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Abstract (250 words)  

  

Unfilled elastomers often suffer from poor fracture resistance at high temperature where 

viscoelastic dissipation is low. A molecular design based on multiple interpenetrating networks 

composed of a brittle filler network isotropically prestretched to a value 0 by swelling it in an 

extensible matrix leads to a dramatic increase of fracture energy c, typically attributed to 

sacrificial bond scission creating a dissipative damage zone ahead of the propagating crack. 

However, the molecular mechanisms controlling the size of the damage zone when the crack 

propagates are currently unknown. Here, we combine fluorogenic mechanochemistry with 

quantitative confocal mapping and mechanical testing, to characterize both c, and the extent 

of bond scission in the sacrificial network detected on the fracture surfaces for different stretch 

rates and temperatures. We find that increasing the prestretch 0 of the filler network leads to a 

large increase in c mainly at T >> Tg, where viscoelasticity is inactive, but also at lower 

temperatures where both mechanisms are coupled. Yet we show that there is no direct linear 

relation between the extent of filler network scission and 𝛤c. We mainly attribute the large 

increase in 𝛤c to the dilution of highly stretched strands in the entangled and unstretched matrix, 

which delocalizes stress upon bond scission, and effectively protects the matrix network from 

scission and the material from crack growth. Delaying the localization of bond scission by 

network design is a new strategy that will guide molecular designs able to toughen elastomers 

even in the absence of viscoelastic dissipation. 

 

Significance statement (120 words) 

 

Soft materials can be toughened by creating dissipative mechanisms in stretchy matrixes. Yet 

using them over a wide range of temperatures requires dissipative mechanisms that do not 

depend on stretch rate or temperature. We show that sacrificial covalent bonds in multiple 

network elastomers are most useful in toughening elastomers at high temperature and act 

synergistically with viscoelasticity at lower temperature. We do not attribute this toughening 

mechanism only to the energy dissipated by the scission of bonds during crack propagation, 

but propose that the highly stretched network diluted in a stretchy matrix acts by simultaneously 

stiffening the elastomer and delaying the localization of bond scission and the propagation of 

a crack. Such toughening mechanism has never been proposed for elastomers and should guide 

network design. 

 

INTRODUCTION 

 

Elastomers find numerous application both in classical engineering and in novel areas 

such as the biomedical field, wearable electronics or soft robotics, where their flexibility and 
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reversible elastic deformability are essential. Yet, it has long been known that they remain 

limited in their usage temperature by an intrinsic embrittlement as temperature increases well 

above their glass transition temperature [1], [2]. This limitation has been investigated in detail 

with conventional unfilled elastomers and also with tougher grades filled with nanoparticles 

[3]. 

 Indeed, while the incorporation of hard filler nanoparticles in the soft elastomer matrix 

leads to toughening, viscoelasticity still plays a major role in energy dissipation: the 

nanoparticles simply delocalize efficiently the regions that are exposed to high strain rates and 

high strains, create nanocavities [4] and generally enhance the strain seen by the elastomeric 

matrix. All of these mechanisms may still be present at high temperature (at T >> Tg) but the 

lack of viscoelasticity of the matrix material at high temperature clearly reduces the stretch at 

break of the elastomer [3] and, with the notable exception of strain-crystallizing filled natural 

rubber, all filled and unfilled elastomers suffer from a dramatic decrease in strength and 

toughness as the temperature is increased. 

In 2003, Gong and coworkers [5] introduced a different strategy to toughen soft 

hydrogels, relying on the creation of an interpenetrating double network structure, where a 

brittle network (playing the role of the filler) is swollen and stretched in a ductile second 

network of polymer (the matrix). This molecular design strategy was later extended to 

elastomeric materials [6], [7], demonstrating the generality of the toughening mechanism due 

to multiple interpenetrating networks. 

 It is now well accepted that mechanical reinforcement in such multiple network gels or 

elastomers relies on the presence of sacrificial bonds embedded in the material (the stiff and 

brittle filler network) [8], [9]. These sacrificial bonds break preferentially during crack 

propagation, leading to the presence of a damaged region extending towards the bulk of the 

material [6], [10]–[12]. Tanaka [13] and Brown [12] attributed the toughening to the enhanced 

energy dissipation during the steady-state propagation of this local damaged region ahead of 

the crack tip. Experimental evidence for the existence of such extended damage at the crack tip 

(ranging from 100 µm up to few mm) has been obtained for double network hydrogels by AFM 

[14], optical microscopy [11], and mechano-chemistry [10], with some studies showing a 

correlation between the increase in fracture energy and the size of the damaged zone [6], [11]. 

Similar qualitative observations were obtained for multiple network elastomers (MNE) by 

using mechanoluminescent probes [6] and fluorescent probes [15]. However, the exact 

mechanisms accounting for the transfer of stress at the molecular scale between the filler 

network and the matrix and the role played by the filler network prestretch on material 

reinforcement remains to be clarified.  

Reinforced soft materials, and MNE in particular, can be loaded over a wide range of 

strain rates and temperatures, begging the question of the role played by viscoelastic dissipation 

on the fracture process. In hydrogels, the few studies which probed a rate effect showed a weak 

dependence of fracture energy on crack velocity [16], [17]. Concerning the effect of 

temperature on fracture energy, while an interesting study has been recently published to probe 

the toughness of salt-containing gels below freezing temperature [18], little has been done at 

temperatures higher than ambient for gels in part due to experimental difficulties in avoiding 

evaporation. Due to their viscoelasticity, fracture properties of filled and unfilled elastomers 

(without any solvent) can show a strong dependence on temperatures [19] and the results form 

the base of viscoelastic models of fracture [20], [21]. However, how viscoelasticity couples 

with bond scission in reinforced multiple networks is currently not known. 

Recently developed mechanophore strategies [6], [7] can act as a quantitative reporter 

for the level of bond scission in materials [22]  and have the potential to illuminate those issues. 

Quantitative mechanochemistry has recently revealed that in simple elastomers, energy 

dissipated by bond scission occurs relatively far from the crack plane and contributes 
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significantly to the fracture energy, while being closely coupled to the level of viscoelastic 

dissipation during crack propagation [22]. In MNE, a large population of prestretched strands 

are introduced in the material. Upon stretching of the MNE, some of these strands will be 

overloaded at much lower values of macroscopic strain than the main bond population and lead 

to sacrificial bond scission [23], [24]. Since, in the range of explored temperatures, the force to 

break a covalent bond is much less dependent on the temperature than viscoelastic friction, we 

could expect sacrificial bonds to act in a similar way, independent of temperature.  

