
HAL Id: hal-03674069
https://hal.science/hal-03674069

Submitted on 20 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

End-User Class Definition in CAD Systems
Guillaume Texier, Fabrice Depaulis, Laurent Guittet

To cite this version:
Guillaume Texier, Fabrice Depaulis, Laurent Guittet. End-User Class Definition in CAD Systems.
2001 IEEE Symposia on Human-Centric Computing Languages and Environments (HCCLE 2001),
IEEE, Sep 2001, Stresa, Italy. pp.180-187, �10.1109/HCC.2001.995257�. �hal-03674069�

https://hal.science/hal-03674069
https://hal.archives-ouvertes.fr


End-User Class Definition in CAD Systems

Guillaume Texier, Fabrice Depaulis, Laurent Guittet
Laboratoire d’Informatique Scientifique et Industrielle, ENSMA,

1 rue Clément Ader, 86961 Futuroscope Chasseneuil
http://www.lisi.ensma.fr/ihm

{texier,depaulis,guittet}@ensma.fr

Abstract

The object-oriented paradigm is very used in CAD
systems. It permits users to create objects and to
interrogate their attributes to use them in other processes.
While some CAD or drawing systems support end-user
programming in order to abstract building functions,
none of them permit creating classes where several
functions (constructor and selectors) share the same data.
A data model that permits to abstract a class from one of
its instances built by the end-user is described in this
paper. The proposed technique permits the user not only
to describe interactively the class constructor, but also to
build the class selectors without any programming
knowledge. The created class can be used directly thanks
to a specific interpretation mechanism, or the
corresponding code can be generated and compiled to
have persistent classes.  This technique has been used in a
CAD system that permitting end-user specialization.

1. Introduction

In order to increase the usability of interactive systems,
and particularly of Computer Aided Design (CAD)
applications, customization seems unavoidable. In the
meantime, this adaptation cannot be realized by end-users,
who generally have no sufficient expertise in
programming. In this paper, we describe how end-users
with no programming knowledge may define true domain
specific classes.

A class can be viewed as a description of a set of
objects that share the same structure and the same
behavior. It is composed of a set of attributes (properties)
and a set of subroutines or functions. Each class owns two
components [6]:

•  The static component is composed of attributes, e.g.
named fields with values. Object states are
represented by these fields.

•  The dynamic component is characterized by the
methods that represent the common behavior of
objects that belong to the same class. Methods are
used to handle the object fields. They represent the
actions that can be done on or by objects, and permit
the transitions between the states attributes describe.

Defining interactively new classes consists in
describing both attributes and methods. Methods can be
structured into three categories:
•  Constructors are used to create class objects. They

consist in assigning values to class attributes. The
values come from input parameters.

•  Selectors are used to recover class attributes of
objects. They generally have no parameter.

•  Modifying methods are used to change the class
attribute values. They usually have input parameters.

In order to create new classes, the main difficulty
comes from the fact that several functions that share the
same data have to be defined interactively. The goal of
this paper is to propose a specific data structure that
permits to overcome this problem.

Two kinds of techniques permit end-users to create
programs interactively. On the one hand, programming by
demonstration[3], which from the Human Computer
Interaction research field, consists in recording user
interaction in order to abstract programs. Another
definition might be creating a program from an example
of its execution. On the other hand, a technique to record
the building process of geometric objects in order to
reevaluate it with different data has been proposed by
geometric modeling community. This technique is called
parametric geometry [10]. Even if these two techniques
permit recording programs, they cannot be directly used
to describe classes. Actually, they cannot be used to group
different methods together in one class and then to
describe the attributes of that class.



The solution we suggest in this paper is based on a
parametric model augmented by abstraction principles
that come from programming by demonstration
techniques. In the next section, the advantages and
drawbacks of programming by demonstration and
parametric geometry are studied in the perspective of
interactive class definition. The third section is dedicated
to the description of our approach. It focuses on the way
constructors and attributes may be described. Section 4
details the generalization phase, while section 5 details an
example.

