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Abstract

We analyze the behaviour of an ensemble of time integrators applied to the semi-discrete problem resulting from

the spectral discretization of the equations describing Boussinesq thermal convection in a cylindrical annulus.

The equations are cast in their vorticity-streamfunction formulation that yields a differential algebraic equation

(DAE). The ensemble comprises 28 members: 4 implicit-explicit multistep schemes, 22 implicit-explicit Runge-

Kutta (IMEX-RK) schemes, and 2 fully explicit schemes used for reference. The schemes whose theoretical

order varies from 2 to 5 are assessed for 11 different physical setups that cover laminar and turbulent regimes.

Multistep and order 2 IMEX-RK methods exhibit their expected order of convergence under all circumstances.

IMEX-RK methods of higher-order show occasional order reduction that impacts both algebraic and differential

field variables. We ascribe the order reduction to the stiffness of the problem at hand and, to a larger extent,

the presence of the DAE. Using the popular Crank-Nicolson Adams-Bashforth of order 2 (CNAB2) integrator as

reference, performance is defined by the ratio of maximum admissible time step to the cost of performing one

iteration; the maximum admissible time step is determined by inspection of the time series of viscous dissipation

within the system, which guarantees a physically acceptable solution. Relative performance is bounded between

0.5 and 1.5 across all studied configurations. Considering accuracy jointly with performance, we find that 6

schemes consistently outperform CNAB2, meaning that in addition to allowing for a more efficient calculation,

the accuracy that they achieve at their operational, dissipation-based limit of stability yields a lower error. In our

most turbulent setup, where the behaviour of the methods is almost entirely dictated by their explicit component,

13 IMEX-RK integrators outperform CNAB2 in terms of accuracy and efficiency.

Keywords: Boussinesq convection; pseudo-spectral methods; stiff ODE/PDE/DAE time marching; IMEX time

integrators; stability; turbulence

1. Introduction

This study is concerned with the evaluation of implicit-explicit (IMEX) time marching methods applied to the

numerical simulation of thermal convection for geophysical or astrophysical bodies. Thermal convection is an

ubiquitous process in natural systems of large size; it drives the internal and external evolution of planets and stars

as they receive and shed heat from and to outer space. In the case of Earth’s internal dynamics, two envelopes

undergo convection: the rocky mantle and the liquid outer core underneath it, which is essentially composed of
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an Iron-Nickel alloy. Both systems host vigorous time-dependent convective currents, over vastly different time

scales, since the mantle turnover time, O(108) years, is a million times larger than that of the core, O(102) years.

Numerical models of mantle convection appeared in the nineteen-seventies (e.g. McKenzie et al., 1974; Sato

and Thompson, 1976; Kopitzke, 1979; Jarvis, 1984) and have grown steadily in size and complexity since (see

e.g. Zhong et al., 2015, for a review). Efforts have been carried out in view of handling both complex geometries

and rheologies, in order for instance to simulate plate tectonics in an inertialess framework that necessitates the

solve of a modified Stokes problem for the flow. This led to the development of multilevel elliptic solvers and

the implementation of adaptive mesh refinement techniques. The design of high-order integration schemes has

logically not been the focus of attention, since the priority was to design methods able in particular to cope with

viscosity contrasts spanning several decades. Two freely available codes whose development continues today and

used to simulate mantle convection in two or three dimensions are fluidity (Davies et al., 2011) and ASPECT

(Kronbichler et al., 2012). With regard to the advection-diffusion of temperature anomalies, fluidity resorts to an

implicit θ-method (Canuto et al., 2006, §D.2.3) for the diffusive and advective terms, and has θ = 1/2, which corre-

sponds to the second-order Crank-Nicolson (CN henceforth) method. The ASPECT code opted for a compromise

between stability and accuracy in choosing a backward-difference formula of second order (BDF2, e.g., Canuto

et al., 2006, §D.2.4). BDF2 was also praised by these authors on the account of its “efficiency of implementation

(higher-order schemes often become unwieldy as they require complicated initialization during the first few time

steps, and require the storage of many solution vectors from previous time steps)” (Kronbichler et al., 2012). This

statement does not consider high-order self-restart time integration methods of the implicit-explicit Runge -Kutta

(IMEX-RK henceforth) type, to be discussed below.

In contrast, self-consistent models of core dynamics, which comprise in their full form an electromagnetic

component responsible for the generation of the geomagnetic field by dynamo action, involve a Newtonian fluid of

constant viscosity whose dynamics is strongly affected by planetary rotation. Their complexity lies in their inher-

ent three-dimensional, global character and in the nonlinear coupling between field variables (velocity, pressure,

temperature, magnetic field). These models came to the fore in the nineteen-nineties (Glatzmaier and Roberts,

1995; Kageyama and Sato, 1995), in the wake of the pioneering work of Glatzmaier (1984) on the solar dynamo.

Most codes to date are part of Glatzmaier’s legacy; they rely in the horizontal directions on a spectral representa-

tion of field variables using spherical harmonics. Nonlinear terms are computed in physical space, which requires

forward and inverse spherical harmonic transforms to be performed at each time step. This step represents the most

expensive computation of three-dimensional spherical simulations. Efforts to improve code performances focused

on increasing the efficiency of spectral transforms by parallelization, using strategies based either on distributed-

memory (Clune et al., 1999) or shared-memory (Schaeffer, 2013). In comparison, little work was devoted to

reducing the time-to-solution using efficient time integration schemes. The performance benchmark by Matsui

et al. (2016) offers an interesting perspective on this state of affairs, as it reports the performance of 13 spectral

codes on various laminar test problems (the study also includes two finite element codes). All spectral codes rely

on a implicit-explicit scheme that treats linear terms, at the exception of the Coriolis force, implicitly, and nonlin-

ear terms explicitly. The majority of codes resort to a θ-method for the linear term and have the Crank-Nicolson

value θ = 1/2, (although some may use the stabler first-order θ = 0.6, see e.g. Hollerbach, 2000, around Eq. (21)).

Nonlinear and Coriolis terms are evaluated in 9 instances out of 13 with a second-order Adams-Bashforth (AB2
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henceforth) method. Most codes combine CN for the implicit part with AB2 for the explicit part, forming what

will we refer to in the following the traditional CNAB2 method. This popularity appears at odds with the flaws of

the CNAB2 method, reported for instance by Tilgner (1999) in his analysis of time integrators for fluid flow prob-

lems in spherical shell geometry: there may exist circumstances under which “the unreasonably popular CNAB2 ”

(Ascher et al., 1997) may not damp oscillatory modes at the expected physical rate (meaning they are not damped

enough), which can then lead to a global instability if non-linearities are present (see also the discussions in Ascher

et al., 1995; Canuto et al., 2006, , §D.2.2.). An alternative consists of a second-order predictor-corrector approach,

with the predictor and corrector stages based on AB2 and CN, respectively (as used in the Leeds code, see Willis

et al., 2007). The focus of the study by Matsui et al. (2016) is the scalability of codes towards using petascale com-

puters, based on the assessment of the efficiency of the various spatial parallelization strategies followed by the

various contributors to the performance benchmark. It is intriguing to note that the paper does not even mention the

benefit (in terms of efficiency and also accuracy, in view of performing turbulent simulations using spectral meth-

ods in space) that one could potentially gain from using more accurate and stabler time-schemes, on the condition

that the gain compensates the extra cost.

A survey of literature reveals that alternatives to CNAB2 were considered occasionally in the past, for three-

dimensional Boussinesq thermal convection in axisymmetric (cylindrical or spherical) domains (Fournier et al.,

2005, where a BDF2/AB3 IMEX scheme was used), convection-driven dynamo action in Cartesian domains

(Stellmach and Hansen, 2008, where the SBDF2, sometimes called extended Gear of order 2, combination was

employed), or rotating convection under the anelastic approximation in 2-D and 3-D Cartesian domains (Verho-

even and Stellmach, 2014, where SBDF3 was used). The influence of the chosen time integrator on the accuracy

of the solution was also recently put forward by Lecoanet et al. (2019). Comparing CNAB2 and SBDF4, they

showed that using the latter fourth order scheme allowed to assess a refined convergence of the reference values

for benchmarks of convection and dynamo action in full spheres (Marti et al., 2014) up to ten decimal places.

Following up on the investigation of Tilgner (1999), Livermore (2007) analyzed the performance of second-order

exponential time differencing (ETD) applied to dynamo action in spherical geometry, finding that for order 2, ETD

methods were not to be preferred over the traditional CNAB2, given that their performance was similar, and the

implementation of the latter much easier. Livermore (2007) also noted that the situation may become different

would one resort to higher-order schemes. Such an endeavor was undertaken by Garcia et al. (2014) in the context

of three-dimensional rotating convection. A comparison was made between exponential integrators and multistep

IMEX schemes that had been previously investigated by Garcia et al. (2010). Based on the investigation of moder-

ately supercritical configurations, the authors concluded on the superior accuracy of exponential integrators, at the

expense of a larger cost.

In this study, the emphasis is set on the accuracy and efficiency of multistage IMEX-RK methods, which are

compared with some multistep IMEX methods of order 2, 3 and 4. IMEX-RK methods have been almost ignored

by the core dynamics community. Interestingly, however, Glatzmaier and Roberts (1996) implemented early on the

IMEX-RK method proposed by Spalart et al. (1991) to three-dimensional dynamo modeling in spherical geometry.

This scheme, which will be evaluated in this study, combines a third-order explicit component with a second-

order implicit component. To our knowledge, no subsequent usage of that specific scheme was reported in the

planetary core dynamics / dynamo community until a few years ago. It recently resurfaced in the study of magneto-

3



convection in Cartesian geometry by Yan et al. (2019). Aside from the scheme by Spalart et al. (1991), we note that

Hollerbach (2000) defined a second order IMEX-RK scheme assembled from an explicit RK2 for its explicit part

and a Crank-Nicolson for its implicit component. More recently, Marti et al. (2016) tested several of the IMEX-

RK schemes proposed by Cavaglieri and Bewley (2015) of second, third and fourth order applied to standard core

dynamics problems in a spherical shell geometry, with a focus on the impact of the implicit or explicit treatment

of the linear Coriolis force on the efficiency of their code. IMEX-RK methods were also investigated by one of

us in the context of two-dimensional quasi-geostrophic spherical convection (Gastine, 2019). It was noted that of

the three third-order schemes that were tested, the multistep SBDF3 by Ascher et al. (1995) and the IMEX-RK

BPR353 by Boscarino et al. (2013) (both of which will also be evaluated in this paper) had a similar efficiency

in a rapidly-rotating, moderately turbulent configuration. The latter IMEX-RK scheme was recently employed by

Tassin et al. (2021) to obtain turbulent double diffusive geodynamo models of higher accuracy.

Grooms and Julien (2011) performed a thorough and inspiring comparison of IMEX-BDF, IMEX-RK and

exponential integrators applied to a variety a problems, including the two-dimensional stratified Boussinesq equa-

tions and the quasigeostrophic equation , both in a periodic Cartesian domain. (The 6 IMEX-RK schemes that

they analyzed are part of the 22 IMEX-RK schemes analyzed in this work.) Their conclusions can be tentatively

summarized as follows: in the setups that they considered, exponential integrators are vastly superiors in terms

of accuracy to multistep and multistage methods, even if some IMEX-RK schemes, such as the BHR553 scheme

of Boscarino and Russo (2009), may display a convergence rate better than the nominal third order. The exact

treatment of linear diffusive terms enabled by exponential integrators is key in the moderately nonlinear setups

they considered, and Grooms and Julien (2011) stressed that IMEX scheme could prove superior to exponential

integrators when nonlinearities play a more sizeable role in the dynamics. In passing, Grooms and Julien (2011)

also noted that for the 2D stratified Boussinesq equations, IMEX-RK methods “all displayed the disturbing ability

to produce stable but inaccurate results at large step sizes” (their Fig. 9). We shall come back to this observation in

our own analysis.

Owing in part to the ease of their implementation and interchangeability in modern computing frameworks

(e.g. Vos et al., 2011) IMEX-RK recently received attention in atmosphere and climate modeling (Giraldo et al.,

2013; Gardner et al., 2018; Vogl et al., 2019). These studies looked into the possibility of using such schemes to

overcome the severe limitations of pure explicit time marching that arise in nonhydrostatic models of the atmo-

sphere which host acoustic waves propagating in the vertical direction. The smallness of the propagation time of

those waves compared with the characteristic time of convective transport makes the problem stiff, and calls for an

implicit treatment of those terms responsible for wave propagation. Using a testbed consisting of a gravity wave

test and a baroclinic instability test from the 2012 dynamical core model intercomparison project (Ullrich et al.,

2012), Gardner et al. (2018) implemented an anisotropic splitting strategy, termed HEVI, for horizontally explicit

– vertically implicit, implemented on 21 IMEX-RK schemes of order 2, 3, 4 and 5 (see their section 3.2.1 for their

description). Likewise, a comprehensive comparative study of 27 IMEX-RK schemes led Vogl et al. (2019) to

recommend 5 schemes that consistently perform better than the rest of the pack for the same two test cases (their

Table 6).