 In this study, we probe the effect of strain rate and temperature on the fracture of MNE 

and investigate how the macroscopic fracture energy c couples with viscoelastic energy 

dissipation and sacrificial bond scission. We focus on simple and multiple network elastomers, 

where the filler network, synthesized first, is tagged with the damage reporting Anthracene-

based crosslinking molecule. Fracture experiments carried out at various temperatures and 

stretch rates are combined with post-mortem confocal microscopy observations of the fracture 

surfaces at room temperature, providing new insights on the intrinsic couplings between 

network architecture, viscoelastic dissipation and bond scission in reinforced soft matter. 

 

RESULTS 

 

Preparation and bulk mechanical properties of Multiple Network Elastomers 

 

 
Figure 1. Mechanics of multiple network (MNE) elastomer in uniaxial extension. (A) Synthesis of multiple 

network elastomers, with subsequent swelling and polymerization steps. The filler network is represented in blue 

and the matrix network in green. Orange crosslinks represent mechanosensitive DACL cross-links.  (B) Nominal 

stress 𝜎N as a function of strain 𝜆 for unnotched PMA multiple network elastomers, with three levels of network 

prestretch (blue, red and black corresponding respectively to 𝜆0 = 1, 1.6 and 2.3, i.e. simple, double and triple 

network). (C) Normalized nominal stress 𝜎FN = 𝜎N. 𝜆0
2  carried out by the filler network as a function of the 

effective strain 𝜆FN = 𝜆𝜆0 seen by the filler network. 
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As shown in Fig. 1A, and previously described in more detail [7], [24], we synthetized 

multiple network elastomers based on Poly(methyl-acrylate) (PMA) and Poly(ethyl-acrylate) 

(PEA) through successive swelling and polymerization steps. We start by the synthesis of the 

sacrificial filler networks with a total cross-link density 4-5x1025 m-3 (extracted from the fit of 

the stress-strain curves and corresponding to an average of 320-370 C-C bonds per network 

chains, see SI.1 and Slootman et al. [22]). In these networks, 5% of the cross-linkers are 

replaced by a mechanosensitive Diels Alder Cross-Linker (DACL), which becomes fluorescent 

upon scission and can thus operate as a quantitative reporter of chain damage [22]. These 

networks are then swollen in a bath of methyl acrylate or ethyl acrylate monomers and cross-

linker, which are subsequently polymerized at a much lower cross-link density of 0.01 mol% 

relative to monomer (typically, the monomer of the matrix and filler are the same). These 

swelling and polymerization steps can be repeated several times, to obtain respectively double 

and triple networks. As shown in Fig. S2, the mechanical properties of labeled and unlabeled 

samples are identical within experimental error. 

As proposed by Millereau et al. [7] it is interesting to compare these materials according 

to the prestretch 𝜆0 of the filler network, where we have 𝜆0 = 1 for single network elastomers 

(bare filler network), and typically, 𝜆0 ≈ 1.6 for double networks (one matrix swelling and 

polymerization step) and 𝜆0 ≈ 2.3 for triple networks (two successive swelling steps). Figure 

1B shows representative stress-stretch curves of the model PMA materials in uniaxial extension 

with the three levels of filler prestretch. As shown in these stress/strain curves and described 

previously [7], [24], the network prestretch shifts the onset of strain hardening toward 

decreasing strains. If we rescale these curves by plotting the effective stress applied on the first 

network 𝜎FN = 𝜆0
2𝜎N as a function of the effective strain seen by the filler network 𝜆FN = 𝜆0𝜆 

we observe a good collapse of the strain hardening part of the mechanical response of the three 

materials (Figure 1C and SI Fig. S3), demonstrating that the first network is effectively carrying 

most of the load in uniaxial extension in the non-linear regime of the stress-stretch curve [7]. 

Remarkably, under this normalization it appears clearly that the average effective stretch at 

break of the filler network strands increases markedly depending on the prestretch, namely to 

𝜆FN ≈ 4, 5.5 and 7.5 for respectively SN, DN and TN networks (see blue, red and black vertical 

arrows). This result suggests that prestretching and diluting the filler network delays the onset 

of crack propagation. Note that no significant change in linear viscoelastic properties (Fig. S4C) 

is measured for these three networks that share a nearly identical Tg.  

 
Sample 

name 

𝝀𝟎 Monomer 

in filler 

network 

Monomer in 

matrix and Tg 

(°C) 

Areal density 

of chains 

ΣLT 

Symbol Elastic 

Moduli 

SN.EA 1 EA EA (-18 °C) 1.8 1017 m-2  1 MPa 

SN.MA 1 MA MA (18 °C) 1.9 1017 m-2  1.15 MPa 

DN.EA.EA 1.6 EA EA (-18 °C) 6.7 1016 m-2  1.3 MPa 

DN.MA.MA 1.6 MA MA (18 °C) 7.7 1016 m-2  1.9 MPa 

DN.MA.EA 1.5 MA EA (-18 °C) 8.9 1016 m-2  1.2 MPa 

TN.EA.EA 2.3 EA EA (-18 °C) 3.1 1016 m-2  1.7 MPa 

TN.MA.MA 2.3 MA MA (18 °C) 3.6 1016 m-2  2.2 MPa 

Table 1. List of analyzed and synthetized samples. EA stands for Ethyl(Acrylate) and MA for 

Methyl(Acrylate). 

 

Fracture toughness of MNE at various temperatures 

 

To probe in more details how the structure of these materials affects their strength and 

their limiting extensibility, we propagate cracks in uniaxial extension in single-edge notched 
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samples, and extract the fracture energy Γ𝑐 [J.m-2] for each experimental condition by using 

Greensmith’s approximation [22], [25] (see SI.2). Stress-strain curves of these notched samples 

are shown in Fig. 2A for experiments carried out with PMA based MNE at 25°C (plain curves) 

and 80°C (dashed curves). For identical initial notch lengths, Γ𝑐 scales with the integral under 

the stress-stretch curve to fracture, and we clearly observe a large increase in Γ𝑐 for increasing 

values of the prestretch 𝜆0 (comparing blue, red and black mechanical curves). Note that 

although the critical stretch at break 𝜆c decreases with increasing prestretch, the critical stretch 

at break of the filler network 𝜆FN, which takes into account the filler network prestretch, 

increases (see Fig. 1C and Fig S3). 

