Supplementary Information

to

Stable isotope fractionation of metals and metalloids in plants: a review

Matthias Wiggenhauser^{1†*}, Rebekah E. T. Moore^{2†*}, Peng Wang³, Gerd Patrick Bienert⁴, Kristian Holst Laursen⁵, Simon Blotevogel⁶

¹Group of Plant Nutrition, Institute of Agricultural Sciences, Department of Environmental System Science, ETH Zurich, Zurich, Switzerland

²MAGIC Group, Department of Earth Science and Engineering, Imperial College London, London, UK

³Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing, China

⁴Crop Physiology, Molecular Life Sciences, Technical University of Munich, Freising, Germany

⁵Plant Nutrients and Food Quality Research Group, Plant and Soil Science Section and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark

⁶ Laboratoire Matériaux et Durabilité des Constructions (LMDC), UPS/INSA, Université de Toulouse III, Toulouse, France

[†]shared first authorship

Corresponding author: Matthias Wiggenhauser (matthias.wiggenhauser@usys.ethz.ch)

Element (symbol)	Stable isotopes (natural abundances, %)	Ratio ^a	Analyte amount ^b ng	Separation procedures	Primary standard	Instrumentation	Isobaric interferences ^f	Mass bias correction	Analytical precision ‰
Boron (B)	10 (19.9) 11 (80.1)	11/10	200-400	Geilert et al. 2015 Rosner et al. 2011	NIST 951 NIST 951a	ICP-Q-MS MC-ICP-MS TIMS		SSB ^g	>0.8
Magnesium (Mg)	24 (78.99) 25 (10.00) 26 (11.01)	25/24 26/24	1000-3000	Bolou-Bi et al. 2009 Opfergelt et al. 2012 Wang et al. 2020	NIST 980 DSM3	MC-ICP-MS		SSB	>0.1
Silicon (Si)	28 (92.230) 29 (4.683) 30 (3.087)	30/28	600-3000 ^c	Schuessler & Blankenburg 2014 Georg et al. 2006 Oelze et al. 2016	NIST 8546	MC-ICP-MS LA-MC-ICP-MS	¹⁵ N2	SSB Mg doping	0.10-0.11 (bulk),0.24 (<i>in situ</i>)
Potassium (K)	39 (93.2581) 40 (0.012) 41 (6.730)	41/39	3000-10000	Richter et al. 2011 Li et al. 2016 Morgan et al. 2018 Chen et al. 2019	NIST 999b NIST 3141a	MC-ICP-MS (isoprobe)		SSB	0.05 to 0.20
Calcium (Ca)	40 (96.941) 42 (0.647) 43 (0.135) 44 (2.086) 46 (0.004)	44/40	2000-5000	Bullen & Chadwick 2016 Schmitt et al. 2009 Christensen et al., 2018	NIST 915a	TIMS MC-ICP-MS	⁴⁰ Ar ²⁰ Ne ²⁺ ²¹ Ne ^{2+ 22} Ne ²⁺	Double spike SSB	0.09-0.12
Iron (Fe)	54 (5.845) 56 (91.754), 57 (2.119) 58 (0.282)	57/54 56/54	1500-5000 100-500 ^d	Schoenberg & von Blanckenburg 2005, Teutsch et al. 2005 Strelow 1980	IRMM-014	MC-ICP-MS	⁵⁴ Cr ⁵⁸ Ni	SSB Ni/Cu-doping	0.05-0.12
Nickel (Ni)	58 (68.077) 60 (26.223) 61 (1.140) 62 (3.635) 64 (0.9256)	60/58	100-200	Quitté and Oberli 2006 Cameron et al. 2009 Ratie et al. 2019	NIST 986	MC-ICP-MS	⁵⁸ Fe	Double spike	0.05-0.10
Copper (Cu)	63 (69.17) 65 (30.83)	65/63	100-300	Blotevogel et al. 2018 Borrok et al. 2007 Kidder et al. 2020	NIST 976 ^e	MC-ICP-MS		SSB Ni/Zn/Ga doping	0.02-0.15
Zinc (Zn)	64 (48.63) 66 (27.9) 67 (4.10) 68 (18.75) 70 (20.84)	66/64	50-200	Caldelas et al. 2020 Marković et al. 2017 Moore et al. 2017	JMC-Lyon ^e	MC-ICP-MS	⁶⁴ Ni Ba ^{2+ 70} Ge ³⁵ Cl ₂	Double spike Cu/Ni-doping	0.05-0.10
Molybdenum (Mo)	92 (14.84) 94 (9.25) 95 (15.92) 96 (16.68) 97 (9.55) 98 (24.13) 100 (9.63)	98/95	20-100	Kerl et al. 2017 Malinovsky & Kashulin 2018	NIST 3134	MC-ICP-MS	⁹² Zr ⁹⁴ Zr ⁹⁶ Zr ⁹⁸ Ru ¹⁰⁰ Ru	Double spike Pd- doping	0.04-0.20
Cadmium (Cd)	106 (1.25) 108 (0.89) 110 (12.49) 111 (12.80) 112 (24.13) 113 (12.22) 114 (28.73) 116 (7.49)	114/110	20-100	Murphy et al. 2016 Wei et al. 2015	NIST 3108	MC-ICP-MS TIMS	¹⁰⁶ Pd ¹⁰⁸ Pd ¹¹⁰ Pd ¹¹² Sn ¹¹³ In, ¹¹³ In ¹¹⁴ Sn ¹¹⁶ Sn	Double spike Ag- doping SSB	0.02-0.10
Thallium (Tl)	203 (29.524) 205 (70.476)	205/203	10-100	Rader et al. 2018 Baker et al. 2009	NIST 997	MC-ICP-MS		SSB Pb-doping	0.04-0.10

