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Abstract. This paper introduces a new technique for the verification of both
safety and usability requirements for safety-critical interactive systems. This
technique uses the model-oriented formal method B and makes use of an hybrid
version of the MVC and PAC software architecture models. Our claim is that
this technique –that uses proofs obligations– can ensure both usability and
safety requirements, from the specification step of the development process, to
the implementation. This technique is illustrated by a case study: a simplified
user interface for a Full Authority Digital Engine Control (FADEC) of a single
turbojet engine aircraft.

1. Introduction

Formal specification techniques become regularly used in the area of computer
science for the development of systems that require a high level of dependability.
Aircraft embedded systems, the failure of which may cause injury or death to human
beings belong to this class.
On the one hand, user-centered design leads to semi-formal but easy to use notations,
such as MAD [1] and UAN [2] for requirements or specifications, or GOMS [3] for
evaluation. These techniques could express relevant user interactions but they lack
clear semantics. So, neither dependability nor usability properties can be formally
proved.
On the other hand, adaptation of well-defined approaches, combined with interactive
models, gives partial but positive results. Among them, we find the interactors and
related approaches [4, 5], model-oriented approaches [4], algebraic notations [6], Petri
nets [7] or temporal logic [8, 9]. Thanks to these techniques, some safety as well as
usability requirements may be proved.
Nevertheless, theses formal techniques are used in the development process in a
limited way because of two constraints:
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•  Formal techniques mostly depend on ad hoc specification models –e.g. interactors–
and do not concern well-known software architecture models as Arch, MVC or
PAC. As a consequence, these unusual models make the specification task hard to
use by most user interfaces designers.

•  Few of these formal techniques can preserve formal semantics of the requirements
from the specification to the implementation steps. Most of them can prove
ergonomic properties at the specification level only. So, it cannot be proved that
the final software is exactly what has been specified.

This article focuses on the B method [10, 11]. On the one hand, compared to VDM
and Z, it makes possible the definition of a constructive process to build whole
applications, with the respect of all the rules by the use of a semi-automatic tool [12].
On the other hand, the interactive system can be specified with respect to well-known
software architecture models as Arch [13]. In this paper, we will show how the B
method can be used to specify a critical system, the FADEC user interface case study,
and how dependability as well as user interface honesty can be proved.
This work may be considered as a new step towards the definition of an actual
interactive development method based on formal approaches. Our first results [13, 14]
focus on low-level interaction mechanisms, such as mouse and window control. We
showed that the B method might be used with profit in interactive development. Our
aim in this article is to apply the method on critical systems for two main reasons.
First, we believe that critical systems are applications of primary importance for safe
methods. In addition, critical systems introduce special needs in terms of flow of
control. So, we focus on two main points: (1) how can the specification of both
critical systems and the B method influence software architecture –e.g. how B method
constraints can be interpreted into well known HCI approaches– and (2) what are the
benefits of using the B method for the specification process of critical systems.
The paper is organized as follows: in section 2, the B method is presented, and some
previous results in applying formal approaches in HCI context are briefly
summarized. In section 3, a study upon architecture models suitable for both critical
systems and the B method is detailed. Last, the fourth section describes the
specification of the case study and explains how the safety and usability requirements
can be formally checked.

2. The B Method and Interaction Properties [14]

The B method allows the description of different modules, i.e., abstract machines that
are combined with programming in the large operators. This combination enables
designers to build incrementally and correctly –once all the proof obligations are
proved– complex systems. Moreover, the utmost interest in this method, in our case,
is the semi-automatic tool it is supported by.



Jambon, F., Girard, P. and Aït-Ameur, Y. Interactive System Safety and Usability enforced with the
development process, in Proc. Engineering for Human-Computer Interaction (EHCI'01)  (Toronto, Canada,
May 11-13, 2001), PREceedings, pp. 61-76.

