
HAL Id: hal-03674092
https://hal.science/hal-03674092v1

Preprint submitted on 20 May 2022 (v1), last revised 19 Sep 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Supervised Formulation of Reinforcement Learning:
with super linear convergence properties

Amit Parag, Nicolas Mansard

To cite this version:
Amit Parag, Nicolas Mansard. A Supervised Formulation of Reinforcement Learning: with super
linear convergence properties. 2022. �hal-03674092v1�

https://hal.science/hal-03674092v1
https://hal.archives-ouvertes.fr

A Supervised Formulation of Reinforcement Learning:
with super linear convergence properties

Amit Parag
Université Fédérale Toulouse

LAAS-CNRS
aparag@laas.fr

Nicolas Mansard
LAAS-CNRS

nmansard@laas.fr

Abstract

Deep reinforcement learning uses simulators as abstract oracles to interact with the
environment. In continuous domains of multi body robotic systems, differentiable
simulators have recently been proposed but are yet under utilized, even though we
have the knowledge to make them produce richer information. This problem when
juxtaposed with the usually high computational cost of exploration-exploitation in
high dimensional state space can quickly render reinforcement learning algorithms
impractical. In this paper, we propose to combine learning and simulators such
that the quality of both increases, while the need to exhaustively search the state
space decreases. We propose to learn value function and state, control trajectories
through the locally optimal runs of model based trajectory optimizer. The learned
value function, along with an estimate of optimal state and control policies, is
subsequently used in the trajectory optimizer: the value function estimate serves as
a proxy for shortening the preview horizon, while the state and control approxima-
tions serve as a guide in policy search for our trajectory optimizer. The proposed
approach demonstrates a better symbiotic relation, with super linear convergence,
between learning and simulators, that we need for end-to-end learning of complex
poly articulated systems.

1 Introduction

Reinforcement Learning (RL) [1] sets its goal as the search for an optimal policy to navigate its
immediate environment. It does so by establishing its interactions with the environment as a Markov
decision process where immediate action taken in the current state is driven to maximize an expected
reward over a foreseeable future. In turn, it relies on an oracle to provide it with states, actions
and expected rewards, with the implicit assumptions on the overall efficiency of the oracle. In high
dimensional robotic systems, the oracle itself is a differentiable simulator, for instance [2], that
can plan over long horizons. While an end to end RL framework can, in principle, be applied to
robot learning, practical applications of RL on real world has been less successful. The algorithmic
formulation of RL often requires a large number of samples [3] followed by considerable tuning. To
mitigate these problems, in [4] an extension to soft actor critic approach [5] is developed to counter
over sensitivity to hyper-parameters [6]. The quality of predictions of the actor itself, was examined
in [7] with the conclusion that the actor learns better when learning to act optimally over a horizon
rather than learning the next optimal state.

Noting that value functions are unique fixed points of Bellman operators of the corresponding Markov
decision process and govern interactions of RL agent with its environment, an extensive analysis
in [8] showed that the mathematical foundations of RL are fully not realised in the algorithmic
implementation of policy gradient methods [9] : value function estimates never match the true
value function and only marginally guide the search for policy. The mathematical foundation is the

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

minimization of some stochastic objective function based on the governing dynamics of the system
and RL usually proceeds by estimating the 0th order gradient of that objective [10, 11]. This is
where differentiable simulators differ from RL and other derivative free methods [12, 13]. In robotic
systems it is possible to compute either analytic [14] or approximate derivatives through automatic
differentiation [15, 16].

Simulators, even though can handle non linearities, complex poly articulated behaviour and constraints
[17], can become severely limited by the corresponding computation time, in particular shooting
methods like Differential Dynamic Programming (DDP) [18, 19], can require a large number of
iterations to converge. This is relatable to the application of RL solvers in continuous domain, where
training can become prohibitively expensive and is strongly dependent on the sample efficiency of its
exploration strategy.

