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ABSTRACT

Context. Over recent decades, asteroseismology has proven to be a powerful method for probing stellar interiors. Analytical descrip-
tions of the global oscillation modes, in combination with pulsation codes, have provided valuable help in processing and interpreting
the large amount of seismic data collected, for instance, by space-borne missions CoRoT, Kepler, and TESS. These prior results have
paved the way to more in-depth analyses of the oscillation spectra of stars in order to delve into subtle properties of their interiors.
This purpose conversely requires innovative theoretical descriptions of stellar oscillations.
Aims. In this paper, we aim to analytically express the resonance condition of the adiabatic oscillation modes of spherical stars in a
very general way that is applicable at different evolutionary stages.
Methods. In the present formulation, a star is represented as an acoustic interferometer composed of a multitude of resonant cavities
where waves can propagate and the short-wavelength JWKB approximation is met. Each cavity is separated from the adjacent ones
by barriers, which correspond to regions either where waves are evanescent or where the JWKB approximation fails. Each barrier
is associated with a reflection and transmission coefficient. The stationary modes are then computed using two different physical
representations: (1) studying the infinite-time reflections and transmissions of a wave energy ray through the ensemble of cavities or
(2) solving the linear boundary value problem using the progressive matching of the wave function from one barrier to the adjacent
one between the core and surface.
Results. Both physical pictures provide the same resonance condition, which ultimately turns out to depend on a number of param-
eters: the reflection and transmission phase lags introduced by each barrier, the coupling factor associated with each barrier, and the
wave number integral over each resonant cavity. Using such a formulation, we can retrieve, in a practical way, the usual forms derived
in previous works in the case of mixed modes with two or three cavities coupled though evanescent barriers, low- and large-amplitude
glitches, and the simultaneous presence of evanescent regions and glitches.
Conclusions. The resonance condition obtained in this work provides a new tool that is useful in predicting the oscillation spectra
of stars and interpreting seismic observations at different evolutionary stages in a simple way. Practical applications require more
detailed analyses to make the link between the reflection-transmission parameters and the internal structure. These aspects will be the
subject of a future paper.
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1. Introduction

Mechanical forcing, turbulent motions, or thermal instabilities
can perturb the equilibrium state of stars and generate inter-
nal waves (e.g., Samadi et al. 2015, and references therein).
These waves can propagate back and forth several times between
the center and surface of stars and a resulting positive inter-
ference can give rise to global resonant modes, the oscilla-
tion frequencies of which directly depend on the stellar interior
properties. The study of the oscillation power spectrum of these
modes (asteroseismology) can, in turn, provide us with pre-
cious information on the stellar structure. Over recent decades,
the high-quality seismic data first provided for the Sun by
the spacecraft SoHO (Domingo et al. 1995) and ground-based
telescope networks (e.g., GONG and BiSON projects, Chaplin
1997; Leibacher & GONG Project Team 1998) as well as sub-
sequent data gathered for thousands of distant stars by space-

borne missions CoRoT, Kepler, and TESS (Baglin et al. 2006;
Borucki et al. 2010; Ricker et al. 2015), have indeed brought
stringent constraints on the stellar dynamics and evolution (e.g.,
Chaplin & Miglio 2013; Grotsch-Noels et al. 2016; Mosser &
Miglio 2016; Christensen-Dalsgaard 2021). The exploitation of
such an amount of information and its physical interpretation
have greatly relied on analytical descriptions of the linear stellar
oscillations. In particular, theoretical expressions of the eigenfre-
quency patterns appeared to be crucial for extracting the prevail-
ing features of the observed oscillation power spectra, defining
seismic indicators that are relevant of the stellar structure, and
enabling statistical studies on large samples of stars via auto-
mated methods (e.g., see Farnir et al. 2019; Appourchaux 2020;
Gehan et al. 2021, for recent examples).

Most of the available analytical descriptions of the linear
stellar oscillations are based on asymptotic methods within the
JWKB approximation. This approximation assumes that the
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wavelength is much smaller than the variation scale height of
the background state almost everywhere in stars (e.g., Olver
1975; Gough 2007). For example, asymptotic analyses predict
that the high-frequency acoustic modes, the propagation cav-
ity of which is mostly located in the uppermost layers of stars,
are nearly evenly spaced in frequency, with a frequency spac-
ing (or large frequency separation) directly linked to the mean
density of stars. In contrast, the low-frequency gravity modes,
which mostly propagate in the inner layers of stars, are asymp-
totically expected to be nearly evenly spaced in period, with a
period spacing related to the stellar core density (Vandakurov
1968; Tassoul & Tassoul 1968; Smeyers 1968; Shibahashi 1979;
Tassoul 1980). This leading-order description of the mode fre-
quency distribution is nevertheless insufficient for reproducing
all the diversity and details observed in the high-quality oscilla-
tion spectra of the Sun and thousands of other stars.

First, in low-mass main sequence stars, the deviation of
the observed acoustic mode frequencies from the nearly regu-
lar asymptotic pattern was shown to take the form of a low-
amplitude sinusoidal-like signal (e.g., Hill & Rosenwald 1986).
The origin of these small frequency perturbations is attributed
to sharp structural variations in some regions of stars where
the JWKB approximation fails, the so-called glitches (Vorontsov
1988; Gough & Thompson 1988; Gough 1990). For instance,
glitches are expected at the interface between convective and
radiative zones where discontinuities in the temperature gradi-
ent, in its derivatives, or in the molecular weight can occur,
depending on the mixing processes at work (e.g., Gough & Sekii
1993; Roxburgh & Vorontsov 1994; Monteiro et al. 1994, 2000;
Audard & Provost 1994), as well as in the helium ionization zone
where the first adiabatic index abruptly varies (e.g., Gough &
Vorontsov 1995; Gough 2002; Basu & Antia 2004; Houdek &
Gough 2007). Most prior works have assumed that the amplitude
of these acoustic glitches is small enough so that the induced
deviation from the asymptotic frequency pattern can be analyt-
ically modeled using first-order perturbation methods based on
the variational principle. These developments have permitted in-
depth studies of acoustic glitches in the Sun and brought about
stringent constraints on the position of the base of the convec-
tive envelope, on the extent of the overshooting region beneath
(e.g., Basu et al. 1994; Christensen-Dalsgaard et al. 1995; Basu
1997), and on the location of the ionization zone and the surface
helium abundance (e.g., Vorontsov et al. 1991; Perez Hernandez
& Christensen-Dalsgaard 1994; Monteiro & Thompson 2005).
The exquisite store of seismic data collected by space-borne mis-
sions CoRoT and Kepler subsequently enabled similar studies
in dozens of other distant main-sequence stars (e.g., Mazumdar
et al. 2012, 2014; Lebreton & Goupil 2012; Verma et al. 2017;
Farnir et al. 2020a). All the seismic information extracted from
acoustic glitches currently stand for one of the most important
sources of constraints for stellar modeling (e.g., Verma & Silva
Aguirre 2019; Farnir et al. 2020b).