With the aim of applying this systematic methodology to a problem relevant to the dynamics of planetary inte-

riors, we focus here on 2D Boussinesq convection in a cylindrical annulus, in the absence of background rotation.
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This setup is admittedly simpler than some problems recently reported in the literature. Yet, its modest size allows

us to cover a relatively broad range of behaviors including turbulent solutions and to perform a comprehensive

investigation of 22 IMEX-RK schemes, in addition to 4 IMEX multistep schemes and two fully explicit schemes.

The outline of the paper is the following: we present the physical model and its numerical approximation in sec-

tion 2. Results follow in section 3, where accuracy, order reduction, and computational efficiency are investigated

and discussed for 11 different dynamical setups. We next summarize our findings and conclude in section 4 with

some tentative recommendations for subsequent use of IMEX-RK schemes in the context of three-dimensional

dynamo simulations in spherical geometry.

2. The model and its numerical approximation

2.1. Governing equations

Let us operate in cylindrical coordinates (s, ϕ, z) with local unit vectors ŝ, ϕ̂ and ẑ. We consider a Newtonian

fluid contained in a flat annulus of outer radius so and inner radius si. The fluid is subjected to a uniform inward

radial gravity field of amplitude g0. The outer and inner cylindrical walls are maintained at uniform temperatures

To and Ti, respectively. The temperature contrast ∆T ≡ Ti − To is positive and gives rise to convective flow when

it exceeds a critical value.

The primitive state variables describing the fluid are its velocity u =
(
us, uϕ

)
, pressure p and temperature T .

The material properties of the fluid relevant for the problem of interest here are its density ρ, kinematic viscosity ν,

thermal diffusivity κ and thermal expansion coefficient α. The equation of state that relates changes in temperature

δT to changes in density δρ is

δρ = −αρδT.

Under the Boussinesq approximation, the properties of the fluid are homogeneous, save for density that can vary

with the local temperature according to the previous law when (and only when) the gravitational force is com-

puted. The basic state about which convection can take place is the motionless hydrostatic conducting state. The

conducting temperature profile is axisymmetric,

Tc(s, ϕ) = Tc(s) = ∆T
log(s/si)
log(si/so)

+ Ti. (1)

We scale length, time, and temperature by the gap width (D = so − si), the viscous diffusion time D2/ν, and

∆T , respectively. We also choose pressure, p, to be scaled by ρoν
2/D2, where, ρo is the background density.

Conservation of mass, momentum and energy results in the following set of equations

∇ · u = 0, (2)
∂u
∂t

= −∇ · (u ⊗ u) − ∇p +
Ra
Pr

T ŝ + ∇2u, (3)

∂T
∂t

= −∇ · (uT ) +
1
Pr
∇2T, (4)

to be complemented with initial and boundary conditions (see below).

The dimensionless control numbers are the Rayleigh number Ra and the Prandtl number Pr, defined by

Ra =
goα∆T D3

νκ
, (5)
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and

Pr =
ν

κ
. (6)

The two-dimensional nature of the problem and the incompressibility constraint prompt us to resort to a vorticity-

streamfunction formulation, see e.g. Glatzmaier (2013), §2.1 or Peyret (2002), §II.6. Let the symbol overbar

denote the azimuthal averaging operator,

f =
1

2π

∫ 2π

0
f (ϕ)dϕ.

We introduce a streamfunction ψ such that

us =
1
s
∂ψ

∂ϕ
, (7a)

uϕ = uϕ −
∂ψ

∂s
. (7b)

Given the periodicity of the domain in the azimuthal direction, the decomposition of the azimuthal flow into a mean

component uϕ and a non-zonal component −∂ψ/∂s ensures the periodicity of pressure in the azimuthal direction

(e. g. Plaut and Busse, 2002, §2). The evolution of the mean component is governed by the azimuthal average of

Eq. (3). The axial vorticity ω = ωẑ is given by

ω =
1
s
∂(suϕ)
∂s

− ∇2ψ, (8)

and its time-dependency is controlled by the axial component of the curl of the momentum equation Eq. (3). In

summary, the set of dimensionless equations to solve in the vorticity-streamfunction formulation reads

∂uϕ
∂t

= −usω + ∆̃uϕ, (9a)

∂ω

∂t
= −∇ · (uω) + ∇2ω −

Ra
Pr

1
s
∂T
∂ϕ

, (9b)

∂T
∂t

= −∇ · (uT ) +
1
Pr
∇2T, (9c)

ω =
1
s
∂(suϕ)
∂s

− ∇2ψ, (9d)

u = uϕ + ∇ × (ψẑ), (9e)

where the modified Laplacian operator ∆̃ = ∂s(∂s + 1/s).

2.2. Boundary conditions

Regarding the mechanical boundary conditions for the annulus, we shall assume throughout a no-slip boundary

condition uϕ = 0 along the curved inner and outer boundary walls, together with with the impermeable condition

us = 0. The latter condition implies that

ψ = 0 at s = si, so. (10)

The no-slip boundary condition implies

∂ψ

∂s
= uϕ = 0 at s = si, so, (11)

which results in vorticity at the boundaries to be

ω = −
∂2ψ

∂s2 at s = si, so. (12)
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Thus, we have four boundary conditions on ψ and two for uϕ. For the temperature, the dimensionless boundary

conditions are

T = 1 at s = si, (13a)

T = 0 at s = so. (13b)

2.3. Diagnostics

Before dealing with the numerical approximation of the problem, let us introduce a few diagnostics to obtain

useful information and to check solution correctness. In the following, we denote the spatial average over the area

A of the annulus by a double overbar and time average by angular brackets 〈· · · 〉 . For a field f (s, ϕ),

f =
1
A

∫∫
A

f (s, ϕ)sdsdϕ. (14)

where, A = π(s2
o − s2

i ) is the area of the annulus. We compute the kinetic energy Ek at specified times of the

simulation. At a given instant in time, it is given by

Ek(t) =
1
2

(
u2

s + u2
ϕ

)
(t). (15)

The Nusselt number Nu quantifies the ratio of total heat flux to the reference heat flux carried by conduction alone.

We define it at the inner and outer boundaries by considering the time and azimuthal averages of the temperature,

e.g.

Nuo =

d〈T 〉
ds


s=so

/

(
dTc

ds

)
s=so

=

d〈T 〉
ds


s=so

so log
so

si
, (16)

for the outer boundary; the expression for Nui being obtained upon substituting the so factor by si in this equation.

The balance of inner and outer Nusselt numbers (incoming and outgoing heat fluxes) indicates that thermal relax-

ation has been reached and it is a good indicator for convergence of the solution. Now, we define the Reynolds

number Re which measures the ratio of inertial to viscous forces. With our choice of scales, it is given as the

time-averaged root-mean-square magnitude of the velocity

Re =

〈 (
u2

s + u2
ϕ

)1/2 〉
=

〈√
2Ek

〉
. (17)

The next diagnostic quantity we compute from the solution at specified time intervals is the power balance. From

the solution, we check if heat loss by viscous dissipation balances on average the buoyancy input power (e.g. King

et al., 2012). The expression for viscous dissipation is given as

Dν(t) = u · ∇2u(t). (18)

Using the vector identity ∇ × ∇ × u = ∇(∇ · u) − ∇2u, the definition of vorticity ω and the incompressibility i

constraint, the viscous dissipation term becomes

Dν(t) = −[u · (∇ × ω)](t). (19)

When no-slip boundary conditions are prescribed, it further simplifies to

Dν(t) = −ω2(t). (20)
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The buoyancy input power P reads

P(t) =
Ra
Pr

usT (t). (21)

On time average, we expect the solution to satisfy

〈P〉 = −〈Dν〉. (22)

2.4. Spatial discretization

We apply a Fourier-collocation approach to discretize Eqs. (9a-9e) in space. The Fourier expansion is per-

formed along the azimuthal direction which is naturally periodic and a Chebyshev collocation method is employed

along the radial direction, see e.g. Glatzmaier (2013). The truncated Fourier expansions of field variables with a

dependency on the azimuthal angle read

ω(s, ϕ, t) ≈ 2
Nm∑′

m=0

<
[
ωm(s, t)eimϕ

]
, (23a)

T (s, ϕ, t) ≈ 2
Nm∑′

m=0

<
[
Tm(s, t)eimϕ

]
, (23b)

ψ(s, ϕ, t) ≈ 2
Nm∑

m=1

<
[
ψm(s, t)eimϕ

]
, (23c)

us(s, ϕ, t) ≈ 2
Nm∑

m=1

<
[
usm(s, t)eimϕ

]
, (23d)

uϕ(s, ϕ, t) ≈ uϕ(s, t) + 2
Nm∑

m=1

<
[
uϕm(s, t)eimϕ

]
. (23e)

where Nm is the maximum order of the truncation, and consequently the number of Fourier modes is Nm + 1,<
[
f
]

is the real part of a complex-valued function f and the single prime on the summation symbol means that the m = 0

term in the series is multiplied by 1/2.

Substituting these expressions into Eq. (9) results in the following set of nondimensional equations

∂uϕ
∂t

(s, t) = −usω(s, t) + ∆̃uϕ(s, t), (24a)

∂ωm

∂t
(s, t) = −∇m · (uω)m(s, t) + ∇2

mωm(s, t) −
Ra
Pr

im
s

Tm(s, t), for m > 0, (24b)

∂Tm

∂t
(s, t) = −∇m · (uT )m(s, t) +

1
Pr
∇2

mTm(s, t), for m ≥ 0, (24c)

ω0(s, t) =
1
s
∂(suϕ)
∂s

(s, t), ωm(s, t) = −∇2
mψm(s, t), for m > 0, (24d)

usm(s, t) =
im
s
ψm(s, t), for m > 0,

uϕ0(s, t) = uϕ(s, t), uϕm(s, t) = −
∂ψm

∂s
(s, t), for m > 0,

(24e)

where the Fourier mode-dependent divergence and Laplacian operators read ∇m · a = (1/s)∂s(sas) + (im/s)aϕ and

∇2
m = ∂2

s + (1/s)∂s − (m2/s2), respectively. The notation (· · · )m refers to the mth Fourier mode of the term inside

the brackets. In the following, we shall refer to the previous formulation as the s − m formulation.

We proceed with a radial approximation based on Chebyshev polynomials Cn up to degree Ns − 1. Each field

variable gm(s, t) appearing in the previous system is expanded according to

gm(s, t) ≈
(

2
Ns − 1

)1/2 Ns−1∑′′

n=0

ĝmn(t)Cn[x(s)], (25)
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where the double quote implies that the first and last terms are multiplied by 1/2. The cylindrical radius s is

mapped into coordinate x by

x =
2s − so − si

so − si
= 2s − so − si (26)

in order to use the Chebyshev–Gauss–Lobatto points defined by

xk = cos
kπ

Ns − 1
(27)

with k = 0 to Ns − 1. The discrete Chebyshev expansion evaluates gm(s = sk, t) such that

sk =
so − si

2
xk +

so + si

2
. (28)

Conversely,

ĝmn(t) =

(
2

Ns − 1

)1/2 Ns−1∑′′

k=0

g(sk, t)Cn(xk), (29)

in which

Cn(xk) = cos(n arccos xk) = cos
nπk

Ns − 1
.

In practice, our unknowns consist of the ĝmn. The radial approximation of Eqs. 24 leads to the following

semi-discrete problem

d
dt

Mûϕ = Nuϕ + Luϕ ûϕ, (30a)

d
dt

Mω̂m = Nω,m + Lω,mω̂m + BmT̂m for m > 0, (30b)

d
dt

MT̂m = NT,m + LT,mT̂m for m ≥ 0, (30c)

Mω̂0 = L0ûϕ, Mω̂m = Lωψ,mψ̂m for m ≥ 0, (30d)

Mûs,m = Lusψ,m ψ̂m, for m > 0,

Mûϕ,0 = ûϕ, Mûϕ,m = Luϕψ,m ψ̂m, for m > 0.
(30e)

We have omitted the remaining dependency to time for the sake of conciseness. Bold capital letters refer to matrices

acting upon column vectors of the kind ĝm, that contain the Ns coefficients of the expansion of gm(s) on Chebyshev

polynomials as given by Eq. (25) above,

ĝm =
[
gm0, . . . , gm Ns−1

]T , (31)

where T means transposition without conjugation. The M matrix on the left-hand side of Eqs. 30a–30e is a Ns×Ns

square matrix that converts modal values to gridpoint values, since the equalities 30a–30e are prescribed at the Ns

collocation points sk, with k ∈ 0, . . . ,Ns − 1. Its k-th row reads

γ

99
99C0(xk)/2,C1(xk), . . . ,CNs−2(xk),CNs−1(xk)/2

99
99, (32)

where the constant γ = [2/(Ns − 1)]1/2.

