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Abstract

Intra-tumour heterogeneity (ITH) has a strong impact on the efficacy of the immune response against solid

tumours. The number of sub-populations of cancer cells expressing different antigens and the percentage

of immunogenic cells (i.e. tumour cells that are effectively targeted by immune cells) in a tumour are both

expressions of ITH. Here, we present a spatially explicit stochastic individual-based model of the interaction

dynamics between tumour cells and CD8+ T cells, which makes it possible to dissect out the specific impact

of these two expressions of ITH on anti-tumour immune response. The set-up of numerical simulations of

the model is defined so as to mimic scenarios considered in previous experimental studies. Moreover, the

ability of the model to qualitatively reproduce experimental observations of successful and unsuccessful

immune surveillance is demonstrated. First, the results of numerical simulations of this model indicate

that the presence of a larger number of sub-populations of tumour cells that express different antigens

is associated with a reduced ability of CD8+ T cells to mount an effective anti-tumour immune response.

Secondly, the presence of a larger percentage of tumour cells that are not effectively targeted by CD8+ T cells

may reduce the effectiveness of anti-tumour immunity. Ultimately, the mathematical model presented in

this paper may provide a framework to help biologists and clinicians to better understand the mechanisms

that are responsible for the emergence of different outcomes of immunotherapy.
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1. Introduction

Recent technological advances have allowed for the design of immunotherapy which, in contrast to con-

ventional anti-cancer therapies, targets tumour-immune cell interactions with the aim of re-boosting the

effectiveness of the anti-tumoural immune responses. Although immunotherapy has revolutionized anti-

tumour treatment, its efficacy remains limited in most clinical settings [3, 8, 9, 24, 58, 61].5

Immune cells, specifically CD8+ cytotoxic T cells, are capable of detecting and eliminating tumour cells

by recognising cancer-associated antigens expressed by tumour cells. The effectiveness of the immune re-

sponse depends on the level of presentation of such antigens by the major histocompatibility complex 1

(MHC-I) [17, 52]. In particular, CD8+ T cells express a unique repertoire of T cell receptors (TCRs) [56]

and, once activated, they migrate via chemotaxis in response to concentration gradients of chemical signals10

toward the tumour cells expressing the matching antigens [53]. The influx and movement of CD8+ T cells

are dictated by the spatial distribution of tumour antigens and by the level of chemokines in the tumour

micro-environment [9]. Upon intratumoural infiltration, CD8+ T cells can trigger tumour cell death by di-

rect interaction with tumour cells, releasing cytotoxic factors (i.e. granzime B, interferon gamma) [39].

15

Oncogenic mutation-driven cancers harbor neoantigens that can be recognized by CD8+ T cell receptors

[32]. A high mutational burden and neoantigen load in tumours have been associated with an enhanced

response to immunotherapy [13, 27, 33, 59, 60, 63]. However, it has recently been reported that many of

these neoantigens arise from sub-clonal branching mutations and could potentially increase intratumour

heterogeneity (ITH) [50, 51, 57]. These tumours are characterised by clonal antigens (presented by all tu-20

mour cells), and sub-clonal antigens (presented only by sub-populations of tumour cells). Moreover, such

sub-clonal antigens may be associated with decreased level of antigen presentation by the MHC-I, leading

to a weaker antigen-specific CD8+ T cell response [26]. In contrast, more homogeneous tumours express

few clonal antigens in all tumour cells and appear to have a better response to immunotherapy across a

wide range of tumour types [23, 51]. Furthermore, CD8+ T cells activated against clonal antigens are more25

commonly found at the tumour site than CD8+ T cells reactive to sub-clonal antigens [51]. These findings

suggest that ITH may strongly affect the effectiveness of the anti-tumour immune response.

Mathematical models are useful tools for simulating and investigating biological systems, and have

been increasingly used to investigate the role of tumour antigens and the effect of ITH on the anti-tumour30

immune response. Tumour heterogeneity and the role of tumour antigens have been studied using differ-

ential equation models [1, 5, 7, 44] and cellular-automaton (CA) models [10, 28]. A number of mathematical

models have also been developed to investigate the dynamics of tumour development in the presence of

adaptive immune response. Usually, these models are formulated as either ordinary differential equations

[18, 40, 42, 45] or integro-differential equations [20, 41, 43]. Most of these models rely on the assumption that35

cells are well-mixed and, as such, do not take into account spatial dynamics of immune cells and tumour
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cells. Spatial and temporal dynamics of tumour-immune competition have been studied through partial

differential equation (PDE) models [6, 48, 49]. However, differential equation models are defined on the

basis of population-level phenomenological assumptions, which may limit the level of biological detail that

can be included in the model. By using computational models, such as CA and individual-based models40

(IBMs), a more direct and precise mathematical representation of biological phenomena can be achieved.

These models can be posed on a spatial domain (e.g. a grid), where cells interact locally with each other

according to a defined set of probabilistic rules, and can collectively generate global emergent behaviours

of tumour-immune cell interactions. A number of IBMs [16, 37, 46] and hybrid PDE-CA models [19, 38, 47]

have also been used to study the interaction dynamics between tumour and immune cells. These models45

take into account different aspects of the anti-tumoural immune response (e.g. expression of immunosup-

pressive factors, movement of immune cells) and clarify the conditions for the emergence of a range of

situations of successful and failed immune response. However, they do not take into account the effects of

antigen presentation and ITH on immune surveillance.

50

In light of these considerations, we present a spatial stochastic individual-based model of tumour-

immune interaction dynamics that can be used to explore the effect of ITH on immune surveillance. There is

a variety of individual-based model approaches (e.g., cellular automata, Cellular Potts models, hybrid dis-

crete/continuous models). In our study, we used a Cellular Potts model and the CompuCell3D open-source

simulation environment [35]. The originality of this model lies in the characterisation of antigen presenta-55

tion levels by tumour cells, which drive the influx of CD8+ T cells in the tumour micro-environment and

their movement toward tumour cells. In our model, the effectiveness of the anti-tumour immune response

is directly linked to the level of presentation of tumour antigens. In addition, the model takes into account

biological phenomena that are driven by stochastic aspects of the interaction dynamics between tumour

cells and CD8+ T cells. The effect of ITH on immune surveillance is investigated at two different levels60

through computational simulations of this model. First, we explore the outcomes of the immune response

considering different number of sub-populations of cancer cells constituting the tumour. Then, we asses the

efficiency of the immune response by varying the immunogenicity of tumour cells. We study the impact of

these two characteristics on tumour progression independently and together, assessing their influence on

anti-tumour immunity in a controlled manner.65

The paper is organised as follows. In Section 2, we present the individual-based model and the math-

ematical description of each biological process included in the model. Section 3 summarises the set-up of

computational simulations and presents some preliminary results of computational simulations. Full details

of model implementation and model parametrisation are provided in Appendix A and Appendix B, respec-70

tively. In Section 4 we present the main computational results and we discuss them in view of previous

biological works. Finally, Section 5 concludes the paper and provides a brief overview of possible research
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perspectives.

2. Model and methods

We consider two cell types in our model: tumour cells, characterised by an antigen profile and a level75

of antigen presentation, and antigen-specific CD8+ T cells. To describe the interactions occurring between

the two cell types we use an on-lattice individual-based model posed on a 2D spatial domain partitioned

into square elements of side ∆x. In our model, this domain biologically represents the tumour micro-

environment. At each time step of length ∆t, the states of the cells are updated according to the probabilistic

and deterministic rules described below.80

In the remainder of this section, we first present the modelling framework in a general setting, along with

the underlying biological hypotheses and assumptions. Then, we detail how each biological mechanism is

mathematically described. A detailed description of the computational implementation of the model, which

relies on a Cellular Potts approach, can be found in Appendix A.

2.1. Modelling framework85

To include different level of immunogenicity in the tumour, two different subtypes of tumour cells are

considered: immunogenic cells (i.e. tumour cells that are effectively targeted by CD8+ T cells) and non-

immunogenic cells (i.e. tumour cells that are poorly targeted by CD8+ T cells). On the one hand, we define

immunogenic cells as cells expressing one or more clonal antigens, considered as immunodominant, and

presented at a normal level by the MHC-I. On the other hand, we assume that non-immunogenic cells have90

experienced, through mutations, a deterioration of their level of antigen presentation, and have acquired

new antigens. These new antigens are presented only by a subset of tumour cells, and will be denoted as

sub-clonal antigens [51]. Therefore, we define non-immunogenic cells as cells expressing clonal and sub-

clonal antigens, both presented at a low level by the MHC-I.