Furthermore, in intermediate-mass main sequence stars, the
frequency pattern of the observed gravity modes can also be
affected by glitches. In these stars, the expansion and recession
of the convective core create a gradient in the mean molecu-
lar weight at its upper boundary, resulting in a large discon-
tinuity in the Brunt–Väisälä frequency (Berthomieu & Provost
1988; Provost et al. 1990). Such large-amplitude glitches locally
induce an important wave reflection and result in an unequal dis-
tribution of the mode energy on both sides of the glitch: this
is referred to as the mode-trapping phenomenon. Unlike low-
amplitude glitches in the Sun, the deviations from the asymp-
totic frequency pattern of gravity modes that are induced by

such large-amplitude glitches cannot be treated as small pertur-
bations. In this situation, the eigenfrequencies of gravity modes
can be better analytically expressed using the matching of the
asymptotic solutions on each side of the glitch (e.g., Miglio et al.
2008a,b). The period spacing between adjacent gravity modes
predicted by such models significantly differ from the uniform
asymptotic value predicted in the absence of discontinuity,
which offers an interesting potential to constrain the chemi-
cal mixing at the edge of convective cores in these stars (e.g.,
Degroote et al. 2010). The frequency pattern of gravity modes in
white dwarfs can similarly be affected by compositional layering
and therefore can similarly provide information on the internal
structure and transport processes in these advanced evolutionary
stages (e.g., Brassard et al. 1992; Kawaler & Bradley 1994).

Finally, in post-main sequence stars, the density contrast
between the core and surface is so large that the oscilla-
tion modes can propagate both in an inner cavity, where they
behave as gravity modes, and in an outer cavity, where they
behave as acoustic modes: these are the so-called mixed modes
(Scuflaire 1974; Aizenman et al. 1977). Both cavities are cou-
pled by an intermediate region where the modes are evanes-
cent (e.g., Hekker & Christensen-Dalsgaard 2017, for a review).
Neglecting the possible effect of internal glitches, the asymp-
totic frequency pattern of mixed modes presents the char-
acteristics of both the acoustic and gravity modes spectra
(Shibahashi 1979; Tassoul 1980; Takata 2016a; Loi &
Papaloizou 2020). The asymptotic analyses of mixed modes
appeared essential to analyze the large amount of seismic data
collected by the satellite CoRoT and Kepler for evolved stars and
represent a solid theoretical basis for interpreting these observa-
tions in terms of internal structure (e.g., Mosser et al. 2018). The
study of mixed modes put stringent constraints for instance on
the nuclear-burning state (e.g., Montalbán et al. 2010; Mosser
et al. 2014; Vrard et al. 2016), the core rotation (e.g., Goupil
et al. 2013; Gehan et al. 2018; Deheuvels et al. 2020), and
the mid-layer structure of these stars (e.g., Mosser et al. 2017;
Hekker et al. 2018; Khan et al. 2018; Pinçon et al. 2019, 2020),
as well as on the amount of core overshooting on the main
sequence (e.g., Montalbán et al. 2013; Noll et al. 2021). Delving
into more details of the mixed mode oscillation spectra, acous-
tic glitches associated with the helium ionization zone could
also be detected (Vrard et al. 2015; Dréau et al. 2020). Other
seismic signatures, still not observed, have also been theoret-
ically predicted. On the one hand, Cunha et al. (2015, 2019)
proposed a more complex description of mixed modes includ-
ing the presence of buoyancy glitches, that is, the sharp gradient
in the molecular weight induced by the migration of the base
of the convective zone during the first dredge-up. On the other
hand, Deheuvels & Belkacem (2018) investigated the properties
of mixed modes during the ignition of the helium burning (i.e.,
helium sub-flashes). During this phase, the temporary helium-
burning shell is convective and mixed modes become evanescent
inside. The inner propagation cavity is thus split into two parts.
Mixed modes can thus propagate in three cavities separated from
each other by two evanescent coupling regions. Both previous
internal features were shown to produce remarkable seismic
signatures in the mixed mode spectra, with promising probing
potentials.

All the previous examples demonstrate the diversity of
potential resonance configurations throughout the Hertzsprung-
Russel diagram and the large amount of associated analyti-
cal descriptions. Despite this diversity, the effect of low- and
large-amplitude glitches as well as evanescent regions on the
mode frequencies results from a similar physical phenomenon.
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Indeed, either near sharp gradients or close to the boundaries
between evanescent regions and resonant cavities (i.e., close to
turning points where the radial wave number vanishes), the vari-
ation scale height of the background state is smaller than the
local oscillation wavelength, the JWKB approximation locally
fails, and an incident wave energy ray is partially reflected and
transmitted (see, e.g., Appendix C of Pinçon et al. 2020, for a
simple example). Based on basic linear wave principles, Takata
(2016b) considered such a physical picture and reformulated the
mixed mode frequency pattern of red giant stars in a very general
way by describing the evanescent region as a simple barrier asso-
ciated with a wave reflection coefficient. Pinçon (2019) adapted
the same picture to model the effect of one glitch on the oscilla-
tion frequencies of star, which had been actually already antici-
pated by Roxburgh & Vorontsov (2001). In this paper, we aim to
extend these previous representations to a multitude of resonant
cavities and barriers and to obtain a generalized formulation for
the resonance condition of oscillation modes in spherical stars
that is applicable to any configurations and evolutionary states
in a practical way.

The paper is organized as follows. In Sect. 2, we introduce
the theoretical background about gravito-acoustic oscillations in
stars and the modeling of the wave transmission-reflection prob-
lem. This introductory material is subsequently applied to obtain
a very general expression of the resonance condition following
two complementary pictures in Sects. 3 and 4. In addition, the
distribution of the mode energy and the mode amplitudes among
the different resonant cavities are addressed in Sect. 5. As a first
illustration, the resulting resonance expression is then applied on
simple usual oscillation configurations in Sect. 6 and the compat-
ibility with previous formulations is discussed. We present our
concluding remarks in Sect. 7.

2. Setting the stage

In this first section, we introduce the theoretical background and
set the main physical description of the stellar oscillation modes
used in the present paper.