The right-hand side of Eqs. 30a–30c comprises nonlinear and linear terms. The nonlinear terms are vectors of

size Ns denoted byN ;Nuϕ , Nω,m, andNT,m respectively contain the values of −usω, −∇m · (uω)m and −∇m · (uT )m

for each collocation grid point sk. For instance,

NT,m = −
[
∇m · (uT )m(s0),∇m · (uT )m(s1), . . . ,∇m · (uT )m(sNs−2),∇m · (uT )m(sNs−1)

]T .
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We resort to a pseudo-spectral approach: Nonlinear terms are evaluated on the physical grid, prior to being trans-

formed back to spectral space. For instance, in the previous equation, the product uT is computed on the s − ϕ

grid and transformed back to Fourier space using a Fast Fourier transform; a discrete cosine transform (Press et al.,

2007, 12.4.2) is next used to transform quantities from the s −m space to the n −m space. The divergence is com-

puted using the appropriate three-term recurrence relation for Chebyshev polynomials (e.g. Canuto et al., 2006,

§2.4.2).

Linear terms in the system 30 are cast in terms of matrix-vector products; they appear in the algebraic equations

Eqs. 30d–30e, in addition to the right-hand side of differential Eqs. 30a–30c. The matrices are all Ns × Ns, and

they possibly involve derivatives of the Chebyshev polynomials, C′, C′′, etc. For instance, the k-th row of matrix

Lω,m reads

γ

99
991

2

C′′0 (xk) +
1
sk

C′0(xk) −
m2

s2
k

C0(xk)
 ,C′′1 (xk) +

1
sk

C′1(xk) −
m2

s2
k

C1(xk), . . . ,

C′′Ns−2(xk) +
1
sk

C′Ns−2(xk) −
m2

s2
k

CNs−2(xk),
1
2

C′′Ns−1(xk) +
1
sk

C′Ns−1(xk) −
m2

s2
k

CNs−1(xk)


99
99,

while the k-th row of the Bm buoyancy matrix reads

−
Ra
Pr

imγ
sk 99

99C0(xk)/2,C1(xk), . . . ,CNs−2(xk),CNs−1(xk)/2

99
99.

Boundary conditions are prescribed through the appropriate modification of some of the matrices entering Eq. (30).

We shall get back to this shortly.

2.5. Time discretization

The Chebyshev–Fourier collocation method leads to a semi-discrete set of differential algebraic equations

(DAE) of the generic form

dx
dt

= N(x, z) +Lx, (33a)

0 = G(x, z), (33b)

where N is the nonlinear operator acting on the differential state vector x =
[
uϕ, ω,T

]
and the algebraic state

vector z =
[
ψ,u

]
, L is the linear operator acting upon x and G is the linear operator relating x and z. According

to Ascher and Petzold (1998) this defines a semi-explicit DAE of order 1. We will solve it in time using methods

developed for ordinary differential equations (ODEs), ensuring that constraint (33b) is satisfied through a standard

solution technique to be detailed below.

We resort to implicit–explicit methods that treat Lx and N(x, z) implicitly and explicitly, respectively. There

are different families of IMEX methods, and here we are interested in both IMEX multistep and IMEX multistage

methods (Hairer et al., 1993; Ascher et al., 1995; Hairer and Wanner, 1996; Ascher et al., 1997; Kennedy and

Carpenter, 2003).
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2.5.1. Solution technique

Before we get to the details of the multistep and multistage methods, let us describe the backbone of our

solution technique, in particular how we deal with boundary conditions and the DAE when advancing in time. The

former are enforced through the implicit solves, while the latter is taken care of by means of a block-matrix solve.

To update the field values and advance in time, our approach is the following: the equations for mean flow (30a)

and temperature (30c) are solved first, as their implicit components are not coupled with the vorticity or the stream-

function equations (Eq. (30b) and Eq. (30d)). This comes down to inverting a linear system of the form

(αM − βL) y = r.h.s.

where the coefficients α and β are both positive real numbers that depend on the time integrator, y stands for the

vector containing the Ns coefficients of the Chebyshev expansion of mean flow or temperature, and the right-hand

side r.h.s contains a mix of linear and nonlinear components. The first and last rows of the Ns ×Ns matrix to invert,

αM − βL, are modified in order to enforce the two boundary conditions that apply either on temperature or on the

mean flow at s = si and s = so, respectively (see e.g. Julien and Watson, 2009, Table 4). The corresponding entries

of the r.h.s vector are modified accordingly and set to 0 or 1, depending on the boundary condition.

Next, we update the vorticity and the non-zonal streamfunction, Eq. (30b) and Eq. (30d), for each Fourier

mode m > 0. We do so by inverting the following 2Ns × 2Ns block-matrix, αM − βLω,m 0

M −Lωψ,m


 yω,m

yψ,m

 =

 r.h.s.ω

0


The first half of the vector [yω,m, yψ,m]T , yω,m, is the updated vorticity, while its second half is the updated stream-

function, yψ,m. Each quadrant in the above equation has size Ns × Ns. The top-left quadrant originates from the

time discretization of the vorticity equation. The right-hand side r.h.sω contains a mix of linear and nonlinear

components, including the contribution of the updated temperature field via the buoyancy term. The constraint

(30d) is enforced by means of the second row of the block-matrix system. The boundary conditions are enforced

for the streamfunction, by modifying the first, Ns-th, Ns + 1-th and last row of the block matrix (Glatzmaier, 2013,

§10.3.2). The first Ns entries of these rows are set to 0, while the remaining Ns entries are modified in order enforce

the homogeneous Dirichlet and Neumann conditions for the streamfunction, see e.g. Table 4 in Julien and Watson

(2009). Accordingly, the first, Ns-th, Ns + 1-th and last entry of the right-hand side vector [r.h.s.ω, 0]T are set to 0.

See also (Gastine, 2019, his Fig. 1a,) for a graphical illustration of this implementation.

Finally, the updated mean flow and non-zonal streamfunction (which satisfy their respective boundary con-

ditions, given by Eqs. (10-11), allow us to evaluate the velocity components (Eq. (30e)), thereby permitting the

evaluation of the nonlinear terms N(x) necessary for the next update.

We shall now describe the multistep and multistage time discretization methods.

2.5.2. IMEX multistep methods

Multistep methods rely on a polynomial interpolation in time. Let K be the number of steps of an IMEX

multistep method, with K ≥ 1. Let ∆t denote the timestep size and xi denote the approximate solution for the

differential state vector at time ti = i∆t, leaving aside the algebraic z, which is updated alongside x following the
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solution technique detailed above. Then, for fixed ∆t, following Ascher et al. (1995), a general linear multistep

IMEX method applied to Eq. (33a) can be written as

(1 − ∆tc−1L) xi+1 =

K−1∑
j=0

[
a jxi− j + ∆tb jN(xi− j) + ∆tc jLxi− j

]
, (34)

where c−1 , 0. It is noteworthy that a K-step IMEX method cannot have order of accuracy greater than K (Ascher

et al., 1995). The IMEX multistep methods we use for this study have the same order as the number of steps K.

In this work we shall consider multistep methods of order 2, 3 and 4: the popular Crank-Nicolson Adams-

Bashforth method of order 2 (CNAB2) already seen in the introduction, and the semi-implicit BDF (SBDF)

schemes given e.g. in Ascher et al. (1995) of order 2, 3 and 4. The three SBDF schemes apply a backward

differentiation formula to the implicit part, and an extrapolation formula to the explicit part.

In our convergence analysis, ∆t will remain fixed. We shall activate variable time-step for the equilibrated

regime of the most turbulent of our reference cases to be reached (section 3.1), and for the stability analysis of

section 3.6. The vectors of coefficients a, b and c for the four selected schemes are given in Appendix A.

2.5.3. IMEX multistage methods

IMEX multistage methods rely on quadrature rules to evaluate intermediate stages of x (and z) between discrete

times ti and ti+1. The multistage methods of interest for this work are often referred to as IMEX-RK (for IMEX

Runge–Kutta) methods, which indicates that they involve a diagonally implicit Runge-Kutta (DIRK) and an explicit

Runge-Kutta (ERK) schemes (Ascher et al., 1997). Unlike multistep methods, their stability region can increase

slightly with their order.

Let K denote the number of internal stages of an IMEX-RK method. At each substage k ∈ {1, . . . ,K} of an

IMEX-RK scheme applied to Eq. (33a), one has

(1 − ∆taI
kkL)yk = xi + ∆t

k−1∑
j=1

aE
k jN(y j) + ∆t

k−1∑
j=1

aI
k jLy j, (35)

where the coefficients aI
k j and aE

k j define two matrices for the DIRK and ERK schemes, AI and AE , respectively.

The first stage is defined by y1 = xi. At each stage, the algebraic variables z are updated alongside the differential

variables following the strategy detailed in section 2.5.1.

The DIRK and ERK components can be independently summarized using Butcher tableaux (Hairer et al., 1993,

§ II.1)

0 0

cE
2 aE

21 0
...

...
. . .

. . .

cE
K aE

K1 · · · aE
KK−1 0

bE
1 · · · · · · bE

K

,

0 0

cI
2 aI

21 aI
22

...
...

. . .
. . .

cI
K aI

K1 · · · aI
KK−1 aI

KK

bI
1 · · · · · · bI

K

. (36)

The design of an IMEX-RK method implies a set of constraints on the coefficients AI , bI , cI , AE , bE , cE , the

number of which depends on the sought order of accuracy. Extra constraints can be added to accommodate discrete
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algebraic equations (Boscarino and Russo, 2009). According to the classification by Boscarino (2007), the schemes

considered in this study belong to the CK type, as the first row of the implicit matrix AI contains zeros. There

exists schemes that have non-zero entries in this row, which belong to the so-called type A (Boscarino, 2007), the

first examples of which were introduced by Pareschi and Russo (2005); we do not investigate such schemes in this

study.

In addition, all the schemes considered in this work have cE = cI , which is why cE
1 = cI

1 = aI
11 = 0 above.

Also, note that in practice, cE and cI are not required for thermal convection which has no explicit time-dependent

forcing and is therefore an autonomous process.

In spite of what Eq. (35) suggests, the IMEX-RK methods we analyze in this study do not necessarily comprise

the same number of implicit and explicit stages, K I and KE . This is handled by setting the appropriate columns of

AI , and entries of bI (or of AE and bE) to zero. The number of linear inversions per time step, nI , is equal to K I

provided aI
k1 = 0,∀k ∈ 1, . . . ,K I .

DIRK schemes are called “stiffly accurate” if

bIT
= eT

KAI , (37)

where eK = [0, . . . , 0, 1]T . Following Boscarino et al. (2013), we say that a IMEX-RK scheme is globally stiffly

accurate (GSA) if bIT
= eT

KAI and bET
= eT

KAE , and cI
K = cE

K , which implies that the updated state vector is

identical to the last internal stage value of the scheme. For non-GSA schemes, the updated differential state vector

is assembled as

xi+1 = xi + ∆t
K∑

j=1

bE
jN(y j) + ∆t

K∑
j=1

bI
jLy j. (38)

If the chosen scheme requires such an assembly then further work is needed to ensure that the updated vorticity

meets condition (12) , see section 2.5.4 below.

We follow e.g. Boscarino et al. (2013) and identify each IMEX-RK scheme by the initials of the authors (if

they are no more than 3), and three numbers (K I , KE , r) denoting, respectively, the number of implicit and explicit

stages, and the theoretical order of accuracy. Exceptions to this rule are DBM553 from Vogl et al. (2019) and

BHR553 from Boscarino and Russo (2009) where we kept the initials of the original name; and PC432 which

is a second order three stage predictor/corrector scheme constructed using the explicit scheme by Jameson et al.

(1981) for its explicit component and a Crank-Nicolson for its implicit counterpart (see Appendix B for details of

its Butcher tableaux).

In this work we investigate the properties of 22 IMEX-RK schemes, whose properties are summarized in

Table 1.