However, planning over forecasts of process behaviour over long horizons by minimizing a cost
function or learning optimal policies by maximizing a reward function are , in essence, complementary
approaches to the underlying optimal control (Markov decision process) problem. This duality has
spawned numerous approaches to combine them more rigorously, typically with the objective of
making one benefit from the other. To overcome lack of consistency of RL, in [20] suitable guiding
samples drawn from a trajectory optimizer are incorporated to assist direct policy search in high
dimensional system. In [21], the sub optimal trajectories are refined using a trained policy which
are then used as guiding samples. In [22] trajectory optimizers were used in exploration of the state
space to minimize the risks associated by the RL agent acting greedily.

On the other hand, various approaches have tried to use learning to improve trajectory optimizers.
This typically involves learning some quantity to improve the performance of trajectory optimizers.
The learned quantity can be a dedicated dynamic model of the system [23] or a cost model for
the task as in [24]. In [25] it was proposed to learn the value function at terminal state to offset
the computation costs and serve as an anchor to drive trajectory optimizers toward goal. In [26],
the authors build upon the idea of learning value function at the terminal state with high fidelity
by coupling a trajectory optimizer with a sobolev supervised learning phase. Learning in Sobolev
spaces, [27, 28], differs from classical regression in that it constrains learning to simultaneously
match target derivatives with derivatives of the deep neural network while minimizing the error
between predictions and target. This form of constrained learning has been shown to mitigate the
additional cost of computing gradients of the neural network with respect to input, by being more
data efficient and robust [29, 30, 31]. Supervised Sobolev training also opens the idea of learning
control trajectories by forcing the learning agent to match the Riccati gains : these gradients (analytic
or inexact) of control are provided by differentiable simulators.

The overall goal is to find optimal solution to a Markov decision process and in the general landscape
of robot learning, this is usually done in way where either model based help model free methods find
that solution or the opposite. This point is important. In our work, we attempt to combine learning
and trajectory optimization in a manner such that the overall combination finds the optimal solution.

1.1 Contributions

In this paper, we propose an actor-critic esque coupling as a solution to optimal control problem that
combines a trajectory optimizer with a reinforced learning loop: the reinforced learning loop itself
is the actor, while the role of critic is played by the trajectory optimizer. We achieve this by setting
an iterative loop in the backdrop of the recursivity of Bellman’s optimality principle, [32, 33]: the
learning depends on the data provided by the trajectory optimizer, while the efficient computation of
optimal trajectories over a preview horizon by the trajectory optimizer depends on accurate learning.

This synergistic coupling can alternately be viewed as a game between two players where the optimal
outcome, i.e the optimal solution to the Markov Decision Problem, is contingent upon the strategy
chosen by each player to be optimal, where the strategy of each player depends on the strategy of the
other player. The purpose of utilizing Bellman’ optimality principle is to ensure that the strategy of
both players remain guided by optimality.

We explicitly focus on learning with high accuracy and with reduced rollouts. We use Differential
Dynamic Programming (DDP) [18, 34], a particular class of (direct shooting) trajectory optimizer, to
give us state-value pairs and state-control trajectories which we learn in the supervised phase using
three neural networks. The estimates of value function is subsequently used inside DDP as an anchor

2

at the terminal position, while the approximation of optimal policies serve as a guide for DDP. We
iterate over this process until convergence.

As DDP also requires the 1st and 2nd order derivatives of the value function, we explicitly use
gradients during training using a Sobolev Loss. 1st order supervised training also has the benefit of
reducing the dependence of learning on hyper parameters.

2 Preliminary

In this section, we give a brief summary of the different foundations of our algorithm and establish
notations. We choose to use the optimal control formulation of MDP.

2.1 Optimal Control

We consider a time discrete formulation of (finite state) Markov decision process for a system with
autonomous dynamics.