2.1. General theoretical framework

In this work, we focus on the linear asymptotic and adiabatic
global standing modes of spherical stars. In other words, we
make the three following main assumptions on the oscillations.

First, we assume that the oscillations are small-amplitude
perturbations of the stellar equilibrium state (i.e., within the lin-
ear approximation) and that there is at least one region where
they can propagate as progressive waves and where the short-
wavelength JWKB approximation is met (i.e., within the asymp-
totic limit). Such a region is referred to as a resonant cavity.

Second, we assume that the waves are generated at a time
t = −∞, and we neglect non-adiabatic effects during their prop-
agation (i.e., within the adiabatic limit). We therefore focus on
stationary modes that persist indefinitely over time with a time
dependence in e−iσt, where i is the imaginary unit and σ is
the angular oscillation frequency. This seems reasonable in a
first step since, otherwise, excited progressive waves would be
rapidly damped and could not constructively interfere to form
eigenmodes.

Third, we neglect the effects of stellar rotation and internal
magnetic effects on the oscillations; in other words, there is no
preferential axis from the point of view of the waves. Owing
to the spherical symmetry, the perturbations associated with the
oscillations are separable into angular and radial parts, and the

angular part is represented by the orthonormal set of scalar
and vector spherical harmonics, Ym

` , in the stellar frame, with
angular degrees, `, and azimuthal numbers, m (e.g., Ledoux &
Walraven 1958; Unno et al. 1989). In the following, we explicitly
focus on a (`,m) harmonic; the Eulerian perturbation of pressure,
p′, and the oscillation displacement field, ξ, are thus expressed
as:

p′(r, t) = p̃′(r) Ym
` (θ, s) e−iσt, (1)

ξ(r, t) =
[
ξ̃r(r) Ym

` (θ, s) er + ξ̃h(r) r∇Ym
` (θ, s)

]
e−iσt, (2)

where (r, θ, s) are the spherical coordinates in the stellar frame,
er is the radial unit vector, ∇ is the gradient operator, and ξ̃r and
ξ̃h are the radial and poloidal components of the mode displace-
ment, respectively.

The present theoretical framework is therefore appropri-
ate to investigate the frequency pattern of eigenmodes in the
slow rotator, low magnetic field, and adiabatic limits. We note
that the study of the small deviations from this leading-order
pattern that can be induced by rotational, magnetic, and non-
adiabatic effects is theoretically tractable in a subsequent step
using perturbative methods (e.g., Ledoux 1951; Dziembowski
1977; Dziembowski & Goode 1984; Pinçon et al. 2021), which
is beyond the scope of this paper. Once the framework is set,
we introduce in the following the basics on the propagation of
gravito-acoustic waves that are useful for our purpose while
distinguishing two kinds of regions: first, the resonant cavities
where progressive waves can propagate and where the JWKB
approximation is met; and second, the regions where waves
are evanescent or where the JWKB hypothesis fails at some
point (i.e., in the vicinity of turning points or near sharp struc-
tural variations). These regions are referred to as barriers in the
following.

2.2. Wave propagation in resonant cavities

2.2.1. Adiabatic linear wave equation

Assuming an adiabatic equation of state, the continuity, momen-
tum and Poisson equations linearized around the hydrostatic
equilibrium of stars results in a fourth-order differential sys-
tem with respect to radius for the radial wave displacement,
the Eulerian pressure perturbation, the Eulerian perturbation of
the gravitational potential, and the radial derivative of this lat-
ter (e.g., Ledoux & Walraven 1958). Nevertheless, within the
short-wavelength JWKB assumption, the effect of the perturba-
tion of the gravitational potential on the wave displacement field
is known to be negligible at leading order. This is the so-called
Cowling approximation (Cowling 1941). It relies on the fact that
because of the large number of radial nodes in the vicinity of
the considered layer, the effect of the small-scale density per-
turbations integrated over the whole stellar volume is negligi-
ble on the local gravitational acceleration according to the Pois-
son equation (see, e.g., Appendix A of Pinçon et al. 2020, for a
scaling-based justification). The validity of the Cowling approx-
imation for any angular degree, `, inside the resonant cavities
thus permits us to reduce the adiabatic linear wave equation to
the second order, which has the advantage of being analytically
tractable using the usual asymptotic methods (e.g., Olver 1975).

In these considerations, the formulation of Shibahashi (1979)
within the Cowling approximation can be used to describe the
leading-order behavior of the oscillations inside resonant cav-
ities. According to the work of Shibahashi (1979), the wave
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equation can be expressed as

d2Ψ

dr2 +

K2
r −

M(r)
H2

p

 Ψ = 0, (3)

where the wave function and the squared local asymptotic radial
wave number are respectively defined as

Ψ = ρ1/2cr

∣∣∣∣∣∣1 − S 2
`

σ2

∣∣∣∣∣∣
−1/2

ξ̃r e−iσt, (4)

K2
r =

σ2

c2

(
N2

σ2 − 1
) S 2

`

σ2 − 1
 . (5)

In these equations, ρ is the equilibirum density, c2 = Γ1 p/ρ is the
squared sound speed, with Γ1 the first adiabatic index and p the
equilibrium pressure, Hp is the pressure scale height, and S ` and
N are the Lamb and Brunt–Väisälä frequencies, respectively, the
expressions of which are provided by

S 2
` =

`(` + 1) c2

r2 (6)

N2 =
g

r

(
1
Γ1

d ln p
d ln r

−
d ln ρ
d ln r

)
, (7)

where g is the gravitational acceleration. Finally, the M(r) func-
tion in Eq. (3) is a radial function that depends on the variation
of the equilibrium structure (see Appendix A for an expression).

As mentioned earlier, the second-order wave equation in
Eq. (3) can be considered as a very good approximation inside
regions where the JWKB approximation is met. By definition,
these regions are far enough away from sharp variations in the
stellar structure (i.e., relative to the local wavelength) in such
a way that the M function in Eq. (3) remains on the order of
unity at most inside these regions1. We therefore understand
that the resonant cavities correspond to regions where K2

r > 0
that are located between consecutive turning points (i.e., where
K2

r = 0 for σ2 = N2 or σ2 = S 2
` ) and sharp gradients, but far

enough away from these latter layers for the JWKB approxima-
tion to be met (i.e., K2

r � 1/H2
p). According to Eq. (5), this is

the case where σ2 � (S 2
` and N2) or σ2 � (S 2

` and N2), which
corresponds to low-frequency gravity-dominated waves or high-
frequency pressure-dominated waves, respectively.