2.5.4. Treatment of IMEX-RK methods with an assembly stage

IMEX-RK methods which are not stiffly accurate require the assembly stage Eq. (38) to be performed. The

assembly of the temperature and mean flow is straightforward, as it is a linear combination of nonlinear and

linear terms evaluated at the substages. Applying the same linear combination for the vorticity, however, does not

guarantee that the boundary conditions (12) are properly enforced. Indeed, the assembly stage does not lend itself

to the solution method outlined in section 2.5.1 for the vorticity and streamfunction, which allows one to bypass

the explicit enforcement of the boundary conditions on vorticity.
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Table 1: Multistage IMEX-RK methods used in this study. The leftmost “Scheme” column defines the scheme notation, as used in the main

text, tables and figures. KI is the number of stages of the diagonally implicit Runge–Kutta (DIRK) component. KE is the number of stages of

the explicit Runge–Kutta (ERK) component. The next column contains the expected order of accuracy o of the combined IMEX-RK scheme.

nI is the number of linear solves for each time-step, which differs from KI if aI
k1 , 0 ∀k. The star indicates that the scheme involves several

matrices because of the changes on the diagonal of the implicit Butcher table (non S-DIRK schemes). S. A. indicates whether the ERK or

DIRK part of the method is stiffly accurate, and bI = bE indicates if the DIRK and ERK methods have the same solution weights to compute

the assembly. Storage denotes the number of state vectors that need to be stored simultaneously for the time advance of one physical quantity.

The last column provides the relevant reference augmented with a section or paragraph number, and possibly the name of the scheme as it

appears in the reference.

Scheme K I KE o nI
S. A. S. A.

bI = bE storage Reference
DIRK ERK

ARS222 2 2 2 2 X X X 4 Ascher et al. (1997), §2.6

ARS232 2 3 2 2 X X X 6 Ascher et al. (1997), §2.5

BPR442 4 4 2 4 X X X 8 Boscarino et al. (2017), Eq. (76)

PC432 4 3 2 3 X X X 7 Jameson et al. (1981), Eq. (4.18); Schaeffer (priv. comm.)

SMR432 4 3 2 3? X X X 7 Spalart et al. (1991), App. A

ARS233 2 3 3 2 X X X 6 Ascher et al. (1997), §2.4

ARS343 3 4 3 3 X X X 8 Ascher et al. (1997), §2.7

ARS443 4 4 3 4 X X X 8 Ascher et al. (1997), §2.8

BHR553 5 5 3 4 X X X 11 Boscarino and Russo (2009), App. 1, BHR(5,5,3)

BPR533 5 3 3 4 X X X 8 Boscarino et al. (2013), §8.3, BPR(3,5,3)

BR343 3 4 3 3 X X X 8 Boscarino and Russo (2007), §3, MARS(3,4,3)

CB443 4 4 3 3? X X X 9 Cavaglieri and Bewley (2015), §4, IMEXRKCB3f

CFN343 3 4 3 3 X X X 8 Calvo et al. (2001), Eq. (8) and (10)

DBM553 5 5 3 4 X X X 11 Vogl et al. (2019), App. A, DBM453; Kinnmark and Gray (1984)

KC443 4 4 3 3 X X X 9 Kennedy and Carpenter (2003), App. C, ARK3(2)4L[2]SA

LZ543 5 4 3 4? X X X 9 Liu and Zou (2006), §6, RK.3.L.1

CB664 6 6 4 5? X X X 13 Cavaglieri and Bewley (2015), §5, IMEXRKCB4

CFN564 5 6 4 5 X X X 12 Calvo et al. (2001), Eq. (14); Hairer and Wanner (1996), Eq. (6.16)

KC664 6 6 4 5 X X X 13 Kennedy and Carpenter (2003), App. C, ARK4(3)6L[2]SA

KC774 7 7 4 6 X X X 15 Kennedy and Carpenter (2019), App. A, ARK4(3)7L[2]SA1

LZ764 7 6 4 6? X X X 13 Liu and Zou (2006), §6, RK.4.A.1

KC885 8 8 5 7 X X X 17 Kennedy and Carpenter (2019), App. A, ARK5(4)8L[2]SA2

To make sure that the vorticity built at the assembly stage is consistent with the boundary conditions, we follow

the strategy outlined by Johnston and Doering (2009).

We begin by assembling a first guess of the final vorticity y?ω,m for each mode m > 0 by means of Eq. (38).

Using that intermediate value, we compute yψ,m by inverting

Lωψ,myψ,m = My?ω,m, (39)

having modified the first and last lines of Lωψ,m so that ψm = 0 at s = si and s = so.

The knowledge of yψ,m makes it possible to construct a local interpolant in the vicinity of the two walls, Lw,

that is constrained by the values of ψm at the first J + 1, say, Chebyshev-Gauss-Lobatto points, ψ j
m (that include the

point on the wall) and the extra requirement that ∂ψm/∂s = 0 on the wall as well. For the inner wall, s = si, the
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interpolant reads

Lw(s) =

J∑
j=0

ψ
j
m` j(s) − (s − si)`0(s)

 J∑
j=0

ψ
j
m`
′
j(si)

 , (40)

with a similar expression for the outer wall. In this expression, ` j is the Lagrange polynomial attached to the j-th

point away from the wall, and `′j is its first derivative. This local interpolant allows us to compute the vorticity on

the inner and outer walls,

ωm(si) = −
d2Lw

ds2

∣∣∣∣∣∣
s=si

= −

J∑
j=0

ψ
j
m

[
`′′j (si) − 2`′j(si)`′0(si)

]
, (41)

ωm(so) = −
d2Lw

ds2

∣∣∣∣∣∣
s=so

= −

J∑
j=0

ψ
j
m

[
`′′j (so) − 2`′j(so)`′0(so)

]
, (42)

where `′′j denotes the second derivative of ` j. We form a vector of nodal values of vorticity whose interior values

are based on y?ω,m and whose boundary values are the ones we just computed based on the local interpolant Lw. We

finally determine yω,m by applying the inverse of M to this vector of nodal values. In our experiments, we set the

value of J to 14.

2.5.5. Fully explicit RK methods

In addition to the IMEX multistep and IMEX-RK multistage techniques detailed above, we found it useful

sometimes to consider two well-known fully explicit methods, the explicit Runge-Kutta methods of order 2 and 4,

RK2 and RK4 (e.g. Canuto et al., 2006, Eqs. D.2.15 and D.2.17). The solution technique that these methods imply

is based on the technique laid out for IMEX-RK methods (no linear solve, except at the assembly stage).

2.6. Implementation and validation

The code for solving the problem using the aforementioned pseudospectral methods and time-stepping strate-

gies was written from scratch in the Fortran programming language. The code contains several modules and

subroutines where each module has specific dependencies. The fast Fourier and discrete cosine transforms resort

to the FFTW3 library (Frigo and Johnson, 2005). The matrix equations are solved using standard matrix solvers

available in the LAPACK routines dgetrf and dgetrs (Anderson et al., 1999). The dgetrf routine is used for

computing the LU factorization and the dgetrs routine is used for solving the system using the factored matrix

obtained by using the dgetrf routine.

To benchmark the code against peer-reviewed results, we compare it with a reference solution obtained by

Alonso et al. (2000). They performed their numerical simulations using spectral methods with a fixed radius ratio

si/so = 0.3 and Prandtl number Pr = 0.025 (which corresponds to liquid Mercury Hg), and the second-order stiffly

stable time integrator by Karniadakis et al. (1991). In table 2 we list the dependency of the equilibrated Nusselt

number Nu = Nuo = Nui to the Rayleigh number reported by Alonso et al. (2000) and obtained here using the

ARS443 IMEX-RK time integrator, together with Ns = 32 and Nm = 192. Furthermore, for the range of Rayleigh

numbers shown in table 2, we observe an oscillation of the solution about the periodic azimuthal direction, which

is a characteristic of low Prandtl number fluids. For Ra = 6500, the frequency of oscillation we find is f = 5.15

which exactly matches value published by Alonso et al. (2000). Thus we ascertain that the code was benchmarked

and ready to be used for the study of various time integration methods.
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Ra Nu − 1 Nu − 1

(ref.) (this study)

1892 0.005 0.005

2510 0.163 0.162

3268 0.383 0.383

4013 0.544 0.544

4106 0.562 0.561

4500 0.617 0.618

5000 0.679 0.678

5500 0.733 0.733

6000 0.783 0.783

6500 0.827 0.827

7000 0.871 0.869

Table 2: Nusselt number Nu obtained for Pr = 0.025, si/so = 0.3 and an increas-

ing Rayleigh number Ra, by Alonso et al. (2000) (the reference) and with the code

developed for this study.

3. Results

We begin by a presentation of the 11 cases studied in this work, followed by the analysis of the convergence

properties of the time schemes we investigated. We investigate the likely causes of the order reduction observed

for some configurations, and finally weigh these findings against a more practical estimate of the computational

efficiency.

3.1. Cases studied

All cases considered have a radius ratio si/so set to 0.35. They are initialized with a temperature perturbation

of localized compact support as introduced by Gaspari and Cohn (1999), of width 0.1/
√

2 and amplitude 10−4.

The properties of the cases are summarized in table 3. This table comprises the input control parameters Pr and

Ra, the Reynolds number Re (Eq. (17)), Nusselt number at the outer boundary (Eq. (16)) and the temporal averages

of the buoyancy input power (Eq. (21)), and heat loss by viscous dissipation (Eq. (20)). In addition, we provide

in this table the spatial discretization parameters Ns and Nm introduced in the previous section. Unless otherwise

stated, a given case was always run for the same (Ns,Nm) pair. That pair was chosen to make spatial discretization

error negligible against temporal discretization error. We chose to run 3 cases with a Prandtl number equal to

0.025, which corresponds to liquid metals, 7 cases with Pr equal to 1, which corresponds to a commonly taken

value in numerical simulations, and one case with Pr = 40, to have at least one situation in the large Pr limit. The

numbering in table 3 was adopted to follow the increase of the Reynolds number. Case 0 is extremely laminar,

while case 10 is our most turbulent case with Re > 104. Our goal is to exercise the time schemes over a broad

range of regimes.

For this radius ratio, and regardless of the value of the Prandtl number considered (0.025, 1, 40), the most

unstable convective mode has a threefold symmetry in the periodic azimuthal direction, that is to say that the value

of the critical wavenumber mcrit = 3. The corresponding value of the critical Rayleigh number is Racrit = 1768.

In the range of forcing that we cover, the threefold symmetry is a persisting feature. When increasing the level of

turbulence, the energy found in other wavenumbers increases, by virtue of the larger importance taken by turbulent

16



Table 3: Properties of the 11 convection cases investigated in this study. From left to right: Case number, Prandtl number (input), Rayleigh

number (input), Reynolds number (output), Nusselt number at the outer boundary (output), time average buoyancy input power (output), time

average heat loss by viscous dissipation (output), and spatial resolution used.

Case Pr Ra Re Nuo 〈P〉 〈Dν〉 (Ns,Nm)

0 1 2 ×103 2.87 1.16 2.03 × 103 −2.03 × 103 (36, 36)

1 1 1 ×104 18.85 2.51 9.29 × 104 −9.29 × 104 (48, 48)

2 40 1 ×107 26.00 12.63 4.39 × 105 −4.39 × 105 (256, 256)

3 1 1 ×105 77.33 4.64 2.22 × 106 −2.22 × 106 (64, 64)

4 1 1 ×106 279.76 7.70 4.06 × 107 −4.06 × 107 (96, 128)

5 0.025 1 ×104 513.44 2.07 1.07 × 108 −1.07 × 108 (64, 192)

6 1 1 ×107 943.12 13.17 7.33 × 108 −7.33 × 108 (128, 160)

7 0.025 1 ×105 2023.52 3.97 2.89 × 109 −2.89 × 109 (128, 320)

8 1 1 ×108 3462.47 23.30 1.34 × 1010 −1.34 × 1010 (256, 256)

9 0.025 1 ×106 6835.69 6.56 5.36 × 1010 −5.37 × 1010 (160, 384)

10 1 1 ×109 13320.12 44.22 2.60 × 1011 −2.60 × 1011 (384, 384)

transport of momentum and heat. This is shown in Figure 1, which displays the time averaged kinetic energy

spectra of the 11 cases. The kinetic energy in each Fourier mode m is given by

Ek(m = 0) = π

∫ so

si

uϕ
2sds,

Ek(m > 0) = 2π
∫ so

si

(
|usm|

2 + |uϕm|
2
)

sds.

Note that for case 10 (the most turbulent case) the azimuthal truncation (the value of Nm) chosen enables a 106

factor to be achieved between the highest energy level (for m = 3) and the lowest energy level (around m = Nm).

We use a similar criterion to set the truncation in radius, Ns. How stiff are these cases numerically? We shall

see below that stiffness, as measured by the disparity between linear and nonlinear time scales, remains moderate

across the region of parameter space explored by the cases, with a stiffness parameter that varies between 10−3 and

10−5 (see section 3.5 and Table 4 below for more details).