2.1. The Abstract Machine Notation

The abstract machine notation is the basic mechanism of the B method. J.-R. Abrial
defined three kinds of machines identified by the keywords MACHINE,
REFINEMENT and IMPLEMENTATION. The first one represents the high level of
specification. It expresses formal specification in a high abstract level language. The
second one defines the different intermediate steps of refinement and finally the third
one reaches the implementation level. Do note that the development is considered to
be correct only when every refinement is proved to be correct with respect to the
semantics of the B language. Gluing invariant between the different machines of a
development are defined and sets of proof obligations are generated. They are used to
prove the development correctness.
A theorem prover including set theory, predicates logic and the possibility to define
other theories by the user, achieves the proof of these proof obligations. The proving
phase is achieved either automatically, by the theorem prover, or by the user with the
interactive theorem prover. The model checking method, which is known to be often
overwhelmed by the number of states that are needed to be computed is not used in
the present version of the B tool [12].

2.2. Description of Abstract Machines

J.-R. Abrial described a set of relevant clauses for the definition of abstract machines.
Depending on the clauses and on their abstraction level, they can be used at different
levels of the program development. In this paper, a subset of these clauses has been
used for the design of our specifications. We will only detail these clauses. A whole
description can be found in the B-Book [10]. The typical B machine starts with the
keyword MACHINE and ends with the other keyword END. A set of clauses can be
defined in between. In our case, these clauses appear in the following order:
− INCLUDES is a programming in the large clause that allows to import instances of

other machines. Every component of the imported machine becomes usable in the
current machine. This clause allows modularity capabilities.

− USES has the same modularity capabilities as INCLUDES except that the
OPERATIONS of the used machines are hidden. So, the imported machine instances
cannot be modified.

− SETS defines the sets that are manipulated by the specification. These sets can be
built by extension, comprehension or with any set operator applied to basic sets.

− VARIABLES is the clause where all the attributes of the described model are
represented. In the methodology of B, we find in this clause all the selector
functions which allow accessing the different properties represented by the
described attributes.

− INVARIANT clause describes the properties of the attributes defined in the clause
VARIABLES. The logical expressions described in this clause remain true in the
whole machine and they represent assertions that are always valid.

− INITIALISATION clause allows giving initial values to the VARIABLES of the
corresponding clause. Do note that the initial values must satisfy the INVARIANT

clause predicate.
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− OPERATIONS clause is the last clause of a machine. It defines all the operations
–functions and procedures– that constitute the abstract data type represented by the
machine. Depending on the nature of the machine, the OPERATIONS clause
authorizes particular generalized substitutions to specify each operation. The
substitutions used in our specifications and their semantics is described below.

Other syntax possibilities are offered in B, and we do not intend to review them in this
article, in order to keep its length short enough.

2.3. Semantics of Generalized Substitutions.

The calculus of explicit substitutions is the semantics of the abstract machine notation
and is based on the weakest precondition approach of Dijkstra [15]. Formally, several
substitutions are defined in B. If we consider a substitution S and a predicate P
representing a postcondition, then [S]P represents the weakest precondition that
establishes P after the execution of S. The substitutions of the abstract machine
notation are inductively defined by the following equations. Do notice that we
restricted ourselves to the substitutions used for our development. The reader can
refer to the literature [10, 11] for a more complete description:

[SKIP]P ⇔ P (1)

[S1 || S2]P ⇔ [S1]P ∧ [S2]P (2)

[PRE E THEN S END]P ⇔ E ∧ [S]P (3)

[ANY a WHERE E THEN S END]P ⇔ ∀ a (E ⇒ [S]P) (4)

[SELECT P1 THEN S1 WHEN P2 THEN S2 ELSE S3 END]P ⇔
(P1⇒[S1]P) ∧ (P2⇒[S2]P) ∧ ((¬P1 ∧ ¬P2)⇒[S3]P)

(5)

[x:=E]P ⇔ P(x/E) (6)

The substitution (6) represents the predicate P where all the free occurrences of x are
replaced by the expression E. Do notice that when a given substitution is used, the B
checker generates the corresponding proof obligation, i.e., the logical expression on
the right hand side of the operator "⇔". This calculus propagates a precondition that
must be implied by the precondition set by the user. If not, then the user proves the
precondition or modifies it. For example, if E is the substitution [x+1] and P the
predicate x ≠ 2, the weakest precondition is x ≠ 1.