From a general point of view, one particular solution of the
wave equation in Eq. (3), denoted by ψ, can be formally written
in a plane wave form as

ψ(r) = eiφ(r), (8)

where φ(r) is a complex phase function. It is easy to check that
its complex conjugate, ψ?, is also a solution. Moreover, their
WronskianWψ is equal to

Wψ =

(
ψ?

dψ
dr
− ψ

dψ?

dr

)
= 2iRe

[
dφ
dr

]
|ψ|2 , (9)

where Re[·] denotes the real part. Therefore, ψ and ψ? are lin-
early independent and thus form a vectorial basis for the solu-
tions of the wave equation if and only if Re[dφ/dr] , 0. This
condition is met inside resonant cavities, since K2

r > 0. It is
also worth noting by differentiating Eq. (9) with respect to r and
using Eq. (3) that their WronskianWψ is conserved in resonant
cavities, as expected from the Liouville formula.
1 The M(r) function in Eq. (3) is singular at turning points where
σ = S `. This singularity is however not an issue for the discussion since
it is not physical and can be easily removed by changing the dependent
variable appropriately, as recalled in Appendix A.

2.2.2. Asymptotic form of the wave solution

In resonant cavities, we denote Kr =
√
K2

r . We assume that the
phase φ in Eq. (8) varies on a length scale on the order of 1/Kr,
which is supposed to be much smaller than the variation scale
height of the medium on the order of Hp. Under these consider-
ations, injecting Eqs. (8) in (3), we can show that the φ function
in the cavity is equal at leading order in Kr, up to addition by a
constant, to (e.g., Gough 2007)

φ(r; r̄) ≈
i
2

lnKr + ϕ(r; r̄), (10)

where

ϕ(r; r̄) =

∫ r

r̄
Krdr, (11)

with r̄ an arbitrary reference point in the considered cavity. In
the latter equation, we have chosen as a convention the positive
branch in Eq. (10) such as (dϕ/dr) = Kr > 0 and the ψ function
is associated with the progressive component of the wave func-
tion Ψ whose phase travels upward (given the temporal depen-
dence on e−iσt). Therefore, in resonant cavities, the ψ function
merely reads at leading order

ψ(r; r̄) ≈
1
√
Kr

eiϕ(r;r̄), (12)

which corresponds to a plane wave with a slowly varying ampli-
tude. Given Eq. (10), the Wronskian of the two basis solutions in
Eq. (9) is equal at leading order toWψ ≈ 2iKr/Kr = 2i, which
is constant as expected.

2.2.3. Wave energy luminosity

Physically speaking, the propagation of gravito-avoustic waves
is not only described by the propagation of their phases, but also
by the propagation of their energy. To analyze this, we find con-
venient to consider the radial wave energy luminosity. Within
the Cowling approximation (resulting from the short-wavelength
hypothesis), it is defined at leading order by the integrated quan-
tity at time t and radius r (e.g., Lighthill 1978; Unno et al. 1989):

Lw ≈
1
T

∫ t+T/2

t−T/2

("
θ,s
Re

[
p′(r, τ)

]
Re [vr(r, τ)] r2 sin θdθds

)
dτ,

(13)

where vr is the Eulerian perturbation of radial velocity and T is
the oscillation period. By recalling that the wave velocity field
is given by u = (∂ξ/∂t) and by expressing within the considered
framework its radial component as

vr(r, t) = ṽr(r) Ym
` (θ, s) e−iσt, (14)

we obtain the simple relation

ṽr(r) = −iσξ̃r(r). (15)

In order to express Eq. (13) further within the JWKB approxi-
mation, we then write the wave function Ψ in a general way as
the linear combination of ψ and ψ?, that is,

Ψ(r, t) ≈ e−iσt
[
ap ψ(r, r̄) + ar ψ

?(r; r̄)
]
, (16)

where ap and ar are two complex constants representing
the amplitudes of the progressive and regressive components,
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respectively. Using Eqs. (4), (5), (12), and (15), the (complex)
radial part of the velocity in resonant cavities is therefore equal
to:

ṽr ≈ −i
(
σ

ρr2c

)1/2 ∣∣∣∣∣∣ S 2
` − σ

2

N2 − σ2

∣∣∣∣∣∣
1/4 (

ap eiϕ + ar e−iϕ
)
. (17)

To obtain the Eulerian perturbation of pressure, we can then
use the relations derived by Shibahashi (1979), and given in
Eqs. (A.5) and (A.6), while neglecting at leading order the vari-
ations of the structure equilibrium compared to that of the wave
phase, which provides

p̃′ ≈ sgn(S 2
` − σ

2)i
(
σρc
r2

)1/2
∣∣∣∣∣∣N2 − σ2

S 2
`
− σ2

∣∣∣∣∣∣1/4 (
ap eiϕ − ar e−iϕ

)
,

(18)

where sgn() is the sign function. Therefore, using
Eqs. (1), (14), (17), and (18), and taking advantage of the
time dependence on e−iσt and the orthonormality of the spheri-
cal harmonics, it is straightforward to show that the radial wave
energy luminosity in Eq. (13) finally reads

Lw ≈ sgn
(
σ2 − S 2

`

) σ
2

(|ap|
2 − |ar|

2). (19)

First, we check that the radial wave energy luminosity does not
depend on r and t within the hypothesis of adiabatic oscillations,
as expected. Second, we see that it is equal to the sum of two
distinct parts that are proportional to |ap|

2 and |ar|
2, which result,

respectively, from the progressive and regressive components2.
Third, we see that in general, the mean wave energy flux is pro-
vided by

Fw(r) ≡
Lw

4πr2 ≈
1

16π

(
p̃′ṽ?r + p̃′?ṽr

)
. (20)

In the case where there is only one progressive or one regressive
component (i.e., ar = 0 or ap = 0, respectively), we retrieve the
well-known formula for plane waves given by F w = p̃′ṽ?r /8π.
Finally, it is worth mentioning that the Wronskian for the wave
function Ψ is equal to

WΨ =

(
Ψ? dΨ

dr
− Ψ

dΨ?

dr

)
= (|ap|

2 − |ar|
2)Wψ. (21)

At leading order in the resonant cavities,Wψ ≈ 2i, and we see
that the Wronskian of the wave function Ψ is thus directly related
to the radial wave energy luminosity, which explains its conser-
vation within the adiabatic limit.