The system is initially composed of tumour cells only, which grow and proliferate through mitosis. Tumour95

cells secrete different chemoattractants that trigger the influx of specific CD8+ T cells into the domain. When

they arrive in the domain, CD8+ T cells move via chemotaxis toward tumour cells expressing the matching

antigens and, upon contact, try to eliminate them.

The modelling strategies used to reproduce these dynamics are described in detail in the following subsec-

tions, and are also schematically illustrated with an example in Figure 1 and Figure 2.100

2.1.1. Dynamics of tumour cells

Antigen expression. We let NT (t) denote the number of tumour cells in the system at time t = h∆t, with

h ∈ N0, and we label each cell by an index n = 1, . . . , NT (t). We let each tumour cell express one or more

antigens, and we characterise the antigen profile of the tumour by means of a vector

A = (a1, . . . , af ), a1, . . . , af ∈ N, (2.1)
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where ai denotes an antigen and f is the total number of antigens expressed by the tumour [see Figure 1(a)].

Using phylogenetic tree representations [see Figure 1(b)-(c)], we define each antigen ai ∈ A, i = 1, . . . , f ,

of the tumour as clonal if it belongs to the trunk of the phylogenetic tree, or sub-clonal if it belongs to one

of the branches of the phylogenetic tree. We let AC and ASC denote the sets of clonal and the sub-clonal

antigens, whereby:

AC , ASC ⊂ A, AC ∪ASC = A and AC ∩ASC = ∅. (2.2)

Then, based on the phylogenetic tree representation, we divide the tumour in f different sub-populations

of tumour cells labelled by the last antigen ai ∈ A acquired [see Figure 1(d)]. Following this notation, in this

model, cells in the same sub-population express the same set of antigens [see Figure 1(a, b, d)]. Moreover,

if ai ∈ AC , cells in the sub-population labelled by the antigen ai express only clonal antigens, whereas if105

ai ∈ ASC , cells in the sub-population labelled by the antigen ai express both clonal and sub-clonal antigens.

Therefore, we define cells in sub-populations labelled by a clonal antigen ai ∈ AC as immunogenic cells,

whereas cells in sub-populations labelled by a sub-clonal antigen ai ∈ ASC are defined as non-immunogenic

cells.

Antigen presentation by MHC-I. We incorporate antigen presentation into our model by letting each tumour

cell present its antigens at a certain level. There can be high variability in each antigen’s presentation be-

tween patients with the same type of tumour and even within tumour cell samples from the same patient

[3, 51]. Therefore, for the nth tumour cell, we characterise the level of presentation of each one of its antigens

ai ∈ A by the normalized variable

lnai
∈ [0, 1] (2.3)

whereby the value lnai
= 0 corresponds to a tumour cell that lost the expression of the antigen ai, while

lnai
= 1 corresponds to a tumour cell presenting the antigen ai at the highest level.

To capture the idea that immunogenic cells present their antigens at a higher level than non-immunogenic

cells, we introduce the discrete sets

LI = {mI , . . . ,MI} ⊂ [0, 1] and LNI = {mNI , . . . ,MNI} ⊂ [0, 1], with MNI < MI . (2.4)

They characterise the range of different values that can be taken by the variable lnai
[see Figure 1(d)]. In110

particular, if the nth tumour cell is an immunogenic cell, it presents each antigen ai at a normal level lnai
∈ LI ,

whereas if the nth tumour cell is a non-immunogenic cell, all of its antigens ai are presented at a low level

lnai
∈ LNI .

Tumour cell growth and division. At each time-step, we let tumour cells grow at a random rate drawn from a

uniform distribution; the parameters of the bounds of the uniform distribution are chosen to match the mean115

duration of a tumour cell cycle length. Mitosis occurs when a tumour cell grows to a critical size and then

divides along a randomly orientated axis. Upon division at the time t, the nth tumour cell is replaced by two

cells [see Figure 1(e)], one labelled by the parent index n and the other one labelled by the index NT (t) + 1.
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Tumour cells

𝑎"

𝑎#

𝑎$ 𝑎4

Phylogenetic tree of 
the antigen mutations 

Antigen expression

Clonal antigen 𝑎"

Clonal antigen 𝑎#

Sub-clonal antigen 𝑎4

Sub-clonal antigen 𝑎$

Sub-populations of tumour cells

Sub-population 𝑎" Sub-population 𝑎# Sub-population 𝑎$ Sub-population 𝑎4

Antigen presentation level

mI mNI MNIMI

Immunogenic cells Non-immunogenic cells

(a) (b) (c)

(d)

LI LNI

Trunk

Branches

Tumour cell division(e)

Antigen presentation level

Immunogenic cells Non-immunogenic cells

Figure 1: Schematic representation of the modelling assumptions for tumour cells. (a) Purple circles represent tumour cells. In this

example, the antigen profile of the tumour is characterised by 4 different antigens, each one represented by a specific color and shape.

(b) Phylogenetic tree illustrating the mutations leading to the different antigens expressed by tumour cells. The clonal and sub-clonal

antigens are represented as the phylogenetic tree trunk and branches, respectively. (c) In this example, 4 antigens are expressed by

the tumour, each one characterised by a different color and shape. Based on the phylogenetic tree (b), we denote a1 and a2 as clonal

antigens, whereas a3 and a4 are denoted as sub-clonal antigens. (d) The tumour is divided in 4 sub-populations of tumour cells,

labelled by the last antigen acquired by each cell. Here, the color of each antigen represents its level of antigen presentation. Cells

in the sub-populations labelled by the antigens a1 and a2 express only clonal antigens and are defined as immunogenic cells. They

present their antigens at a normal level, with values chosen from the discrete set LI = {mI , . . . ,MI}. Cells in the sub-populations

labelled by the antigens a3 and a4 express clonal and sub-clonal antigens and are defined as non-immunogenic cells. They present all

their antigens at a low level, with values chosen from the discrete set LNI = {mNI , . . . ,MNI}. (e) A tumour cell divides when it

reaches a certain target volume. An immunogenic (respectively non-immunogenic) cell divide in two immunogenic (respectively non-

immunogenic) cells. The daughter cell has the same antigens of the parent cell, but with a new random level of antigen presentation.
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The daughter cell will inherit most of the properties of the parent cell, including the antigens expressed by

the parent cell, so the fact that the cell is immunogenic or not [see Figure 1(e)]. For each antigen ai expressed120

by the daughter cell, a random level of antigen presentation l
NT (t)+1
ai will be chosen.This level of antigen

presentation can then be different from the one of the parent cell. Another property not inherited by the

daughter cell is the intrinsic lifespan of the cell, which is randomly drawn from a uniform distribution. In

this model, we do not take into account the appearance of new antigens due to the occurrence of mutations.

Tumour cell death. If a tumour cell exhausts its lifespan (which is drawn when the cell is created), it dies (i.e.125

it undergoes apoptosis) at the end of the time-step and it is removed from the domain. A tumour cell can

also die due to intra-tumour competition, with a rate proportional to the total number of tumour cells, or

because of the cytotoxic action of CD8+ T cells. More details about tumour cell death due to the cytotoxic

action of CD8+ T cells will be given in Section 2.1.2.

Secretion of chemoattractants. We let tumour cells at the border of the tumour (the region where cytokines

and immune cells are more abundant [9]) secrete different chemoattractants for each expressed antigen

ai ∈ A. The secretion of a chemoattractant by a tumour cell expressing antigen ai is proportional to the level

of presentation of such antigen ai. Therefore, we model the chemoattractant secretion rate snai
by the nth

tumour cell expressing antigen ai using the following definition:

snai
:= C1 l

n
ai
, (2.5)

where C1 ∈ R+ is a scaling factor of units [mol]
[time] [space] , where [mol], [time] and [space] denote respectively the130

number of chemoattractant molecules and the units of time and of the size of a grid site, and lnai
is the level

of presentation of antigen ai by the nth tumour cell.