2.4. Interaction Properties

Proving interaction properties can be achieved by the way of model checking or
theorem proving [16]. Theorem proving is a deductive approach to the verification of
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interactive properties. Unless powerful theorem provers are available, proofs must be
made "by hand". Consequently, they are hard to find, and their reliability depends on
the mathematical skills of the designer. Whereas model checking is based on the
complete verification of a finite state machine, and may be fully automated. However,
one of the main drawbacks of model checking is that the solution may not be
computed due to the high number of states [16]. The last sessions of EHCI as well as
DSV-IS show a wide range of examples of these two methods of verification.
For instance, model checking is used by Palanque et al. who model user and system
by the way of object-oriented Petri nets –ICO– [17]. They argue that automated
proofs can be done to ensure first there is no cycle in the task model, second a specific
task must precede another specific task (enter_pin_code and get_cash in the ATM
example) and third the final functional core state is the final user task (get_cash and
get_card). These proofs are relative to reachability. Furthermore, Lauridsen uses the
RAISE formalism to show that an interactive application –functional core, dialogue
control and logical interaction– can be built using translations from the functional
core adapter specification [18]. Then, Lauridsen shows that his refinement method
can prove interaction properties as predictability, observability, honesty, and
substitutivity.
In the meantime, Paternó and Mezzanotte check that unexpected interaction
trajectories expressed in a temporal logic –ACTL– cannot be performed by the user.
The system –a subset of an air traffic control application– is modeled by interactors
specified with LOTOS [19]. Brun et al. use the translation from a semi-formal task-
oriented notation –MAD– [1] to a temporal logic –XTL– [8] and prove
reachability [20].
Our approach in this article –with the B method– deals with the first method, i.e.,
theorem proving. Yet, the method does not suffer from the main drawbacks of
theorem proving methods, i.e., proving all the system “by hand”. In our former
studies [13, 14], about 95% of the proofs obligations, regarding visibility or
reachability, were automatically proved thanks to the “Atelier B” tool. Our present
work –the FADEC user interface specification– has been successfully and fully
automatically proved. All proof obligations, regarding safety and honesty, have been
distributed in the separate modules of the system specification, as we will see later on.
Moreover, since the specification is incrementally built, the proofs are also
incrementally built. Indeed, compositionality in B ensures that the proofs of the whole
system are built using the ones of the subsystems. This technique simplifies
considerably the interaction property verifications. And then, this incremental
conception of applications asserts that the proofs needed at the low-level B-machines
of the application, i.e. the functional core, are true at the higher levels, i.e. the
presentation. So, the reliability is checked by construction.

3. The FADEC Case Study and its Software Architecture

A FADEC (Full Authority Digital Engine Control) is an electronic system that
controls all the crucial parameters of aircraft power plants. One of the system roles is
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to lower the cognitive load of pilots while they operate turbojet engines, and to reduce
the occurrence of pilot errors.
Our case study focuses on the startup and the shutdown procedures of a single
turbojet engine aircraft. In our scenario, the pilot controls the engine ignition –off,
start, run– and the fuel valve –closed, open. The engine states can be perceived via the
fuel pressure –low, normal, high– and the engine temperature –low, normal, high. The
system interface is composed of lights and push buttons. The interface layout adopts
the dark cockpit philosophy which minimizes distracting annunciation for pilots, i.e.
only abnormal or transition states are visible. So, the normal parameters of the engine
during flight do not light up any interface lights.
In this section, we start with an analysis of constraints imposed by the B language
over architecture design. Secondly, we explain why “pure” MVC and PAC models
fail against B requirements. Lastly, we describe our hybrid model, named CAV.

3.1. Rules for B Architecture Design

Our case study belongs to the safety-critical interactive-system category. More
precisely, as in common interactive systems, the user controls the software system,
but, as a reactive system, a third part, that evolves independently from both the
software system and the user, must also control the system. In first approximation, the
software may be modeled as a unique view that displays some functional core under a
specific interactive control. Our first idea for designing such a system was to use a
well-known multi-agent model, such as MVC or PAC, because acceptability of
formal methods is greatly influenced by using domain standard methods.
The interactive system specifications must however stay in the boundaries of the B
language constraints. We selected three kinds of constraints that relate to our purpose.
These main constraints are:
1. Modularity in the B language is obtained from the inclusion of abstract machine

instances –via the INCLUDES clause– and, according to the language semantics, all
these inclusions must form a tree.