Another important point is the presence of the term sgn(σ2−

S 2
` ) in Eq. (19). This term is actually related to the direction of

the propagation of the wave energy. Indeed, the radial group and
phase velocities in resonant cavities, vg and vϕ, are equal, accord-
ing to Eq. (5), to:

vϕ = ±
σ

Kr
and vg =

∂σ

∂Kr
=

c2K2
r σ

2(
σ4 − N2S 2

`

) vϕ, (22)

2 In general, the oscillations are represented by a linear combination
of an infinite number of (`,m) harmonics. Given the orthonormality of
the spherical harmonics, it is straightforward to show that the total mean
wave energy luminosity is equal to the sum of each harmonic contribu-
tion, and that each harmonic contribution has the same form as Eq. (19).

where the plus and minus signs correspond to the progres-
sive and regressive components, respectively. Therefore, two
cases have to be distinguished. On the one hand, in the case of
pressure-dominated oscillations, we have σ2 � (S 2

` and N2) so
that vg and vϕ have the same sign. As a consequence, the wave
energy propagates in the same direction as the phase wavefront.
Therefore, the progressive (regressive) component is associated
with a positive (negative) mean wave energy flux propagating
upward (downward). On the other hand, in the case of gravity-
dominated oscillations, we have σ2 � (S 2

` and N2) so that vg and
vϕ have opposite signs. The wave energy propagates in the oppo-
site direction of the phase wavefront. In this case, the progressive
(regressive) component is associated with a negative (positive)
mean wave energy flux propagating downward (upward). This
behavior is in agreement with the term sgn(σ2 − S 2

` ) in Eq. (19).

2.3. Barriers and basic wave reflection-transmission problem

There are some regions in stars where the waves are evanes-
cent (i.e., where K2

r < 0) or where the JWKB approximation
is not met, as in the vicinity of sharp variations in the medium
(e.g., discontinuity in the chemical composition, thin ionization
region) or turning-points (i.e., where K2

r = 0). These are the
so-called barriers. While in the case of one infinite-length cavity
a purely progressive or regressive solution can exist (i.e., as in
Eq. (16) with ar = 0 or ap = 0), this does not hold true in the
presence of one single barrier. Indeed, an incident wave coming
from a first cavity is partially reflected back near the barrier and
partially transmitted toward a second cavity on the other side
of the barrier. It is thus necessary to consider the reflected and
transmitted waves as well, the amplitudes of which depend both
on the amplitude of the incident wave and on the properties of
the barrier, and they have to satisfy the conservation of the wave
energy flux. In general, this physical problem can be described
by reflection and transmission coefficients, as already proposed
by Roxburgh & Vorontsov (2001) or Takata (2016b) in the con-
text of stellar pulsations.

To describe the wave reflection-transmission problem, we
considered a first cavity Cn underlying a second cavity Cn+1
with n ∈ N?; both are separated by an intermediate barrier. We
chose two reference radii r+

n or r−n+1 that are located below and
above the considered barrier, at the interfaces with the resonant
cavities Cn and Cn+1, respectively; these layers define the upper
and lower boundaries of the cavities Cn and Cn+1. Within such
a framework, we can first express the wave function inside the
cavity Cn in a similar way to Eq. (16), but with an explicit repre-
sentation in terms of the propagation of the energy and with the
origin of the wave phase set to the upper boundary, r+

n , that is,

Ψn(r, t) = a(→)
n,+ ψ(→)(r, t; r+

n ) + a(←)
n,+ ψ(←)(r, t; r+

n ), (23)

where the superscripts (→) and (←) denote the wave compo-
nents in the cavity Cn whose energy propagates upward and
downward with the complex amplitudes a(→)

n,+ and a(←)
n,+ , respec-

tively. As the phase and group velocities for pressure-dominated
(gravity-dominated) modes have the same (opposite) direction,
we can directly conclude:

ψ(→)(r, t; r̄) =

{
ψ(r; r̄) e−iσt for pressure modes
ψ?(r; r̄) e−iσt for gravity modes (24)

ψ(←)(r, t; r̄) = ψ(→)?(r,−t; r̄), (25)

where we recall that the ψ(r; r̄) function is defined in Eq. (12).
The same representation can be used to express the wave func-
tion inside the cavity Cn+1, using the lower boundary r−n+1 as the
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Fig. 1. Schematic view of the base wave transmission-reflection prob-
lem. An incident wave energy ray in the cavity Cn with an amplitude
of a(→)

n,+ encounters a barrier located between the radii r+
n and r−n+1, and

associated with the (complex) reflection and transmission coefficients
Rn,n+1 and Tn,n+1. A part of the energy ray is reflected back into the cav-
ity Cn with an amplitude of a(←)

n,+ , and another part is transmitted into the
overlying cavity Cn+1 with an amplitude of a(→)

n+1,−.

origin of the wave phase, that is,

Ψn+1(r, t) = a(→)
n+1,− ψ

(→)(r, t; r−n+1) + a(←)
n+1,− ψ

(←)(r, t; r−n+1), (26)

where a(→)
n+1,− and a(←)

n+1,− denote the complex amplitudes of the
wave components in the cavity Cn+1 whose energy propagates
upward and downward, respectively. We emphasize that Ψn and
Ψn+1 are two different representations inside different cavities of
the same and unique global wave function Ψ, which denotes the
solution of the wave equation throughout the star.

Such a representation of the oscillations in the resonant cav-
ities is appropriate to define properly the reflection and trans-
mission coefficients while accounting for the conservation of the
wave energy flux, as already formalized in Takata (2016b). First,
in the base wave reflection-transmission problem, an upward
incident energy ray propagating in the bottom cavity Cn encoun-
ters the barrier and is reflected back downward, while a part
of the energy ray is transmitted through the barrier and prop-
agates upward in the overlying resonant cavity Cn+1. In other
words, we assume a(←)

n+1,− = 0 (see Fig. 1). In this base config-
uration, the reflection and transmission coefficients, Rn,n+1 and
Tn,n+1, are respectively defined as the ratio of the amplitudes of
the reflected and transmitted components to the amplitude of the
incident component inside the resonant cavities, that is,

Rn,n+1 =
a(←)

n,+

a(→)
n,+

=
∣∣∣Rn,n+1

∣∣∣ eiδn,n+1 (27)

Tn,n+1 =
a(→)

n+1,−

a(→)
n,+

=
∣∣∣Tn,n+1

∣∣∣ eiγn,n+1 , (28)

where δn,n+1 and γn,n+1 are the phase lags introduced at reflec-
tion and transmission, respectively. In this work, we will assume
that the phase lags take values between [−π, π]. We note that
the notion of phase lags is readily defined well inside the cav-
ities where the JWKB is met and where the progressive and
regressive wave components are distinctly defined. In addition,
the conservation of the mean wave energy flux throughout the
star, provided by Eq. (19) inside both cavities, translates into the
constraint:∣∣∣a(→)

n,+

∣∣∣2 − ∣∣∣a(←)
n,+

∣∣∣2 =
∣∣∣a(→)

n+1,−

∣∣∣2 ⇒ ∣∣∣Rn,n+1
∣∣∣2 +

∣∣∣Tn,n+1
∣∣∣2 = 1. (29)

Fig. 2. Schematic view of the adjoint wave transmission-reflection prob-
lem. An incident wave energy ray in the cavity Cn+1 with an amplitude
of a(←)

n+1,− encounters a barrier. A part of the energy ray is reflected back
into the cavity Cn+1 with an amplitude a(→)

n+1,−, and another part is trans-
mitted into the underlying cavity Cn with an amplitude of a(←)

n,+ .