Table S1: An overview of non-traditional stable isotope methods

^aIsotope ratio most commonly used to report isotope composition, usually using the delta (δ) notation relative to the primary isotope standard. Other ratios are used to assess whether isotope fractionation is mass dependent or independent.

^bThe range of analyte amount used for isotopic measurement with good analytical precision. The minimum value will provide enough for one measurement, while the maximum value is preferred, to enable analytical repeats. Note that these are indicative values and can increase or decrease depending on mass bias correction method, sensitivity (V/ppm analyte), the uptake rate of the nebuliser (MC-ICP-MS) and wet or dry plasma conditions.

^c This is the amount used for the isotope measurement, but more (up to 60 ug) is required for the separation procedure (NaOH fusion)

^d For Fe, measurements with lower analyte amounts can be undertaken using new generation MC-ICP-MS instrumentation

^e No longer available so others used and then conversion applied to data. For Cu: AE633 or AE647 (Moeller et al. 2012), For Zn: AA-ETH or IRMM-3702 (Archer et al. 2017)

 $^{\rm f}$ There are also multiple possible molecular interferences including hydrides, nitrides, oxides and argides. For example, potentially problematic molecular interferences for 56 Fe and 63 Cu are 40 Ar 16 O and 23 Na 40 Ar, respectively.

These can be found online. E.g. <u>https://www.perkinelmer.com/CMSResources/Images/44-74379ATL_TableOfPolyatomicInterferences.pdf</u>

^g sample standard bracketing

Table S2: List of certified reference materials (CRMs). The CRMs have certified concentrations of various elements so can be used as quality control (QC) for analyte yields for plant and soil analyses. This table lists the studies that have also reported isotope compositions for the materials, as additional QC for isotope analysis and for interlaboratory comparisons.

Material	Туре	Element	Reference
BCR 281	Rye grass	Si, Fe, Zn	Frick et al. 2020, Arnold et al. 2010, 2015, Caldelas et al. 2011, Caldelas et al. 2020, Couder et al. 2015
BCR 279	Sea Lettuce	Mg	Bolou-Bi et al. 2009
BCR 381	Rye flour	Mg	Bolou-Bi et al. 2009
BCR 383	Green beans	Mg	Le Goff et al. 2021
BCR 482	Lichen	Mg, Cu, Ni, Zn, Cd	Bolou-Bi et al. 2009, Sillerova et al. 2017, Caldelas et al. 2011, Deng et al. 2014, Cloquet et al. 2006, Borovička et al. 2021
BCR 62	Olive leaves	Zn	Caldelas et al. 2011, Tang et al. 2016
BCR 679	White cabbage	B, Cd	Rosner et al. 2011, Geilert et al. 2015, Geilert et al. 2019, Moore et al. 2020
IGGE GSB-4	Soybean	Ni	Li et al. 2020
IGGE GSB-12	Bean	Ni	Li et al. 2020
INCT TI-1	Tea leaves	ТІ	Vanek et al. 2019
INRA V464	Oak leaves	Ni	Zelano et al. 2020
IPE 126	Maize	В	Geilert et al. 2015, Geilert et al. 2019
SRM 1515	Apple leaves	Mg, Fe, Ni	Shalev et al. 2018, Garnier et al. 2017, Ratié et al. 2019
SRM 1547	Peach leaves	B, Cu, Mo	Geilert et al. 2015, Geilert et al. 2019, Rosner et al. 2011, Malinovsky & Kashulin 2018
SRM 1567b	Wheat flour	Zn, Cd	van der Ent et al. 2021, Wiggenhauser et al. 2016, Imseng et al. 2018, 2019, Borovička et al. 2021
SRM 1570a	Spinach leaves	Ni, Cd	Ratié et al. 2019, Moore et al. 2020, Borovička et al. 2021
SRM 1573a	Tomato leaves	Cu, Zn, Cd	Ryan et al. 2013, van der Ent et al. 2021, Borovička et al. 2021
SRM 1575a	Pine needles	Fe, Cd	Wu et al. 2021, Borovička et al. 2021
SRM 2384	Baking Chocolate	Cd	Barraza et al. 2019
SRM 8433	Corn Bran	В	Geilert et al. 2015, Geilert et al. 2019, Rosner et al. 2011
BCR 60	Light sandy soil	Zn	Caldelas et al. 2011, Caldelas et al. 2020
IGGE GSS1-7	Soils	Ni, TI	Li et al. 2020, Kersten et a. 2014
SRM 2709a	San Joaquin soil	Zn, Fe, Cu, Cd	Wiggenhauser et al. 2018, van der Ent et al. 2021, Garnier et al. 2017, Blotevogel et al. 2019, Barraza et al. 2019
SRM 2710	Montana soil I	Cd	Zhou et al. 2020, Zhong et al. 2021, 2022
SRM 2710a	Montana soil I	Cu, Ni, Cd	Sillerova et al. 2017, Zhong et al. 2021, 2022
SRM 2711	Montana soil II	Cd	Liu et al. 2020, Zhou et al. 2020, Borovička et al. 2021, Zhong et al. 2021, 2022
SRM 2711a	Montana soil II	Cd	Zhong et al. 2021, 2022
TILL 11	Forest soil	Mg	Bolou-Bi et al. 2009