We now consider in Fig. 2 a snapshot of the solution obtained for cases 2 and 10. In the latter case, the

temperature field (Fig. 2d) shows three major plumes originating from the hot inner boundary, which reflect the

maximum energy at m = 3 shown in Fig. 1. Accordingly, the vorticity in Fig. 2c exhibits a large scale m = 3

overturning circulation, with pockets of intense vorticity found in the eyes of the large-scale circulation. Note that

in this set-up the plumes are anchored at the inner boundary, and that time-dependency appears mostly in the form

of undulations occurring at their tip. In contrast, case 2, which corresponds to a more viscous fluid, and a lower

level of forcing, is more laminar; its vorticity is notably concentrated along the edges of the large-scale convective

cells (Fig. 2a). The temperature field shown in Fig. 2b appears symmetrical with regard to the top and bottom

boundary layers, which are destabilized by similar cold or hot plumes displaying a mushroom head on top of a thin

conduit.
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Figure 1: Time averaged kinetic energy versus az-

imuthal wavenumber m for the 11 configurations con-

sidered in this study. Every third mode shown for clar-

ity (m = 0, 3, 6, . . . ) for cases 0, 1, 3, 4 and 6. The scale

on both axes is logarithmic. Note that cases 0, 1 and 3

have zero energy in the axisymmetric m = 0 mode.

(a) Case 2, vorticity ω (b) Case 2, temperature T

(c) Case 10, vorticity ω (d) Case 10, temperature T

Figure 2: Solution snapshots. a: vorticity field, with superimposed velocity streamlines, for case 2 (Ra = 107, Pr = 40). b: temperature

field, for case 2 and at the same discrete time. c: vorticity field, with superimposed velocity streamlines, for case 10 (Ra = 109, Pr = 1). d:

temperature field, for case 10 and at the same discrete time.
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3.2. Convergence analysis

Our analysis of the convergence of the 26 schemes of interest in this study follows this procedure: for each

case, we compute a reference simulation using the 4th order SBDF4 IMEX multistep scheme, using a time-step

size ∆tr small enough in order to enable a convergence analysis that spans two orders of magnitude in terms of ∆t.

To equilibrate the solution prior to using ∆tr, we activated the possibility of a variable ∆t for the high-resolution

cases. We select a time window [ts, te] that typically covers a sizeable fraction of a convective turnover time. The

reference state vector at t = ts is taken as the initial condition for the forward integration up to t = te, performed

with each of the 26 schemes. The accuracy of the solution at t = te is assessed using the L2 norm. For instance,

the error in ω is given by

eω =

√∫∫
A
[ω(s, ϕ, te) − ωr(s, ϕ, te)]2sdsdϕ,

where the superscript r corresponds to the reference solution. In the following, unless otherwise stated, we will

systematically use this absolute definition of error.

We begin by a global inspection of the error behavior for the two cases we already looked at, cases 2 and

cases 10, whose convergence results are shown in Figure 3. As explained above, we tried to assess the convergence

properties by having at least two orders of magnitude in the range of ∆t; this is sometimes barely achieved, in

particular for IMEX multistep methods SBDF3 and SBDF4 whose stability domain is narrower than IMEX-RK

schemes of the same order. Schemes of nominal order 2 systematically display a higher error level than schemes

of order 3 and beyond, and never reach the plateau of numerical roundoff error in the range of time step sizes that

we considered. Two exceptions are the ARS232 scheme by Ascher et al. (1997) and SMR432 scheme by Spalart

et al. (1991) that exhibit a higher convergence rate; their convergence curves are in fact mixed with those of the

schemes of nominal order 3. These schemes aside, we also note that at any given ∆t there can be a factor of 10

difference between the worst (in this sense) order 2 scheme and the best one - PC432 is more accurate by one

order of magnitude than SBDF2 or CNAB2. Order 3 schemes find themselves sandwiched between order 2 and

order 4 schemes. Their convergence rate is such that the roundoff error plateau is reached for some schemes, for

all fields (T , us and ω) for case 2 and all fields but the vorticity for case 10. BR343, BHR553 and ARS343 appear

as the most accurate third-order IMEX-RK schemes, especially in the turbulent case 10. For the latter (ARS343)

this makes sense as its explicit component is designed to match the stability properties of the RK4 scheme (Ascher

et al., 1997, §2.7); see also Appendix D. For case 2, comparison of the behavior of eus of IMEX-RK schemes

of theoretical order 3 with that of SBDF3 highlights that some do not exhibit third-order accuracy. The 4th-order

IMEX-RK schemes display overall similar error levels, below the lowest level attained by third-order schemes, this

being marginally true for CFN564. For a given ∆t, if one considers the temperature T (Figure 3, top panel) 4th-

order IMEX-RK schemes are more accurate by two orders of magnitude than the SBDF4 multistep scheme. The

situation is not so clear when one considers the error in the vorticity. There SBDF4 displays a high convergence rate

towards the plateau, whereas 4th order IMEX-RK schemes do not show a clear trend. In fact, the sole scheme that

appears to compete with SBDF4 is BHR553. We will return to this later. For now, we complete this preliminary

overview by noting that our sole 5th order scheme, KC885, is as expected more accurate than any other scheme

considered, with the exception of SBDF4 and BHR553 being more accurate with regard to the vorticity for case 2,

over a limited range of ∆t. Note finally that the fully explicit schemes that we have at our disposal (RK2 and RK4)
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Figure 3: Convergence of the L2 error for the temperature field (top panels), the cylindrical radial velocity us (middle panels) and the vorticity

ω (bottom panels) for Case 2 (left column) and Case 10 (right column) as a function of the timestep size ∆t. The markers correspond to the

class of IMEX, with squares denoting IMEX multistep and circles IMEX-RK multistage schemes. The linestyles highlight the theoretical order

with dashed lines for second order, dotted lines for third order, solid lines for fourth order and dash-dotted lines for fifth order.
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a given case too). Three schemes are considered: SBDF2, SBDF4 and KC664. The darker the color of a symbol, the higher the case number.

are unstable over the range of ∆t investigated here for cases 2 and 10. This is due to the stricter limits imposed on

∆t, which are such that stability coincides with reaching the numerical roundoff error plateau. Case 3 provides a

configuration for which fully explicit schemes can be studied; the corresponding convergence curves are provided

in Appendix C).

In summary, multistep schemes display the expected convergence rate, and an error level overall higher than

IMEX-RK schemes of the same order. To get a better understanding of the error behavior across the 11 cases, we

now show in Fig 4 how it evolves for the IMEX-RK KC664 scheme of Kennedy and Carpenter (2003) and the two

multistep schemes SBDF2 and SBDF4. Despite the fact that the error level and admissible time step values vary

across the 11 cases, we collapse the information by normalizing the error of a given scheme for a given case by its

maximum value, and the timestep ∆t by the value it has when this maximum value is obtained. In addition symbols

are represented such that the darker the symbol, the larger the case number. Note also that prior to collapsing the

data, we got rid of those unwanted points located on a plateau, such as those present in Fig. 3 for cases 2 and 10.

In the log-log representation of Fig. 4, we first observe that the behavior of SBDF2 and SBDF4 is well captured

across the cases by two straight lines, of slopes 2 and 4, respectively, for the three fields of interest, T , us and

ω. This illustrates nicely that they indeed conform to their expected convergence rate over the range of regimes

studied. KC664, on the contrary, displays some scatter, lighter symbols (laminar cases) being overall further apart

from the 4th order reference defined by SBDF4 than darker symbols (turbulent cases). This is particularly striking

for the vorticity field, more moderate for us, and even less pronounced for T . For cases 9 and 10 (darker symbols)

the vorticity appears to transition from 4th order to 2nd order as the value of the normalized time step decreases.

This is evidence of order reduction, to an extent that depends strongly on the regime considered.
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3.3. Order reduction

We now quantify order reduction for all cases and the 22 IMEX-RK schemes considered. To assess the order

of convergence of a scheme µ, we consider the two largest values of ∆t used in the convergence analysis and seek

a fit for the error of the form

e(∆t) ∝ ∆t µ,

with µ the sought order, that depends on the scheme and the case, and the field of interest (T , us and ω). The

two largest values of ∆t are admittedly not representative of the asymptotic behavior of a scheme when ∆t → 0.

Several methods display more than one scaling through the range of tested time step sizes (recall Fig. 4 above),

which makes it difficult to correctly define the order of convergence. This definition of the order is not perfect, as

it is biased towards runs that favor the largest integration length over accuracy, for a given number of time steps

performed. The 726 values of µ that we estimated are displayed in Figure 5. To try and synthesize the information,

we additionally introduce a χ2 measure of order reduction, defined by

χ2 =
∑
cases

(
µm − µt

µt

)2

,

where the measured order µm is set to the theoretical order µt when superconvergence is observed, i.e. when the

measured order exceeds the theoretical order. Values of χ2 are reported in Figure 6. Figure 6 reveals that order

reduction, when it affects a scheme, is more severe for ω than it is for us, which is itself more severe than the order

reduction that impacts T , if it impacts T at all.

Overall, we observe in Fig. 5 that IMEX-RK order 2 schemes are immune to order reduction, with SMR432

and ARS232 showing superconvergence, in particular for high Reynolds number cases. Third-order schemes show

a variety of behaviors. Two schemes stand out as being particularly impacted by order reduction: CB443 and

DBM553. On the contrary, BHR553 is immune to order reduction, and occasionally superconverges, as also

reported by e.g. Grooms and Julien (2011). Fourth-order schemes are all prone to order reduction, especially

CB664. Order reduction manifests itself mostly for our most laminar cases, from 0 to 5, and appears to be stronger

in the most laminar cases. This phenomenon is a well-known issue that can arise due to two factors: the discrete

algebraic equation (Eq. (33)), and the stiffness of the problem (consult Boscarino, 2007, for a thorough theoretical

investigation of this issue). As previously noticed by e.g. Kennedy and Carpenter (2003) in their analysis of order

reduction in a convection-diffusion-reaction problem, both differential variables (T , ω here) and algebraic variables

(us here) are impacted.

3.4. An attempt to assess the impact of the DAE on order reduction

We try to estimate to which extent order reduction can be ascribed to the DAE by considering the reduced

advection-diffusion problem

∂T
∂t

= −∇ · (uT ) +
1
Pr
∇2T, (43)

subject to the same boundary conditions for temperature, and the same procedure for spatial discretization as

detailed above. To cover the 11 cases investigated, we specify u by extracting the velocity from a random snapshot

of the full problem for each case, and take the temperature field from that snapshot as the initial condition. We

use this strategy in order to retain the physical properties of the solution to the full problem (in particular the level
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Figure 5: Measured order of convergence for the 11 cases and 22 IMEX-RK time integrators, based on the error impacting the temperature T

(left panel), cylindrical radial velocity us (middle panel) and vorticity ω (right panel). Thick horizontal lines highlight integer values of 2, 3, 4

and 5. The 22 schemes are listed to the right, and their color reflects the theoretical order of convergence.
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Figure 6: χ2 measure of order reduction for the 22 IMEX-RK schemes, for the temperature T (left panel), cylindrical radial velocity us (middle

panel), and vorticity ω (right panel). A value of 0 means no order reduction over all cases considered in this study.
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of turbulent transport) while getting rid of its algebraic component. Reference solutions to this reduced problem

are produced via its time integration with the SBDF4 scheme using, again, a time step size small enough to allow

convergence properties to be determined over two orders of magnitude, for each case. The temperature field T is

the only field that remains to evaluate accuracy and convergence properties. Estimated orders are now presented

in Figure 7, noting that the findings that we present are not sensitive to the randomly chosen snapshot. Inspection

of Figures 7 reveals that order reduction persists, but to a much lesser extent; there is less scatter in Fig. 7 than in

the left panel of Fig. 5. In fact order reduction is now restricted to well-identified cases, namely cases 0, 5 and 7,

for which the curves of Fig. 7 tend to globally dip. Schemes that exhibit occasional superconvergence (SMR432,

BHR553, ARS232) do not superconverge for those cases. Schemes of order 3 and 4 that underperform for the

full problem (most notably CB443, DBM553 and CB664) are now on par with other schemes of order 3 and 4.

In summary, using this heuristic method of comparing orders of convergence estimated for a simplified, DAE-

free problem against the full problem, we find that a significant fraction of the order reduction that impacts both

differential and algebraic variables can be ascribed to the DAE.

3.5. An attempt to assess stiffness and its relationship with the observed order reduction

We now try to assess the level of stiffness of the problem we are interested in. As opposed to standard systems

of ODEs for which the stiffness is set by means of an input control parameter, such as those analyzed e.g. by

Boscarino and Russo (2009), in our case it is the combination of the physical control parameters (Ra,Pr) and the

spatial properties of the 2D mesh that sets the level of stiffness, and makes its definition less straightforward.