Second, in the adjoint wave reflection-transmission problem, a
downward incident energy ray propagating in the resonant cavity
Cn+1 encounters the barrier and is reflected back upward, while
a part of the energy ray is transmitted through the barrier and
propagates downward in the underlying resonant cavity Cn. In
other words, we assume a(→)

n,+ = 0 (see Fig. 2). In this config-
uration, the reflection and transmission coefficients, Rn+1,n and
Tn+1,n, are defined, respectively, as

Rn+1,n =
a(→)

n+1,−

a(←)
n+1,−

=
∣∣∣Rn+1,n

∣∣∣ eiδn+1,n (30)

Tn+1,n =
a(←)

n,+

a(←)
n+1,−

=
∣∣∣Tn+1,n

∣∣∣ eiγn+1,n , (31)

where δn+1,n and γn+1,n are the phase lags introduced at reflection
and transmission. The modulus of the reflection and transmission
coefficients must also satisfy the conservation of the wave energy
flux as in Eq. (29).

Using basic wave principles of time-reversal symmetry, lin-
ear superposition and energy conservation, it is possible using
a reasoning similar to Takata (2016b, namely, their Sect. 2), to
connect the wave coefficients of the base problem and those of
the adjoint problem. As demonstrated in Appendix B, they fol-
low the relations∣∣∣Rn+1,n

∣∣∣ =
∣∣∣Rn,n+1

∣∣∣ , ∣∣∣Tn+1,n
∣∣∣ =

∣∣∣Tn,n+1
∣∣∣ ,

γn+1,n = γn,n+1, δn+1,n = π − δn,n+1 + 2γn,n+1, (32)

which is similar to the results found by Takata (2016b) when
γn,n+1 = 0. As a result, we finally see that a barrier between
two cavities Cn and Cn+1 is entirely characterized by only three
parameters: Rn,n+1, δn,n+1, and γn,n+1. The modulus of the trans-
mission coefficient can then be retrieved using the conservation
of the wave energy flux.

To complete these definitions, we emphasize that the choice
of the origin of the phase in the cavities, that is, the so- called
cavity boundaries within our framework, is somehow arbitrary
and that any change in the latter is compensated by a modifica-
tion of the values of the phase lags, δn,n+1 and γn,n+1; the final
physical solution of the problem in contrast does not depend on
this choice. We note that in practice, it is often convenient to take
the boundaries as equal to the turning-points or the middle radius
of glitches, as we see later in Sect. 6.
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Fig. 3. Schematic view of a star modeled as an ensemble of resonant cavities, {Ci}1≤i≤N , where the waves can propagate and the JWKB approxi-
mation is met. The cavities are separated from each other by barriers corresponding to either evanescent or rapidly varying regions associated with
complex reflection and transmission coefficients Ri,i+1 and Ti,i+1 (gray shaded regions). The lower and upper boundaries of the cavity Ci are located
at the radii r−i and r+

i . The upward and downward energy ray in the cavity Ci are associated with the amplitudes a(→)
i,± and a(←)

i,± , respectively, where
the plus (minus) sign is chosen when the origin of the wave phase in Eqs. (11) and (12) is chosen at r+

i (r−i ). The boundaries at the stellar center
and surface are modeled as totally reflective barriers.

2.4. Central and surface stellar boundary conditions

Close to the center and surface of stars, the wave energy lumi-
nosity must vanish at some point. This condition is required by
the regularity of the oscillation displacement near the center and
the fact that the density vanishes beyond the surface. The core
and surface of stars can thus be modeled as totally reflective bar-
riers (e.g., Unno et al. 1989).

Inside the first cavity just above the stellar core, which is
denoted by C1, the wave function can be generally written within
the considered convention as

Ψ1(r, t) = a(→)
1,− ψ(→)(r, t; r−1 ) + a(←)

1,− ψ(←)(r, t; r−1 ). (33)

The reflective boundary condition at the center then requires

a(→)
1,− = eiδc a(←)

1,− , (34)

where δc is the phase lag introduced during the reflection. This
ensures that the modulus of the amplitudes of the upward and
downward components are equal and hence that the incident
wave energy flux is totally reflected. Similarly, inside the last
cavity just below the stellar surface where the stellar density van-
ishes, which is denoted by CN with N ∈ N?, the wave function
reads

ΨN(r, t) = a(→)
N,+ ψ

(→)(r, t; r+
N) + a(←)

N,+ ψ
(←)(r, t; r+

N). (35)

The reflective boundary condition at the surface then requires

a(←)
N,+ = eiδs a(→)

N,+ , (36)

where δs is the phase lag introduced at the reflection.
At this point, all the basic ingredients have been introduced

to formulate in a general way the resonance condition of global
modes in stars by taking simultaneously into account the effect
of an ensemble of barriers, as we see in the next sections.

3. Infinite-time reflection picture for multi-cavity
oscillation modes

In this section, we consider a star composed of N successive res-
onant cavities {Ci}1≤i≤N between the center and surface, which
are separated from each other by N − 1 intermediate barriers.
In order to make explicit the properties of the oscillation eigen-
modes, we follow the propagation of an incident energy ray

along its infinite-time travel through the ensemble of cavities and
impose a condition for constructive interferences. The problem
is graphically represented in Fig. 3. This is actually very simi-
lar to the computation of the transmission transfer function of a
Fabry-Pérot in optics, but with an ensemble of resonant cavities
and totally reflective boundaries.