Bold references used the material for QC of isotope analysis and report isotope compositions, while the others used for yield quantification only.

Table S3: Summary of linkages between physiological and physico-chemical processes as well as knowledge gaps and corresponding research priorities. Colors: Blue = enrichment of light isotopes, red = enrichment of heavy isotopes, orange = both/unknown. Font: robust experimental evidence provided (regular), well substantiated hypotheses (italic). Empty cell = research gap.

	root uptake	short distance transport (membrane transport)	long distance transport (xylem/phloem)	metabolic functionalization/storage and	others	proposed research priorities
				compartmentalization		
в					distinct B supply, cultivar, and species	- determination of B isotope fractionation during plant uptake by i) providing full B mass balances and ii) using B model plants (e.g. arabidopsis) to e.g. employ
		equilibrium fractionation between soluble boric acid (heavy) and borate (light)		structural binding of borate enriches cell walls in light isotopes	seems to change B isotope fractionation	genetic approaches - experimental determination of the isotope fractionation factor for cell wall binding of B by separating soluble and non-soluble B fractions from fresh plants (see example Sun et al. 2018 for dried plant material) - determination of isotope fractionation for deficient and adequate B supply in model plants
Mg	cell wall sorption		phloem transport induces enrichment of heavy Mg in reproductive organs	binding of Mg to chlorophyll	low Mg supply changes fractionation during	- identification of the role of distinct membrane proteins on isotope fractionation during Mg uptake by employing genetic approaches with yeast and/or model plants (e.g. arabidopsis)
	binding of Mg to membrane transporter at low supply	binding of Mg to membrane transporter at low supply	degradation of Mg containing molecules and subsequent re- translocation of Mg		Translocation	 determination of the fole of vacuoiar storage of hig on the isotope fractionation between root and shoot experimental determination of equilibrium isotope fractionation of Mg binding to molecules other than chlorophyll (e.g. ATP). identifying the role of sink-source relationships by integrating isotope fractionation factors for cross-membrane transport and binding of elements to organic ligands
Si	diffusion through membrane, with and without Si membrane protein	diffusion through membrane, with and without Si membrane protein	enrichment of heavy Si in tissues along the transpiration stream through precipitation of light Si into phytoliths	precipitation of Si into phytoliths	Si isotope fractionate within leaves	 determination of the role of membrane transport and Si precipitation on isotope fractionation between root and shoot. determination of the role of Lsi transporters on isotope fractionation using genetic approaches (as exemplified in Köster et al. 2009) by including biological replicates.
		precipitation of light Si into phytoliths in roots	membrane transport in the shoot (LSi6)			
к	ion channel through distinct ionic radii and dehydration of K	diffusion does not play ra ole during K membrane transport	binding of heavy isotopes to pectate in roots and leaves		-	 the method to measure K isotope ratios in plants is developed. Next steps could be to investigate the role of low and high K supply on K isotope fractionation in plants
Ca	root cell wall sorption			structural binding of light Ca to pectins	distinct isotope fractionation within	- determination of isotope fraction during Ca uptake by distinct root membrane transporters that dominate at low and high Ca supply
	dehydration prior to membrane transport	dehydration prior to membrane transport	heavy Ca in the xylem due to binding of light Ca to pectate in cell walls	binding of Ca to oxalate in roots and leaves	distinct Ca supply	the asuming Callsborges in storage forms (e.g. by extractions, schmitt et al. 2018) at different Ca supply and/or in distinct phloem sources experimental determination of equilibrium and kinetic isotope fractionation of Ca binding to oxalate
Fe	reduction prior to membrane transport, (re-)precipitation of light Fe in the apoplast, binding of Fe to phytosiderophores				redox conditions with strong impact on Fe isotopes fractionation in the soil-plant interface	 detailed investigation on Fe membrane transport by employing single cell organisms, model plants (e.g. arabidopsis, rice) as well as genetic approaches investigation on the effect of distinct Cu supply on Fe isotope fractionation during uptake determination of the impact on distinct Fe supply on Fe isotope fractionation during fe uptake and root-to-shoot translocation
			re-translocation of Fe(III) from leaves requires reduction to Fe(II)	storage of Fe e.g leaves as Fe(III) in proteins		- focus on Fe re-translocation during grain filling periods by e.g. combined isotope and speciation measurements in the shoots.