When carrying crack-propagation tests at various temperatures, we observe an increase 

in Γ𝑐 with decreasing temperature (comparing plain and dashed curves, corresponding to 

temperatures of 25°C and 80°C) consistent with a more viscoelastic and dissipative character. 

However Fig. 2B shows that while a higher temperature dramatically decreases Γc for single 

networks in agreement with previous work [1], [22], the effect is much less marked for the 

double networks (𝜆0 = 1.6), and even more so for the highly prestretched triple networks (𝜆0 =
2.3). Qualitatively, similar trends have been found over a larger range of temperatures for PEA 

based materials (Fig. S6).  

 
Figure 2. Fracture toughness of multiple network elastomers. (A) Stress-stretch curves of notched samples of 

PMA elastomers with different degrees of filler network prestretch 𝜆0 and temperatures. Plain lines (25°C) and 

dotted lines (80°C), stretch rate of 3.10-3 s-1. Blue, red, and black lines correspond respectively to single (𝜆0 = 1), 

double (𝜆0 = 1.6) and triple networks (𝜆0 = 2.3). (B) Variation of c with temperature (same color legend as in 

A). (C) Γc as a function of the critical stretch at break 𝜆c for notched samples of PMA (circles) and PEA (square) 

based networks (same color legend as in A). (D) Evolution of the fracture energy per mole of filler chains crossing 

the interface Γ𝑐𝜆0
2/Σ0 as a function of the effective filler network strain at break 𝜆c𝜆0 for notched samples of PMA 

and PEA based MNE. Dashed line is an exponential fit for 𝜆𝑐𝜆0 > 1.8. The value of  Σ0 is taken as 1.8 x 1017 

ch/m2. Note that all notched samples have nearly identical notch lengths of ∼ 0.9 ± 0.25 mm. 



 6/17 

 

To further analyze the macroscopic fracture behavior of these different network 

architectures, we report in Fig. 2C the fracture energy Γc as a function of the critical stretch at 

break of notched samples 𝜆c noting that all samples have nearly identical notch lengths of ~0.9 

±0.25 mm. We include in this plot the response of both PEA and PMA networks, as 

respectively circles and squares, where the PEA material has a lower glass transition 

temperature of -18°C. Although these two networks have distinct glass transition temperatures, 

and hence distinct viscoelastic properties in the range of temperatures probed here, we observe 

three families of curves for the various levels of prestretch. As expected when increasing the 

degree of prestretch, the fracture energy Γ𝑐 reaches larger absolute values at lower critical strain, 

due to network stiffening. 

Following a similar idea as in Fig. 1D and [7] regarding the composite nature of multiple 

networks, it is tempting to rescale Γ𝑐 and 𝜆c accounting for the prestretch 𝜆0 of the filler 

network. We thus plot in Fig. 4D the evolution of Γc𝜆0
2/Σ0, the dissipated energy Γ𝑐 per mole 

of filler network strands crossing the fracture plane, as a function of 𝜆c𝜆0, the critical strain of 

the filler network at the onset of crack propagation. Physically this is equivalent to considering 

the fracture energy per sacrificial network strand crossing the fracture plane as a function of the 

average stretch in the tensile direction of the filler network at the fracture point. Although 

experiments with different initial notch lengths would have given different values of 𝜆c the 

point of this graph is the excellent collapse of the data in Fig. 4D in a single envelope for distinct 

material prestretches and glass transition temperatures. The existence of this master curve of 

the locus of fracture points is analogous to the fracture envelope proposed by Smith for simple 

network elastomers at different strain rates and temperatures [26]. However, it is here observed 

to apply remarkably well to distinct materials, when considering the effective strain at break 

𝜆c𝜆0 and the fracture energy per network strand Γc. 𝜆0
2 associated with the filler network. This 

global exponential rescaling characterizes the key role played by the filler network on the elastic 

properties of these materials and the highly non-linear deformation response of the filler 

network. 

 

Damage quantification in multiple network elastomers. 

In order to rationalize the large changes in toughness observed when varying network 

architecture and viscoelasticity, we take advantage of the mechanophores incorporated in the 

sacrificial filler network to quantitatively characterize the level of filler network damage 

following crack propagation. As schematically shown in Fig. 3A, when connected to a chain 

under tension, the mechanophore crosslinker can undergo a force-induced scission leading to 

the activation of its fluorescence. As reported in our previous work on simple network 

elastomers [22], the degree of mechanophore activation and fluorescence intensity in the sample 

following crack propagation can then be used to account representatively and quantitatively for 

the fraction of broken chains in the tagged network (here the sacrificial filler network), when 

using a dilute concentration of mechanophore crosslinks. 

After propagating cracks in the material at different loading rates and temperatures for 

each material, we map the fluorescence signal due to mechanophore activation post-mortem 

along the propagation path of the crack by performing confocal microscopy scans normal to the 

crack surface (Fig. 3B and SI.5). These scans allow us to extract the spatial maps of 

mechanophore activation and filler network damage close to the crack edge, as shown in Fig. 

3C. These damage maps are found to depend strongly on both the network architecture, 

characterized by the level of prestretch of the filler network (comparing 𝜆0 = 1.6 and 𝜆0 = 2.3) 

and on the viscoelasticity of the material at the given conditions (comparing fracture at an 

identical stretch rate of 𝜆̇ = 3.10-3 s-1 at 25°C and 80°C). From Figure 3C we can already see 

that increasing the degree of prestretch of the filler network and increasing viscoelasticity - two 
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factors leading to an increase in toughness Γc, see Fig. 2A - also lead to a net increase of the 

amount and spatial extension of bond scission in the filler network. 