The total amount of chemoattractant secreted by tumour cells expressing antigen ai induces the arrival of

CD8+ T cells specific to antigen ai into the domain. More details about the mathematical modelling of the

different chemoattractant dynamics will be discussed in Section 2.1.3.135

2.1.2. Dynamics of CD8+ T cells

Influx of CD8+ T cells. Following Gong et al. [29], to model the tumour vessels that allow the arrival of CD8+

T cells in the tumour micro-environment, we generate a set of points in the domain. In order not to rely on

a detailed angioarchitecture, we generate 5 entry points, equidistant from each other and from the centre

of the domain. At each time step, a CD8+ T cell specific to antigen ai ∈ A can be supplied to the domain

from one of the 5 entry points, provided that the entry point is not occupied by other cells. The probability

0 < p(t) ≤ 1 of influx of a CD8+ T cell specific to antigen ai into the domain is proportional to the total

amount Stot
ai

(t) of chemoattractant associated to antigen ai secreted at time t. Therefore, we define p(t) as

p(t) := C2 S
tot
ai

(t),
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with C2 ∈ R+ a scaling factor of units [time]
[mol] .

Since the secretion of chemoattractants by tumour cells is proportional to the level of antigen presentation

(see Eq. (2.5)), the total amount of chemoattractants secreted by non-immunogenic cells is lower than the

total amount of chemoattractants secreted by immunogenic cells. Therefore, the influx of CD8+ T cells140

targeted to sub-clonal antigens, which are expressed only by non-immunogenic cells, is lower than the

influx of CD8+ T cells targeted to clonal antigens.

TCR expression and T cell death. We denote by NC(t) the number of CD8+ T cells in the system at time t,

and we label each of them by an index m = 1, ..., NC(t). Every CD8+ T cell has a unique TCR [see Figure

2(a)], and we suppose that each TCR is specific to a unique tumour antigen [see Figure 2(b)]. When the mth
145

CD8+ T cell with a TCR targeted against antigen ai ∈ A arrives into the domain it undergoes chemotactic

movement toward tumour cells expressing the matching antigen ai.

CD8+ T cell division occurs mostly in the lymph nodes [21] and cells then move to the tumour site. CD8+ T

cells can also proliferate at the tumour site but this is not the main site of proliferation. We thus neglect the

effects of CD8+ T cell proliferation at the tumour site and consider only the effects of proliferation outside150

the spatial domain of the model, leading to a varying influx of CD8+ T cells. A CD8+ T cell undergoes

apoptosis when it reaches the end of its intrinsic lifespan, which is drawn from a uniform distribution upon

its arrival in the domain.

Elimination of tumour cells by CD8+ T cells. Upon contact, CD8+ T cells can interact only with tumour cells

expressing the matching antigen [see Figure 2(c)], and can induce their death, on the condition that the

matching antigen is presented at a sufficiently high level. If a CD8+ T cell is in contact with more than one

tumour cell expressing the matching antigen, it will try to eliminate the one presenting the antigen at the

highest level. In particular, when the mth CD8+ T cell interacts with the nth tumour cell expressing the

matching antigen ai, we let the tumour cell be removed from the system, provided that

µ lnai
> (1− r). (2.6)

Here µ is a random variable drawn from the standard uniform distribution, lnai
is the level of presentation

of antigen ai by the nth tumour cell and 0 < r ≤ 1 is the intrinsic TCR-recognition probability, which we155

suppose to be equal for every CD8+ T cell. If the tumour cell satisfies the conditions to be eliminated, it

undergoes apoptosis. The parameter r determines the range of tumour cells the CD8+ T cell population can

interact with: large values of r represent a CD8+ T cell population able to eliminate tumour cells presenting

their antigens at a low level, whereas low values of r model the scenario where the CD8+ T cells can only

eliminate tumour cells presenting their antigens at a high level.160

Tumour cell elimination by CD8+ T cells takes approximately 6 hours to be completed in vitro [12] and in

vivo [11]. Accordingly, we require that an elimination event keeps a CD8+ T cell engaged for 6 hours and

only after this time the CD8+ T cell can eliminate again [37]. If the condition (2.6) is not satisfied, the CD8+

T cell is not engaged and can try, in the next time step, to eliminate again a tumour cell.
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CD8+ T cells(a) TCR expression(b)

TCR matching 𝑎1

TCR matching 𝑎2

TCR matching 𝑎4

TCR matching 𝑎3

Tumour cell removal(c)

No interaction

No interaction

Figure 2: Schematic representation of the modelling assumptions for CD8+ T cells and their interaction with tumour cells. (a) Red

circles represent CD8+ T cells, which express a unique TCR. (b) TCR are represented with different shapes and colors. Each TCR is

able to recognize a particular tumour antigen. In the model, the number of TCRs is equal to the number of expressed tumour antigens.

(c) Purple circles represent tumour cells. CD8+ T cells can eliminate tumour cells, upon contact, under certain conditions. A tumour

cell is eliminated if it presents the antigen matching the CD8+ T cell receptor at a sufficiently high level. In this example, a tumour

cell expressing antigen a1 and a2 cannot be eliminated by a CD8+ T cell with TCR matching antigen a4. On the other hand, the

same tumour cell may be eliminated by a CD8+ T cell expressing the TCR matching antigen a2, under a condition on the level la2 of

presentation of such antigen a2. The parameter r is the intrinsic TCR-recognition probability and µ is a random variable drawn from

a standard uniform distribution.

2.1.3. Chemoattractant field165

As mentioned earlier, we let the nth tumour cell at the border of the tumour secrete a different chemoat-

tractant for each antigen ai that it expresses. Denoting by cai the concentration of the chemoattractant

secreted by tumour cells expressing antigen ai, we let the dynamic of cai be described by the following

reaction-diffusion equation:

∂cai

∂t
= D∆cai − γcai +

∑
n∈NBT (t)

snai
, ai ∈ A. (2.7)

In Eq. (2.7), D is the diffusion constant and γ is the rate of natural decay; these two parameters are assumed

to have the same value for each chemoattractant. On the other hand, we recall that the secretion rate snai

is specific to the nth tumour cell, because it is proportional to the level of presentation of antigen ai by the

tumour cell (see Eq. (2.5)). NBT (t) denotes the set of tumour cells in contact with the surrounding medium

at time t.170

We add to Eq. (2.7) zero-flux boundary conditions and an initial concentration cinita which is set to be zero

everywhere in the domain but at the border of the tumour.

3. Numerical simulations and preliminary results

3.1. Set-up of simulations

For numerical simulations of our individual-based model, we use a Cellular Potts approach on a 2D175

spatial grid with a total of 400 × 400 lattice sites. Simulations were developed and run using the software
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CompuCell3D [35] on a standard workstation (Intel i7 Processor, 4 cores, 16 GB RAM, macOS 11.2.2), with

one time-step chosen to be ∆t = 1 min. The computational implementation of Cellular Potts models is

described in Appendix A, while full details of the model parametrisation are provided in Appendix B. Files

to run a simulation example with Compucell3D software [35] are available at: https://plmlab.math.180

cnrs.fr/audebert/cc3dmodeltumourcd8.

At the initial time point of the simulation, a certain number of tumour cells are already present in the

domain, while CD8+ T cells arrive only when the simulation starts. At the beginning of simulations there is

a total of 400 tumour cells, tightly packed in a circular configuration positioned at the centre of the domain,

reproducing the geometry of a solid tumour.185

All quantities we present in this section and in Section 4 are obtained by averaging over the results of 10

simulations, with parameter values kept constant and equal to those listed in Table B.1 and Table B.2. Unless

otherwise explicitly stated, we carry out numerical simulations for 28800 time-steps, corresponding to 20

days.

The next two subsections describe two preliminary computational results of our model which will be used190

to guide the simulations leading to the main results presented in Section 4.

3.2. Baseline scenario: tumour development in the absence of CD8+ T cells

We first establish a baseline scenario where tumour cells grow, divide and die via the modelling rules

described in Section 2.1.1, in the absence of CD8+ T cells. For this case, we carry out numerical simulations

for 36000 time-steps, corresponding to 25 days. Figure 3 shows the growth over time of the number of195

tumour cells. The growth of the tumour cell number is of logistic type, as expected by the rules that govern

tumour cell death. Logistic growth has been used by a number of authors to model the temporal evolution

of the size of solid tumours [22, 40, 42]. The carrying capacity, i.e. the saturation value reached by the

number of tumour cells due to intra-population competition, is numerically estimated to be of about 1100

cells.200

In the following subsections, we explore the immune response to tumours characterised by different degrees

of ITH. Each simulation is carried out by keeping all parameter values fixed (and equal to this baseline

scenario) and changing only the initial compositions of the different tumours.

