocp is formu-
lated as static end-effector pose reaching task, controlled in
torque with additional regularization on both state and torque
controls.

Since the precision of our algorithm increases with (n +
1).T , the quality of V n

α should depend on the nth iteration
or on T or both. We establish validation dataset for simple
classical control systems by sampling for a large collection
of locally long optimal trajectories of horizon length 1000.
For the 7 dof manipulator, sampling for a similar validation
dataset is not feasible.

In this section4, we present certain results of interest.

A. Estimates of Quasi Steady State Value Function : V n
α

a) Quality of predictions of Vα : To compare the dif-
ferences in the predictions of the value function, we compute
a quasi-infinite horizon value function validation dataset by
sampling for locally long optimal horizons of length 1000.
We use this dataset, V (s, T = 1000), to establish distance to
infinite horizon in value learning for systems like unicycle.

As we can see in Fig 3, the algorithm quickly learns the
overall topology of value function across state space. As
the number of iterations increase, ∂PVP seems to refine its
understanding of the inherent symmetry in value function
topology. Fig 4 shows the difference between quasi infinite
horizon value function and predicted value functions at iter-
ations 1, 5, 9. We observe that the iterative aspect of ∂PVP
allows it to learn value function over long horizons quite
well despite initialization in short horizon. However, there
seems to be regions in configuration space difficult to handle
(shown in white in Fig 4). We suspect that the non-holonomic
constraints in the unicycle environment leads to singularities
which in turn destabilize learning. With more learning, the
algorithm overcomes the presence of singularities. By the
10th iteration, the algorithm had narrowed the location of
singularities to be symmetrically distributed around the goal,
coincident with the q1 axis in Fig 4

Fig 5 and Fig 6 shows the smoothness of predictions of
V n=10
α for the end-effector pose reaching task with the 7 dof

manipulator arm.

B. Quality of Warmstarts : Xβ , Uγ

Fig 7, Fig 8, Fig 9 and Fig 10 show the predicted state
trajectories and control trajectories for the EE pose reaching
task and the classical control problems with comparisons
with a corresponding locally optimal trajectory computed
by DDP. The advantage of learning state-control trajectories
in a supervised setting can be seen in the smoothness of

2The source code is available at https://gitlab.laas.fr/
aparag/kuka-arm-dpvp

3Kuka lwr iiwa R820 14
4The experiments were performed on core i9 processor with 32 Gb

RAM

https://gitlab.laas.fr/aparag/kuka-arm-dpvp
https://gitlab.laas.fr/aparag/kuka-arm-dpvp

Fig. 3: Comparison of the topology of predicted value functions by
V 1
α , V 5

α , V 10
α with value function at horizon length 1000: V (s, T = 1000).

The target position is shown in red. The unicycle can start anywhere in the
configuration space and tries to reach for target

Fig. 4: Scatter plot of the distribution of mean squared errors between
V 1
α , V 5

α , V 10
α and V (s, T = 1000) for unicycle. The yellow dot is the

goal position for the unicycle.

Fig. 5: The Figure on the left shows the predictions for value functions
of V n=10

α for the 14 dimensional state space of the manipulator arm. The
points were randomly sampled from 14 dimensional space. In the Figure on
the right, only q1, q̇1 were randomly sampled and the other 12 dimensions
were set to 0.

Fig. 6: Slices of the gradients of the neural network, i.e V
′n=10
α for the

manipulator state space

Fig. 7: Predictions of Xβ for EE pose reaching task. During the training
phase, 150 locally optimal samples of horizon length 200 were drawn the 14
dimensional configuration space in each of the 20 iterations. This resulted
in our TO computing 10347 rollouts overall. The training phase lasted 61
minutes.

the predictions. The predicted state trajectories are nearly
coincident with the corresponding long optimal trajectories.
When these learned trajectories are used as a reference to
guide policy search in DDP, the number of rollouts/attempts
required by DDP reduces, as opposed to the number of
rollouts required by DDP when not provided any intelligent
guesses.

C. Super Linear Convergence

In Fig 11 and Fig 12, we compare the number of rollouts
required DDP and ∂PVP to solve a problem for the 7 dof
manipulator arm and unicycle respectively.

We use our trained networks inside our trajectory op-
timizer to solve for 500 uniformly sampled initial con-
figurations from the configuration space. For those very
same initial configurations, we also use trajectory optimizer
but without any help from the trained networks. We then
compare the number of rollouts needed in both cases. We
see that with ∂PVP the number of attempts made to find
optimal policies decrease drastically. For the manipulator
arm the average rollouts required by ∂PVP is 2.71, while
the average rollouts required by DDP is 9.3.