To quantitatively analyze the level of damage and bond scission, we extract as shown 

in Fig. 3D the spatial profile of the local damage 𝜙(𝑧) in the sacrificial network for increasing 

distances 𝑧 from the crack plane. We define here 𝜙 as the local fraction of broken chains in the 

filler network, measured directly from the level of mechanophore activation (see SI.5 for the 

details of the measurement and quantification method). While damage appears very localized 

in the double network at high temperature (condition i), it progressively delocalizes over larger 

distances from the fracture plane and the overall quantity of broken bonds increases for 

conditions of increasing viscoelasticity (comparing i and ii) and increasing prestretch 

(comparing i and iii) 

 Interestingly, we find in all conditions a relatively smooth and progressive decay of 

local damage with distance from the crack surface. These measurements are distinct from the 

observation of a well-defined local damage zone with sharp boundaries at the crack tip, as 

reported in an earlier study on double network hydrogels [11]. In some conditions of large 

viscoelasticity and large prestretch (e.g.  in triple networks of PMA at 25°C, see Fig. S8), we 

further observe a bulk level of damage in the material (i.e. 𝜙(𝑧 → ∞) → 𝜙bulk ≠ 0). This bulk 

activation can reach up to  𝜙bulk ≈ 3 %, and correlates well with the macroscopic stretch at 

break. This observation suggests that bulk activation occurs in conditions where the effective 

stretch on the network chains in the bulk reaches their limiting extensibility upon material 

failure (see discussion below). The appearance of the fracture surface is also dependent on 

fracture conditions and position along the fracture surface. Most materials show a relatively 

smooth fracture surface, but rough fracture surfaces can also appear in conditions associated 

with low viscoelasticity and intermediate prestretch (e.g. Fig. 3C, i and Fig. S9). 

 

 
Figure 3. Damage quantification in the filler network of the multiple network elastomers. (A) Schematic 

principle for chain damage detection through the scission-induced activation of the crosslinker mechanophore. (B) 

Schematic of confocal imaging plane in fractured samples. (C) Local intensity map due to mechanophore 

activation in PMA networks with increasing prestretch (top to bottom) and conditions of increasing viscoelasticity 

(respectively 80°C and 25°C, left to right). Plain and dashed red correspond to double networks (𝜆0 = 1.6) at 80°C 

and 25°C. Plain and dashed black correspond to triple networks (𝜆0 = 2.3) at 80°C and 25°C. The two materials 

are rendered with distinct intensity scales. Scale bar is 100 μm. (D) Damage profile 𝜙 normal to the crack edge, 

for the four conditions in (C). 
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We now compare these damage results with those of fracture energy Γ𝑐 [J.m-2]. As we 

previously proposed [22] it is instructive to extract Σ [strands/m-2], an integrated interfacial 

quantity characterizing the density of broken strands per unit surface of crack. This quantity 

can be simply extracted by summing the local damage inside the material along a unit area, as 

Σ =  2𝜈𝑥∫ 𝜙(𝑧)𝑑𝑧 where 𝜈𝑥 [m-3] is the density of polymer strands per unit volume of filler 

network initially present. This quantity can be defined for both smooth and rough profiles of 

the fracture surface (see Fig. S9). In conditions where bulk damage is present, Σ is defined as 

the excess of chain scission at the crack tip Σ =  2𝜈𝑥∫ [𝜙(𝑧) − 𝜙bulk)𝑑𝑧. Interestingly, spatial 

variations in the level of local damage of the filler network are observed over millimetric 

distances along the crack path in all samples, with sacrificial bond scission being systematically 

smaller close to the initial notch and larger on the opposite side of the sample. We obtain for 

the four samples reported here, an average value of Σ near the fracture surface of respectively 

Σ(𝑖) = 7.4 1018, Σ(𝑖𝑖) = 8.3 1019, Σ(𝑖𝑖𝑖) = 1.7 1020 and Σ(𝑖𝑣) = 2.7 1020 strands.m-2. 

As we previously proposed [22], it is instructive and convenient to normalize this areal 

damage Σ by ΣLT, the areal density of sacrificial network strands crossing a plane in the 

material. The ratio Σ/ΣLT accordingly represents the additional density of broken sacrificial 

strands compared to the limiting situation where crack propagation would lead to broken strands 

along a single material mesh size. For unswollen single networks (𝜆0 = 1), ΣLT can be 

estimated as ΣLT
SN = 1 2⁄ ⋅ 𝑣x 〈𝑅0

2 〉1 2⁄ , with νx the volume density of cross-linking points and 

〈𝑅0
2 〉1 2⁄  the average distance between crosslinks, expressed as a function of the network 

parameters [7] (SI.3). For swollen multiple networks, ΣLT is reduced by the areal dilution factor 

due to network prestretch, and expressed as ΣLT = ΣLT
SN/𝜆0

2. We find values of ΣLT respectively 

of the order of 2. 1017, 8.1016 and 2.1016 strands.m-2 for single, double and triple networks 

(Table 1). In the four conditions of Fig. 3, we thus obtain Σ𝑖/ΣLT ≈  95, Σ𝑖𝑖/ΣLT ≈  1000, 

Σ𝑖𝑖𝑖/ΣLT ≈  4800 and Σ𝑖𝑣/ΣLT ≈  7600. These results provide also an estimate of the width of 

the zone where sacrificial bonds break in units of mesh size and show that the length over which 

sacrificial bonds break when the crack propagates is of the order of hundreds of microns, a 

surprising result that will be discussed later. The results shown on Figure 3C also clearly show 

that the extent of sacrificial bond scission is affected both by the network architecture (degree 

of prestretch 𝜆0) and by the viscoelastic effects (due to stretch rate). 
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Figure 4: Rate effects in fracture energy and damage activation in PMA and PEA network. (A) Fracture 

energy and (B) Normalized damage Σ/ΣLT as a function of rescaled crack propagation velocity 𝑎T𝑣crack for EA 

(square) and MA (circle), SN (blue) DN (red) and TN (black) networks and the mixed double network DN.MA.EA 

(green). We observe a threshold in Γc and Σ/ΣLT for low 𝑎T𝑣crack. For large crack propagation velocity, the fracture 

energy and areal damage can be well approximated by a power-law scaling Γ𝑐 ∼ (𝑎T ⋅ 𝑣crack)𝛼 and Σ/ΣLT ∼
(𝑎T ⋅ 𝑣crack)𝛽, with respectively 𝛼 = [0.36;  0.2;  0.18] and 𝛽 = [0.32;  0.3;  0.28] for increasing prestretch 𝜆0 =
[1; 1.6; 2.3]. (C) Variation of the fracture energy Γc as a function of the total areal density of broken sacrificial 

bonds Σ for DN (red circles) and TN (black circles). The dashed lines are power-law fits Γ𝑐 ∼ Σ𝛾 , with respectively 

𝛾 = 0.66 and 𝛾 = 0.73 for DN and TN. 