3.1. Cavities C1 and C2

As a first step, we focus on the two lowest cavities C1 and C2
while considering the reflective condition at the bottom bound-
ary of C1 (i.e., close to the stellar center). In the following, {r̃i}

denotes a set of given radii in the middle of the cavities {Ci}. We
then consider the case of an incident downward energy ray at
r̃2 and at a given time t0 with an amplitude a(←)

2,− . According to
Eq. (26), the wave function at r̃2 is provided by

Ψ2(r̃2, t0) = a(→)
2,− ψ(→)(r̃2, t0; r−2 ) + a(←)

2,− ψ(←)(r̃2, t0; r−2 ). (37)

The goal is then to express a(→)
2,− as a function of a(←)

2,− . Unlike
the adjoint wave reflection-transmission configuration presented
in Sect. 2.3, the amplitude of the reflected component has to
account for the reflective boundary condition at the stellar cen-
ter and the fact that the wave energy that is transmitted from C2
to C1 can come back into C2. This reflected part can thus be
decomposed into two components, namely as:

a(→)
2,− = α(→)

2,R + α(→)
2,T . (38)

The first term α(→)
2,R corresponds to the part of the incident energy

ray that is directly reflected on the barrier between C1 and C2 as
in the associated adjoint wave reflection-transmission problem,
that is,

α(→)
2,R = R2,1 a(←)

2,− . (39)

The second term α(→)
2,T corresponds to the part of the incident

energy ray that is transmitted to C1, that then indefinitely travels
back and forth between the center and the upper boundary of C1,
and that is finally transmitted back to C2. Based on Eq. (23), the
wave function at r̃1 in C1 can be written as

Ψ1(r̃1, t0) = a(→)
1,+ ψ(→)(r̃1, t0; r+

1 ) + a(←)
1,+ ψ(←)(r̃1, t0; r+

1 ). (40)
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The wave amplitudes in Eq. (40) can be expressed as the super-
position of an infinite number of contributions resulting from the
infinite-time multiple reflections of the energy ray transmitted
from C2, that is,

a(←)
1,+ = α(←)

1,T +

+∞∑
k=1

α(←)
1,k (41)

a(→)
1,+ = α(→)

1,R +

+∞∑
k=2

α(→)
1,k . (42)

First, α(←)
1,T corresponds to the part of the incident energy ray that

is transmitted from C2 to C1, that is,

α(←)
1,T = T2,1 a(←)

2,− . (43)

Second, α(→)
1,R corresponds to the transmitted part that is in addi-

tion reflected close to the core and returns back to r̃1. To express
this amplitude as a function of the wave coefficients within the
conventions presented in Sect. 2, we need to change the origin of
the phase in Eq. (40) from r+

1 to r−1 where the reflection occurs.
From Eqs. (12), (24), and (25), we deduce for any integer i that

ψ(→)(r̃i, t0; r+
i ) = e−iΘi ψ(→)(r̃i, t0; r−i ), (44)

ψ(←)(r̃i, t0; r+
i ) = e+iΘi ψ(←)(r̃i, t0; r−i ), (45)

with

Θi = ±

∫ r+
i

r−i

Krdr, (46)

where the plus (minus) sign has to be chosen when the radial
group and phase velocities have the same (opposite) direc-
tions, that is, in cases of pressure-dominated (gravity-dominated)
modes. In comparing Eq. (40) with the expression of the wave
function at r̃1, but with r−1 as the origin of the wave phase, that
is,

Ψ1(r̃1, t0) = a(→)
1,− ψ(→)(r̃1, t0; r−1 ) + a(←)

1,− ψ
(←)(r̃1, t0; r−1 ), (47)

we then can understand, by using Eqs. (44) and (45), that a
change in the origin of the phase from the upper boundary of
the cavity Ci, r+

i , to the lower boundary, r−i , is associated with
the transformation of the amplitudes

a(→)
i,− = e−iΘi a(→)

i,+ , (48)

a(←)
i,− = e+iΘi a(←)

i,+ . (49)

Starting from the amplitude α(←)
T,1 , we first change the origin of

the phase to r−1 , which is equivalent to multiply the amplitude
by eiΘ1 according to Eq. (49). With this convention, the reflected
amplitude is just lagged by a phase δc compared to the incident
one according to Sect. 2.4. To conclude, we have to change the
origin of the phase back to r+

1 to retrieve the convention used in
Eq. (40), which is equivalent to multiply the amplitude again by
eiΘ1 according to Eq. (48). As a result, this gives

α(→)
1,R = e2iΘ1 eiδcα(←)

1,T . (50)

Third, α(←)
1,k and α(→)

1,k in Eqs. (41) and (42) correspond to the
parts of the downward and upward components having traveled
back and forth k times inside C1. For instance, the downward
term having made only one back and forth is deduced from the

reflection of the amplitude α(→)
1,R on the barrier between C1 and

C2, that is,

α(←)
1,1 = R1,2α

(→)
1,R = R1,2 e2iΘ1 eiδcα(←)

1,T . (51)

We retrieve a factor e2iΘ1 that results from the total “optic” path
covered by the initial downward energy ray transmitted from C2
to come back to its initial position during a back and forth in C1.
Based on the same reasoning as before, it is straightforward to
express the other components by recurrence for k > 1 as:

α(←)
1,k = R1,2 e2iΘ1 eiδc α(←)

1,k−1 (52)

α(→)
1,k = e2iΘ1 eiδc α(←)

1,k−1. (53)

As a consequence, the upward and downward amplitudes in C1
can be linked through Eqs. (41), (42), (50), and (53), which
merely results in

a(→)
1,+ = e2iΘ1 eiδc a(←)

1,+ . (54)

In other words, the upward and downward components in C1
have the same modulus and are just phase lagged during the
infinite-time travel of the wave energy ray inside C1. This means
that the downward and upward energy rays carry the same
amount of energy (but in the opposite direction) in such a way
that the total wave luminosity vanishes in C1, as expected from
Eq. (19) and the conservation of the wave energy flux under the
totally reflective core constraint. Finally, the amplitude of the
wave transmitted to C2 is equal to:

α(→)
2,T = T1,2 a(→)

1,+ , (55)

so that using Eqs. (42), (43) and (50)–(53), and expressing T2,1
as a function of T1,2 through Eq. (32), it can be rewritten as:

α(→)
2,T = a(←)

2,−

∣∣∣T1,2
∣∣∣2 ei(δc+2γ1,2+2Θ1)

+∞∑
k=0

[
R1,2ei(δc+2Θ1)

]k

= a(←)
2,−

∣∣∣T1,2
∣∣∣2 ei(δc+2γ1,2+2Θ1)

1 − R1,2ei(δc+2Θ1) · (56)

Therefore, the total amplitude of the upward component in C2 is
equal to, according to Eqs. (32), (38), (39), and (56):

a(→)
2,− = a(←)

2,−

∣∣∣R1,2
∣∣∣ ei(π−δ1,2+2γ1,2) +

∣∣∣T1,2
∣∣∣2 ei(δc+2γ1,2+2Θ1)

1 −
∣∣∣R1,2

∣∣∣ ei(δc+δ1,2+2Θ1)