2. End-user programming methods

End-user programming methods generally consist in
abstracting a program from an example of its execution.
In our context, it means that a class may be abstracted
from one of its instances. So the user has to define not
only how the object is built (abstracting the class
constructor) but also the way the attributes are computed
(abstracting the selectors).  Two slightly different
approaches have been developed to capture a program
without explicit programming. The first one is known as
programming by demonstration, the second one is called
parametric geometry.

2.1 Programming by demonstration

Programming by demonstration (PBD) has been
introduced to permit end-users to create programs without
explicit programming. This technique is used in several
domains: games, desktop applications, drawing
applications, and so on. For example the Topaz system [7]
creates macros that can generalize some drawing actions.
Other systems are able to generate programs in neutral
language that can be used by other systems. For example
the EBP system [8] generates FORTRAN programs for
exchanging CAD geometry.

Programming by demonstration means creating a
program using an example of its execution. An important
notion brought by the programming by demonstration
technique is the abstraction method. In classical
programming languages, the program manipulates
variables by their names. Conversely, PbD allows the
“program” to directly manipulate variables through their
values. The link between names and values is made in a
symbol table, called the context [8]. Thus, every program
variable is referenced without ambiguity regardless of its
value. Creating a program, that deals only with variable
names, from an example of its execution needs to
associate each variable name with each value. This is the

task of the dynamic context. For each created value in the
example, a new variable name (whose data type is defined
by the value) is added to the dynamic context. These
variable names may be used in the generated program.

The ability to specify program parameters must also
be provided by programming by demonstration systems.
There are two main approaches to define the parameters
of programs constructed by demonstration. The implicit
manner described by Bauer [1] or Lieberman [5] consists
in creating several examples of the same program. Then,
the system automatically infers the parameters after an
analysis of the different examples. With the explicit
manner, the PBD user has to define which values are
program parameters. The other values are considered by
the PBD system as constants. This paper follows the
second approach.

The two main advantages of PBD are the program
abstraction and the parameter definition. For our purpose,
PBD might be a good approach; for example, Mondrian
[4] allows end-users to create new objects and to include
them as native objects in the interactive system. However,
it does not allow the user to define parts or attributes onto
the designed objects. The main drawback of programming
by demonstration regarding class definition is that in re-
execution mode, the internal data of the program cannot
be accessed by other programs. This is a real difficulty for
designing class attributes.

2.2 Parametric geometry

The parametric geometry comes from the CAD field.
In this area, geometrical objects are often made by
constrained constructs; for example a line can be
explicitly parallel to another line [10, 11]. The goal of
parametric geometry is to permit the dynamic
modification of geometrical entities; for example if a
circle is created using the intersection of two lines as
center (Figure 1), the modification of one of these lines
leads to move the circle.

Figure 1 shows an example of a parametric construct:
a circle whose radius is calculated an another circle radius
and whose center is the intersection of two lines. In
parametric geometry, each entity records the sequence of
functions that are used for its creation. This sequence of
functions can be seen as a building tree like in Figure 1,
and might be seen as a good starting point for program
creation. Unfortunately, most of CAD systems that use
parametric geometry do not really have the necessary
tools to abstract programs. In parametric geometry, there
is no notion of parameters or constants: all the nodes of
the tree can be modified and then the objects that depend
on the modified nodes are re-evaluated.



C2

Circle (C2)

Radius (R1)

Circle (C1)

Intersection (I1)

Line (L1) Line (L2)

L2

L1

C1

* (N2)

Number (N1)

N1 = 2

Figure 1: Building tree in a parametric construct

The main advantage of this approach is that it permits
a program (a building process) to access internal data
(building process nodes) of another program. So this
technique can be easily used to define classes with
constructors and selectors. But, this method has two
drawbacks. The first one concerns the abstraction of the
program. Extracting independent programs from the
recorded sequence of functions is rarely given to the user.
The second one is that few systems offer the possibility to
define program parameters. Parametric geometry does not
offer the possibility to explicitly define the signature of
classes.

3. Data model for class definition

We propose a model based on a functional parametric
model (which allows recording the building process),
enhanced with attributes process definition.