 

Coupling between damage, fracture energy and viscoelasticity 

 

The methodology and analysis described above has been carried out for a range of strain 

rates and temperatures and values of 𝛤c and of Σ/ΣLT have been measured for each condition. 

Following the methodology proposed in our previous work and detailed in the SI and Figure 

S1, we assumed that time-temperature superposition can legitimately be used here. We first plot 

in Fig. 4A the evolution of the fracture energy 𝛤c as a function of a rescaled crack velocity 

𝑎T ⋅ 𝑣crack. The average crack propagation velocity 𝑣crack is extracted from the stress/strain 

curves and rescaled here by a time-temperature superposition factor 𝑎T.  This factor 

characterizes matrix viscoelasticity through the temperature difference between the temperature 

at which the fracture test was carried out and the glass transition temperature of the matrix 

network. Indeed, PMA and PEA materials have distinct glass transition temperatures 𝑇g of 

respectively 18°C and -18°C, leading to distinct viscoelastic behavior at room temperature and 

above. The use of this rescaled crack velocity allows us to compare elastomers made from these 

two monomers and access a large range of viscoelastic conditions (see Fig. S4). It is important 
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to note that even during steady-state crack propagation the strain rate varies spatially and the 

average crack velocity characterizes here the range of strain rates that material points 

experience near the fracture surface [21], [27], [28]. 

Remarkably, using this rescaled crack velocity allows to successfully collapse the 

fracture energy (Fig. 4A) of materials possessing a similar architecture (given by the filler 

network prestretch, in blue, red and black), but fractured at distinct temperatures and composed 

of distinct matrix monomers (squares and circles for EA and MA). The success of this rescaling, 

even for a mixed material composed of a minority PMA filler and a majority PEA matrix 

(green) shows that the viscoelastic properties of the matrix (used for the rescaling) contribute 

strongly to the observed toughening. 

  For each material with a given prestretch 𝜆0 = 1, 1.6 and 2.3, we can thus express 

phenomenologically the fracture energy as Γc
𝜆0 ≈ Γc

𝜆0,∗
⋅ [1 + 𝑓𝜆0

(𝑎T𝑣crack)] with Γc
𝜆0,∗

 a 

threshold fracture energy for conditions of low viscoelasticity and 𝑓𝜆0
 a function of the reduced 

crack velocity 𝑎T𝑣crack characterizing the evolution of the fracture energy for large viscoelastic 

dissipation. Importantly, and consistent with Fig. 2, we observe a strong increase in the 

threshold fracture energy Γc
𝜆0,∗

 when increasing the network prestretch, with Γ𝑐
𝜆0,∗

 reaching 

respectively 30 J.m-2,  400 J.m-2 and 2400 J.m-2 for single, double and triple networks 

(horizontal dashed lines). In viscoelastic conditions, the fracture energy is well approximated 

by a power-law behavior, Γc ∼ (𝑎T ⋅ 𝑣crack)𝛼 (oblique dashed lines). Although the general 

evolution of Γc with 𝑎T𝑣crack is the same the absolute values of  Γc are very different for the 

three classes of materials and the power-law exponent 𝛼, which characterizes the sensitivity of 

the material to viscoelastic dissipation decreases with increasing prestretch.  

In summary, a larger prestretch leads to both a large increase in threshold fracture energy 

when viscoelastic dissipation is low, and to a weaker sensitivity to viscoelastic dissipation. 

Since for these elastomers low viscoelasticity requires a high temperature we find that the 

multiple network architecture is the most effective relative to conventional elastomers ( = 1) 

at high temperature. 

  

DISCUSSION 

 

Coupling of network damage and fracture energy 

 

 To rationalize the remarkable performance of the multiple network architecture in 

conditions of low viscoelasticity at high temperature, we turn to the analysis of bond scission 

in these materials. As mentioned above, when plotting the areal density of bond scission Σ̅ =
Σ/ΣLT as a function of 𝑎T. 𝑣crack, we observe qualitatively similar trends in the evolution of the 

damage, with a threshold value at low crack velocity, which increases for increasing prestretch 

(Fig. 4B, horizontal dashed lines) and a power-law increase at larger crack speed for increasing 

viscoelasticity (Fig. 4B, oblique dashed lines). 

 Given these similar trends, it is tempting to try to directly correlate the measured fracture 

energy with the areal density of broken sacrificial bonds Σ, as shown in Fig. 4C. If a Lake and 

Thomas argument holds for the energy dissipated per broken strand [29] and this is the only 

dissipative mechanism during crack propagation, one would expect a linear relation between 𝛤c 

and Σ. Yet although both quantities appear qualitatively correlated, we fail to see a linear 

relation independent of viscoelasticity and material’s degree of prestretch. Over this linear 

scale, the fracture energy is found to increase instead sub-linearly with the areal density of 

broken bonds, as Γ𝑐 ∼ Σ𝛾, with 𝛾 ≈ 0.6 − 0.7. These observations call for a more refined 

interpretation of the couplings between bond scission and fracture energy. 
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Figure 5: Onset of crack propagation in MNE. The pictured mechanisms are at play in threshold conditions (no 

viscoelastic dissipation). (A) In a single network, chain rupture (yellow stars) leads to direct localization of the 

stress to the neighboring chains (red area), leading to correlated scission of adjacent chains (black arrows and 

yellow stars) and propagation of a localized crack.  (B) In MNE, the failure mechanism is completely different. (i) 

Following chain rupture of the dilute filler network (yellow stars), stress is delocalized over a large area (red area 

and black arrows), through interactions between the filler network and the entangled matrix. Far away from the 

crack tip, this delocalization mechanism allows for random damage in the first network, with no interaction 

between chain scission events. (ii) Closer to the crack tip, bond scission starts to occur in a correlated fashion 

(smaller red area and black arrows), leading to the creation of an extended damage zone, with holes in the filler 

network and transfer of stress to the matrix. (iii) At the tip of this zone, the crack propagates through localized 

failure of this softened zone. Red stars represent the presence of damage in the filler network. Green stars 

characterize the localized rupture of the matrix network. 

 

Threshold bond scission at high temperature. 