In an n dimensional vector space, the change of the current state x to the next state x+, under
the application of a control u in an environment parameterized by Ω, where f represents the time
independent state transition function, can be written as:

x+ = f(x, u,Ω) (1)

where x, x+ ∈ X , can possibly also represent an element of Lie Group and u ∈ U . The solution to
the corresponding optimal control problem would then be to find a pair x(t), u(t) which minimizes a
cost functional L(X,U). In a discretized transcription, L(X,U) can be written as an infinite sum of
running cost, l(x, u):

L(X,U) =

+∞∑
k=0

l(xk, uk) (2)

where l(x, u) : X × U → R.

For finite time horizon problems of length T , the L(X,U) is split in two parts:

L(X,U) =

T−1∑
k=0

l(xk, uk) + lf (xT) (3)

where lf (xT) is the cost at the terminal position. We denote X∗, U∗ as the optimal solution to this
minimization problem over a finite time horizon T and from the initial starting state x0.

Recursive Optimality If the solution pairs are optimal, then we can define a value function,
V : x → V (x), as the optimal value of the cost functional when the system at the starting state x0

moves along the optimal trajectory, X , while following an optimal policy π : x → π(x) ∈ U .

We can further define Vk as the cost-to-go over the horizon T − k from a starting state x by rewriting
Eq. 3 as:

VT−k(x) = min
U

T−1∑
j=k

l(xj , uj) + lf (xT) (4)

If lf can be replaced with value function, then the cost-to-go over the horizon T − k can be
reformulated to obtain recursive optimality. In that case, the minimization problem becomes:

VT−k(x) = min
u

l(x, u) + VT−k−1(f(x, u)) (5)

On the assumption, that a fair estimate of the value function can be provided, the problem transforms
into an infinite horizon problem while remaining solvable with finite resources. Furthermore, the
cost-to-go becomes independent of timestep and is equal to value function: VT (x) = V (x) ∀T > 0

3

Differential Dynamic Programming DDP is a second order iterative algorithm, [18, 35] that takes
advantage of the recursivity of Bellman’ Optimality Principle by adding the boundary condition,
VT (x) = lf (xT) to Eq. 5. In each iteration, it numerically solves the optimal control problem
described above by performing a backward and a forward pass on the current estimate of the state-
control trajectories (X,U) : a backward phase to estimate the value function as quadratic fit along
the current candidate trajectory, a forward phase to refine the candidate trajectory based on the value
function.

To construct a quadratic fit of the value function, DDP measures the deviations from the current
candidate trajectory through Taylor’s expansion [19], discards terms beyond second-order. It then
returns an estimation of the cost-to-go and the hessian and gradient at every step along the preview
horizon.

This implies that for the neural network that approximates the value function to be substituted as a
proxy for lf (xT), it has to be sufficiently accurate and twice differentiable, since, in the backward
pass, DDP requires a estimate of value function along with its first and second order derivatives.

3 Differential Policy Value Programming

Algorithmic Principles We propose an algorithm based on the data efficiency of Sobolev learning,
recursivity of Bellman’s optimality principle and robustness of DDP.

Eq 5 immediately shows that the global value function, V ∗, can be approximated through the locally
optimal rollouts of DDP if V is known. With this in view, we propose ∂PVP : Differential Policy
Value Programming : to iteratively estimate the global time independent value function and state-
control trajectories. We use three neural networks : a residual network, V n

α to approximate the value
function through Gauss decomposition, a state network, Xn

β , to learn the state trajectory, and a final
control network, Un

γ , to estimate the control trajectory1. α, β, γ are the parameters of the respective
neural networks at the nth iteration.

At the beginning of ∂PVP, we generate a batch of trajectories for a predefined horizon length T, but
without any terminal cost model, i.e lf = 0. We use this for offline training of V n=1

α , Xn=1
β , Un=1

γ .
We learn the value function through Sobolev regression, while we use classical regression to learn
state and control trajectories. At the end of the first iteration, V n=1

α approximates the cost-to-go for a
horizon of length T, Xn=1

β approximates the state trajectory from a given starting state x and Un=1
γ

approximates the control to be applied at each step along the preview horizon.