	root uptake	short distance transport (membrane	long distance transport	metabolic	others	proposed research priorities
		transport)	(xylem/phloem)	functionalization/storage and compartmentalization		
N	speciation in nutrient solu diffusion t favors light Ni	tion, high Ni uptake rates favor light Ni	Ni re-translocation during tree aging reduces Ni fractionation within shoots	binding of Ni to organic acids induces minor isotope fractionation	reduced isotope Ifractionation during Ni plant uptake with high Zn supply	 root extraction to distinguish between apoplastic and symplastic Ni in roots the role of distinct conditions in the Ni source such as pH, Fe supply, and distinct Ni speciation on Ni isotope fractionation during uptake identify processes that control the root-to-shoot transport of Ni and a systematic investigation of phloem sink-source relations during reproductive growth stages. Potentially by combining with Ni speciation measurements.
C	reduction prior to membra transport, Cu speciation in solution	ne membrane transport with and without reduction prior to transport	Current in fractionation with last	binding of Quite thicks for	Cu supply, has an effect on Cu isotope fractionation during Cu uptake	 investigation of fractionation factors associated with different uptake pathways at low and high supply continuation of the yeast work of Cadiou et al. (2017) by employing similar genetic approaches in model plants systematic investigation of the role of Cu stress on isotope fractionation between roots and shoots
	binding during membrane transport, sorption in the apoplast		Successive fractionation with leaf height (transpiration stream driven)	binding of Cu to thiols for detoxification		 determination of the role of transpiration during vegetative growth and re- translocation of Cu during reproductive growth phases systematic comparison of Cu isotope composition in apopoalstic and symplastic root pools
Zı	 diffusion, speciation in solu- binding to phytosiderophor and other ligands with O a N donors, sorption in the apoplast 	tition, high affinity (low uptake rates) transport es induces a shift towards heavy isotopes nd/or	phloem sinks enriched in light isotopes	Zn storage in root vacuoles to organic acids at high Zn concentrations	extent of isotope fractionation during Zn acquisition depends on Zn supply and uptake	 determination of the the role of pyhtosiderophores on Zn isotope fractionation by employing genetic approaches apply genetic appraoches to identify transporters and corresponding isotope fractionation at low and high supply systematically disentangling the role of kinetic vs. equilibrium fractionation during
	stripping off the hydration	shell binding of Zn to membrane transporter, diffusion prior to membrane transport, binding to phytosiderophores prior to membrane transport	phloem transport of light isotopes due to binding and retention of heavy Zn to O and N containing ligands in senescent leaves		rates	 In plants focus on sink-source relationships during grain filling by combining isotope analyses with genetic and speciation approaches
м	0					 the methodology to measure Mo isotopes in plants is set up. Future studies should systematically explore the impact of environmental factors, membrane proteins, and organic ligands on Mo isotope fractionation in plants
C	root uptake by Nramp5 (binding of Cd to the transporter), adsorption to surface, binding to humic a enriches ionic Cd in heavy isotopes	root icids	xylem to phloem transfer in the nodes by OsHMA2, OsLCT1	sequestration of Cd into vacuoles causes a transport of heavy Cd from root to shoot	distinct isotope fractionation patterns between cereals, cacao, and Cd accumulators	 determination of the role of distinct environmental conditions (e.g., high and low pH) on Cd speciation in the source and Cd uptake disentangling the interplay of distinct uptake transporters on Cd isotope fractionation during plant uptake (e.g., NRAMP5, NRAMP1, IRT-1) experimental determination of the Cd isotope effect of diffusion and Cd binding to distinct organic ligands disentangling the role of Cd speciation and membrane transport on isotope
	light isotopes	to S donors of the membrane protein	enriches phloem sinks in heavy isotopes	driven by tonoplast transport (HMA3) and chelation by thiols such as phytochelatin		fractionation - determination of the role of xylem vs. phloem transport on isotope fractionation in cacao
T	potential involvement of membrane proteins of K			mainly bound to O ligands, S ligands play a minor role	TI strongly fractionated within the plant	- determination of the role of distinct K supply on TI isotope fractionation during TI uptake and transport within the plant by including e.g. mutant plants with dysfunctional K uptake membrane transporters - determination of equilibrium isotope fractionation for TI binding to distinct organic ligands