In Fig 13, we show the difference in solutions computed by
DDP and ∂PVP at different horizons. Trajectories computed
with ∂PVP at short preview horizons seem coincident with
trajectories computed over longer horizon.

VI. DISCUSSION AND CONCLUSION

In this work, we showed that reformulating reinforcement
learning as a combination of iterative supervised learning
phase, with emphasis on value functions, and simulators
allows for reduction in trials needed to find the (locally)
optimal solution. The iterative supervised learning phase en-
forces the stability of predictions through Sobolev regression
while learning in the backdrop of recursive optimality further
reduces the dependence on hyper parameters.

There are a few points of interest in the way information
from policy trials are used in the supervised learning phase.
First, in the learning phase TO plays the role of an oracle
to provide us for a predefined horizon for each ocp, the
state trajectory, the control trajectory, the Riccati Gains, time
dependent value function estimates of every node in the
state trajectory (along with the corresponding gradients and
hessians).

Fig. 8: Predictions of Xβ and Uγ for Pendulum compared to the corre-
sponding solutions by DDP.

Fig. 9: Predictions of Xβ and Uγ for Cartpole. vs DDP

Fig. 10: Warmstarts provided by Xβ and Uγ for Unicycle compared to the
final solutions computed by DDP.

Fig. 11: Histogram of rollouts required for the 7 dof manipulator arm with
DDP and ∂PVP across 500 tasks.

Fig. 12: Histogram of rollouts required for unicycle with DDP and ∂PVP

Fig. 13: State trajectories computed by DDP vs ∂PVP at different horizons
for the unicycle problem.

Of this information, we choose to keep the node with the
highest preview horizon for learning value function. This can
be seen as an under utilization of the state-value information.
On the one hand, states with value function estimations of
smaller preview horizon can augment the dataset but on the
other hand, this approach can lead to a noisier dataset which
can effectively slow down convergence.

To enforce a shorter training time, we also discarded the
use of hessians of value function during the training of Vα.
This consideration also precluded the use of Riccati gains
during training of Uγ .

Similarly we tested the feasibility of adding a kernel loss
function based on Bellman’ contraction operator on the learn-
ing of state and control trajectories. A kernel loss function
that constrains trajectories to satisfy the Hamilton-Jacobi-
Bellman criteria of optimal sub-structures: sub-solutions of
an indefinite horizon optimal control problem should also be
optimal solutions to the corresponding definite horizon sub
problems, should in theory, elevate the quality of the pre-
dicted state and control trajectories. However implementing
such a kernel loss function seemed to have little benefits at
the expense of increased computation time. We leave it to a
future work to explore these avenues.

The training time can be further reduced with the obser-
vation that the policies learned by the neural networks serve
as a guide for DDP. In our experiments, we observe that
the precision of Xβ , Uγ increases only slightly as ∂PVP
iterates. This allows us flexibility in defining the number
of training epochs in every iteration, which we need if the
dimensionality of the problem under consideration increases.
For experiments with manipulator arm, we choose to learn
and improve state-control trajectories only in the initial
and final iterations. We found this training strategy, where
estimations of value functions are refined at every iteration,
whereas estimation of state-control trajectories are refined
only at start and end to be good enough for our purposes.

In this paper, we presented the foundational aspects of
our algorithm. We believe that coupling approach presented
in this paper is mature enough to be tested on legged robots
such as quadrupeds and mini cheetah in real time. We plan
to present those results in a future work.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[2] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731,
1966.

[3] S. Peng, “A generalized dynamic programming principle and hamilton-
jacobi-bellman equation,” Stochastics: An International Journal of
Probability and Stochastic Processes, vol. 38, no. 2, pp. 119–134,
1992.

[4] D. Q. Mayne, “Differential dynamic programming–a unified approach
to the optimization of dynamic systems,” in Control and Dynamic
Systems. Elsevier, 1973, vol. 10.

[5] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and
N. Mansard, “Crocoddyl: An efficient and versatile framework
for multi-contact optimal control,” in International Conference on
Robotics and Automation. ICRA, 2020.

[6] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” in Proceedings of Robotics: Science and Systems,
Pittsburgh, Pennsylvania, June 2018.

[7] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” in Robotics:
Science and Systems XV. RSS, 2019.

[8] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in ICML, 2018.

[9] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and
D. Meger, “Deep reinforcement learning that matters,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

[10] D. Hoeller, F. Farshidian, and M. Hutter, “Deep value model predictive
control,” in Conference on Robot Learning. CoRL, 2020.