As seen above, the differential component of the problem at hand reads schematically

dx
dt

= N(x, z) +Lx, (44)
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where x is the differential state vector, andN andL are the nonlinear and linear operators, respectively. To estimate

the stiffness we consider the ratio

ε(t) =
τL

τN(t)
, (45)

where τN and τL are the smallest time scales associated with the nonlinear and linear terms, respectively. For

Boussinesq thermal convection, nonlinearities reflect the transport of momentum and heat by fluid flow, while

linearities arise from the diffusion of those same fields. The nonlinear time scale τN varies along the dynamical

trajectory x(t). On the contrary, the linear time scale τL corresponds to the most negative real eigenvalue of L,

and is set once and for all upon prescription of the Prandtl number and the grid properties. A stiff situation occurs

when τL � τN, or ε � 1, which is a strong incentive for an implicit treatment of the linear term Lx.

A first option to estimate τN and τL is to follow the logic of e.g. Grooms and Julien (2011) by writing in

dimensionless form

τN = min
grid

{
hs

|us|
,

hϕ
|uϕ|

}
, (46)

τL =
Pr

1 + Pr
min
grid

{
h2

s , h
2
ϕ

}
, (47)

where mingrid is the minimum over the physical s − ϕ grid, and hs and hϕ are the space-varying grid spacings in

the s and ϕ directions, respectively. The nonlinear time scale is estimated based on a local measure of transport

in the two directions of space, while the linear time scale assumes that the most negative eigenvalues of the linear

operator correspond to an effective diffusivity equal to κ+ ν, as suggested by Eq.(24) of Grooms and Julien (2011).

We list the nonlinear and linear time scales determined for the 11 cases in the leftmost two columns of Table 4,

noting that the value of τN is, for each case, the average value of τN(t) found for 5 independent snapshots. The

corresponding stiffness parameter, ετ, spans a moderate range of two decades. The increase of turbulence and

reduction of τN goes alongside an increase in the resolution that induces a concomitant decrease of τL. We are

in what authors currently refer to as an intermediate range of stiffness (Kennedy and Carpenter, 2019), that can

indeed be detrimental to the order of convergence of some IMEX-RK methods.

Our second estimate of stiffness compares the maximum time-step allowed for stable computation using the

ARS343 IMEX-RK method, ∆timex
max , with the maximum time step ∆texpl

max allowed if one resorts to the fully explicit

RK4 integrator. By considering the ratio

ε∆t =
∆texpl

max

∆timex
max

,

we have an estimate of the stiffness based on an indirect probing of the stability regions of the timeschemes

considered. As a matter of fact, the IMEX-RK scheme chosen here is ARS343 because the stability region of its

explicit component matches by design that of RK4 (Ascher et al., 1997, §2.7); therefore we should not expect an

offset of ε∆t by an unwanted factor. Values of ε∆t are tabulated alongside values of ετ in Table 4. They fall within a

factor of 3 within the values of ετ, in a non-systematic way.

The third and final option we consider is to investigate directly the eigenvalues of the operators at hand. In the

vicinity of a point x?(t?), we approximate N by its tangent linear operator N ′ such that

N(x? + δx) = N(x?) +N ′(x?)δx. (48)
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Case τN τL ετ ε∆t ελ ελ (red.)

0 9.14 10−3 2.06 10−6 2.22 10−4 1.97 10−4 2.84 10−4 2.92 10−4

1 8.92 10−4 6.23 10−7 6.99 10−4 8.14 10−4 1.69 10−3 1.05 10−3

2 5.99 10−5 1.40 10−9 2.34 10−5 3.66 10−5 3.50 10−5 1.40 10−3

3 1.55 10−4 1.93 10−7 1.25 10−3 2.99 10−3 4.28 10−3 2.65 10−3

4 1.85 10−5 3.74 10−8 2.02 10−3 3.59 10−3 5.93 10−3 4.97 10−3

5 1.07 10−5 9.42 10−9 8.78 10−4 7.94 10−4 1.36 10−3 4.27 10−4

6 4.10 10−6 1.17 10−8 2.86 10−3 6.13 10−3 9.18 10−3 7.99 10−3

7 1.39 10−6 5.71 10−10 4.10 10−4 6.87 10−4 6.98 10−4 2.80 10−4

8 7.42 10−7 7.20 10−10 9.71 10−4 3.04 10−3 3.54 10−3 3.47 10−3

9 2.26 10−7 2.32 10−10 1.03 10−3 2.05 10−3 1.78 10−3 1.06 10−3

10 1.35 10−7 1.41 10−10 1.05 10−3 1.57 10−3 3.82 10−3 4.14 10−3

Table 4: Three different estimates of the stiffness of the problem at hand, for all cases considered in this study. The rightmost column gives an

estimate of stiffness for the problem reduced to the advection–diffusion equation for temperature. Bold face fonts used for largest and smallest

values. See text for details.

Under these circumstances, if we define Q(x?) = N ′(x?) + L, the behavior of the solution in the vicinity of x?

obeys

dδx
dt

= Q(x?)δx. (49)

For each case, we constructed a two-dimensional, second-order finite-difference approximation of Q(x?), upon the

Chebyshev–Fourier grid used in our spatial approximation. We did so in order to obtain a sparse, 2D, operator

amenable to eigenvalue analysis for both full and reduced problems. The full problem, though, was approximated

using a formulation based on the streamfunction alone (see e.g. Canuto et al., 2007, §1.4), in order to facilitate

its implementation. We benchmarked our finite difference approximation by computing the critical parameters for

convection, with a critical wavenumber mcrit = 3 and Rayleign number Racrit = 1768 (recall section 3.1). To

obtain the eigenvalues of Q(x?), we resorted to the sparse library of the scientific python package Scipy (Virtanen

et al., 2020), in conjunction with the SLEPc toolbox for python (Hernandez et al., 2005; Dalcin et al., 2011).

Cases of modest resolution lend themselves to the full calculation of the spectrum, and the example of case 3 is

given in Figure 8. We observe that the distribution of eigenvalues is symmetrical with respect to the real axis,

and that eigenvalues are concentrated in the vicinity of the origin, at the exception of a few purely real values that

are quite distant, and correspond to the inverse value of the diffusive time scale on the smallest grid spacing, of

non-dimensional value π2/N4
s . These negative eigenvalues of large magnitude are due to the linear component of

the problem at hand, and the ones responsible for stiffness. We associate the eigenvalues of largest imaginary part

with the advective component of Q, and therefore the reciprocal value of τN.

For cases of larger size (for case 10 the size of the sparse matrix to deal with is 878206×878206) we computed

only the 100 eigenvalues of largest negative real parts, λr, and 100 eigenvalues of largest imaginary parts, λi. Our

estimate of stiffness is given by

ελ =
max=(λi)

max |<(λr)|
, (50)
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Figure 8: Eigenvalues λ of the tangent linear operator computed for case 3, for the full problem and the reduced problem restricted to the heat

equation considered alone. Left: full spectrum. Right: zoom in the vicinity of the origin, in the region of the complex plane defined by the

dashed rectangle in the left panel.

in which =() is the imaginary part. For this calculation, we used the same 5 independent snapshots for each

case as the ones used to estimate ετ. Results are listed in Table 4, and are in agreement, again within a factor

of 3 with estimates based on ετ and ε∆t. The three estimates of ε point to case 6 as being the least stiff, even

though the stiffness parameter does not exceed 10−2. Case 6 had a Prandtl number of unity, which implies that

the diffusivities of heat and momentum are equal. The stiffest case is case 2, which has Pr = 40. For case 2, a

relatively large resolution is needed to resolve the small-scale temperature anomalies within a pretty laminar flow

(recall Figures 2a and 2b). Table 4 also comprises values of ελ computed for the reduced problem (advection-

diffusion equation of temperature with a prescribed flow), that we used previously to try and assess the impact of

the DAE on the observed order reductions. The values of ελ for the reduced problem are consistent with those

found for the complete problem, with one exception. In this simplified system, case 6 remains the least stiff case,

and it is now the barely supercritical case 0 that is the stiffest case. Case 2 ceases to be the stiffest case, since its

most negative eigenvalues are associated with the diffusion of momentum, not heat. Accordingly, the value of ελ

we find for the reduced case 2 is precisely multiplied by a factor of Pr = 40, compared with the value found for

the full problem. This increase is not seen in the three cases that have Pr below unity (5, 7 and 9), for which the

largest negative eigenvalues remain connected with the diffusion of heat. We conclude the analysis of the impact

of stiffness by showing the measured order of convergence for the reduced, DAE-free, and full problems against

the corresponding values of ελ in figure 9, with the hope that this representation will get rid of the jaggedness of

figures 5 (left panel) and 7. Within the modest range of ελ that our investigations enabled, we observe in Fig. 9,

left panel, that for the reduced problem, KC774, CB664 and KC885 are close to meeting their expected order of

convergence for ελ & 10−3. SMR432 exhibits an order of convergence larger than 2 for ελ & 10−3 as well. ARS343

superconverges only for case 10, while BHR553 superconverges for all cases but case 0. This scheme is by design

supposed to be immune to order reductions caused by stiffness and the DAE (Boscarino and Russo, 2009). For

27



10−3 ��
2.02.5
3.03.5
4.04.5
5.0

O
rd

er

0

1

2

3 4

5

6

7

8
9 10

Temp. only

10−4 10−3 10−2��
0

1

2

3

4

5

6

7

89 10

Full
SMR432
ARS343
BHR553
CB664
KC664
KC885

Figure 9: Order of convergence for the temperature field T , in the reduced problem set-up (left panel), and for the full problem (right panel), as

a function of the stiffness parameter ελ estimated for each problem for all 11 cases and for some selected time schemes. See text for details. ελ

sur

the full problem, the range of ελ covered is a bit broader, and we find it noteworthy that for the stiffest case 2,

order is restored. In fact, the curves we obtain in particular for schemes KC774 and KC885 show a reasonable

similarity with the curves obtained for those same schemes applied to Kap’s problem by their genitors Kennedy

and Carpenter (2019).

In summary, we think that the stiffness of the cases we considered in this study covers a moderate, intermediate

range of values spanning slightly less than two decades for the reduced problem and two and a half decades for

the full Boussinesq convection problem. We find that even if stiffness has an impact on the convergence of some

schemes over a limited range, typically 10−4 . ελ . 10−3 for the stiffness parameter we determined, it is mostly

the DAE that causes the degradation of convergence. The reduction in order affects both differential and algebraic

variables, probably by virtue of the coupling induced by the equations of the problem at hand. Yet, schemes of

theoretical order 2 are not affected by order reduction. Higher-order time integrators that are by design immune to

such problems, such as BHR553 or the IMEX multistage methods, may appear as the schemes of choice.

This statement remains to be weighted against a measure of the stability and computational efficiency of those

schemes, which is the topic of the next subsection.

3.6. Stability and computational efficiency

The explicit treatment of nonlinearities imposes a restriction on the available time step that is subject to a

time-dependent Courant-Friedrich-Levy condition

∆t ≤ αcflmin
grid

{
hs

|us|
,

hϕ
|uϕ|

}
,
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Figure 10: a: Time series of viscous dissipation |Dν | for case 9 advanced with the ARS343 IMEX-RK scheme, considering various values of

αcfl. The highest admissible value we find in this setup is αcfl = 1.10. b: Time average of |Dν −Dr
ν | as a function of αcfl for case 9 and 6 time

integrators. Dr
ν(t) is a reference time series for viscous dissipation obtained with the SBDF4 time scheme. Note that the scale on the y-axis is

logarithmic. For a scheme, the maximum admissible value of αcfl is the largest one that precedes the steep increase in the curve.

where the O(1) prefactor αcfl depends on the time integrator and the case considered. In order to determine

empirically the maximum admissible value of αcfl, αmaxcfl , for the 11 × 26 combinations of this study, we followed

Gastine (2019) and inspected the timeseries of viscous dissipation Dν(t) and its fluctuations for different values of

αcfl. The maximum admissible value of αcfl, αmaxcfl is determined to 0.02 accuracy by requesting that the timeseries

of Dν(t) does not exhibit any flagrant spike, over a time window of width roughly equal to 5 convective turnover

times; the time window is case-dependent, but for a given case, it is the same for all time integrators. Figure 10a

illustrates this methodology for case 9 and the ARS343 scheme, a configuration for which we find αmaxcfl = 1.10.

This arguably tedious methodology is meant at preserving the accuracy of the solution, and can not lead to the

disturbing occurrence of stable yet inaccurate IMEX-RK schemes reported by Grooms and Julien (2011), and

mentioned in the introduction. In this regard, our estimate of αmaxcfl is conservative. We refer readers interested in

a more standard assessment of stability and efficiency to appendix Appendix E, where we report accuracy versus

runtime for cases 2 and 10.

We now propose an automated way of reaching the same conclusions. We begin by establishing a master curve

for Dν(t) over the interval of interest using the SBDF4 time scheme and the smallest αcfl. This master curve is

denoted by Dr
ν(t) where again, the superscript r stands for reference. Given the Dν(t) computed for an integrator

and a value of αcfl, we evaluate the time average of |Dν − Dr
ν| over the window of interest using splines for the

numerical integration. As an example, we show 〈|Dν − Dr
ν|〉 in Figure 10b for case 9 and 6 schemes. We observe

a sharp transition in the behavior of this quantity, for relatively low values of αcfl for the two multistep schemes

(CNAB2 and SBDF3) and larger values for the IMEX-RK schemes. The largest value of αcfl before the transition

matches the αmaxcfl obtained by visual inspection of the timeseries of Dν(t).