References

- Archer, C., Andersen, M. B., Cloquet, C., Conway, T. M., Dong, S., Ellwood, M., et al. (2017). Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis. J. Anal. At. Spectrom. 32, 415–419. doi:10.1039/C6JA00282J.
- Arnold, T., Markovic, T., Kirk, G. J. D., Schönbächler, M., Rehkämper, M., Zhao, F. J., et al. (2015). Iron and zinc isotope fractionation during uptake and translocation in rice (*Oryza sativa*) grown in oxic and anoxic soils. *Comptes Rendus Geoscience* 347, 397– 404. doi:10.1016/J.CRTE.2015.05.005.
- Barraza, F., Moore, R. E. T., Rehkämper, M., Schreck, E., Lefeuvre, G., Kreissig, K., et al. (2019). Cadmium isotope fractionation in the soil-cacao systems of Ecuador: A pilot field study. *RSC Advances* 9, 34011–34022. doi:10.1039/c9ra05516a.
- Baker, R. G. A., Rehkämper, M., Hinkley, T. K., Nielsen, S. G., and Toutain, J. P. (2009). Investigation of thallium fluxes from subaerial volcanism—Implications for the present and past mass balance of thallium in the oceans. *Geochimica et Cosmochimica Acta* 73, 6340–6359. doi:10.1016/j.gca.2009.07.014.
- Baxter, D. C., Rodushkin, I., Engström, E., and Malinovsky, D. (2006). Revised exponential model for mass bias correction using an internal standard for isotope abundance ratio measurements by multi-collector inductively coupled plasma mass spectrometry. *Journal of Analytical Atomic Spectrometry* 21, 427. doi:10.1039/b517457k.
- Blotevogel, S., Oliva, P., Sobanska, S., Viers, J., Vezin, H., Audry, S., et al. (2018). The fate of Cu pesticides in vineyard soils: A case study using \delta65Cu isotope ratios and EPR analysis. *Chemical Geology* 477, 35–46. doi:10.1016/j.chemgeo.2017.11.032.
- Blotevogel, S., Schreck, E., Audry, S., Saldi, G. D., Viers, J., Courjault-Radé, P., et al. (2019). Contribution of soil elemental contents and Cu and Sr isotope ratios to the understanding of pedogenetic processes and mechanisms involved in the soil-to-grape transfer (Soave vineyard, Italy). *Geoderma* 343, 72–85. doi:10.1016/j.geoderma.2019.02.015.
- Bolou-Bi, E. B., Vigier, N., Brenot, A., and Poszwa, A. (2009). Magnesium isotope compositions of natural reference materials. *Geostandards and Geoanalytical Research* 33, 95–109. doi:10.1111/j.1751-908X.2009.00884.x.
- Borovička, J., Ackerman, L., and Rejšek, J. (2021). Cadmium isotopic composition of biogenic certified reference materials determined by thermal ionization mass spectrometry with double spike correction. *Talanta* 221, 121389. doi:10.1016/j.talanta.2020.121389.
- Borrok, D., Wanty, R., Ridley, W., Wolf, R., Lamothe, P., and Adams, M. (2007). Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement. *Chemical Geology* 242, 400–414. doi:10.1016/j.chemgeo.2007.04.004.
- Bullen, T., and Chadwick, O. (2016). Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence in Hawaii. *Chemical Geology* 422, 25–45. doi:10.1016/j.chemgeo.2015.12.008.
- Caldelas, C., Dong, S., Araus, J. L., and Weiss, D. J. (2011). Zinc isotopic fractionation in Phragmites australis in response to toxic levels of zinc. *Journal of Experimental Botany* 62, 2169–2178. doi:10.1093/jxb/erq414.
- Caldelas, C., Poitrasson, F., Viers, J., and Araus, J. L. (2020). Stable Zn isotopes reveal the uptake and toxicity of zinc oxide engineered nanomaterials in: Phragmites australis. *Environmental Science: Nano* 7, 1927–1941. doi:10.1039/d0en00110d.
- Cameron, V., Vance, D., Archer, C., and House, C. H. (2009). A biomarker based on the stable isotopes of nickel. *Proceedings of the National Academy of Sciences* 106, 10944–10948. doi:10.1073/pnas.0900726106.
- Chen, H., Tian, Z., Tuller-Ross, B., Korotev, R. L., and Wang, K. (2019). High-precision potassium isotopic analysis by MC-ICP-MS: an inter-laboratory comparison and refined K atomic weight. J. Anal. At. Spectrom. 34, 160–171. doi:10.1039/C8JA00303C.
- Christensen, J. N., Qin, L., Brown, S. T., and Depaolo, D. J. (2018). Potassium and Calcium Isotopic Fractionation by Plants (Soybean [Glycine max], Rice [Oryza sativa], and Wheat [Triticum aestivum]). ACS Earth and Space Chemistry 2, 745–752. doi:10.1021/acsearthspacechem.8b00035.
- Cloquet, C., Carignan, J., Libourel, G., Sterckeman, T., and Perdrix, E. (2006). Tracing Source Pollution in Soils Using Cadmium and Lead Isotopes. 6.
- Couder, E., Mattielli, N., Drouet, T., Smolders, E., Delvaux, B., Iserentant, A., et al. (2015). Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation. *Comptes Rendus Geoscience* 347, 386–396. doi:10.1016/j.crte.2015.05.004.
- Deng, T. H. B., Cloquet, C., Tang, Y. T., Sterckeman, T., Echevarria, G., Estrade, N., et al. (2014). Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants. *Environmental Science and Technology* 48, 11926–11933. doi:10.1021/es5020955.