[11] A. Ilyas, L. Engstrom, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph,
and A. Madry, “A closer look at deep policy gradients,” in Interna-
tional Conference on Learning Representations. ICLR, 2020.

[12] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey
of actor-critic reinforcement learning: Standard and natural policy
gradients,” IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), vol. 42, no. 6, pp. 1291–1307, 2012.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[14] L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: a review
of algorithms and comparison of software implementations,” Journal
of Global Optimization, vol. 56, no. 3, pp. 1247–1293, 2013.

[15] H. Qian and Y. Yu, “Derivative-free reinforcement learning: a review,”
Frontiers of Computer Science, vol. 15, no. 6, pp. 1–19, 2021.

[16] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The pinocchio c++ library: A fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in IEEE International Symposium on System
Integration (SII). SICE, 2019.

[17] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley,
and F. Durand, “Difftaichi: Differentiable programming for physical
simulation,” ICLR, 2020.

[18] R. Tedrake et al., “Drake: A planning, control, and analysis toolbox
for nonlinear dynamical systems,” 2014.

[19] S. Levine and V. Koltun, “Guided policy search,” in International
Conference on Machine Learning. ICML, 2013.

[20] N. Mansard, A. DelPrete, M. Geisert, S. Tonneau, and O. Stasse,
“Using a memory of motion to efficiently warm-start a nonlinear
predictive controller,” in IEEE International Conference on Robotics
and Automation. ICRA, 2018.

[21] K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mor-
datch, “Plan online, learn offline: Efficient learning and exploration
via model-based control,” in International Conference on Learning
Representations. ICLR, 2019.

[22] I. Lenz, R. A. Knepper, and A. Saxena, “Deepmpc: Learning deep
latent features for model predictive control,” in Robotics: Science and
Systems. RSS, 2015.

[23] A. Tamar, G. Thomas, T. Zhang, S. Levine, and P. Abbeel, “Learn-
ing from the hindsight plan—episodic mpc improvement,” in IEEE
International Conference on Robotics and Automation. ICRA, 2017.

[24] M. Zhong, M. Johnson, Y. Tassa, T. Erez, and E. Todorov, “Value
function approximation and model predictive control,” in Symposium
on Adaptive Dynamic Programming and Reinforcement Learning.
IEEE, 2013.

[25] J. Viereck, A. Meduri, and L. Righetti, “Valuenetqp: Learned
one-step optimal control for legged locomotion,” arXiv preprint
arXiv:2201.04090, 2022.

[26] A. Parag, S. Kleff, L. Saci, N. Mansard, and O. Stasse, “Value learning
from trajectory optimization and sobolev descent: A step toward
reinforcement learning with superlinear convergence properties,” in
International Conference on Robotics and Automation, 2022.

[27] W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Świrszcz, and
R. Pascanu, “Sobolev training for neural networks,” in Advances in
Neural Information Processing Systems. Neural IPS, 2017.

[28] K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural networks, vol. 4, no. 2, 1991.

[29] T. M. Mitchell, S. B. Thrun et al., “Explanation-based neural net-
work learning for robot control,” in Advances in Neural Information
Processing Systems. Neural IPS, 1993.

[30] J.-W. Lee and J.-H. Oh, “Hybrid learning of mapping and its jacobian
in multilayer neural networks,” Neural computation, vol. 9, no. 5,
1997.

[31] J. B. Witkoskie and D. J. Doren, “Neural network models of potential
energy surfaces: Prototypical examples,” Journal of chemical theory
and computation, vol. 1, no. 1, 2005.

[32] L.-z. Liao and C. A. Shoemaker, “Advantages of differential dynamic
programming over newton’s method for discrete-time optimal control
problems,” Cornell University, Tech. Rep., 1992.

[33] Z. Xie, C. K. Liu, and K. Hauser, “Differential dynamic programming
with nonlinear constraints,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2017, pp. 695–702.

[34] S. Fleury, P. Soueres, J.-P. Laumond, and R. Chatila, “Primitives for
smoothing mobile robot trajectories,” Transactions on Robotics and
Automation, vol. 11, no. 3, 1995.

[35] R. V. Florian, “Correct equations for the dynamics of the cart-pole
system,” Center for Cognitive and Neural Studies, 2007.

[36] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

	Introduction
	Our Contributions
	Related Work

	Recursive optimality
	Problem formulation and notations
	Value function
	Differential Dynamic Programming

	Differential Policy Value Programming
	Supervised Training Procedure
	Architecture of Trainable Models

	Empirical Evaluations
	Estimates of Quasi Steady State Value Function : Vn
	Quality of Warmstarts : X, U
	Super Linear Convergence

	Discussion and Conclusion
	References