The value of αmaxcfl can be converted into a maximum attainable value of the time step size, ∆tmax: we take it to
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Figure 11: Ratio of the maximum ordinate of the stability curve of the explicit component of a time integrator to that of the CNAB2 scheme

as a function of the ratio of the maximum timestep size admissible to the maximum time step admissible for CNAB2. The case considered is

case 10 (Re = 13320, stiffness parameter ε ∼ 3 × 10−3). The dashed grey line is the prediction based on Eq. (52).

be the average ∆t obtained in the same setups that led to the determination of αmaxcfl , meaning that we find 26 values

of ∆tmax (one per scheme) per case. In those cases where nonlinearities dominate, with stiffness parameters ε of the

order of 10−2 (recall Table 4 above), it is actually possible to make a decent guess of ∆tmax based on the boundary

of the stability region of the explicit component of the scheme under scrutiny. This stability region is bounded by

a curve that mostly lies in the left hand side of the complex plane, that of negative real parts. We anticipate that in

moderately stiff situations where nonlinearities play a major part in the dynamics, it is this curve that will control

the stability of the implicit explicit scheme, even if it does not correspond to the stability curve of the combined

scheme, as studied by e.g. Karniadakis et al. (1991) and Izzo and Jackiewicz (2017) for test problems. As discussed

above in our analysis of stiffness, transport will effectively probe the eigenvalues of the semi-discrete tangent linear

operator with the largest imaginary parts (in absolute value). Let λm denote the eigenvalue of largest imaginary

part. As a rule of thumb we want λm∆t to be close to the stability curve. For transport-dominated physics, we thus

make the tentative prediction that for any scheme

∆tmax (scheme) = f × y(xm) (scheme) , (51)

where the factor f is a function of the spatial discretization only, xm = <(λm∆t) and the ordinate y(xm) on the

stability curve can be determined numerically. These curves are provided in Appendix D for completeness. If this

equality holds, provided we know ∆tmax of a case for one scheme (CNAB2, say) we may expect that

∆tmax (scheme) =
y(xm)(scheme)
y(xm)(CNAB2)

∆tmax (CNAB2) . (52)

The relevance of this line of reasoning is shown in Figure 11 where this empirical prediction is compared with

the measured value for case 10, our most turbulent case. We find that the overall trend is that the prediction

slightly overestimates the actual value, typically by within 10 to 20 %. Figure 11 highlights the fact that the

most stable order 3 scheme is DBM553, a result that can be understood by inspection of the stability region

of its explicit component given in Figure D.15, middle panel. Of all the third order schemes we considered,

DBM553 has the most elongated region of stability in the vicinity of the y-axis of the complex plane. In fact, it
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was designed for the very purpose of accommodating the constraint on the available time step size arising from the

location of eigenvalues of the explicit component of a model being located along the imaginary axis (Kinnmark

and Gray, 1984). A closer inspection of the IMEX-RK schemes which share the same stability domain for their

explicit component reveals very similar CFL coefficients for case 10 with for instance αmaxcfl (ARS232) = 0.54 and

αmaxcfl (SMR432) = 0.56; or αmaxcfl (ARS343) = 0.8 and αmaxcfl (BR343) = 0.82. This is another indication that the

stability domain of the explicit part only provides a decent estimate of the actual stability of an IMEX-RK scheme

in the limit of advection-dominated flows. To conclude this paragraph, we note that for cases of more dramatic

stiffness, one should probably consider the stability region of the complete IMEX scheme, an endeavor that we did

not pursue.

To evaluate the efficiency of a given scheme, we consider the following ratio

eff =
αmaxcfl
cost

, (53)

where cost refers to the amount of work required to advance the solution by one time step ∆t. In practice cost is

the average cpu time measured over 1000 iterations using reproducible runtime conditions (same compute nodes,

exclusive access to the compute node, one single OpenMP thread). Note that the linear matrix solves amount

for the majority of the walltime, and hence the number of solves per iteration nI in Table 1 provides a decent

estimate of the actual relative walltime. We evaluated the efficiency of the 26 schemes considering the 11 cases.

We investigate how the gain one may obtain in terms of a larger αmaxcfl using an IMEX-RK scheme trades off with the

extra operations that are needed. (Again, at this stage, we do not consider the benefit in terms of accuracy.) Given

the popularity of the CNAB2 integrator in our community, we normalize the efficiency by the efficiency of CNAB2.

Results are displayed in Figure 12 for cases, 2, 5 and 10 that have Re = 26, 513 and 13320, respectively, and whose

stiffness parameter ε we estimated in section 3.5 to be ∼ 3 × 10−5, ∼ 10−3 and ∼ 3 × 10−3, respectively. Relative

efficiency is in all cases bounded between 0.5 and 1.50. We observe that the number of IMEX-RK schemes that

outperform CNAB2 increases dramatically with the Reynolds number from 5 for Case 2 to 14 for case 10. For the

latter, the 14 schemes comprise 3, 7 and 4 schemes of order 2, 3 and 4, respectively. This indicates that the gain

in stability in transport-dominated regimes outweigh the increase in the number of operations as the resolution

increases. For case 10, we note a relative grouping of multistep schemes around 1, with SBDF3 being slight more

efficient than CNAB2, in agreement with its more elongated stability domain close to the imaginary axis (Appendix

D). A scheme that appears to be consistently efficient across the 3 cases is ARS343. The DBM553 scheme by Vogl

et al. (2019) and the BR343 scheme by Boscarino and Russo (2007) transition from a poor efficiency in the laminar

case 2 to an excellent one in the turbulent case 10.

3.7. Trade-off between accuracy and efficiency

We now weigh efficiency and accuracy for recommendations to be made to the practitioner. The accuracy is

characterized by the error one expects for a simulation performed at the maximum available time step size, ∆tmax,

as defined in the previous section. This error is computed based on the scaling of the error on temperature with

∆t that can be obtained for the various convergence curves introduced in section 3.2 above, by taking ∆t = ∆tmax.

Therefore, our target practitioner wishes to integrate the solution for the longest time span possible given his/her

computing resources with the hope that the error will remain as small as possible. We normalize the error with the
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Figure 12: Efficiency of the time integrators relative to the efficiency of CNAB2 for cases 2, 5 and 10 from left to right. Horizontal dashed lines

correspond to a value of unity. See text for details.

0.5 1.0 1.5
Relative e�iciency

100
101
102
103

R
el

at
iv

e
ac

cu
ra

cy

ARS2
22

ARS2
32

BPR44
2

PC43
2

SM
R43

2

ARS2
33

ARS3
43

ARS4
43

BHR55
3

BPR53
3

BR34
3

CB44
3

CFN
34

3

DBM
55

3

KC44
3

LZ
54

3

CB66
4

CFN
56

4

KC66
4

KC77
4

LZ
76

4

KC88
5

CNAB2

SB
DF2

SB
DF3

SB
DF4

Case 2

0.5 1.0
Relative e�iciency

100
101
102
103
104

ARS2
22

ARS2
32

BPR44
2

PC43
2

SM
R43

2

ARS2
33

ARS3
43

ARS4
43

BHR55
3

BPR53
3

BR34
3

CB44
3

CFN
34

3DBM
55

3

KC44
3

LZ
54

3
CB66

4
CFN

56
4

KC66
4

KC77
4

LZ
76

4

KC88
5

CNAB2

SB
DF2

SB
DF3

SB
DF4

Case 5

0.5 1.0 1.5
Relative e�iciency

100
101
102

ARS2
22

ARS2
32

BPR44
2

PC43
2

SM
R43

2
ARS2

33

ARS3
43

ARS4
43

BHR55
3

BPR53
3

BR34
3

CB44
3

CFN
34

3

DBM
55

3KC44
3

LZ
54

3

CB66
4

CFN
56

4

KC66
4

KC77
4LZ

76
4

KC88
5

CNAB2
SB

DF2

SB
DF3

SB
DF4

Case 10

Figure 13: Efficiency and accuracy of the time integrators relative to the efficiency and accuracy of CNAB2 for cases 2, 5 and 10 from left to

right. The scale on the y-axis is logarithmic. See text for details. Horizontal and vertical dashed lines correspond to a value of unity.

error estimated for CNAB2 and show in Figure 13 where the various schemes considered in this work are located

in the (relative efficiency, relative error) plane for cases 2, 5 and 10 again.

Schemes located in the top right quadrant of each panel are more accurate and yet more efficient than CNAB2.

Six IMEX-RK schemes are systematically located in this quadrant, one scheme of order 2, SMR432 (Spalart et al.,

1991), four schemes of order 3, ARS343 (Ascher et al., 1997), CB443 (Cavaglieri and Bewley, 2015), CFN343

(Calvo et al., 2001), KC443 (Kennedy and Carpenter, 2003) and one scheme of order 4, KC664 (Kennedy and

Carpenter, 2003). At the operational, dissipation-based limit of stability, it is remarkable to note that ARS343

and KC664 enable a significant improvement of accuracy at a lower cost, regardless of the configuration. In the

turbulent regime, where the explicit components of time integrators prevail, CNAB2 is outperformed by no less

than 14 schemes, which include 2 schemes of order 2, 8 schemes of order 3 (including SBDF3), and 4 schemes of

order 4.

4. Summary and recommendations

We have applied 22 multistage, 4 multistep implicit-explicit, and 2 fully explicit integrators to the problem of

Boussinesq thermal convection in a two-dimensional cylindrical annulus, over a broad range of regimes whose
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exploration was made possible by the definition of 11 different physical setups. Our spatial discretization rests

on a pseudo-spectral collocation method applied to the vorticity streamfunction formulation of the problem. We

summarize our findings as follows:

• Over the range of cases considered, IMEX multistep methods exhibit their expected order of convergence.

IMEX-RK methods of second order also show the expected convergence. Some IMEX-RK methods of

order 3 and 4 show order reduction, that affect both the algebraic and differential variables of the chosen

formulation.

• We have attempted to evaluate the stiffness of the cases using three different strategies that lead to the same

conclusion: the small parameter that quantifies stiffness, ε, covers a moderate and intermediate range of

values spanning two and a half decades for the full Boussinesq convection problem, between 3 × 10−5 and

10−2.

• We find that even if stiffness has an impact on the convergence of some schemes over a limited range of ε,

typically 10−4 . ε . 10−3, it is mostly the discrete algebraic equation that causes the degradation of

convergence. The reduction in order affects both differential and algebraic variables, probably by virtue of

the coupling induced by the equations of the problem at hand.

• IMEX-RK time integrators that are by design immune to such problems, such as BHR553 (Boscarino and

Russo, 2009), exhibit nominal convergence properties, or even better-than-nominal properties in the least

stiff (transport-dominated) situations.

• We have defined the efficiency of a scheme by the ratio of the maximum admissible value of the Courant

number, αmaxcfl , divided by the cost of performing one time step. By maximum admissible value we understand

a value that generates a smooth timeseries of viscous dissipation within the system. Viscous dissipation is

a demanding quantity, whose behavior help us define an acceptable (or not acceptable) solution. With this

at hand, we have reported the efficiency of the schemes relative to the popular CNAB2 for 3 cases that

we consider representative. We found that the relative efficiency was bounded between 0.5 and 1.5. Also,

CNAB2 is not the method of choice when going to transport-dominated cases, as no less than 14 schemes

are more efficient than CNAB2 for our most turbulent case.

• This last statement becomes even stronger when relative accuracy is added to the analysis. By relative

accuracy here we mean the ratio of the error anticipated for a scheme running at the operational, dissipation-

based limit of stability, whose expected error can be estimated based on the convergence analysis, to the

same error anticipated for CNAB2 at its limit of stability (and that for each case). For the same three

representative cases, we find that 6 schemes combine the assets of being less expensive and more accurate

than CNAB2: SMR432 (Spalart et al., 1991), CFN343 (Calvo et al., 2001), ARS343 (Ascher et al., 1997),

CB443 (Cavaglieri and Bewley, 2015), KC443 and KC664 (Kennedy and Carpenter, 2003).

• For the problem of thermal convection in a cylindrical annulus with a spectral discretization in space, it

appears that the default integrator should be the third-order ARS343, or possibly KC664 if higher accuracy

is sought.
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For turbulent cases, or in more general terms, transport-dominated cases, the performance of an implicit-

explicit scheme is dictated by its explicit component, as the part treated explicitly here is purely advective. The

previous general recommendation can be amended on a case-by-case basis: for instance the third-order scheme

DBM553 proposed by Vogl et al. (2019) may well prove superior to any third-order scheme for turbulent transport-

dominated 2D problems reaching Re ∼ 105 and beyond. In fact, on this path, provided ε ∼ 1 is reached, RK4 may

well prove competitive, even more so if a regridding is performed to alleviate the stringent time step limitations

due to the clustering of grid points near the boundaries, as done e.g. by Johnston and Doering (2009) using the

mapping proposed by Kosloff and Tal-Ezer (1993).