Iterative Learning ∂PVP then proceeds to iteratively build upon its estimates of the value function,
state and control trajectories. In subsequent iterations V n

α acts as the proxy for terminal cost function.
So at the end of the every iteration, Eq. 4 is changed to:

V n(x) = min
u

T−1∑
k=0

l(xk, uk) + V n−1
α (xT) (6)

where n is the iteration number V n−1
α is the value function approximated in the previous iteration,

while Xn
β , Un

γ are used online in DDP to provide candidate trajectories in the forward pass.

The algorithm, as stated earlier, can be thought of as an actor-critic formulation, where V n
α , Xn

β ,
Un
γ play the role of actor, albeit in a supervised sobolev setting while DDP bases its decision on the

quantities estimated by the actor.

With each iteration n, the learning should approximate the cost-to-go, state-control trajectories over a
horizon (n+ 1).T . This in turn should provide a stable anchor for DDP at the terminal position, and
drive it toward steady state solutions. Simultaneously, Xn

β , Un
γ provide precise enough guesses of the

steady state solutions.

By setting a reinforced loop between V n
α , Xn

β , Un
γ and DDP, the convergence of the algorithm should

depend on (n+ 1).T . Therefore as n increases, V n
α , Xn

β , Un
γ should tend toward global V ∗, X∗, U∗.

1see Sec 5 for use of Riccati Gains during training

4

and the algorithm should achieve super linear convergence in the number of attempts required to find
optimal trajectories.

3.1 Architecture of the trainable models

The actors were initially implemented as the outcome of a three tailed feed forward network. This
was specifically done to test the trade-off between the training time of a multi tailed network and the
theoretical advantages of enabling the multiple tails to benefit from the rich information encoded in
the common hidden layers. This resulted in bloated computation time of parameter updates during
the training phase. The practical benefits of shorter training time far outweighed the theoretical
advantages of common hidden layers. We do not include those results in this paper. For our
experiments, we decided to learn the three different quantities - value function, state trajectory and
control trajectory - on three different feed forward networks.

State-Control Approximators The state and control estimators are implemented with simple deep
feed forward networks with 6 hidden layers with ReLU, ELU, Tanh alternately applied . The output
and input shape depends on the dimensions of the optimal control problem.

Value Function Approximator In our experiments, we use the Gauss Newton approximation to
write the value function as V = rT r. Therefore, Vα learns the value function as a squared sum
of residuals. We implement this with a feed forward network with three hidden layers and tanh
activation. The final layer outputs a three-vector residual. The mathematical formulation of gradient
and hessian of Vα is provided in the Appendix A.1. The update policy of this network is provided in
Appendix A.2

4 Evaluation

We benchmark our algorithm on three classical control problems: unicycle [36], cartpole [10, 37] and
inverted pendulum [37], along with a torque-controlled 7 dof manipulator arm2. Since the precision
of our algorithm increases with (n+1).T , where n, T are the iterations and predefined horizon of the
problem, the quality of the learned value function should depend on the nth iteration or on T or both.
We establish validation dataset for simple classical control systems by sampling for a large collection
of locally long optimal trajectories of horizon length 1000. For the 7 dof manipulator, sampling for a
similar validation dataset is not feasible.

In this section, we present certain results of interest for unicycle and 7 dof manipulator arm for the
complete algorithm3. Additional plots are provided in the Appendix. The source code is available at
https://gitlab.laas.fr/aparag/kuka-arm-dpvp

4.1 Manipulator Arm

The goal for the manipulator arm is to reach a static target with its End-Effector (EE): the OCP is for-
mulated as a static end-effector pose reaching task, controlled in torque with additional regularization
on both state and torque controls. The cost functional also penalizes deviation from state limits. The
dynamics of this 7 dof manipulator arm were computed through [14]. The policy trails were tested
on Bullet [38]. During the training phase, 150 locally optimal samples of horizon length 200 were
drawn the 14 dimensional configuration space in each of the 20 iterations. This resulted in our TO
computing 10347 rollouts overall. The training phase lasted 61 minutes.