To rationalize the increase in the threshold fracture energy Γ𝑐
𝜆0,∗

 with increasing 

prestretch 𝜆0, we first focus on the observation in Fig. 4B of a threshold level of sacrificial bond 

scission 
Σ

ΣLT
 at low viscoelasticity, which increases strongly when increasing the prestretch, 

from Σ ≈ ΣLT
SN for 𝜆0 = 1, to Σ ≈ 102 ⋅ ΣLT

DN for 𝜆0 ~ 1.6  and up to Σ ≈ 103 ⋅ ΣLT
TN for 𝜆0 ~2.3. 

The increase in threshold damage accordingly implies that in the absence of additional 

dissipation mechanisms such as viscoelasticity, the threshold number of layers of broken bonds 

necessary for the crack to propagate increases strongly when diluting the filler network, i.e. 

bonds break much further away from the fracture plane. Even in absolute terms, Σ increases by 

a factor of 200 between SN and TN. 

Understanding this effect of the molecular architecture on crack propagation is non-

trivial. Considering the highly disordered nature of the filler network, the propagation of a 

macroscopic fracture in this material amounts to the nucleation of a localized percolating 

damage pathway. The increase in the total damage necessary for the crack to propagate, would 

thus imply a delayed nucleation of this percolating pathway. Since no or little viscoelastic 

dissipation is present in these conditions, the corresponding mechanism must depend on the 

local architecture of the material and on the redistribution of stress upon chain scission. 

It is first instructive to examine statistical models of failure in disordered networks, such 

as the so-called fiber bundle models [30], which provide an analogy with the disordered 

structure of the random filler network. A key parameter describing failure in these random 
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networks is the redistribution of load following the rupture of a single strand (or fiber). In the 

first limit of Local Load Sharing, the load following a rupture event is mainly redistributed to 

the neighboring strands, which leads to a rapid localization of damage through avalanches and 

ultimately failure (Fig. 5A). In the opposite limit of equal load sharing, all of the intact strands 

share equally the load of a broken strand, delaying localization of damage and macroscopic 

failure (Fig. 5B, i). These limits correspond to extremes with respect to the spatial correlations 

in stress redistributions, and it is possible to interpolate in-between to account for elastic 

correlations following a rupture event [31], leading accordingly to a transition between the 

critical and the mean-field behavior, or in other words, between correlated and random bond 

scission. 

Based on these general concepts, we can now describe in more detail our vision of the 

role played by the network structure in delaying crack nucleation in MNE. In a single network, 

as shown schematically in Figure 5A, the presence of a crack leads to stress concentration at 

the crack tip. In threshold conditions, the load following a scission event is probably 

redistributed to the very neighboring strands, and  bonds fracture in a correlated and localized 

way very close to the fracture surface [22], in qualitative agreement with the Lake and Thomas 

model [32]. 

As pictured in Figure 5B, the mechanism of failure we propose for MNE is completely 

different. Far from the tip (regime i) bond scission occurs randomly in the filler network in the 

shorter and more highly stretched strands: upon scission of a single highly stretched strand, the 

load is redistributed by entangled matrix chains over an extended volume of matrix and filler 

network (depending on dilution), and not simply on the neighboring filler network strand (in 

the spirit of the “equal load sharing scheme” described above). The matrix network(s) must 

play a major role in this delocalization mechanism. Indeed, as demonstrated by Millereau et al. 

[7], the reinforcement is not observed when the matrix network(s) are replaced by oligomers or 

solvent or when the volume fraction of filler network is too high. The presence of the 

unstretched and entangled matrix is thus essential to carry and redistribute the load upon 

scission of a sacrificial bond, and this stress transfer further away from the broken bond can 

only work if the filler is dilute and the matrix is unstretched or weakly stretched. In this regime, 

bond scission can be described by a mean-field model as proposed by Lavoie et al. [33] and 

Bacca et al. [34] in their damage models where the stretch relative to the undeformed state of 

the MNE must be the same for all networks. Hence the probability of strand scission only 

depends on 𝜆0𝜆. Figure S3B and S3D show that the bulk value of  𝜆0𝜆 at propagation increases 

significantly with prestretch and if the strain fields around the crack tip are similar, regime (i) 

will extend much further from the tip of the crack as 0 increases. 

Closer to the tip two other mechanisms become active. At some distance from the tip, 

the failure of the filler network bonds becomes correlated, causing the opening of large holes 

and extensive transfer of stress to the matrix with a pronounced softening (domain (ii) of figure 

5B). The existence of this large scale stress transfer mechanism from filler network to matrix 

network close to the crack tip for high values of  has recently been demonstrated [15] for 

elastomers and is well-documented for gels [10], [11], [14].  Depending on boundary 

conditions, this softening can lead to an increase in stretch in the damaged zone which greatly 

increases the energy dissipated per broken bond [7].  The formation of this softened damage 

zone is due to a transition to a non-mean field, correlated scission of filler network bonds that 

presumably form holes and cracks in MNE. It appears reasonable to assume that this transition 

from mean-field scission to correlated scission occurs above a certain value of stretch of the 

filler network . Hence the more the filler network is prestretched, the lower the value of 

macroscopic experimental stretch where this transition can occur. 

Finally, the steady state propagation of the crack requires the localized failure of this 

softened zone as shown in  scheme (iii) of Figure 5B. Regarding this final step, the hypothesis 
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made by Brown [12] is that the crack will propagate when the strain energy stored in the 

damaged zone is sufficiently large to create a stress concentration at the tip of the crack (green 

stars in scheme (iii) of Figure 5B) able to break the bonds of the damaged network (matrix and 

filler networks) [12]. This hypothesis of failure due to a stress concentration in the highly 

damaged zone (inspired by the failure criterion of a plastic zone in a glassy polymer [35], [36]) 

is difficult for us to verify directly since we do not have access to the local strain energy or 

exact size of the highly damaged zone. However, the threshold values reported on Figures 4A 

and 4B strongly suggest that the criterion of propagation is not directly proportional to the total 

areal density of broken sacrificial bonds (see Figure S10). This propagation criteria must be 

more complex, involving other dissipative or damage mechanisms very close to the crack plane, 

as described above. The difference between DN and TN suggests that filler network scission in 

DN is more “efficient” at dissipating energy than in the TN.  Such complex multi-scale bond 

scission mechanisms are in principle only strain dependent and inherently strain rate 

independent. In the absence of viscoelasticity slowing down the crack (threshold conditions), 

they would result in a fast propagation, once the criterion of propagation outlined above is met.  