3.1 The parametric model

The main characteristic of the parametric models
regarding the classical geometric models is the possibility
to save the building process of each geometrical entity.

Figure 2 shows an EXPRESS [9] schema that
represents the parametric model. Rectangles represent
classes, thin lines represent attributes, and thick lines
represent inheritance relations (not used on Figure 2). The
Object class owns an attribute called Parameters which is
a list of Object.

Each class of our model have an optional link to a
geometric, numeric or textual value which depends on the
class (the current instance attribute). As an example, the
Circle class has a link with the geometric circle class
whereas the Number class is linked to the standard float
class. This link is optional because during the
construction, some geometrical entity could be destroyed.
For example, two solids used in a boolean operation can
be deleted from the data base during this operation. But,
their representation in the parametric model must be

persistent while objects refer to them in their building
process.

Object
LIST  [0 : ?]

Parameters Current Instance

Figure 2 : Parametric model class
The attribute named parameter represents the list of

parametric model instances used to create an instance.
Then, every parametric model instance knows its
parameters. The set of these linked instances can be
represented as a tree (see Figure 1), and when one node of
this tree is modified, the whole tree is recomputed.

C8 : Circle

C3 : Circle

N4 : Radius

P6 : Center

P1:Position

N7: Multiplication

N5 : Numeric

P2 : Position 

37.5

1.5

Figure 3: Building tree example: the wheel
The building tree of an entity made of two concentric

circles is shown on Figure 3. The C3 circle is built using
two literal positions (literal data are data directly
provided by the end-user). The C8 circle has the same
center as C3 and its radius is one time and a half bigger.
The parametric model instances are represented by
rectangles on the figure. The link between the objects and
their parameters are represented by arrows. The mixed
lines show each object current instance.

Contrariwise the usual terminology, the building
process is not exactly a tree but a Direct Acyclic Graph
(DAG). The C3 object (see Figure 3) is used several times
in the building process.

This kind of building DAG is used by our class
definition model to describe all the construction or
computation processes.

3.2 Class definition

Defining interactively new classes requires solving
two problems:



1.  Defining constructor parameters in order to permit
the instantiation of different objects with different
values,

2. Defining object attributes and selectors that may be
used by other processes.

3.2.1 Constructor definition. Our proposition consists
in abstracting the class constructor from a parametric
object that represents an instance of this class as it is made
in programming by demonstration.

As seen in the previous section, each parametric
model object keeps its own building process in a DAG
which leaves are values directly provided by the user. In
order to define a constructor, this building process is used,
and the effective parameters of the instance are identified
among the nodes and the leaves of the DAG. A boolean
attribute (Class_Constructor_Param) (see Figure 4) has
been introduced. It indicates if a parametric model object
represents a class constructor parameter. The default
value is false. Then, by default, all the leaves of the
building DAG are considered as constants and the nodes
are considered as local variables. It is up to the user to
decide which are the instance constructor parameters
among the objects the DAG of the example contains.

Objet
LIST  [0 : ?]

paramètres
Current instance

Class_Constructor_Param

Boolaen

Figure 4 : Class parameter notion in the parametric
model

Let us detail the example shown on Figure 3, called
wheel: the parameters of this entity are the center of the
circles and a point from the small circle.

C8 : Circle

C3 : Circle

N4 : Radius

P6 : Center

P1:Position = (10,10)

N7: Multiplication

N5 : Numeric = 1.5

P2 : Position = (25,30) P1

P2

Figure 5 : Wheel constants and parameters

On Figure 5, the building process parameters of the
entity are represented by thick rectangles. The grayed one
indicates a constant and the others are local variables of
the building process. So, in this example, the relation
between the radius of the two circle will have always the
same value whatever the value of the two parameters.

When the class is generated from the DAG, the
objects that represent effective parameters are
transformed in formal parameters (i.e. the generator does
not take into account their own building tree, the
expression used to provide their values is ignored when
the class constructor is generated). For example, if the
user indicates that the center of a circle is a parameter,
then, at generation time, a position object replaces this
center object in the class constructor.