Fig 1 and Fig 2 shows the predicted state trajectories and control trajectories respectively, as compared
with a corresponding locally long optimal trajectory. The advantage of learning state-control in a
supervised setting can be seen in the smoothness of the predictions. The predicted state trajectories are
nearly coincident with the corresponding long optimal trajectories. When these learned trajectories
are used as a reference guide to direct the policy search in DDP, the number of rollouts/attempts
required by DDP reduces, as opposed to the number of rollouts required by DDP when not provided
any intelligent guesses.

2Kuka lwr iiwa R820 14
3The experiments were performed on core i9 processor with 32 Gb RAM

5

https://gitlab.laas.fr/aparag/kuka-arm-dpvp

Figure 1: Comparison of predicted control trajectory and corresponding locally long optimal trajectory,
for the manipulator task

Figure 2: Comparison of predicted control trajectory and corresponding locally long optimal trajectory,
for the manipulator task

In Fig 3, we show the number of rollouts required by our converged networks working in tandem
with DDP to solve a problem. We use our trained networks inside our trajectory optimizer to solve
for 600 uniformly sampled initial configurations from the configuration space. For those very same
initial configurations, we also use trajectory optimizer but without any help from the trained networks.
We then compare the number of rollouts needed in both cases. We see that when learning is used in
DDP, the number of attempts made to find optimal policies decrease drastically. The average rollouts
required by ∂PVP is 2.71, while the average rollouts required by DDP is 9.3.

Fig 4 shows the difference between the value functions predicted in the nth and (n+ 1)th iteration.
As we see, the relative bellman residuals stabilizes after the 10th iteration. This effectively implies
that 10 iterations are sufficient for convergence.

Figure 3: Histogram of attempts (rollouts) required by DDP to perform a task vs attempts required
by DDP when guided by learning (∂PVP), shown here for the static pose reaching task with a
manipulator arm.

6

Figure 4: Bellman Residuals for the End Effector pose reaching task.

Figure 5: Comparison of the topology of value functions predicted by residual network at iterations 1,
5, 10 with value function at horizon length 1000: V (s, T = 1000). The target position is shown in
red. The unicycle can start anywhere in the configuration space and tries to reach for target

Figure 6: Errors between the predicted value function at iterations 1, 5, 10 and V (s, T = 1000) for
unicycle. The red dot is the goal position for the unicycle.

4.2 Unicycle

Fig 4.2 shows the evolution of the predicted value function for unicycle, as n increases. The unicycle
is a 3 dof point mass in the 2D Cartesian horizontal plane, where it can either move forward or rotate
on the spot with unconstrained longitudinal and angular velocity. The state space of the unicycle is a
3d cartesian vector space s = [q0, q1, q2] = [x, y, θ]T . The control configuration is two dimensional
vector: u = [v, ω]. The task is to reach the state configuration q = [0, 0, 0]T while minimizing the
weighted cost functional: L(X,U) = ||w1q||2 + ||w2u||2

To compare the differences in the predictions of the value function, we compute a quasi-infinite
horizon value function validation dataset by sampling for locally long optimal horizons of length
1000. We use this dataset, V (s, T = 1000), to establish distance to infinite horizon in value learning.

As we can see in Fig 4.2, the algorithm quickly learns the overall topology of value function across
state space. As the number of iterations increase, it seems to be refine the inherent symmetry in the
topology. Fig 6 shows the difference between quasi infinite horizon value function and predicted
value functions at iterations 1, 5, 9. We observe that that the iterative aspect of ∂PVP allows it to
learn value function over long horizons quite well despite initialization in short horizon. However,
there seem to regions in configuration space difficult to handle (shown in white). We suspect that the
non holonomic constraints in the unicycle environment lead to singularities which in turn destabilize
learning. With more learning, the algorithm overcomes the presence of singularities. By the 10th

iteration, the algorithm had narrowed the location of singularities to be symmetrically distributed
around the goal, coincident with the q1 axis in Fig 6.