3.3. Tumours with larger number of sub-populations of cancer cells lead to lower immune response efficacy

In a recent in vivo study in mice, the volume of UVB irradiated tumours after 20 days is found to be linked205

to the number of sub-populations of cancer cells constituting each inoculated tumour [65]. In our next sim-

ulations, we attempt to verify that our model reproduces such phenomenon, exploring the outcomes of

immune response to 7 different tumours characterised by an increasing number of sub-populations of tu-

mour cells. At this preliminary stage, we simplify our model. We consider that each tumour consists of the

same type of cells, and we do not differentiate between immunogenic and non-immunogenic cells. In par-210

ticular, here we let each sub-population of tumour cells be characterised by cells expressing a single antigen.
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Figure 3: Baseline scenario: tumour development in the absence of CD8+ T cells. Time evolution of the tumour cell number in the

absence of CD8+ T cells. The shaded area indicates +/− standard deviation between 10 simulations. The black dotted line highlights

a numerical estimation of the tumour cell carrying capacity.

This antigen is presented at a random level, chosen uniformly from the discrete set L =
{

1
6 ,

2
6 ,

3
6 ,

4
6 ,

5
6 , 1
}

. In

this way, tumour cells that express the same antigen belong to the same sub-population.

The plots in Figure 4(a)-(g) display the time evolution of the tumour cell number of 7 tumours that com-215

prise 1 to 7 different sub-populations of cancer cells. Plot in Figure 4(h) displays the corresponding number

of tumour cells and CD8+ T cells remaining at the end of simulations (after 20 days) for the 7 tumours.

For tumours constituted of 1 or 2 sub-populations of cancer cells, none or very few tumour cells remain

after 20 days [Figure 4(a)-(b)]. When 3 sub-populations of cancer cells constitute the tumour, the number of

tumour cells over time tends to stay constant and slightly above its initial value [Figure 4(c)]. Finally, for220

tumours initially constituted of more than 3 sub-populations, the number of tumour cells after 20 days is

more than twice the initial value. In addition, the final number of tumour cells increases as we increase the

number of sub-populations of cancer cells constituting the tumour from 1 to 6. For tumours with 6 and 7

sub-populations, the final number of tumour cells is similar and is about 1000 cells [Figure 4(f)-(g)]. These

results support the idea that the anti-tumour immune action is efficient only when the tumour is consti-225

tuted of 1 or 2 sub-populations of tumour cells. Moreover, up to a certain point, the increase of the number

of sub-populations of tumour cells results in a weaker immune response. Finally, increasing the number

of sub-populations of tumour cells beyond 6 does not appear to change the effect of the immune response.

Comparing the dynamics of the two last tumours (with 6 and 7 sub-populations of tumour cells) to the
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baseline scenario of Section 3.2, we see that the immune response is almost inefficient, as it is not able to230

really limit the growth of the two tumours.

Our computational results are in agreement with experimental results presented in [65]. In this study, the

induction of UVB-derived tumour, which lead to an increase in the number of sub-populations of cancer

cells, results in aggressive tumours with reduced anti-tumour immune activity. However, when different

single-cell-clone derived tumours (characterised by a unique sub-population of tumour cells) are consid-235

ered, the immune system is able to effectively eradicate them.

Figure 4(h) also shows that, when the tumour is constituted of more than 3 sub-populations of tumour

cells, the total number of CD8+ T cells at the end of simulations remain almost constant in the different

tumours (around 200 cells). A consequence of this is that the average size of each specific CD8+ T cell240

sub-population decreases as we consider tumours with increased number of sub-populations of tumour

cells. This leads to a less efficient anti-tumour immune response. As highlighted by Wolf et al. [65], these

computational results also suggest that increasing the number of sub-populations of tumour cells reduce the

exposition of each antigen to the “front-line”, thus making more difficult for immune cells to detect them.

The resulting outcome is a reduced influx of specific CD8+ T cells in the tumour micro-environment and a245

weaker anti-tumour immune response.

3.4. Initial composition of two tumours inspired by biological studies

In the previous subsections we investigated simple cases of tumour growth with and without the action

of the immune system. We will now explore further the effect of ITH on immune surveillance considering

two tumours inspired by biological studies, in order to effectively capture more layers of biological com-250

plexity. For the two tumours we consider different initial antigenic compositions, corresponding to different

degrees of ITH. In particular, following the experiments presented in [65], we dissect out two characteristics

of ITH: the number of sub-populations of cancer cells constituting a tumour and the percentage of immuno-

genic and non-immunogenic cells within it. With our model, we wish to investigate the effect of these two

expressions of ITH on tumour aggressiveness independently and together, evaluating their influence on255

anti-tumour immunity in a controlled manner. To this end, first we generate two tumours with different

number of sub-populations of cancer cells. Following the experiments presented in [65] and the results of

Section3.3, we consider, respectively, tumours with 3 and 7 sub-populations of cancer cells. For simplicity,

we denote the first tumour as tumour-3a and the second one as tumour-7a. The antigenic composition of

the two tumours and their corresponding phylogenetic tree representation are inspired by Wolf et al. [65].260

More details about the two tumours are given in the next paragraphs. Next, for each tumour we consider

different initial percentages of immunogenic and non-immunogenic cells. When different sub-populations

of immunogenic (or non-immunogenic) cells are considered, the total percentage of immunogenic (or non-

immunogenic) cells is equally distributed in each sub-population. This enables us to decouple antigen
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1 sub-population 2 sub-populations 3 sub-populations

4 sub-populations

6 sub-populations 7 sub-populations
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Figure 4: Tumours with larger number of sub-populations of cancer cells lead to lower immune response efficacy. Plots in panel (a)-

(g) display the time evolution of the tumour cell number for tumours characterised by increasing numbers of sub-populations. Shaded

areas indicate +/− standard deviation between 10 simulations. Plot in panel (h) displays the corresponding number of tumour cells

(in red) and CD8+ T cells (in green) remaining after 20 days (28800 time-steps) for the different initial tumour compositions. The cell

numbers presented here were obtained as the average over 10 simulations and the error bars display the related standard deviation.

heterogeneity and antigen immunogenicity, and study their influence on tumour aggressiveness in a causal,265

systematic manner.

Tumour-3a. The first tumour we consider expresses three different antigens, one of which is clonal and

the other two are sub-clonal (see Figure 5(a)). With the notation introduced in Section 2.1.1, we denote

respectively by

A = {4, 5, 7}, AC = {5} and ASC = {4, 7} (3.1)

the antigen profile of the tumour, the clonal antigens and the sub-clonal antigens.

Based on the phylogenetic tree representation of Figure 5(a), we divide tumour-3a in 3 sub-populations

of tumour cells labelled by the last antigen acquired by each cell. Cells in the sub-population labelled

by antigen 5 carry only this antigen, while cells in sub-populations labelled by antigens 4 and 7 express,

respectively, antigens 5 and 4 or antigens 5 and 7.
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Figure 5: Phylogenetic tree representations of the antigens considered for the two tumours. (a) Tumour-3a expresses three antigens.

Antigen 5 is the only clonal antigen (in yellow) and antigens 4 and 7 are two sub-clonal antigens (in orange). As a results, tumour-3a

is composed of 3 sub-populations of tumour cells. (b) Tumour-7a expresses seven antigens. Antigens 1 and 5 are clonal antigens (in

yellow) and antigens 4, 6, 7, 8 and 10 are sub-clonal antigens (in orange). Hence, tumour-7a is composed of 7 sub-populations of tumour

cells. The phylogenetic tree representations of the two tumours are inspired by Wolf et al. [65].

As cells in the sub-population labelled by antigen 5 are immunogenic, their level of antigen presentation by

the MHC-I is assumed to be normal and randomly chosen from the discrete set LI , which is defined as

LI =

{
1

6
,

2

6
,

3

6
,

4

6
,

5

6
, 1

}
. (3.2)

On the other hand, as cells in sub-populations labelled by antigens 4 and 7 are non-immunogenic, their level

of antigen presentation by the MHC-I is deteriorated and, therefore, randomly chosen from the discrete set

LNI , which is defined as

LNI =

{
5

100
,

10

100
,

15

100
,

20

100
,

25

100
,

30

100

}
. (3.3)

Tumour-7a. The second tumour expresses seven different antigens, two of which are clonal and five are

sub-clonal (see Figure 5(b)). We denote respectively by

A = {1, 4, 5, 6, 7, 8, 10}, AC = {1, 5} and ASC = {4, 6, 7, 8, 10} (3.4)

the antigen profile of the tumour, the clonal antigens and the sub-clonal antigens.