- Frick, D. A., Remus, R., Sommer, M., Augustin, J., and von Blanckenburg, F. (2020). Silicon isotope fractionation and uptake dynamics of three crop plants: laboratory studies with transient silicon concentrations. Biogeochemistry: Stable Isotopes & amp; Other Tracers doi:10.5194/bg-2020-66.
- Garnier, J., Garnier, J. M., Vieira, C. L., Akerman, A., Chmeleff, J., Ruiz, R. I., et al. (2017). Iron isotope fingerprints of redox and biogeochemical cycling in the soil-water-rice plant system of a paddy field. *Science of the Total Environment* 574, 1622– 1632. doi:10.1016/j.scitotenv.2016.08.202.
- Geilert, S., Vogl, J., and Rosner, M. (2015). Boron Isotope Fractionation in Bell Pepper. *Mass Spectrometry & Purification Techniques* 01, 1–6. doi:10.4172/mso.1000101.
- Geilert, S., Vogl, J., Rosner, M., and Eichert, T. (2019). Boron isotope variability related to boron speciation (change during uptake and transport) in bell pepper plants and SI traceable n(11B)/n(10B) ratios for plant reference materials. *Rapid Communications in Mass Spectrometry* 33, 1137–1147. doi:10.1002/rcm.8455.
- Georg, R. B., Reynolds, B. C., Frank, M., and Halliday, A. N. (2006). New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. *Chemical Geology* 235, 95–104. doi:10.1016/j.chemgeo.2006.06.006.
- Imseng, M., Wiggenhauser, M., Keller, A., Müller, M., Rehkämper, M., Murphy, K., et al. (2018). Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling. *Environmental Science & Technology* 52, 1919–1928. doi:10.1021/acs.est.7b05439.
- Kerl, C. F., Lohmayer, R., Bura-Nakić, E., Vance, D., and Planer-Friedrich, B. (2017). Experimental Confirmation of Isotope Fractionation in Thiomolybdates Using Ion Chromatographic Separation and Detection by Multicollector ICPMS. *Analytical Chemistry* 89, 3123–3129. doi:10.1021/acs.analchem.6b04898.
- Kersten, M., Xiao, T., Kreissig, K., Brett, A., Coles, B. J., and Rehkämper, M. (2014). Tracing anthropogenic thallium in soil using stable isotope compositions. *Environmental Science and Technology* 48, 9030–9036. doi:10.1021/es501968d.
- Kidder, J. A., Voinot, A., Sullivan, K. V., Chipley, D., Valentino, M., Layton-Matthews, D., et al. (2020). Improved ion-exchange column chromatography for Cu purification from high-Na matrices and isotopic analysis by MC-ICPMS. *Journal of Analytical Atomic Spectrometry* 35, 776–783. doi:10.1039/c9ja00359b.
- Köster, J. R., Bol, R., Leng, M. J., Parker, A. G., Sloane, H. J., and Ma, J. F. (2009). Effects of active silicon uptake by rice on 29 Si fractionation in various plant parts. Rapid Commun. Mass Spectrom. 23, 2398–2402. doi:10.1002/rcm.3971.
- Le Goff, S., Albalat, E., Dosseto, A., Godin, J., and Balter, V. (2021). Determination of magnesium isotopic ratios of biological reference materials via multi-collector inductively coupled plasma mass spectrometry. *Rapid Commun Mass Spectrom* 35. doi:10.1002/rcm.9074.
- Li, W., Beard, B. L., and Li, S. (2016). Precise measurement of stable potassium isotope ratios using a single focusing collision cell multi-collector ICP-MS. *Journal of Analytical Atomic Spectrometry* 31, 1023–1029. doi:10.1039/c5ja00487j.
- Li, W., Zhu, J. M., Tan, D., Han, G., Zhao, Z., and Wu, G. (2020). The $\delta 60/58$ Ni Values of Twenty-Six Selected Geological Reference Materials. *Geostandards and Geoanalytical Research* 44, 523–535. doi:10.1111/ggr.12321.
- Liu, A., Zhou, Z., Yi, Y., and Chen, G. (2020). Transcriptome analysis reveals the roles of stem nodes in cadmium transport to rice grain. *BMC Genomics* 21, 127. doi:10.1186/s12864-020-6474-7.
- Malinovsky, D., and Kashulin, N. A. (2018). Molybdenum isotope fractionation in plants measured by MC-ICPMS. *Analytical Methods* 10, 131–137. doi:10.1039/c7ay02316b.
- Marković, T., Manzoor, S., Humphreys-Williams, E., Kirk, G. J. D., Vilar, R., and Weiss, D. J. (2017). Experimental Determination of Zinc Isotope Fractionation in Complexes with the Phytosiderophore 2'-Deoxymugeneic Acid (DMA) and Its Structural Analogues, and Implications for Plant Uptake Mechanisms. *Environmental Science and Technology* 51, 98–107. doi:10.1021/acs.est.6b00566.
- Moeller, K., Schoenberg, R., Pedersen, R.-B., Weiss, D., and Dong, S. (2012). Calibration of the New Certified Reference Materials ERM-AE633 and ERM-AE647 for Copper and IRMM-3702 for Zinc Isotope Amount Ratio Determinations. *Geostandards* and Geoanalytical Research 36, 177–199. doi:10.1111/j.1751-908X.2011.00153.x.
- Moore, R. E. T., Larner, F., Coles, B. J., and Rehkämper, M. (2017). High Precision Zinc Stable Isotope Measurement of Certified Biological Reference Materials Using the Double Spike Technique and Multiple Collector-ICP-MS. Analytical and Bioanalytical Chemistry 409, 2941–2950. doi:10.1007/s00216-017-0240-y.