2. The substitutions used in the operations of abstract machines are achieved in
parallel. So, two substitutions –or operations– used in the same operation cannot
rely on the side-effects of each other. So, they are not allowed on the abstract
machines specifications.

3. Interface with the external world, i.e. the user actions as well as the updates of
system state must be enclosed in the set of operations of a single abstract machine.

3.2. Classical Multi-Agent Architecture Models

As we explained in the upper section, our first impulse was to apply directly a
classical multi-agent approach to our problem. Nevertheless, we discovered rapidly
that none of them could be used without modification. In this section, we briefly
describe MVC and PAC architecture models and relate how they are inappropriate.

MVC is an acronym for “Model, View, Controller”. It is the default architecture
model for the Smalltalk language [21], and became the first agent-based model for
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HCI. This model splits the responsibility for user interface into autonomous agents
that communicate by messages, and are divided into three functional perspectives:
Model stands for application data, and their access. It is the only object that is allowed
to communicate with other Model objects. View is in charge of graphical outputs. It
gives the external representation of the domain data, using Model objects services to
extract the data to be presented. It also presents the perceivable behavior of the agent.
This separation between Model and View allows a Model to own several Views.
Lastly, Controller is responsible for inputs, and for making perceivable the behavior
of the agent. It also manages the interactions with the other Controllers.
When the user gives some input, the associated Controller triggers a Model function.
Then, the Model sends a message to all its Views to inform them for a change. Each
View may request for the new state of the Model, and can refresh the graphical
representation if needed.
The main problem with MVC is the double link between the View and the Model.
This point violates the first rule we identified, which concerns B abstract machine
inclusion order. More precisely, the Model cannot access the View –for sending it a
message– if the View must ask the Model for data to be visualized.

User

Controller View

Model

Fig. 1. The three components of the Model-View-Controller software architecture model

The PAC model, for “Presentation, Abstraction, Control” was proposed in 1987 by
J. Coutaz [22]. Opposed to MVC, it is absolutely independent from languages. Agents
are made of facets, which express complementary and strongly coupled computational
services. The Presentation facet gives the perceivable input and output behavior of
the object. The Abstraction facet stands for the functional core of the object. As the
application itself is a PAC agent, no more component represents the functional core.
There is no application interface component. The Control facet insures coherency
between Presentation and Abstraction. It solves conflicts, synchronizes the facets, and
refreshes the states. It is also takes charge of communication with other agents –their
Control facets. Lastly, it controls the formalism transformations between abstract and
concrete representations of data.
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The PAC model gives another dimension as interactive objects are organized in
hierarchies. Communication among the Control facets in the hierarchy is precisely
defined. Modification to an object may lead its Control facet to signal this
modification to the Control facet of parent object, which may in turn communicate
this modification to its siblings. This allows all the parts of the application to correctly
refresh. We believe that this precise point –i.e. the honesty property– may be directly
addressed in a B development. It is the basis for the refinement steps we intend to
conduct.

Presentation Abstraction
User

Control

Other PAC agents

Fig. 2. The three facets of the Presentation-Abstraction-Control software architecture model

PAC solves the problem of MVC, because the Control facet is the only responsible
for synchronizing the other two facets. Unfortunately, PAC does not respect the third
rule on a unique entry point. In classical interactive systems, the unique entry point is
the user. So, the Presentation facet may be considered as the unique entry point of the
program. But, in safety critical systems, the reactive system itself is another external
entity that must be taken into account. For that purpose, the presentation facet does
not seem to be a good candidate.