7

5 Discussion and Conclusion

In this work, we showed that reformulating reinforcement learning as a combination of iterative
supervised learning phase, with emphasis on value functions, and simulators allows for reduction in
trials needed to find on optimal solution. The iterative supervised learning phase enforces the stability
of predictions through Sobolev regression while learning in the backdrop of recursive optimality
further reduces the dependence on the hyper parameters.

There are a few points of interest in the way the information from policy trials are used in the
supervised learning phase. First, in the learning phase the trajectory optimizer plays the role of an
oracle to provide us, for each ocp, an estimation of time dependent value function at each node for
every state trajectory, gradients and hessians of each value function along the state trajectory, control
trajectory and first order derivatives of control. Of this information, we choose to keep the node with
the highest preview horizon for learning value function. This can be seen as an under utilization
of the state-value information. On the one hand, states with value function estimations of smaller
preview horizon can augment the dataset but on the other hand, this approach can lead to a noisier
dataset which can effectively slow down convergence.

To enforce a shorter training time, we also discarded the use of second order derivatives of value
function. This also precluded the use of first order but high dimensional derivatives of the control
trajectory.

Similarly we tested the feasibility of adding a kernel loss function based on Bellman’ contraction
operator on the learning of state and control trajectories. A kernel loss function that constrains
trajectories to satisfy the Hamilton-Jacobi-Bellman criteria of optimal sub-structures: sub-solutions of
an indefinite horizon optimal control problem should also be optimal solutions to the corresponding
definite horizon sub problems, should in theory, elevate the quality of the predicted state and control
trajectories. However implementing such a kernel loss function seemed to have little benefits at the
expense of increased computation time. We leave it to a future work to explore these avenues.

The training time can be further reduced with the observation that the policies learned by the neural
networks serve as a guide for DDP. In our experiments, we observe that the precision of learned
state and control trajectories increases only slightly as ∂PVP iterates. This allows us flexibility in
defining the number of training epochs in every iteration, which we need if the dimensionality of the
problem under consideration increases. For experiments with manipulator arm, we choose to learn
and improve state-control trajectories only in the initial and final iterations. We found this training
strategy, where estimations of value functions are refined at every iteration, whereas estimation of
state-control trajectories are refined only at start and end to be good enough for our purposes.

In this paper, we presented the foundational aspects of our algorithm. We believe that coupling
approach presented in this paper is mature enough to be tested on legged robots such as quadrupeds
and mini cheetah in real time. We plan to present those results in a future work.

References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540), 2015.

[2] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In IEEE International Conference on Intelligent Robots and Systems. IROS, 2012.

[3] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez,
and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. In
Proceedings of Robotics: Science and Systems, Pittsburgh, Pennsylvania, June 2018.

[4] Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey Levine.
Learning to walk via deep reinforcement learning. In Robotics: Science and Systems XV. RSS,
2019.

[5] Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

8

[6] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

[7] David Hoeller, Farbod Farshidian, and Marco Hutter. Deep value model predictive control. In
Conference on Robot Learning. CoRL, 2020.

[8] Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. A closer look at deep policy gradients. In International
Conference on Learning Representations. ICLR, 2020.

[9] Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey of actor-
critic reinforcement learning: Standard and natural policy gradients. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6):1291–1307, 2012.

[10] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[11] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[12] Luis Miguel Rios and Nikolaos V Sahinidis. Derivative-free optimization: a review of algorithms
and comparison of software implementations. Journal of Global Optimization, 56(3):1247–1293,
2013.