3.2.2 Attributes definition. The possibility to define
attributes and their computation functions is essential to
define classes although, at our knowledge, it is not
provided by any programming by demonstration or
parametric system. Passing from interactive program
description to interactive class definition requires offering
the user the possibility to describe not only the building
process of the objects, but also processes able to access
the attributes of objects. Object attributes, as the center or
the radius of a circle for example, have an essential role in
parametric models. Related to PBD works, they act for
the user intent, which is explicitly given by CAD users
during the drawing phase.

The method we propose for the definition of an
attribute and its computation function consists in
associating a parametric model object to a string and a
parametric building tree. The name of the attribute is
represented by the string. The object holds the type of the
attribute and its computation function as a building tree.

String

Value

List [0 : ?]

Attributes

Objet
LIST  [0 : ?]

parameters Curent instance

Attribute

name

Figure 6: Attribute notion in our parametric model

Figure 6 shows the modification adduced to the
parametric model in order to define attributes. The list of
class attributes is defined by the attribute named Attribute.
An attribute is defined by its name which is a character
string and by a parametric model object representing its
type. This object has its own building DAG as all the



objects of the parametric model. Then, when the value of
a parameter of the instance is modified, the instance value
is re evaluate and also the values of its attributes.

As an example, an attribute that represents the
distance between the two wires of the circles is added to
the entity Wheel described on Figure 5. This attribute is
named Tire Size.  The link between the C8 object (the
wheel) and its attribute is represented by the triple arrow
on Figure 7. It is important to notice that the leaves of the
attribute building DAG are either class building DAG
nodes or constants. Indeed, the attributes of an object
represent the internal structure of this object. The values
of the attributes have to be computed at object
instanciation time. So, these values computation must
only rely to constants or values of object building
parameters.

C8 : Circle

C3 : Circle

N4 : Rayon

P6 : Center

P1:Position = (10,10)

N7: Multiplication

N5 : Numeric = 1.5

P2 : Position = (25,30)

N11 :Subtraction

N9 : Radius N10 : Radius

Tire size 

Figure 7 : Tire Size attribute definition

3.2.3 Constructor generation. In order to abstract the
class constructor from the building DAG of the instance
example, the internal variables, the constants and the
parameters contained in the building DAG must be
distinguished. The formal parameter definition is realized
using the list of objects that represent constructor
parameters. Every object from the building DAG which is
neither a class parameter nor a computation result is
considered as a constant in the building process.

The transformation of the effective parameters of the
example instance in formal parameters of the class entails
differences between the class constructor DAG and the
instance building DAG. Indeed, the computation
processes of the values of the effective parameters are not
taken into account in class constructor DAG. Thus, the
following rule can be stated:

An object named O belongs to a class constructor
DAG only if a path between the root object and O (not
included) exists and contains no parameters.

Figure 8 shows the way a class constructor DAG is
abstracted from the building DAG of an example instance.
Parameters are represented by thick rectangles, constants
by grayed rectangles, and the remainder are internal
variables. The objects used at creation time to affect
values to parameters are not taken into account (the
objects named O0 and O1 do not appear in the class
constructor DAG and the link between O4 and O2 has
been destroyed).

O6

O4 O5

O2 O3

O1

Class
generator

O6

O4 O5

O2 O3

Root

Building DAG of the example

Class constructor representation which O6 is
the root example

O0

Figure 8 : Constructor DAG abstraction

3.2.4 Attributes generation. Contrariwise to the class
constructors, the attribute computation functions do not
have parameters. They only use either constants or objects
contained in the class constructor DAG. In order to
abstract a computation function from the object that
represents an attribute value in the example, the class
generator browses the attribute definition DAG from the
root until it finds either constants or objects of the class
constructor DAG. Then, the DAG that represents the
computation function of the attribute is created using
parametric objects.

4. Application

Once the class has been defined by the user, it can be
used following two ways. The first one consists in directly
using the generated DAG to create new instances. The
second one regards the generation of the code that
corresponds to the class.

4.1 Direct instanciation

The re interpretation of the class interactively created
permit the user to test the new classes. Then, He/She can
immediately correct the design mistakes because He/She
can always access the example and re generate the class.
This re interpretation stage can be compared to the debug
stage in classical programming.