Based on the phylogenetic tree representation of Figure 5(b), we divide tumour-7a in 7 sub-populations of

tumour cells. Cells in sub-populations labelled by antigens 1 and 5 are immunogenic, and present their

antigens at a level randomly chosen from set LI , which is defined in (3.2). On the other hand, cells in sub-270

populations labelled by antigens 4, 6, 7, 8 and 10 are non-immunogenic, and present all their antigens at a

lower level randomly chosen from set LNI , which is defined in (3.3).
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In the next Section, we investigate the effects of CD8+ T cell response to different tumours characterised

by different levels of ITH. The obtained dynamics are compared with the baseline scenario. In the next275

simulations, we consider different compositions of the initial tumour, while the other parameters are kept

constant to the values listed in Table B.1 and Table B.2. The values of the parameters are chosen so as to

qualitatively reproduce essential aspects of the experimental results obtained by Wolf et al. [65]

4. Results and discussion

4.1. Large number of sub-populations of cancer cells constituting a tumour reduces the effectiveness of the immune280

response

To investigate how the immune response is affected by different degrees of heterogeneity, we start

by comparing two situations in which the initial tumours are characterised by different number of sub-

populations of tumour cells. We consider as initial conditions tumour-3a, with 3 different sub-populations

of tumour cells, and tumour-7a, with 7 different sub-populations of tumour cells, defined as in Section 3.4.285

For each tumour, we consider the same initial percentage of immunogenic and non-immunogenic cells,

corresponding to 75% of immunogenic cells and 25% of non-immunogenic cells. Note that these two tu-

mours are different from those considered in the results presented in Section 3.3. In fact, in tumour-3a and

tumour-7a cells can express clonal and sub-clonal antigens and, therefore, be either of immunogenic or non-

immunogenic type. On the other hand, in the results presented in Section 3.3, each tumour cell presents a290

unique antigen, which is shared by all the cells in the same sub-population of tumour cells. The situation

considered here provides a more faithful representation of biological complexity, as a tumour cell can ex-

press more than one antigen presented at different levels.

Figure 6(a)-(c) show the time evolution of the total number of tumour cells, along with the corresponding295

time evolution of immunogenic and non-immunogenic cell number. Figures 6(d)-(f) also display the spatial

cell distributions observed at different times of two simulations. As shown by Figure 6(a), the two tumours

have similar dynamics from the beginning of simulations until day 10, with an initial increase of the cell

number followed by a steep decrease. After day 10, in tumour-3a, the number of tumour cells continues

to decrease until it reaches a low, almost constant level. Figure 6(b) and (c), along with the corresponding300

panel of Figure 6(f), show that, at the end of simulations, all the immunogenic cells are eliminated by the

CD8+ T cells, and only few non-immunogenic cells remain in the system. On the other hand, for tumour-7a,

after day 10 the tumour cell number increases steadily over time. This dynamic leads to a final tumour size

similar to the initial one. Moreover, as shown by Figure 6(b), the number of immunogenic cells tends to

decrease over time, whereas the number of non-immunogenic cells, after being initially kept under control305

by immune cells, increases steeply (Figure 6(c)). The related panels of Figure 6(d)-(f) show the progressive

colonisation of the tumour by non-immunogenic cells.

Due to the relatively large standard deviation observed in the tumour-7a results, we run 100 realisations of
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Figure 6: The number of sub-populations constituting a tumour impacts on the effectiveness of the immune response. Plots in pan-

els (a)-(c) display the time evolution of the total tumour cell number, and the corresponding evolution of the number of immunogenic

cells and non-immunogenic cells for tumour-3a (in red) and tumour-7a (in blue). Shaded areas indicate +/− standard deviation between

10 simulations. For these simulations, an equal initial percentage of 75% of immunogenic cells and 25% of non-immunogenic cells

was considered. Insets in panels (d)-(f) display an example of the spatial distribution of cells for tumour-3a (first row) and tumour-7a

(second row) at different times of the simulation. Purple cells are immunogenic cells, green cells are non-immunogenic cells and red

cells are CD8+ T cells.

this simulation (see Figure C.10 in Appendix C), in order to check the robustness of our results. Comparing

Figures 6 and C.10, we observe a qualitative similar behaviour (i.e. similar mean and standard deviation),310

confirming the reliability of the tumour-7a results presented in Figure 6. As shown by Figure 6, we observe

a larger variability in the simulation of tumour-7a than in the one of tumour-3a. This variability is probably

due to the larger number of antigens that are present in tumour-7a. This result indicates that the number of

antigens can be an important source of variability in the model.

Comparing these results with the baseline scenario of Section 3.2, for both tumours we clearly see the effects315

of the action of immune cells on tumour growth, which is no longer simply logistic and saturating to carry-

ing capacity. However, the effectiveness of the immune response depends on the tumour considered. For
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tumour-3a, the immune response is efficient and almost eliminates all tumour cells. On the other hand, for

tumour-7a, the higher heterogeneity leads to a less effective immune response and the tumour eventually

grows again. These results suggest that, even if characterised by equal percentages of immunogenic and320

non-immunogenic cells, tumours with a larger number of sub-populations of tumour cells, which express

a wider spectrum of antigens, are more aggressive. This was already suggested by the results presented in

Section 3.3. Moreover, even with all tumour cells presenting clonal antigens (it was not the case in Section

3.3) the CD8+ T cells are not able to control the growth of the tumour. This again indicates that the number

of sub-populations and antigens in a tumour have an impact on the effectiveness of the immune response.325

The outcomes of our model indicate that in tumour-3a the presence of a low number of antigens leads

to a better immune detection, enhancing the ability of the immune system to eliminate the tumour. In

both tumours the immune system rapidly targets and eliminates immunogenic cells, giving a competitive

advantage to non-immunogenic cells. In fact, we initially observe a reduction in the number of tumour cells.330

However, in tumour-7a, as more sub-populations of tumour cells are present, non-immunogenic cells have

a better chance of escaping immune surveillance. The outcome is a weaker anti-tumour immune response.

Overall, our results are in agreement with the recent hypothesis by Wolf et al. [65] that, because of increased

antigenic variability, the relative expression of each antigen is weaker in tumours composed of a larger

number of sub-populations of tumour cells. In particular, clonal antigens undergo “dilution” within the335

tumour, and, therefore, the chance for CD8+ T cells to identify immunogenic cells is reduced. This leads to

a diminished ability of CD8+ T cells to mount a sufficient cytotoxic response.

4.2. Different initial percentages of immunogenic and non-immunogenic cells can cause variations in anti-tumour

immune response

The results discussed in the previous subsection illustrate how the effectiveness of the immune response340

can decreases in tumours with larger number of sub-populations of tumour cells. We investigate the effects

of ITH further, focusing on the role of the percentage of immunogenic and non-immunogenic cells. We fix

the number of sub-populations of tumour cells considering only tumour-3a, and vary the initial percentage

of immunogenic and non-immunogenic cells.

345

The plot in Figure 7 displays the number of tumour cells remaining at the end of simulations (after 20

days), for different initial percentages of immunogenic and non-immunogenic cells. For low percentages of

non-immunogenic cells (≤ 25%), none or very few tumour cells survive after 20 days. On the contrary, for

tumours initially composed of more than 50% of non-immunogenic cells, the number of tumour cells after

20 days is larger than the initial one. In addition, the final number of cells increases as we increase the initial350

percentage of non-immunogenic cells. These results suggest that the anti-tumour immune action is efficient

only when the percentage of non-immunogenic cells is low compared to the percentage of immunogenic
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Figure 7: Different initial percentages of immunogenic and non-immunogenic cells can cause variations in the immune response to

tumour cells. Plot displaying the number of tumour cells remaining after 20 days (28800 time-steps) for different initial percentages of

immunogenic and non-immunogenic cells. For these simulations, only tumour-3a was considered. The tumour cell numbers presented

here were obtained as the average over 10 simulations and the error bars display the related standard deviation. The black dotted line

highlights the number of tumour cell at the initial time of the simulations.

cells. Moreover, the larger the percentage of non-immunogenic cells, the weaker the immune response is.

Compared to the baseline scenario of Section 3.2, we see the effects of the immune system on tumour355

growth. In fact, for each scenario the number of cells at the end of simulations is lower than the tumour car-

rying capacity shown in Figure 3. However, for larger percentages of non-immunogenic cells, the immune

response is not efficient enough to reduce the initial tumour size.