Before discussing a tentative extrapolation of our results to three-dimensional geometry, we should add the

following important caveat: stiffness in our setup is controlled by the most negative real eigenvalues of the linear

part that is treated implicitly, and our recommendations may not be suited for those problems where stiffness comes

from fast waves, i.e. large imaginary eigenvalues of the linear terms.

Three-dimensional problems concerned with the modeling of planetary interiors in global spherical geometry

are nowhere near reaching values of Re as extreme as 106. Recent parametric studies of convection-driven dynamo

in a spherical shell geometry by Schwaiger et al. (2019), Gastine et al. (2020) and Tassin et al. (2021) have values

of Re in the range 100− 3000, while single-case, rapidly-rotating trophy studies by Schaeffer et al. (2017); Sheyko

et al. (2018) (DNS) and Aubert (2019) (LES) report Re ∼ 5000 and Re ∼ 20000 for the DNS and LES, respectively.

We may wonder how our findings can carry over to these simulations. In Appendix F, we attempt to convert our

2D tradeoff diagrams into their 3D counterparts, by making the strong assumptions that accuracy and stability

remain the same, i.e. that the convergence properties and values of αmaxcfl are not affected. The sole impact of the

change of geometry that factor in the analysis lies in the cost, where we acknowledge that in a three-dimensional

pseudo-spectral code of planetary core dynamics, explicit stages are the most expensive steps in a calculation, as

there is no efficient equivalent of the fast Fourier transform for the Legendre transform. Taking this into account,

non globally stiffly accurate IMEX-RK schemes, that require an extra assembly stage, are penalized compared with

stiffly accurate ones.

For the range of Re typical of recent parametric studies, and under the strong assumptions that we made, we

predict that the schemes of choice for Re ∼ 1000 in three dimensions should be PC432 (order 2), ARS343 and

BPR533 (order 3) and KC664 (order 4). Relative to the classic CNAB2, these schemes should yield a reduction

of the time to solution while enabling more accurate solutions. This analysis ignores the memory imprint of the

schemes (recall Tab. 1) , as the codes in question are massively parallel and should be immune to this issue, at least

for the level of Re considered. If the level of turbulence should increase for 3D simulations, then we anticipate

again that it is the robustness and efficiency of the explicit component of IMEX schemes that will matter. Also,

depending on the problem studied, hybrid splitting strategies, that would treat explicitly some linear terms with

the aim of increasing the efficiency of the calculation, look like an interesting avenue for investigation, especially

in turbulent situations. Also worth investigating are the IMEX general linear method (GLM) that have recently

come to the fore. They appear to overcome some of the inherent limitations of IMEX-RK schemes, such as order

reduction. Zhang et al. (2016) for instance explored several IMEX strategies to compute 2-D and 3-D simulations

of thermal rising bubbles (Giraldo and Restelli, 2008) and showed that the IMEX-GLM were immune to order

reduction and exhibited the best accuracy/efficiency tradeoff among the tested schemes (see their Fig. 10). We
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conclude by hoping that our findings will serve as an incentive for the community of stars and planetary fluid

interiors modelers to transition towards IMEX-RK integrators, which possess the extra convenient property of

being self-restarting (their initialization only requires knowledge of the current state vector), regardless of their

order of accuracy.
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Table A.5: Coefficients of the multistep schemes considered in this study when a fixed time step size ∆t is employed.

method K a b c

CNAB2 2 [3/2,−1/2] [1/2, 1/2, 0]

SBDF2 2 [4/3,−1/3] [4/3,−2/3] [2/3, 0, 0]

SBDF3 3 [18/11,−9/11, 2/11] [18/11,−18/11, 6/11] [6/11, 0, 0, 0]

SBDF4 4 [48/25,−36/25, 16/25,−3/25] [48/25,−72/25, 48/25,−12/25] [12/25, 0, 0, 0, 0]

Appendix A. Multistep schemes

We provide the reader with the vectors of coefficients a, b and c for CNAB2, SBDF2, SBDF3 and SBDF4.

These vectors define a linear multistep method with K steps according to

(1 − ∆tc−1L) xi+1 =

K−1∑
j=0

[
a jxi− j + ∆tb jN(xi− j) + ∆tc jLxi− j

]
, (A.1)

where c−1 , 0. Table A.5 enlists these three vectors when a fixed time step size ∆t is used (see e.g. Peyret, 2002,

Table 4.4).

Following Wang and Ruuth (2008), those vectors can be generalised to the case of variable time step sizes. In

the following, we define

∆ti = ti − ti−1,

and the ratio

δi =
∆ti

∆ti−1
.

For the different IMEX multistep schemes considered here, we then obtain:

• CNAB2

b =

[
1 +

1
2
δi,−

1
2
δi

]
, c =

[
1
2
,

1
2

]
,

• SBDF2

a =

 (1 + δi)2

1 + 2δi
,−

δ2
i

1 + 2δi

 , b =

[
(1 + δi)2

1 + 2δi
,−

(1 + δi)δi

1 + 2δi

]
, c =

[
1 + δi

1 + 2δi
, 0, 0

]
,

• SBDF3

a =
1
α

[
(1 + δi)(1 + δi + δi−1)

δi(δi + δi−1)
,−

1 + δi + δi−1

δiδi−1(1 + δi)
,

1 + δi

δi−1(δi + δi−1)(1 + δi + δi−1)

]
,

b =
1
α

[
(1 + δi)(1 + δi + δi−1)

δi(δi + δi−1)
,−

1 + δi + δi−1

δiδi−1
,

1 + δi

δi−1(δi + δi−1)

]
,

c =

[
1
α
, 0, 0, 0

]
, with α = 1 +

1
1 + δi

+
1

1 + δi + δi−1
,
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• SBDF4

a =
1
α

[
1 + δi

(
1 +

δi−1(1 + δi)(1 + δi−2c2/c1)
1 + δi−1
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b =
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α
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c1
,−c2c3
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,

c =

[
1
α
, 0, 0, 0, 0

]
, with α = 1 +

δi

1 + δi
+
δi−1δi

c2
+
δi−2δi−1δi

c3
,

where the three constants c1, c2 and c3 are expressed by

c1 = 1 + δi−2(1 + δi−1), c2 = 1 + δi−1(1 + δi), c3 = 1 + δi−2c2 .

Appendix B. Butcher tableaux of PC432

The PC432 time scheme is assembled using the explicit scheme from Jameson et al. (1981) for its explicit

component and a Crank-Nicolson scheme for its implicit part. This is a stiffly accurate second order three stage

scheme and its Butcher tableaux read

cE AE

bE
=

0 0

1 1 0

1 1/2 1/2 0

1 1/2 0 1/2 0

1/2 0 1/2 0

,
cI AI

bI
=

0 0

1 1/2 1/2

1 1/2 0 1/2

1 1/2 0 0 1/2

1/2 0 0 1/2

. (B.1)

Appendix C. Convergence of explicit Runge–Kutta schemes

Our software can also operate in a fully explicit fashion. Convergence results obtained for case 3 that feature

the RK2 and RK4 schemes are shown in Figure C.14, using large triangles located in the bottom left corner of each

panel. For these schemes, the more stringent stability requirements due to the explicit treatment of the diffusion

terms imply that the convergence curves directly land on the roundoff error level plateau. It is hence not possible

to assess their convergence rates. We finally note that RK4 allows larger values of the time step size ∆t than RK2.

Appendix D. Stability regions

In this section we give for completeness the stability regions of the explicit components of the 22 implicit

explicit Runge–Kutta schemes, of the 4 IMEX multistep and of the two fully explicit schemes considered in this

study. For an easier visual inspection of the stability domains, Fig. D.15 has been split in three panels which gather

the different expected orders of convergence of the combined IMEX schemes.
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Figure C.14: Convergence of theL2 error for the temperature field (left panel), the cylindrical radial velocity us (middle panel) and the vorticity

ω (right panel) for Case 3. In addition to the usual 26 IMEX schemes, this figure also features the fully explicit RK2 and RK4 methods, whose

error levels are marked by large triangles which appear in the bottom left corner of each panel.
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Figure D.15: Stability regions of the explicit components of the 22 IMEX-RK, the 4 multistep and the 2 fully explicit schemes analyzed in this

study. Schemes are stable inside the domains of the complex plane delimited by the curves. Left panel: order 2 schemes. Middle panel: order 3

schemes. Right panel: schemes of order 4 and 5. Order refers to the expected order of convergence of the combined IMEX schemes. Note

that several schemes share the same stability domain for their explicit component: namely ARS222 and RK2; ARS232 and SMR432; ARS343,

BR343 and RK4; AR233, BPR533 and LZ543.

Appendix E. Error as a function of time to solution for cases 2 and 10

We provide in this appendix additional elements to assess the efficiency of the 26 schemes of interest in this

study, providing metrics that may be more general than the dissipation-based efficiency introduced in Section 3.6.

Figure E.16 shows error against runtime for cases 2 and 10, whose convergence is analyzed in Section 3.2. This

figure complements Figure 3 that displays error versus time step size ∆t. Without getting into too much detail,

we can stress that ARS343 appears as a good choice for case 2 and case 10. To obtain higher accuracy with a

concomittent moderate increase in the computational cost, SBDF4 (for case 2) and KC664 (for case 10) should be
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Figure E.16: Convergence of the L2 error for the temperature field (top panels), the cylindrical radial velocity us (middle panels) and the

vorticity ω (bottom panels) for Case 2 (left column) and Case 10 (right column) as a function of total runtime expressed in seconds. The

markers correspond to the class of IMEX, with squares denoting IMEX multistep and circles IMEX-RK multistage schemes. The total runtime

is the product of the number of iterations times the average walltime, and ignores the initial computation and factorization of the requisite

matrices.

preferred.
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Appendix F. Expected behaviour of schemes for three dimensional simulations of planetary core dynamics

In this Appendix, we provide the reader with a conjectured efficiency that the considered time integrators could

possibly have in 3-D spherical shell pseudo-spectral codes. In contrast with the current work where the linear

solves are taking the largest amount of the walltimes, spherical harmonics transforms involved in the computation

of the explicit terms are by a large margin the dominant player of spherical shell code algorithms. As such, under

the asssumption that the CFL coefficients αmaxcfl are the same in 3-D, the conjectured efficiency of an individual time

integrator for 3-D computations can be estimated using the number of explicit stages nE

eff3D =
αmaxcfl
nE . (F.1)

Figure F.17 shows the conjectured efficiency in 3-D models relative to the efficiency of CNAB2. Compared to

Fig. 12, all the schemes which necessitate an assembly stage have been penalized by the cost of the extra evaluation

of an explicit state, with respect to the stiffly-accurate schemes. In contrast, the schemes with a lower number of

explicit stages, such as BPR533, present an enhanced efficiency compared to the 2-D computations. PC432 stands

out as the most efficient scheme for cases 2 and 5, while ARS343, BR343 and DBM553 become more efficient in

the least stiff case 10. We anticipate that the overall gain in terms of efficiency compared to the CNAB2 method

for 3-D calculations will be smaller than for our 2-D models, bounded to values between 20 and 30%.

Figure F.18 shows the conjectured efficiency and accuracy in 3-D relative to CNAB2. This figure was obtained

making the additional assumption that the 3-D computations would have similar errors than our 2-D computa-

tions. Focusing our attention on the upper right quadrant, one second order scheme (SMR432), three third order

schemes (ARS343, BPR533 and CFN343) and one fourth order scheme (KC664) are always more efficient and

more accurate than CNAB2 at the stability limit.

We stress that the reasoning put forward in this Appendix heavily relies on the assumptions that both the

stability coefficients and the convergence curves are weakly affected by the change from 2-D to 3-D models. While

this is a plausible hypothesis when considering the same physical phenomenon (i.e. non-rotating convection), the

incorporation of additional physical effects such as rotation or a magnetic field is likely to significantly impact the

convergence and the stability properties of the time integrators.
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Figure F.17: Conjectured efficiency in three-dimensions of the time integrators relative to the efficiency of CNAB2 for cases 2, 5 and 10 from

left to right. Horizontal dashed lines correspond to a value of unity. See text for details.
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Figure F.18: Conjectured efficiency and accuracy in three-dimensions of the time integrators relative to the efficiency and accuracy of CNAB2

for cases 2, 5 and 10 from left to right. The scale on the y-axis is logarithmic. See text for details. Horizontal and vertical dashed lines

correspond to a value of unity.
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