[13] Hong Qian and Yang Yu. Derivative-free reinforcement learning: a review. Frontiers of
Computer Science, 15(6):1–19, 2021.

[14] Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel, Florent Lamiraux,
Olivier Stasse, and Nicolas Mansard. The pinocchio c++ library: A fast and flexible implemen-
tation of rigid body dynamics algorithms and their analytical derivatives. In IEEE International
Symposium on System Integration (SII). SICE, 2019.

[15] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and
Frédo Durand. Difftaichi: Differentiable programming for physical simulation. ICLR, 2020.

[16] Russ Tedrake et al. Drake: A planning, control, and analysis toolbox for nonlinear dynamical
systems, 2014.

[17] M Huba, S Skogestad, M Fikar, M Hovd, TA Johansen, and B Rohal’-Ilkiv. Selected topics on
constrained and nonlinear control. Slovakia, ROSA. Dolnỳ Kubín, 2011.

[18] David Q Mayne. Differential dynamic programming–a unified approach to the optimization of
dynamic systems. In Control and Dynamic Systems, volume 10. Elsevier, 1973.

[19] Zhaoming Xie, C Karen Liu, and Kris Hauser. Differential dynamic programming with nonlinear
constraints. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages
695–702. IEEE, 2017.

[20] Sergey Levine and Vladlen Koltun. Guided policy search. In International Conference on
Machine Learning. ICML, 2013.

[21] Nicolas Mansard, Andrea DelPrete, Mathieu Geisert, Steve Tonneau, and Olivier Stasse. Using
a memory of motion to efficiently warm-start a nonlinear predictive controller. In IEEE
International Conference on Robotics and Automation. ICRA, 2018.

[22] Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch.
Plan online, learn offline: Efficient learning and exploration via model-based control. In
International Conference on Learning Representations. ICLR, 2019.

[23] Ian Lenz, Ross A Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for
model predictive control. In Robotics: Science and Systems. RSS, 2015.

9

[24] Aviv Tamar, Garrett Thomas, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. Learning from
the hindsight plan—episodic mpc improvement. In IEEE International Conference on Robotics
and Automation. ICRA, 2017.

[25] Mingyuan Zhong, Mikala Johnson, Yuval Tassa, Tom Erez, and Emanuel Todorov. Value
function approximation and model predictive control. In Symposium on Adaptive Dynamic
Programming and Reinforcement Learning. IEEE, 2013.

[26] Amit Parag, Sébastien Kleff, Léo Saci, Nicolas Mansard, and Olivier Stasse. Value learning
from trajectory optimization and sobolev descent: A step toward reinforcement learning with
superlinear convergence properties. In International Conference on Robotics and Automation,
2022.

[27] Wojciech Marian Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Świrszcz, and Razvan
Pascanu. Sobolev training for neural networks. In Advances in Neural Information Processing
Systems. Neural IPS, 2017.

[28] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2), 1991.

[29] Tom M Mitchell, Sebastian B Thrun, et al. Explanation-based neural network learning for robot
control. In Advances in Neural Information Processing Systems. Neural IPS, 1993.

[30] Jeong-Woo Lee and Jun-Ho Oh. Hybrid learning of mapping and its jacobian in multilayer
neural networks. Neural computation, 9(5), 1997.

[31] James B Witkoskie and Douglas J Doren. Neural network models of potential energy surfaces:
Prototypical examples. Journal of chemical theory and computation, 1(1), 2005.

[32] Richard Bellman. Dynamic programming. Science, 153(3731), 1966.

[33] Shige Peng. A generalized dynamic programming principle and hamilton-jacobi-bellman
equation. Stochastics: An International Journal of Probability and Stochastic Processes,
38(2):119–134, 1992.

[34] Carlos Mastalli, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel, Bilal Hammoud, Maxim-
ilien Naveau, Justin Carpentier, Ludovic Righetti, Sethu Vijayakumar, and Nicolas Mansard.
Crocoddyl: An efficient and versatile framework for multi-contact optimal control. In Interna-
tional Conference on Robotics and Automation. ICRA, 2020.