Taken together, our results qualitatively reproduce key findings of experiments performed in in vivo syn-360

geneic mice tumour models [26]. The results presented in [26] indicate that a non-effective immune response

may occur when the percentage of immunogenic cells in the tumour is low. Our computational results pro-

vide an explanation for such emergent behaviour. Since sub-clonal antigens are presented at a low level by

the MHC-I, non-immunogenic cells trigger a poor CD8+ T cell response. Thus, tumours characterised by

a major percentage of non-immunogenic cells result in a weaker overall immune response. Furthermore,365

Gejman et al. [26] put forward the idea that the threshold percentage of immunogenic cells that is required
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to trigger an antigen-specific CD8+ T cell response may vary depending on the antigens. In order to address

this point, such a feature could be implemented in the model, for example by considering antigen presenta-

tion levels or chemotactic responses specific to each antigen.

370

The role of the immunogenic cell percentage within the tumour is further analysed as we observe a gap

between the results obtained considering 25% and 50% of non-immunogenic cells (see Figure 7). This is

investigated by performing simulations considering percentages of non-immunogenic cells between these

two values. Figure 8 displays the time evolution of the number of tumour cells for 10 different realisations of

the same simulation, considering the same initial condition with 33% of non-immunogenic cells and 67% of375

immunogenic cells. In this case, we carried out numerical simulations for 38800 time-steps (corresponding

to 27 days).

Under this choice of the initial condition, we observe a large variability in the tumour-immune cell dy-

namics, which does not lead to a clear emergent behaviour. In particular, Figure 8(a) shows that, in some

simulations, the number of tumour cells decreases over time and only few cells remain at the end of the380

simulations. In other cases, after an initial phase between day 0 and day 10 where CD8+ T cells keep under

control the growth of the tumour, the number of tumour cells eventually increases and the resulting final

number of tumour cells is larger than the initial one. This is also illustrated by Figure 8(b), which displays a

sample of the spatial cell distributions at different time of two simulations. In particular, here we show that,

starting from the same initial condition, we obtain two different outcomes: in one case immune clearance385

occurs and tumour cells are almost entirely eliminated by the immune system; in the other case tumour

cells escape immune surveillance. When immune escape occurs, in the example proposed in Figure 8(b) at

day 14, immunogenic cells are surrounded by non-immunogenic cells, which hamper immune detection.

This leads to a decreased influx of CD8+ T cells in the tumour micro-environment and results in a weaker

immune response.390

These results suggest that the stochasticity which is present in cell dynamics may affect the outcomes of

immune action. These results may partially explain the outcomes of earlier experimental research [14, 38],

which found that responses of patients with similar tumours can vary considerably. In this regard, the use

of mathematical models for identification and understanding of immune escape mechanisms in individual

tumour could help advancing personalized tumour treatment.395

4.3. Both the number of sub-populations of cancer cells constituting a tumour and the percentage of immunogenic and

non-immunogenic cells affect the effectiveness of the immune response

So far, we have investigated with our model the effects of ITH on immune response by varying in-

dependently the number of sub-populations of cancer cells constituting a tumour and the percentage of

immunogenic and non-immunogenic cells. Now, we study their combined effect in mediating tumour400

growth. We consider as initial conditions tumour-3a and tumour-7a, characterised by different numbers of

sub-populations of tumour cells, and for different initial percentages of immunogenic and non-immunogenic
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Figure 8: Stochasticity in cell dynamics may affect the outcomes of immune action. Plot in panel (a) displays the time evolution

of the tumour cell number for an initial percentage of 33% of non-immunogenic cells and 67% of immunogenic cells for 10 runs of

simulations. Each line corresponds to a unique realisation of our model. For these simulations, only tumour-3a was considered. The

insets in panel (b) show an example of the observed spatial distributions of cells corresponding to different times of two simulations.

cells.

Figure 9 displays the time evolution of the total number of cells for different initial tumour compositions,405

and compares the number of immunogenic and non-immunogenic cells at the end of simulations with re-

spect to the initial one. As shown by Figure 9(a1), the immune system is able to completely eradicate the

tumour only when it is initially composed of 100% of immunogenic cells, independently of the number of

sub-populations of tumour cells. When the initial tumour is made of 25% of non-immunogenic cells, Figure

9(b1) show that the two tumours have different dynamics. In particular, as already observed in the results410

presented in Section 4.1, the number of cells in tumour-3a decreases over time until the end of the simula-

tions, while the number of cells in tumour-7a, after an initial decrease, steadily increases until the end of

the simulations. Finally, when tumours are initially composed of more than 50% of non-immunogenic cells,

similarly to the baseline scenario of Section 3.2, they follow a logistic growth, except for an initial decrease

shown by Figure 9(c1). For both tumours, the tumour cell number eventually saturates at a certain value415

(see Figure 9(c1)-(e1)). In these cases, the saturation value of the number of tumour cells is larger than the

initial tumour cell number. Moreover, the saturation value attained increases as we increase the level of het-

erogeneity of the tumour (respectively, the number of sub-populations of tumour cells and the percentage

of non-immunogenic cells). Such results indicate that in these cases CD8+ T cells are present in the tumour

micro-environment but do not produce an effective immune response. Persistent antigen presentation has420

been proven to cause continuous TCR stimulation that could directly induce CD8+ T cell dysfunction and

exhaustion [66, 67]. The model presented in this work does not include this aspect, but it could be easily

extended to do so.
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The outcomes of our model recapitulate the main results of in in vivo clonal mixing experiments in mice425

models presented by Wolf et al. [65], who studied the combined effect of these two characteristics of ITH in

mediating tumour growth and eradication. Wolf and collaborators have demonstrated that tumours with

increased number of clones and large genetic diversity are more aggressive. In our model, the number of

clones can be linked to the number of sub-populations of tumour cells, while genetic diversity may be linked

to the immunogenicity of the tumour. Moreover, our findings are in agreement with an experimental work430

indicating that patients whose tumours are highly heterogeneous have increased levels of relapse after an

initial response to immunotherapy and worse survival expectations than patients with more homogeneous

tumours [51].

We next analyse the evolution over time of immunogenic and non-immunogenic cells. When tumours435

are initially composed of 25% of non-immunogenic cells, Figure 9(b2) shows that the two tumours evolve in

different ways. While the number of non-immunogenic cells is considerably reduced in tumour-3a, the final

number of non-immunogenic cells increases up to four times its initial number in tumour-7a. On the other

hand, when tumours are initially composed of more than 50% of non-immunogenic cells, independently of

the tumour considered, we observe a similar trend in the evolution of immunogenic and non-immunogenic440

cells (see Figure 9(c2)-(e2)). In particular, for both tumour types, the number of immunogenic cells tends to

remain stable or decreases slightly. On the other hand, the number of non-immunogenic cells increases and

grows to up to twice its initial value.

These results suggest that, beyond a certain non-immunogenic cell percentage threshold, the immune sys-

tem becomes inefficient in both tumour types independently of the number of sub-populations of tumour445

cells. Moreover, they suggest that the selective pressure of the immune response can lead to more aggressive

tumours, characterised by larger percentages of non-immunogenic cells. In this regard, our results follow

the same behaviour of previous experimental works demonstrating that, under cancer therapeutics (e.g.

chemotherapy or radiotherapy), the population of tumour cells is exposed to the selective stress induced

by the treatment [31, 34, 62]. Therefore, more resistant cells acquire a competitive advantage over more450

sensitive cells and induce a weaker response to treatment in the long run. The resulting outcome is a more

aggressive tumour, which may ultimately grow again [54].

5. Conclusions and perspectives

The number of sub-populations of cancer cells constituting a tumour and the percentage of immunogenic

and non-immunogenic cells within it are two major components of ITH, and play a key role in the immune455

response against solid tumours. Mathematical models make possible to asses the influence of these two

components of ITH on anti-tumour immunity in a controlled manner.

In this work, we have presented a spatially explicit stochastic individual-based model of the interaction dy-
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Figure 9: Both the number of sub-populations of cancer cells constituting a tumour and the percentage of non-immunogenic cells

affect the effectiveness of the immune response. Plots in panel (a1)-(e1) display the time evolution of the tumour cell number for

tumour-3a (in red) and tumour-7a (in blue). In both tumours, from (a1) to (e1) the initial percentage of non-immunogenic cells is

increased. Shaded areas indicate +/− standard deviation between 10 simulations. Plots in panel (a2)-(e2) display the corresponding

average number of immunogenic and non-immunogenic cells at the end of simulations with respect to the initial one. The error lines

represent the standard deviation between 10 simulations.

namics between CD8+ T cells and tumour cells, and we have investigated how ITH affects the anti-tumour

immune response.460

Our numerical results show that the number of sub-populations of cancer cells constituting a tumour can

have a crucial impact upon the outcome of the immune response (Figures 4 and 6). In the scenario of

tumours characterised by a low number of sub-populations of cancer cells, immune clearance can occur.