The class instanciation consists in copying the
parametric structure of the example. The whole building
DAG, the constructor DAG and the computation DAG of
the attributes are duplicated without their links to the
geometric model. Then, a non-evaluated tree that
represents the class is created. Every time the end-user
creates a new instance of the class, the non evaluated tree
is duplicated and the objects that represents formal
parameters are substituted by objects (the effective
parameters) provided by the user. At last, the tree is
evaluated using effective parameter values, which results
in creating the new instance (see Figure 9).

ABSTRACTION

INSTANCIATION

EVALUATION 

Instance example
Generated class

Class new instance
without values

Class new instance

Objet ayant une valeur

Objet sans valeur (i.e. sans valeur numérique ni
lien vers le modèle géométrique)

Paramètre

Constante

Effective
parameters

Figure 9 : Dynamic instanciation

Figure 9 illustrates the dynamic creation of a new
class from an example of its instances. This interactive
definition method is similar to the abstraction method
described in programming by demonstration, which
consists in creating a program from an example of its
execution. In oriented object paradigm, this kind of
instanciation is called prototyping [2].

4.2 Code generation

Once the class is being tested using the direct
instanciation mode, it must be recorded in a persistent

form. This is done by applying standard compilation
techniques while crossing the DAG structure.

The code generator can be used either to define new
classes for application specialization or to exchange data
between heterogeneous parametric systems.

5. Example of application : TexAO

The TexAO system is a “light” CAD system that
permits end-users to define new classes and then, to
integrate them in the system in order to specialize it. This
application uses the model described upper to generate
new classes. The following example demonstrates how
easy it is for end-user to define new classes and to
specialize his/her application.

5.1 The motion rod

In order to present how our system works, a typical
example of mechanical entity, a motion rod, is used. The
drawing is shown in Figure 10, exactly as the end-user
realizes it. We can describe it using the class paradigm.
So, it might be composed of:

• A constructor with three parameters that represent
two characteristic points (P1 and P2) of the
motion rod and its thickness (H),

• A numerical attribute which stands for the motion
rod length,

•  A geometrical attribute which represents the
center of the motion rod.

This two attributes are calculated from the remainder
of the drawing.

Length

P1

P2

Center

Figure 10 : Motion rod definition



5.2 Building the example

TexAO essentially reacts as any parametric system but
it allows associating parameters and a signature to any
constructive process, in order to convert it into a class.

Parameters may be defined by two methods:
• a prior,i by creating a new object which will be a

parameter of any construction that may use it in
the future,

•  a posteriori, by selecting existing objects that
become parameters of the construction that
references them.

While our users are expert users, they generally prefer
the first solution: the class extraction process is
completely deterministic, and end-users perfectly know
what they are doing.

In order to create a new parameter, the end-user
activates a specific command (make parameter)(see
Figure 11) and selects or creates a object that stands for
the effective value of the parameter in the example. The
parameter name is provided using a modal dialog box.
Then, a new button that represents the parameter is
created in the interface (Figure 11). It is used by the user
to select the parameter and to use it in any construction.

Figure 11 : Parameters definition
The attribute definition is realized in the same way as

the parameter definition. The end-user selects a specific
command “add attribute”, then he/she selects or creates
the value of the attribute and then the system asks him/her

for providing the attribute name with a specific dialog box
(Figure 12).

Figure 12 : Attribute definition

At last, the user selects the “make object” command to
generate the class. The generation begins as soon as the
user has provided the root object that represents the
example and the name of the class. Then, new commands
are automatically added to the interface in order to permit
the user to handle the new class (for the constructor and
for the attribute computation functions).

The TexAO system has now a new class called
Motion Rod in its specific component. This class acts
exactly as native system classes. The end user has
specialized its application without explicit programming
but only by demonstrating an example for the new class.

6. Conclusion

The interactive definition of new object classes is an
important goal to achieve in order to permit end-users
specialization of interactive applications. A class is
composed of two main parts, the constructor used to
create new instances and the attributes selectors used to
access internal values of these instances.