[35] Li-zhi Liao and Christine A Shoemaker. Advantages of differential dynamic programming
over newton’s method for discrete-time optimal control problems. Technical report, Cornell
University, 1992.

[36] Sara Fleury, Philippe Soueres, J-P Laumond, and Raja Chatila. Primitives for smoothing mobile
robot trajectories. Transactions on Robotics and Automation, 11(3), 1995.

[37] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[38] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016–2021.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 5
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

10

http://pybullet.org

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] see Section 3
(b) Did you include complete proofs of all theoretical results? [Yes] see Section 3

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] see Section
5

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Appendix

A.1 Architecture of Value Function Estimator

DDP as mentioned in Sec 2.1, is a second order algorithm. It computes the 2nd and 1st order
derivatives of value function in the backward pass and therefore requires V

′

α and V
′′

α in every iteration
of our algorithm.

Since computing V
′′

α is not feasible, especially in higher dimensional systems like manipulator arm,
we use Gauss approximation to design Vα as squared sum of residuals:

V (x|α) = R(x|α)2 (7)
This immediately allows us to write the 1st and 2nd order derivatives as :

V ′(x|α) = 2R′(x|α)TR(x|α) (8)

V ′′(x|α) ≈ 2R′(x|α)TR′(x|α) (9)

A.2 Sobolev Regression

The trainable parameters of the learning model are consequently changed in response to cumulative
errors accrued by two losses - 0th and 1st order. The 0th order loss is identical to canonical losses
used in functional regression that penalizes the difference in observations and target with some norm
λd, while the 1st order loss forces the neural network to match it derivatives with the corresponding
derivatives of the target. Theoretically sobolev regression can involve higher order derivatives,
however in our experiments we choose to stay at 1st order with norm d = 2 to offset the increased
workload on the automatic differentiation engine.

11

Figure 7: Trajectories followed by unicycle under ∂PVP and DDP.

A.3 Stability of infinite horizon

V n
α approximates value function at different horizons during its iterations. As noted before, the

horizon approximated during an iteration is a function of n and T . In Fig A.3, we compute the
solution to an identical task (for unicycle) over different horizon lengths. We see that the trajectories
computed by a converged V n

α are much closer to the quasi steady state solution even when the preview
horizon is short. Comparatively, without a terminal proxy, the variance of trajectories computed by
DDP is much higher.

A.4 Related Work

The algorithm presented in this paper has two parts: learning value function and learning state-control
policies to warmstart DDP. Previous investigations in solely learning value function [26] are shown
here for self consistency.

The following Figure shows bellman residuals and validations errors for systems where it is com-
putationally cheap to generate huge validation datasets. The DDP solver computed locally optimal
trajectories of horizon length 50 that served as datasets in every iteration.

The Figure below establishes the robustness under noise. Noise is injected into the system at the
initial step. We observe the even under incorrect initialization, Sobolev regression and Bellman’
optimality principle force the value estimation to converge

12

In Figure below, we see that learning converges faster when T increases. For T > 40, convergence is
very quickly reached. For T < 40, convergence is slower.

The following experiment was run online in simulation in PyBullet. The terminal
cost predicted by Vα serves as highly stable anchor allowing for quick replanning un-
der disturbance. The figure below shows the evolution of meas squared errors be-

13

tween EE trajectories and ground truth, when disturbances are inject in the system

Finally in the Figure below, we show the optimal trajectories computed by solver with terminal proxy
Vα, for the End Effector.

14

	Introduction
	Contributions

	Preliminary
	Optimal Control

	Differential Policy Value Programming
	Architecture of the trainable models

	Evaluation
	Manipulator Arm
	Unicycle

	Discussion and Conclusion
	Appendix
	Architecture of Value Function Estimator
	Sobolev Regression
	Stability of infinite horizon
	Related Work