Conversely, tumours composed of a larger number of sub-populations of cancer cells may be able to es-

cape immune recognition and ultimately grow again. Our results suggest that increasing the number of465

sub-populations of cancer cells reduces the exposition of each antigen to the “front-line”, thus making more

difficult for the immune cells to detect them (Figure 4). Moreover, when tumours expressing clonal and

sub-clonal antigens are considered, our results demonstrate that, in more heterogeneous tumours, tumour
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cells could have a better chance of escaping immune surveillance. This outcome may be explained by the

fact that clonal antigens undergo “dilution” within the tumour relative to other antigens, diminishing the470

ability of CD8+ T cells to mount a sufficient cytotoxic response (Figure 6).

The outcomes of our model support the idea that varying the initial percentage of immunogenic and non-

immunogenic cells leads to variations on the effectiveness of the immune response and results in distinct

scenarios, from immune clearance of the tumour to immune escape (Figure 7). We have also observed that

for certain intermediate percentages of immunogenic and non-immunogenic cells, stochasticity in cell dy-475

namics plays an important role, and can lead both scenarios close to tumour eradication and to scenarios

where a large number of tumour cells persists over time (Figure 8).

We have also studied the effects of ITH on anti-tumour immune response by varying both the number of

sub-populations of cancer cells and the initial percentage of immunogenic and non-immunogenic cells (Fig-

ure 9). For equal percentage of immunogenic and non-immunogenic cells, tumours with increased number480

of sub-populations of cancer cells are more aggressive than tumours with lower number of sub-populations

of cancer cells. However, beyond a certain threshold value of the percentage of non-immunogenic cells, the

immune system becomes inefficient against both types of tumours, independently of the number of sub-

populations of cancer cells. In addition, we found that increasing initial percentages of non-immunogenic

cells always led to a less effective CD8+ T cell response. When the tumours are not eradicated, the final per-485

centage of non-immunogenic cells is larger than the initial one. This suggests that the immune system may

act as a bottleneck which selects and eliminates immunogenic cells, thus allowing the tumours to escape

immune regulation.

In summary, our findings demonstrate the importance of ITH as a possible predictor of the outcome of

immune action. Our results support the idea that patients with tumours bearing few clonal antigens are490

expected to be more likely to exhibit a durable benefit from immune response than patients with hetero-

geneous tumours characterised by many different sub-clonal antigens [51]. On the other hand, our results

disbelieve the fact that highly heterogeneous tumours, characterised by the expression of many different

antigens, can enhance the efficacy of immune response. In fact, our results indicate that excessive antigen

heterogeneity may, conversely, actively impair anti-tumour CD8+ T cell immune response. This is also sup-495

ported by a recent clinical work which found that excessive mutagenesis, directed to enhance the tumour

mutational burden, may decrease the efficacy of immunotherapy [65].

The current version of our model can be developed further in several ways. We could incorporate ex-

tended aspects of the tumour micro-environment, such as the expression of immunosuppressive factors (e.g.500

PD1 or CTLA4), which affect the effectiveness of anti-tumour immune response. In fact, these inhibitory

factors induce the exhaustion of CD8+ T cells in the tumour micro-environment impairing the immune re-

sponse [36, 64]. The inclusion of CD8+ T cell exhaustion caused by inhibitory factors could give further

explanations for other mechanisms of immune escape. The exhaustion mechanism could be included in

23



the model by, for example, altering the value of the parameter governing the efficiency of the CD8+ T cell505

population in eliminating tumour cells.

The spatial dimension and the flexibility of our model would also allow for the study of the spatial dis-

tribution of CD8+ T cells within the tumour and the role of immune infiltration on the tumour dynamics

[24]. Moreover, by posing the model on a 3D domain, a deeper understanding of the spatial dynamics of

tumour-immune interactions could be achieved.510

All results we have reported on were obtained by averaging over the results of 10 realisations, in order to

present in a synthetic way the outcomes of our model which includes inherent stochastic variations. When

the standard deviation between these 10 realisations was relatively small, we presented the results of these

realisations along with the mean and the standard deviation. This is the case of the results displayed in

Figures 3, 4, 7, 9 and part of Figure 6. When the standard deviation was relatively large, we presented515

the results of each realisation individually (Figure 8). This allowed us to investigate the different emerging

behaviours of our stochastic model. Moreover, in order to check the robustness of the results, for one simu-

lation that had a relatively large standard deviation (tumour-7a in Figure 6), we reported on the results of 100

realisations of this simulation (Figure C.10). We observed that the overall dynamics of the 100-realisation

case were qualitatively similar to those of the 10-realisation case. Consistency analysis would be another520

option to establish the number of replicate runs needed to obtain a desired level of numerical robustness.

This could be performed using, for example, the tool presented in [2].

We managed to estimate some parameters of the model (see Table (B.1) and Table (B.2)) from the literature

and define them on the basis on precise biological assumptions. However, there are some parameters (e.g

r, C1, C2 and the parameters related to the chemoattractants) whose values were simply chosen with an ex-525

ploratory aim and to qualitatively reproduce essential aspects of the experimental results obtained in [65].

In order to minimise the impact of this limitation on the conclusions of our study, we carried out simulations

by keeping all parameter values fixed and changing only the initial composition of the tumours, and then

comparing the simulation results so obtained.

Finally, from a modelling point of view, although more tailored to capture fine details of the dynamics of530

single cells, individual-based models are not amenable to analytical studies, which may support a more

in-depth theoretical understanding of the application problems under study. For this reason, in future work

we plan to derive a continuum model from a simplified version of our individual-based model by using

mean filed methods similar to those employed in [4, 15, 55].

In its present form, our modelling framework qualitatively reproduces scenarios of successful and unsuc-535

cessful immune surveillance reported in experimental studies [26, 51] and [65]. However, at this stage, the

model has not been calibrated using any particular type of data. Hence, it cannot be employed to generate

predictions that can directly be used in the clinic. By fitting its parameters to a specific type of clinical data,

our model could, in principle, be used to assess different levels of ITH as potential biomarkers for compar-

ing and predicting outcomes in tumour immunotherapy treatments. Integrating the model with tumour540
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biopsies from patients could offer insight into potential outcomes of treatments. Finally, our model may be

a promising tool to explore therapeutic strategies designed to decrease tumour heterogeneity and improve

the overall anti-tumour immune response.
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Appendix A. Details of computational model

The individual-based model has been numerically solved using the multicellular modelling environment

CompuCell3D [35]. This software is an open source solver, which uses a Cellular Potts model [30] (also

known as CPM, or Glazier-Graner-Hogeweg model). In Cellular Potts models, biological cells are treated

as discrete entities represented as a set of lattice sites, each with characteristic values of area, perimeter, and560

intrinsic motility on a regular lattice. Interaction descriptions and dynamics between cells are modelled by

means of the effective energy of the system. This determines many characteristics such as cell size, motility,

adhesion strength and the reaction to gradients of chemotactic fields. During a simulation, each cell will

attempt to extend its boundaries, through a series of index-copy attempts, in order to minimise the effective

energy. The success of the index copy attempt is dependent upon probabilistic rules which take into account565

the change in energy.

Appendix A.1. Cell types

In Cellular Potts models, cells are uniquely identified with an index σ(i) on each lattice site i, with i

a vector of integers occupying lattice site i. Each cell in the model has a type τ(σ(i)), which determines

its properties, and the processes and interactions in which it participate. In our model, to characterise the570

different sub-populations of cancer cells, we define as many types of tumour cells as sub-populations of
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cancer cells. Moreover, CD8+ T cells have as many types as TCRs considered for the simulation, which

corresponds also to the number of antigens considered. Note that, technically, the extracellular medium is

also considered as a cell of type medium.