 While mechanism (iii) has to be by definition very localized and requires the failure of 

both filler and matrix strands, regime (ii) and (i) only involves the failure of the filler network. 

Our mechanochemistry data shows that, at the propagation point, damage occurs over a larger 

and larger volume as the degree of prestretch of the filler network and the stretch rate increase 

(Figure 4). This is a key result of our investigation showing that the complex process of delay 

in correlated bond scission and transfer of the stress to the matrix is able to create a much larger 

damage zone before the crack can propagate. We can interpret this effect as an interplay 

between mean-field scission far from the tip, creating a large damage zone for large 𝜆0 (regime 

i) and delayed propagation of the crack through a highly damaged zone, where the stress is 

transferred to the matrix (regime ii and iii). Because of the complexity of the multi-scale 

process, predicting the onset of regime (ii) and of regime (iii) at the crack tip as a function of 

𝜆0 remains a challenge and requires a molecular criterion related to the network architecture. 

Recent simulation studies may provide hints on the nature of such criteria [37], [38]. 

 

Coupling of sacrificial bond scission with viscoelasticity and macroscopic deformation. 

We can now address the role played by viscoelasticity in the increase in fracture energy 

Γ𝑐, and its coupling to sacrificial bond scission. For single networks (0 = 1) , viscoelastic 

dissipation can couple to bond scission through macroscopic strains at the crack tip [22]. To 

probe more closely this coupling in this new series of materials, we plot in Fig. 6A the evolution 

of the areal density of broken chains Σ as a function of the macroscopic strain at break 𝜆c for 

notched samples having all the same initial notch length. For a given material and notch length, 

Σ increases with 𝜆c i.e. with increasing viscoelasticity, and for a given 𝜆c, Σ increases with 

increasing prestretch (comparing blue, red and black points). Interestingly, focusing on the 

result of the double network (red points), sacrificial bond scission appears first independent of 

𝜆c and then clearly increases for 𝜆c > 2. 

It is then interesting to rescale the data, following similar ideas motivating Figure 2D, 

by plotting in Figure 6B the areal density of broken sacrificial bonds Σ, as a function of  

𝜆0𝜆c, the effective stretch of the filler network when the crack propagates. This normalization 

leads to a clear collapse of the data for the three levels of prestretch, from which we can identify 

three successive regimes. In the first regime, only observed for 0 = 1, viscoelasticity is coupled 

with localized bond scission and controls the crack tip stretch.  

In regime (2) mainly observed for 0 = 1.6 far from Tg, c increases (Figure 2D) but  

stays constant (Figure 6B). Viscoelastic dissipation is weakly coupled to bond scission, with 

Σ ≈ 𝑐𝑠𝑡 ≈ 8. 1018 strands.m-2 controlled by the complex mechanism described above (Fig. 5) 
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and viscoelasticity acting as an additive dissipative mechanism without much influence on the 

crack tip strains. 

Regime (3) kicks in when the filler network chains become highly stretched, for which 

we observe a strong exponential coupling with macroscopic deformation with  Σ ∼⋅ eα⋅λc𝜆0 for 

𝜆𝑐𝜆0 > 3.2, with 𝛼 = 1.75.  The upper axis shows the same data as a function of 𝜆0𝜆c/𝜆max, 

the effective strain normalized by the average limiting extensibility of the sacrificial chains 

𝜆max ∼ 5.1 (See SI). The observed transition between these two regimes occurs for 𝜆𝑐𝜆0 ∼
0.6 ⋅ 𝜆max, suggesting that this change of regime in sacrificial bond scission occurs when filler 

network chains approach their maximal extensibility. 

 

 
Figure 6: Coupling of chain scission with viscoelastic dissipation and macroscopic deformation. (A) Areal 

density of broken chains Σ as a function of strain at break 𝜆𝑐, giving an idea of the relative damage zone width 

during propagation. (B) Areal density of broken chains Σ as a function of the effective filler network strain at break 

𝜆𝑐𝜆0. (C) Schematic illustrating the coupling of bond scission with macroscopic deformation. At low 

viscoelasticity, bond scission reaches a threshold value associated with damage percolation in the filler network 

(regime 1). At high viscoelasticity, two regimes can be observed, depending on the effective stretch on the filler 

network. When this effective stretch 𝜆𝑐𝜆0 is much smaller than the limiting extensibility 𝜆m, bond scission and 

viscoelastic dissipation are decoupled, leading to a purely additive contribution (regime 2). In the limit where 

𝜆𝑐𝜆0 ≈ 𝜆m, additional bond scission occurs due to coupling with the macroscopic deformation field in the material 

(regime 3). 
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In summary, in conditions of low viscoelasticity, fracture propagation is limited as 

discussed above, by the propagation of a crack in the matrix network, leading to a threshold 

amount of filler network bond scission before propagation can occur (Figs. 4B and 5B). This 

threshold level is highly dependent on the network prestretch and controls also the threshold 

fracture energy. 

For each material, increasing viscoelasticity leads to an increase in the bulk strain at 

break c, and the strains at the crack tip. However, the situation differs for the three types of 

network. 

In single networks, chain rupture leads to direct localization, correlated bond scission 

and catastrophic failure (Fig. 5A) and most probably there is no well-defined softened zone. In 

this case, viscoelasticity increases the required energy release rate to propagate the crack at a 

certain speed and increased bond scission is a consequence of the higher crack tip strains [22]. 

Because of this localization of rupture, no mechanism prevents the crack from moving even 

very slowly and threshold values of  Σ ΣLT⁄   and Γ𝑐
𝜆0,∗

 are very low.  

In MNE, when the effective bulk strain at break on the filler network remains small 

compared to its limiting extensibility, i.e. 𝜆0𝜆c < 0.6 𝜆max, the material forms a highly 

damaged zone at the crack tip. In this regime, fracture energy can then be simply expressed as 

the sum of a constant contribution due to bond scission at the damage percolation threshold and 

a strain rate dependent viscoelastic contribution (Fig. 6C, 𝜆0𝜆c ≪ 𝜆m). If the effective strains 

on the filler network become larger, i.e. 𝜆0𝜆c > 0.6 𝜆max, the local probability of bond scission 

at the crack tip increases strongly, leading to an increase in the overall amount of bond scission 

Σ/ΣSN for increasing viscoelasticity and increasing strains (Fig. 6C, 𝜆0𝜆c ≈ 𝜆m). However, the 

increase in sacrificial bond scission in this second regime appear more as a consequence of the 

increase in viscoelastic dissipation through the increase in local strains at the crack tip, rather 

than the cause for the reinforcement of the network when increasing viscoelasticity. Indeed, as 

evidenced in Fig. 2C, no such cross-over is observed when plotting the normalized fracture 

energy Γc𝜆0
2 as a function of the effective strain 𝜆𝑐𝜆0. 