3.3. The Hybrid CAV Model (Control-Abstraction-View)

We propose an hybrid model from MVC and PAC to solve this problem. The model
uses the external strategy of MVC: the outputs of the system are devoted to a specific
abstract machine –the View– while inputs are concerned by another one –the Control–
that also manages symmetrical inputs from the reactive system which is directed by
the third abstract machine –the Abstraction. The Control machine synchronizes and
activates both View and Abstraction machines in response to both user and aircraft
events, though assuming its role of control.
To limit exchanges between control and the two other components, a direct link is
established between the View and the Abstraction, to allow the former to extract data
from the latter. This point is particularly important in the B implementation of this
model, because of the second rule we mentioned upper, that enforces to pay particular
attention to synchronization problems between machines. This last point is mainly
discussed in the following section.
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Fig. 3. The three components of the Control-Abstraction-View software architecture model

4. The FADEC User Interface Specification in B

In this section, we detail the development process we used for the case study, and we
focus on HCI requirement satisfaction. The first step consists in modeling the
FADEC, using the CAV architecture model we described in the previous section. The
second step concentrates on safety requirements, that concerns inputs. The third step
pays attention to honesty property, mainly outputs. Lastly, we illustrate the expressive
power of the B method with iterative resolution of side effects on our specification.

Two kinds of requirements must be fulfilled:
•  The system must be safe, i.e. the pilot must not be able to damage the engine. For

example, the fuel pressure must be normal in order to begin the startup sequence.
•  The system must be honest, i.e. the user interface lights must reflect the exact

engine parameters –pressure and temperature– at any moment.

4.1. Modeling the FADEC User Interface

Applying our architecture model to the FADEC case study is straightforward. Each B
machine encapsulates few attributes.
The Engine abstract machine –the Abstraction– models the functional core of the
FADEC, e.g. the engine control parameters in the VARIABLE clause, and the
variation sets of them in the SETS and INVARIANT clauses. The SETS are defined
in respect to the logical description of the system, and a unique “SetProbeData” is
defined for both the fuel pressure and the engine temperature:
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MACHINE
Engine

SETS
SetIgnition = {off, start, run} ;
SetFuelValve = {open, closed} ;
SetProbeData = {low, normal, high}

VARIABLES
Ignition , FuelValve , FuelPress , EngineTemp

INVARIANT
Ignition ∈ SetIgnition ∧
FuelValve ∈ SetFuelValve ∧
FuelPress ∈ SetProbeData ∧
EngineTemp ∈ SetProbeData ∧ ...

The View abstract machine models what the pilot can perceive from the user interface,
e.g. the lights and their status (TRUE for on, and FALSE for off). Because of the dark
cockpit philosophy, we chose to use two lights for reflecting either ignition state,
pressure or temperature that have three different states, and only one for fuel valve
status which has only two different states. Moreover, the View abstract machine uses
an instance of the Engine abstract machine in order to be aware of its sets of variables.
It is expressed by a USES clause:

MACHINE
View

USES
engine.Engine

VARIABLES
IgnitionOff, IgnitionStart, FuelValveClosed,
EngineTempLow, EngineTempHigh, FuelPressLow, FuelPressHigh,
StartButtonEnabled

INVARIANT
IgnitionOff, IgnitionStart ∈ BOOL×BOOL ∧
FuelValveClosed ∈ BOOL ∧
EngineTempLow, EngineTempHigh ∈ BOOL×BOOL ∧
FuelPressLow, FuelPressHigh ∈ BOOL×BOOL ∧
StartButtonEnabled ∈ BOOL ∧ ...

The Control abstract machine is the centralized control of the system. So, it does not
need to define any functional core nor presentation variables which are already
defined in the Engine and View abstract machines respectively. On the other hand, it
must include the sets, the variables and the operations of both instances of Engine and
View:

MACHINE
Control

INCLUDES
engine.Engine, view.View

The sets, the variables and some of the invariants of the three abstract machines are
now precisely defined. We can focus on the INVARIANT clauses that ensure safety.
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4.2. Safety Requirements

The first requirement of the FADEC is safety. For instance, the start mode must not
be used if the fuel pressure is not normal. This property must always be satisfied. In
B, this requirement may be enforced with an INVARIANT clause that applies on the
variables Ignition and FuelPress. The Engine abstract machine which represents the
system functional core is responsible for it, with the following B expression:

 (Ignition = start  FuelPress normal)