Two great methods allow end-users to define
programs:
•  Programming by demonstration provides techniques

able to abstract a program from an example of its
execution, and allow the specification of the program
signature (i.e. distinction between parameters,
constants and internal values)

• Parametric geometry is able to preserve in a specific
structure the building process of any geometrical or



topological entity in order to re evaluate it when one
of its values is modified.

Unfortunately, none of these techniques provides the
necessary structure to define new classes, and more
particularly class attributes. Programs created by
programming by demonstration are independent and
cannot generally share internal values. Parametric models
offer sometimes the possibility to associate a signature to
the building process, but they cannot associate several
computation processes to a single object.

Our solution to define interactively new classes is
based on a standard parametric model augmented with
specific characteristics that permit to get together in a
same structure several building processes. More precisely:
1 .  The possibility to distinguish parameters, constants

and internal variables (which comes from
programming by demonstration) has been added.
Thus, it is now possible to define real signature for
class constructors and for attribute functions.

2. A mechanism permits the association of attributes to
the class. In fact, each attribute is defined by a
parametric function that can access any constructor
value to generate its proper value. This function is the
attribute selector in the class.

Our solution presents two important advantages. First,
it can be applied to any parametric model able to store
some functional building process. Second, end-users do
not need any programming or algorithm expertise to
create complete classes, they simply use a conventional
parametric CAD system in a particular way.

This class definition model has been implemented in a
small CAD system that owns all the standard
functionalities in order to show that our method can be
really applied. It might be very interesting to evaluate this
approach with real users. The need for specific (firm
dependent) CAD components is very strong, and our
approach might solve this problem.

In the future, we think about adding the possibility to
define methods to modify the attribute. And, we will try
to use our approach to interactively define forms features.
Another interesting point is to study how this method can
be applied to other kinds of systems such as games or
desktop applications.

7. Bibliography

[1]Bauer, M.A.  (1979) Programming by Examples.
Articial Intelligence. 1979, pp. 1-21.

[2]Cohen, B. et Murphy, G.L. (1984)Models of Concept.

[3]Cypher, A. (1993)Watch What I Do: Programming by
D e m o n s t r a t i o n . The MIT Press, Cambridge,
Massachusetts

[4]Lieberman, H.  (1993)Mondrian: a Teachable Editor.
Cypher, A. (Ed.). In Watch What I Do: Programming by
D e m o n s t r a t i o n , The MIT Press, Cambridge,
Massachusetts, pp. 341-360.

[5]Lieberman, H.  (1993)Tinker: A Programming by
Demonstration System for Beginning Programmers.
Cypher, A. (Ed.). In Watch What I Do: Programming by
D e m o n s t r a t i o n , The MIT Press, Cambridge,
Massachusetts, pp. 49-66.

[6]Masini, G., Napoli, A., Colnet, D., Léonard, D. et
Tombre, K. (1989) Les Langages à Objets. InterEditions,
Paris.

[7]Myers, A.B.  (1998)Scripting Graphical Applications
by Demonstration. In Proceedings of Human Factors in
Computing Systems (CHI'98) (18-23 April, Los Angeles,
Californie), ACM/SIGCHI,  pp. 534-541.

[8]Pierra, G., Potier, J.-C. et Girard, P.  (1996)The EBP
system : Example Based Programming for Parametric
Design. Teixeira, J. et Rix, J. (Ed.). In Modelling and
Graphics in Science and Technology, Springer-Verlag,
124-140.

[9]Schenck, D. et Wilson, P. (1994) In format ion
Modelling The EXPRESS Way. Oxford University Press,

[10]Shah, J.J. et Mäntylä, M. (1995) Parametric and
Feature-based CAD/CAM: Concepts, Techniques and
Applications. John Wiley & Sons, New York.

[11]Zalik, B.  (1996)An Interactive Constraint-Based
Graphics System with Partially Constrained Form-
Features. In Proceedings of Computer-Aided Design of
User iterface (CADUI'96) (5-7 Juin, Namur, Belgium),
Presse Universitaire de Namur,  pp. 129-139.