- Moore, R. E. T., Ullah, I., de Oliveira, V. H., Hammond, S. J., Strekopytov, S., Tibbett, M., et al. (2020). Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by *Theobroma cacao* and role of natural resistance-associated macrophage protein 5 and heavy metal ATPase-family transporters. *Horticulture Research* 7, 71. doi:10.1038/s41438-020-0292-6.
- Morgan, L. E., Santiago Ramos, D. P., Davidheiser-Kroll, B., Faithfull, J., Lloyd, N. S., Ellam, R. M., et al. (2018). High-precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability of: δ 41K. *Journal of Analytical Atomic Spectrometry* 33, 175–186. doi:10.1039/c7ja00257b.
- Murphy, K., Rehkämper, M., Kreissig, K., Coles, B., and van de Flierdt, T. (2016). Improvements in Cd stable isotope analysis achieved through use of liquid–liquid extraction to remove organic residues from Cd separates obtained by extraction chromatography. *Journal of Analytical Atomic Spectrometry* 31, 319–327. doi:10.1039/C5JA00115C.
- Oelze, M., Schuessler, J. A., and von Blanckenburg, F. (2016). Mass bias stabilization by Mg doping for Si stable isotope analysis by MC-ICP-MS. J. Anal. At. Spectrom. 31, 2094–2100. doi:10.1039/C6JA00218H.
- Opfergelt, S., Georg, R. B., Delvaux, B., Cabidoche, Y. M., Burton, K. W., and Halliday, A. N. (2012). Mechanisms of magnesium isotope fractionation in volcanic soil weathering sequences, Guadeloupe. *Earth and Planetary Science Letters* 341–344, 176– 185. doi:10.1016/j.epsl.2012.06.010.
- Quitte, G., and Oberli, F. (2006). Quantitative extraction and high precision isotope measurements of nickel by MC-ICPMS. J. Anal. At. Spectrom. 21, 1249. doi:10.1039/b607569j.
- Rader, S. T., Maier, R. M., Barton, M. D., and Mazdab, F. K. (2019). Uptake and Fractionation of Thallium by Brassica juncea in a Geogenic Thallium-Amended Substrate. doi:10.1021/acs.est.8b06222.
- Ratié, G., Quantin, C., Maia De Freitas, A., Echevarria, G., Ponzevera, E., and Garnier, J. (2019). The behavior of nickel isotopes at the biogeochemical interface between ultramafic soils and Ni accumulator species. *Journal of Geochemical Exploration*. doi:10.1016/j.gexplo.2018.10.008.
- Rosner, M., Pritzkow, W., Vogl, J., and Voerkelius, S. (2011). Development and validation of a method to determine the boron isotopic composition of crop plants. *Analytical Chemistry* 83, 2562–2568. doi:10.1021/ac102836h.
- Ryan, B. M., Kirby, J. K., Degryse, F., Harris, H., McLaughlin, M. J., and Scheiderich, K. (2013). Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. *New Phytologist* 199, 367–378. doi:10.1111/nph.12276.
- Schmitt, A.-D., Gangloff, S., Cobert, F., Lemarchand, D., Stille, P., and Chabaux, F. (2009). High performance automated ion chromatography separation for Ca isotope measurements in geological and biological samples. J. Anal. At. Spectrom. 24, 1089. doi:10.1039/b903303c.
- Schmitt, A. D., Borrelli, N., Ertlen, D., Gangloff, S., Chabaux, F., and Osterrieth, M. (2018). Stable calcium isotope speciation and calcium oxalate production within beech tree (Fagus sylvatica L.) organs. Biogeochemistry 137, 197–217. doi:10.1007/s10533-017-0411-0.
- Schoenberg, R., and von Blanckenburg, F. (2005). An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS. *International Journal of Mass Spectrometry* 242, 257–272. doi:10.1016/j.ijms.2004.11.025.
- Šillerová, H., Chrastný, V., Vítková, M., Francová, A., Jehlička, J., Gutsch, M. R., et al. (2017). Stable isotope tracing of Ni and Cu pollution in North-East Norway: Potentials and drawbacks. *Environmental Pollution* 228, 149–157. doi:10.1016/j.envpol.2017.05.030.
- Shalev, N., Farkaš, J., Fietzke, J., Novák, M., Schuessler, J. A., Pogge von Strandmann, P. A. E., et al. (2018). Mg Isotope Interlaboratory Comparison of Reference Materials from Earth-Surface Low-Temperature Environments. *Geostand Geoanal Res* 42, 205–221. doi:10.1111/ggr.12208.
- Strelow, F. (1980). Improved separation of iron from copper and other elements by anion-exchange chromatography on a 4% cross-linked resin with high concentrations of hydrochloric acid. *Talanta* 27, 727–732. doi:10.1016/0039-9140(80)80166-4.
- Sun, A., Xu, Q., Wei, G., Zhu, H., and Chen, X. (2018). Differentiation analysis of boron isotopic fractionation in different forms within plant organ samples. Phytochemistry 147, 9–13. doi:10.1016/j.phytochem.2017.12.012.
- Tang, Y.-T., Cloquet, C., Deng, T.-H.-B., Sterckeman, T., Echevarria, G., Yang, W.-J., et al. (2016). Zinc Isotope Fractionation in the Hyperaccumulator Noccaea caerulescens and the Nonaccumulating Plant Thlaspi arvense at Low and High Zn Supply. Environmental Science & Technology 50, 8020–8027. doi:10.1021/acs.est.6b00167.