We do not pay attention to what action is done. We only focus on the fact that never
abnormal fuel pressure may be observed when startup is processing. In the semantics
of B, the invariant must equal true at the initialization of the abstract machine, at the
beginning and at the end of any operation. Note that the substitutions of the
initialization as well as the operations are assumed to be executed in parallel.
Of course, the startup operation of the engine must satisfy this invariant, so the
operation is guarded by an ad-hoc precondition PRE that ensures the operation will
never be used if the fuel pressure is different from normal:

startup =
PRE FuelPress = normal
THEN Ignition := start
END ;

For HCI, what is interesting now is: Is the user able to make an error? Whatever the
user does, the B specification of the engine machine ensures that it will not be
possible to violate the invariant. What about user actions and user interface state now?
In our architecture model, the Control abstract machine is responsible for user inputs
and for functional core actions activation. As a consequence, it must include an
instance of the Engine abstract machine, and must use its operations within their
specifications. Using B allows propagating the conditions. A new guard can/must be
set for the operation used when the pilot presses the startup button. We do not give the
engine the responsibility for controls, we propagate this semantic control to the user
interface. One basic solution is to guard the activation of the startup button in the
Control abstract machine by the precondition engine.FuelPress normal:

start_button_pressed =
PRE engine.FuelPress = normal
THEN engine.startup ||

…
END ;

This basic solution suffers from two main drawbacks:
•  The redundancy of preconditions is needed by modular decomposition of the B

abstract machines
•  The pilot’s action on the system is blocked without proactive feedback, i.e. the

pilot can press the startup button and nothing happens.

A more clever design is to delegate the safety requirements of the functional core to
the user interface. In this new design, the user interface startup button is disabled
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while the startup sequence cannot be initiated for safety reasons. Now the user
interface is in charge with the safety requirements of the system. Two modifications
are needed:
•  The startup operation of the Control abstract machine is now guarded by the state

of the startup button:

view.StartButtonEnabled = TRUE

•  The invariant must ensure that the startup button is disabled when the fuel pressure
is not normal and enabled otherwise:

( (engine.FuelPress = normal ∧ view.StartButtonEnabled = TRUE) ∨
(engine.FuelPress ≠ normal ∧ view.StartButtonEnabled = FALSE) )

The B semantics –and the Atelier B tool– checks for the validity of these assertions,
and ensures for the compatibility of all abstract machines operations. Our software is
now assumed not to allow the pilot doing anything wrong that can damage the
turbojet engine.

4.3. Usability Requirements

Honesty is a well known property in user interfaces [23]. In safety critical systems,
system honesty is crucial because user actions depend on the user capacity to evaluate
the state of the system correctly. This point assumes the displayed state is the state of
the actual system. Ensuring user interface honesty requires the specification to prove
that the system state –represented by Engine variables– is always reflected in the pilot
interface –represented by View variables. Like safety requirements, this requirement
stands for an always true invariant.
It seems conspicuous that the honesty property must be stipulated in the INVARIANT

clause of the View abstract machine. However, updates of the Engine and View
variables are achieved in parallel by the operations of the Control abstract machine,
because of the B semantics constraints –quoted in the §3.1. As a result, it is
impossible to get the Engine variables update before the View variables update. As a
consequence, the honesty property must be stipulated in the INVARIANT clause of the
Control abstract machine only. For example, the light FuelValveClosed must be on
only when the fuel valve is closed. We can express it by an exhaustive invariant that
gives the two right solutions:

( (engine.FuelValve = closed ∧ view.FuelValveClosed = TRUE) ∨
(engine.FuelValve ≠ closed ∧ view.FuelValveClosed = FALSE) )

Our software architecture model assumes that the Control abstract machine really
acts. So, the operation of the Control abstract machine, which is used when the pilot
presses the close button, i.e. the close_fuel_button_pressed action, must update both
the Engine state and the View state:
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close_fuel_button_pressed =
BEGIN

engine.close_fuel ||
view.update_ui( engine.Ignition, closed,

engine.FuelPress, engine.EngineTemp,
view.StartButtonEnabled )

END ;