 

Variation of threshold fracture energy with prestretch 

 These observations pose the question of the existence of an optimal value of initial 

prestretch of the filler network to toughen the elastomer in the threshold regime at low 

viscoelasticity. In particular, when the strands of the filler network are close to their limiting 

extensibility already in static conditions, one may ask whether such sacrificial network can still 

effectively delay crack propagation through the mechanism described in Fig. 5. 

Figure 7 shows the threshold fracture energy Γ𝑐
𝜆0,∗

 as a function of prestretch for a series 

of PEA based MNE (details of synthesis and mechanical properties in the SI Fig. S5 and in ref 

[7]). Given the value of Tg at -18°C, this situation is close to threshold conditions. Although no 

damage data is available for this series it is clear that there appears to be a threshold prestretch 

𝜆0 ≈ 2, above which Γc increases more slowly.  

Following Figure 5, the creation of the energy dissipating damage zone is due to the 

delay in correlated bond breakage which initially increases with dilution as seen in the first 

regime of figure 7, for 𝜆0 ≤ 2. However, when the filler network becomes close to its maximum 

stretch (𝜆0 ≥ 2) the transition from regime (i) to (ii) and (ii) to (iii) must occur at increasingly 

lower values of macroscopic stretch which causes the saturation observed in Figure 7.  

This saturation is here observed for 𝜆0 ≈ 2, for which the effective critical stretch at 

break on the filler network is 𝜆0𝜆𝑐 ≈ 3.3, approaching its limiting extensibility 𝜆limit = 5.1 (SI 

Fig. S7 and [7]).  
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Figure 7: Variation of the fracture energy as a function of degree of prestretch. Results are obtained for 

solvent synthetized PEA materials, fractured close to threshold conditions, at stretch rate 𝜆̇ = 4.10−3 s-1 and  

temperature 𝑇 = 25 °C. Red dashed lines and grey areas highlights two successive regimes of respectively strong 

and weak increase of Γc with 𝜆0. 

 

Conclusion 

We have simultaneously quantified the fracture energy and the extent of molecular 

damage occurring near the fracture surfaces in a series of prenotched multiple network 

elastomers tested at different stretch rates and temperatures. We find that while bond scission 

and viscoelastic dissipation are roughly proportional to each other in simple networks, the 

introduction of a prestretched sacrificial network creates a clear threshold level of bond scission 

for the crack to propagate that is still active in the absence of viscoelastic dissipation. This 

threshold value of bond scission necessary for crack propagation in MNE increases with 

prestretch 𝜆0 and has an almost two orders of magnitude toughening effect at T >> Tg where 

viscoelastic dissipation is minimal. 

We showed with mechanochemistry that the large increase in the threshold c for MNE 

is correlated to the existence of a large damage zone (over hundreds of network mesh sizes) 

ahead of the propagating crack, where filler network bonds break. We proposed that bond 

scission in MNE occurs in three stages: (i) mean-field bond scission of the filler network far 

from the crack tip, (ii) correlated bond scission of the filler network closer to the tip leading to 

increased stretchability of this highly damaged zone and (iii) localized scission of the matrix 

bonds in this highly damaged region, conducting to crack propagation. The existence of a large 

minimum size of the damage zone in MNE is due to a rate-independent mechanism of stress 

delocalization that delays the correlated bond scission needed to grow a crack.   

The values of the local stretch  where the transition between these mechanisms are 

observed vary with network structure and decrease with filler network prestretch . There is 

however a hard limit to the accessible filler network prestretch given by the average chain 

length between crosslinks, above which correlated filler network damage ((ii) and matrix failure 

(iii) may occur at too close values of stretch, leading to a saturation of c with increasing  

This entirely novel mechanism of stress delocalization introduces a threshold for crack 

nucleation that effectively protects elastomers from crack propagation even at high temperature. 

This threshold damage remains active at lower temperatures, where viscoelastic dissipation 

additionaly contributes to toughness. These results may have important implications on design 

of intrinsically tough elastomers. In conventionally filled elastomers where nanoparticle fillers 

may play a role of sacrificial network, highly fractal fillers that form a network at low volume 
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fraction may be intrinsically more effective at delaying crack nucleation, a mechanism which 

could become more important at high temperature. 

 

MATERIALS and METHODS 

Sacrificial filler networks are synthesized from a solution of monomer, crosslinker, 

mechanophore crosslinker and UV initiator. In these networks, 5% of the cross-linkers are 

replaced by a mechanosensitive Diels Alder Cross-Linker (DACL). These networks are then 

swollen to equilibrium in a bath of methyl acrylate or ethyl acrylate monomers and cross-linker, 

which are subsequently UV polymerized. These swelling and polymerization steps can be 

repeated several times, to obtain respectively double and triple networks. Details are described 

in SI.1. Material synthesis. Uniaxial tensile tests of unnotched and notched samples were carried 

out on an Instron 5565 tensile testing machine at a constant stretch rate and details on the 

experimental set-up for mechanical measurements, measurement of the fracture energy and 

crack propagation speed are described in SI.2 Mechanical measurements. The characterization 

of the areal chain density of the filler network in multiple networks was estimated from the 

analysis of the stress-train curves and the analysis method is described in SI.3. Network 

properties and characterization. The series of polyethyl acrylate synthesized in solvent were 

synthesized in the presence of solvent that was eventually evaporated. Details of the 

composition and mechanical properties are shown in SI.4. Second Family of networks 

synthetized in solvent. Finally, we present in SI.5. Damage quantification, the confocal set-up, 

the quantitative image analysis (following image collection, vignetting and flatfield correction 

and calibration of fluorescence intensity) and we discuss the bulk activation in TN.DA.MA.MA 

samples and the analysis of bifurcations and inhomogeneous crack front in DA.DN.EA.EA. 
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