Vaněk, A., Holubík, O., Oborná, V., Mihaljevič, M., Trubač, J., Ettler, V., et al. (2019). Thallium stable isotope fractionation in white mustard: Implications for metal transfers and incorporation in plants. *Journal of Hazardous Materials* 369, 521–527. doi:10.1016/j.jhazmat.2019.02.060.

- van der Ent, A., Nkrumah, P. N., Aarts, M. G. M., Baker, A. J. M., Degryse, F., Wawryk, C., et al. (2021). Isotopic signatures reveal zinc cycling in the natural habitat of hyperaccumulator Dichapetalum gelonioides subspecies from Malaysian Borneo. BMC Plant Biol 21, 437. doi:10.1186/s12870-021-03190-4.
- von Blanckenburg, F., Oelze, M., Schmid, D. G., van Zuilen, K., Gschwind, H.-P., Slade, A. J., et al. (2014). An iron stable isotope comparison between human erythrocytes and plasma. *Metallomics* 6, 2052–2061. doi:10.1039/C4MT00124A.
- Wang, Y., Wu, B., Berns, A. E., Xing, Y., Kuhn, A. J., and Amelung, W. (2020). Magnesium isotope fractionation reflects plant response to magnesium deficiency in magnesium uptake and allocation: a greenhouse study with wheat. *Plant and Soil* 455, 93–105. doi:10.1007/s11104-020-04604-2.
- Wei, R., Guo, Q., Wen, H., Yang, J., Peters, M., Zhu, C., et al. (2015). An analytical method for precise determination of the cadmium isotopic composition in plant samples using multiple collector inductively coupled plasma mass spectrometry. *Analytical Methods* 7, 2479–2487. doi:10.1039/c4ay02435d.
- Wiederhold, J. G., Kraemer, S. M., Teutsch, N., Borer, P. M., Halliday, A. N., and Kretzschmar, R. (2006). Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite. *Environmental Science and Technology* 40, 3787–3793. doi:10.1021/es052228y.
- Wiggenhauser, M., Bigalke, M., Imseng, M., Keller, A., Archer, C., Wilcke, W., et al. (2018). Zinc isotope fractionation during grain filling of wheat and a comparison of zinc and cadmium isotope ratios in identical soil-plant systems. *New Phytologist* 219, 195–205. doi:10.1111/nph.15146.
- Wiggenhauser, M., Bigalke, M., Imseng, M., Müller, M., Keller, A., Murphy, K., et al. (2016). Cadmium isotope fractionation in soilwheat systems. *Environmental Science & Technology* 50, 9223–9231. doi:10.1021/acs.est.6b01568.
- Wu, B., Wang, Y., Berns, A. E., Schweitzer, K., Bauke, S. L., Bol, R., et al. (2021). Iron isotope fractionation in soil and graminaceous crops after 100 years of liming in the long-term agricultural experimental site at Berlin-Dahlem, Germany. *Eur J Soil Sci* 72, 289–299. doi:10.1111/ejss.12944.
- Zelano, I. O., Cloquet, C., van der Ent, A., Echevarria, G., Gley, R., Landrot, G., et al. (2020). Coupling nickel chemical speciation and isotope ratios to decipher nickel dynamics in the Rinorea cf. bengalensis-soil system in Malaysian Borneo. *Plant and Soil* 454, 225–243. doi:10.1007/s11104-020-04541-0.

Zhong, S., Li, X., Li, F., Liu, T., Huang, F., Yin, H., et al. (2021). Water Management Alters Cadmium Isotope Fractionation between Shoots and Nodes/Leaves in a Soil-Rice System. *Environmental Science & Technology*, acs.est.0c04713. doi:10.1021/acs.est.0c04713.

- Zhong, S., Li, X., Li, F., Huang, Y., Liu, T., Yin, H., et al. (2022). Cadmium uptake and transport processes in rice revealed by stable isotope fractionation and Cd-related gene expression. *Science of The Total Environment* 806, 150633. doi:10.1016/j.scitotenv.2021.150633.
- Zhou, J., Li, Z., Liu, M., Yu, H., Wu, L., Huang, F., et al. (2020). Cadmium isotopic fractionation in the soil plant system during repeated phytoextraction with a cadmium hyperaccumulating plant species. *Environmental Science & Technology* 54, 13598–13609. doi:10.1021/acs.est.0c03142.