Another consequence is that the operation of the View abstract machine must properly
update the variable:

update_ui (ignition, fuel_valve, fuel_press, engine_temp, start_button_enabled) =
PRE

ignition ∈ SetIgnition ∧
fuel_valve ∈ SetFuelValve ∧
engine_temp ∈ SetProbeData ∧
fuel_press ∈ SetProbeData ∧
start_button_enabled ∈ BOOL

THEN
ANY fvc WHERE

fvc ∈ BOOL ∧
( (fuel_valve = closed) ⇒ (fvc = TRUE) ) ∧
( (fuel_valve ≠ closed) ⇒ (fvc = FALSE) )

THEN
FuelValveClosed := fvc

END || ...
END

4.4. Specificity of Asynchronous Systems

In critical systems such as the FADEC, some parts of the system change without any
interaction with the user. For example, a probe whose control is obviously outside of
the system updates the fuel pressure. A real-time kernel is in charge of interrogating
every probe and sending responses to the whole system. In our analysis, the real-time
kernel is out of our scope. Nevertheless, its entry point into our system must be
defined. We propose to manage the aircraft in a way that is symmetric to the user. As
stated in figure 1, it is controlled by the Engine abstract machine. When events are
initiated by the aircraft power plant, their entry point is the Control abstract machine.
So doing, the Control is completely in charge of updating the internal state
–functional core– and the external state of the application –view. More, it can also
ensure that the state of interaction is also correct.
Because we were focusing on HCI, we did not really pay attention to this side of the
application. In our sense, one of the most interesting result of our study is the
following: the B method helped us to discover a hazardous but important side-effect.
The automatic prover detected a problem with fuel pressure invariant as soon as we
introduced the action that updates this pressure into the functional core: on the one
hand, the fuel pressure must be normal during the startup sequence, otherwise, the
pilot cannot press the start button. On the other hand, if the fuel pressure falls down
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when the Engine abstract machine is in start mode, the turbojet engine must stop. We
did not take this case into account. Fortunately, the B semantics does not allow this.
Therefore, the Engine abstract machine must be enhanced:

update_fuel_press (fuel_data) =
PRE fuel_data ∈ SetProbeData
THEN

FuelPress := fuel_data ||
SELECT Ignition = start ∧ fuel_data ≠ normal
THEN Ignition := off
END

END ;

As a result, the Control abstract machine must update the View accordingly:

fuel_press_event (data) =
PRE data ∈ SetProbeData
THEN

SELECT engine.Ignition = start ∧ data ≠ normal THEN
engine.update_fuel_press (data) ||
view.update_ui( off, engine.FuelValve,

data, engine.EngineTemp,
FALSE )

ELSE
engine.update_fuel_press (data) ||
view.update_ui( engine.Ignition, engine.FuelValve,

data, engine.EngineTemp,
TRUE )

END
END ;

5. Conclusion

A previous work [13, 14] show that the B language can be used to specify WIMP
interactive systems and ensure usability properties. This work shows that the B
method can enforce safety and usability in a process-control interactive system with
asynchronous behavior. Moreover, this study covers specification and design topics:
we define a new software architecture model, that allows an actual instantiation with
the B method, and we describe an empiric method for modeling safety-critical
interactive systems in B. Four points may be enlightened:
− safety and usability are ensured by using invariant that are relatively easy to find

from the non formal description of the system behavior,
− incremental development can be achieved with this method, which is particularly

suitable in HCI domain,
− using the B tool is very helpful for ensuring specification completeness, as we

discovered during our analysis,
− the modules and then the whole specification may be completely validated thanks

to the prover, in a whole automated way.
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At the end of the last step, the specification must be considered as safe respect with to
the requirements –safety and usability.

This work is a second step towards a real method for specifying, designing and
implementing interactive systems with the B method. The perspectives are numerous.
First, we need to use the B refinement theory to implement the specifications we
realized. This step, which has already been initiated, will lead us to pay a particular
attention to the connections with user interface toolkits. Then, a more exhaustive
study must be accomplished to evaluate what properties may be enforced using the B
language, and what properties cannot. This will then allow us to design a safety
critical system with the collaboration of a set formal methods to avoid limitations
among each methods.
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