Appendix A.2. Cellular dynamics575

The effective energy is the basis for operation of all Cellular Potts models, including CompuCell3D [35],

because it determines the interactions between cells (including the extracellular medium). Configurations

evolve to minimise the effective energy H of the system, defined as

H =
∑
i,j

J(τ(σi), τ(σj))(1− δ(σi, σj))︸ ︷︷ ︸
boundary energy

+
∑
σ

[
λarea(σ)(a(σ)−At(σ))2

]
︸ ︷︷ ︸

area constraint

+
∑
σ

[
λper(σ)(p(σ)− Pt(σ))2

]
︸ ︷︷ ︸

perimeter constraint

(A.1)

The most important component of the effective energy equation is the boundary energy, which governs the

adhesion of cells. The boundary energy J(τ(σi), τ(σj)) describes the contact energy between two cells σi580

and σj of types τ(σi) and τ(σj). It is calculated by the sum over all neighbouring pixels i and j that form

the boundary between two cells. Thanks to the term (1 − δ(σi, σj)), the boundary energy contribution is

considered only between lattice sites belonging to two different cells. The second and third terms represent

respectively a cell-area and cell-perimeter constraint. In particular, a(σ) and p(σ) are the surface area and

perimeter of the cell σ, At(σ) and Pt(σ) are the cell’s target surface area and perimeter and λarea(σ) and585

λper(σ) are an area and perimeter constraint coefficient.

The cell configuration evolves through lattice-site copy attempts. To begin an index-copy attempt, the

algorithm randomly selects a lattice site to be a target pixel i, and a neighbouring lattice site to be a source

pixel i′. If the source and target pixels belong to the same cell (i.e. if σ(i) = σ(i′)), they do not need to

attempt an lattice-site copy and thus the effective energy will not be calculated. Otherwise, an attempt will

be made to switch the target pixel as the source pixel, thereby increasing the surface area of the source cell

and decreasing the surface area of the target cell.

The algorithm computes ∆H = H − H ′, with H the effective energy of the system and H ′ the effective

energy if the copy occurs. Then, it sets σ(i) = σ(i′) with probability P (σ(i)→ σ(i′)), given by:

P (σ(i)→ σ(i′)) =

 1 : ∆H ≤ 0

exp−
∆H
Tm : ∆H > 0.

(A.2)

The change in effective energy ∆H evaluate the energy cost of such a copy and parameter Tm determines

the level of stochasticity of accepted copy attempts. The unit of simulation time is the Monte Carlo step

(MCS).

Appendix A.3. Subcellular dynamics and chemotaxis590

In our model we simulate CD8+ T cell chemotaxis toward tumour cells, defined as the cell motion in-

duced by a presence of a chemical. In CompuCell3D [35], chemotaxis is obtained biasing the cell’s motion
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up or down a field gradient by adding a term ∆Hchem in the calculated effective-energy change ∆H used

in the acceptance function (A.2). For a field c(i):

∆Hchem = −λchem(c(i)− c(i′)) (A.3)

where c(i) is the chemical field at the index-copy target pixel i, c(i′) the field at the index-copy source pixel

i′, and λchem the strength and direction of chemotaxis.

The change in concentration of the chemical field c is obtained by solving a reaction-diffusion equation of

the following general form:
∂c

∂t
= D∇2c− γc+ S (A.4)

where D, γ and S denote the diffusion constant, decay constant and secretion rates of the field, respectively.

These three parameters may vary with position and cell-lattice configuration, and thus be a function of cell

σ and pixel i.

Appendix B. Model parameters

The individual-based model is parametrised using parameter values obtained from published biological595

data wherever possible. We use a 2D squared spatial domain with 400×400 lattice sites (pixels). We assume

that a pixel of the domain corresponds to 3× 3 µm2. As the CD8+ T cell diameter is estimated to be between

10 µm and 12 µm [25, 29], the initial size of a CD8+ T cell is 4×4 pixels. A tumour cell diameter is estimated

to be about 20 µm [16], therefore we assume that each newly divided tumour cell is made of 5× 5 pixels. In

addition, the maximum CD8+ T cell migration speed measured in the simulation is around 10 pixels / 100600

MCS. Therefore, using the CD8+ T cell migration measurements in vivo (2-25 µm/min, see Miller et al. [53])

we choose 1 MCS ∼ 1 minute as a time scale. The parameters for the Cellular Potts model are listed in Table

B.1, while all the other parameters with their related references are listed in Table B.2.

We now provide a discussion on how some of the parameters of the Cellular Potts model were chosen.

Interactions between neighboring pixels in the Cellular Potts model have an effective energy, J (as it appears605

in Equation (A.1)), which characterises the strength of cell-cell adhesion (see Table B.1). A larger J means

that more energy is associated with the interface between two cells, which is less energetically favourable,

corresponding to weaker adhesivity. It can be observed that JCT and JTT are lower than JCC . We make the

assumption that tumour cells stay in contact to compactly create the tumour mass and that when a CD8+

T cell enters in contact with a tumour cell then strongly binds to it. When they migrate in the domain to610

search for tumour cells, CD8+ T cells are not in contact with each other.

Files to run a simulation example with Compucell3D software are available at: https://plmlab.math.

cnrs.fr/audebert/cc3dmodeltumourcd8.

Appendix C. Supplementary figures
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Figure C.10: The overall dynamics between 100 realisations of the same simulation are qualitatively similar to those between 10

realisations. Plots in panels (a)-(c) display the time evolution of the total tumour cell number, and the corresponding evolution of the

number of immunogenic cells and non-immunogenic cells for tumour-7a. Shaded areas indicate +/− standard deviation between 100

simulations. For these simulations, the same initial conditions used for tumour-7a in Figure 6 were used. The parameter values are kept

constant and equal to those listed in Table B.1 and Table B.2.
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Table B.1: Parameter values used to implement the Cellular Potts model. Energies, temperature and constrains are dimensionless

parameters.

Phenotype Symbol Description Value Reference

Domain ∆x,∆y Domain spacing in the x or y direction 1 Pixel = 3 × 3 µm2

∆t Time-step 1 MCS = 1 min

tf Final time 20 (days)

CC3D JMT Contact energy tumour cells-medium 50

JMC Contact energy CD8+ T cells-medium 50

JCT Contact energy CD8+ T cells-tumour cells 20

JTT Contact energy tumour cells-tumour cells 110

JCC Contact energy CD8+ T cells-CD8+ T cells 1000

dT Tumour cell diameter 20-40 (µm) [29]

dC CD8+ cell diameter 12 (µm) [25]

λarea Tumour cell and CD8+ T cell area constrain 10

λper Tumour cell and CD8+ T cell perimeter constrain 10

Tm Fluctuation amplitude parameter 10

λchem Strength and direction of chemotaxis 50
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Table B.2: Parameter values used in numerical simulations.
Phenotype Description Value Reference

Tumour Initial number NT (0) = 400

Index identifier n = 1, . . . , NT (t)

Lifespan U[3,7] (days) [29]

Growth rate U[0.015,0.02] (pixel/min) [29]

Mean cycle time 24 (hours) [29]

Rate of death due to competition be-

tween tumour cells

3.8× 10−7 (1/min)

Antigen profile A = (a1, . . . , af )

Clonal antigen profile AC ⊂ A

Sub-clonal antigen profile ASC ⊂ A

Range of value of antigen presentation

for clonal cells

LI =
{

1
6
, 2
6
, 3
6
, 4
6
, 5
6
, 1
}

Range of value of antigen presentation

for sub-clonal cells

LNI =
{

5
100

, 10
100

, 15
100

, 20
100

, 25
100

, 30
100

}
Antigen ai ∈ A

Level of presentation of antigen ai of

tumour cell n

lnai ∈ [0, 1]

CD8+ T cells Total number at time t NC(t) ≥ 0

Index identifier m = 1, . . . , NC(t)

Influx rate p(t) = C1 × Stota (t)

C1 = 2× 10−5 (min/mol)

Lifespan U[2.5,3.5] (days) [29]

Migration speed 2 - 25 (µm/min) [25]

Engagement time 6 (hours) [16]

TCR-recognition probability r = 0.901

Chemoattractant Concentration cai ≥ 0 (mol/pixel)

Total amount secreted Stotai ≥ 0 (mol/min)

Diffusion D = 7× 10−1 (pixel2/min)

Secretion snai = C2 × lna (mol/min/pixel)

C2 = 10 (mol/min/pixel)

Decay γ = 3× 10−4 (1/min)

Initial concentration cinitai
= 0.5(280−

√
(x− 200)2 + (y − 200)2)
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Highlights

A mathematical model to study the impact of intra-tumour heterogeneity on anti-tumour CD8+ T cell

immune response

Emma Leschiera, Tommaso Lorenzi, Shensi Shen, Luis Almeida, Chloe Audebert

• A novel spatial individual-based model describing interactions between tumour cells and CD8+ T

cells.

• The model takes into account antigen expression and presentation processes and the ability of CD8+

T cells to target specific antigens.

• The degree of heterogeneity within a tumour has an impact on the efficacy of immune action.

• Wider ranges of antigens and lower levels of antigen presentation promote immune escape of tu-

mours.