 . (57)

Using the energy constraint |T1,2|
2 = 1 − |R1,2|

2, Eq. (57) leads
after some manipulations to

a(→)
2,− = ei∆2,1 a(←)

2,− , (58)

where ∆2,1 represents the total phase lag introduced by the reflec-
tion on the intermediate barrier and the infinite-time travel inside
C1 of the initial downward incident wave. It reads

∆2,1 = π + 2γ1,2 − δ1,2 − 2 arctan
(
q1,2 cot Φ1

)
, (59)

with

Φ1 = Θ1 +
δc

2
+
δ1,2

2
(60)

q1,2 =
1 −

∣∣∣R1,2
∣∣∣

1 +
∣∣∣R1,2

∣∣∣ · (61)
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The factor q1,2 in the last equation is called the coupling factor of
the cavities C1 and C2, which can take values between zero and
unity. Equation (58) also shows that as in C1, the upward and
downward components in C2 have the same modulus because of
both the totally reflective core constraint and the energy conser-
vation; the total wave luminosity thus also vanishes in C2.

We thus conclude that the combination of the cavity C1 and
the overlying intermediate barrier is equivalent to one single
totally reflective barrier underlying the cavity C2 and introduc-
ing an effective phase lag ∆2,1 at the reflection of a downward
incident wave.

3.2. Ensemble of N cavities

As the next step, we add a third cavity C3 and an intermediate
barrier above C2. We then consider the case of an incident down-
ward energy ray at r̃3 with an amplitude a(←)

3,− at a given time t0.
According to Eq. (26), the wave function at r̃3 is provided by

Ψ3(r̃3, t0) = a(→)
3,− ψ(→)(r̃3, t; r−3 ) + a(←)

3,− ψ(←)(r̃3, t0; r−3 ). (62)

As previously, the goal is to express the total reflected amplitude
a(→)

3,− as a function of the incident amplitude a(←)
3,− . Actually, the

computation is similar to that performed in Sect. 3.1 when con-
sidering two cavities because we have previously shown that the
cavity C1 and the overlying barrier just below C2 together can
be represented as a totally reflective barrier associated with an
effective phase lag ∆2,1. Therefore, we can conclude in a straight-
forward way similarly to Eq. (58) that

a(→)
3,− = a(←)

3,− ei∆3,2 , (63)

where ∆3,2 is the total phase lag introduced during the reflection
on the barrier between C2 and C3 and the infinite-time travel
throughout the cavities C1 and C2. Its expression is provided by
the set of Eqs. (59)–(61) while replacing δc by ∆2,1 and the sub-
scripts 1 and 2 by the subscripts 2 and 3, respectively (e.g., |R1,2|

must be replaced by |R2,3|). The region between the stellar core
and the barrier underlying the cavity C3 can thus also be con-
sidered as a totally reflective barrier associated with an effective
phase lag at reflection ∆3,2.

At this point, it is then obvious that the generalization to the
case of N cavities can be obtained by adding one by one sup-
plementary overlying cavities and using the same reasoning as
before at each step. To do so, we consider a downward incident
energy ray in the cavity CN . Analogously to Eqs. (58) and (63),
we understand that the amplitudes of the downward and upward
components in each cavity are linked for 1 ≤ i ≤ N by the
expression

a(→)
i,− = ei∆i,i−1 a(←)

i,− , (64)

where the total effective phase lag, ∆i,i−1, introduced by the
infinite-time reflections and back-and-forth travels through all
the underlying cavities, {C j} j<i, can be formulated by the recur-
rence relation for i ≥ 2:

∆i,i−1 = π + 2γi−1,i − δi−1,i − 2 arctan
(
qi−1,i cot Φi−1

)
(65)

Φi−1 = Θi−1 +
∆i−1,i−2

2
+
δi−1,i

2
· (66)

The general definition of the coupling factor between the cavities
Ci−1 and Ci is provided by

qi−1,i =
1 −

∣∣∣Ri−1,i
∣∣∣

1 +
∣∣∣Ri−1,i

∣∣∣ · (67)

Finally, the initialization of the recurrence for i = 1 is ruled by
the core boundary condition in Eq. (60), which is reduced to

∆1,0 = δc. (68)

We also note that Eq. (64) implies that the modulus of the upward
and downward components in all cavities are equal and thus that
the total wave energy luminosity is null everywhere. As men-
tioned before, this is the consequence of both the totally reflec-
tive core condition and the mean energy flux conservation.

3.3. Upper surface boundary and resonance condition

In the final step, we add the surface totally reflective barrier
above the cavity CN , so that Eq. (36) must apply. Simultane-
ously, using Eqs. (48), (49), and (64) for i = N, we also have to
impose:

a(→)
N,+ = e2iΘN ei∆N,N−1 a(←)

N,+ . (69)

This provides the following resonance condition:

ΘN +
δs

2
+

∆N,N−1

2
= nπ, (70)

where n is an integer corresponding to the mode radial order. In
the adopted stationary configuration, the resonance condition is
actually equivalent to consider that a downward incident energy
ray in the cavity CN has to travel throughout the ensemble of
cavities and come back to its initial position with the exact same
amplitude in order to constructively interfere. In order to give a
usual physical meaning to the radial order n in Eq. (70), it may
be convenient to choose the branch of the arctangent function in
such way that for any real ε, we have:

lim
q→1

arctan (q tan ε) = ε. (71)

Using this convention, the radial order n can be interpreted
throughout the paper as the difference between the number of
radial oscillation nodes in the p-dominated cavities, np, and
that in the g-dominated cavities, ng, over all the cavities (i.e.,
n = np − ng). Using the principal branch for the artangent func-
tion, n in Eq. (70) would be instead interpreted as nN , the number
of radial nodes over the cavity CN .

Hence, the mode eigenfrequency spectrum is obtained by
solving the set of equations Eqs. (65), (66), (68), and (70) for any
radial order n and accounting for the implicit frequency depen-
dence of the wave number integral and the barrier parameters.
To express the resonance condition in a practical form, we can
define the phase Υi for 1 ≤ i ≤ N such as

Υi = Θi +
δi,i+1

2
+
δi,i−1

2
−
π

2
, (72)

and we can set

δ1,0 = δc and δN,N+1 = π + δs. (73)

Using the relation between δi,i−1 and γi−1,i in Eq. (32), the recur-
rence resonance relation in Eqs. (65) and (66) can be written for
2 ≤ i ≤ N in the form of

tan Φi−1 = qi−1,i tan (Φi − Υi) , (74)

where the core and surface boundary conditions in Eqs. (68)
and (70) translate respectively into

Φ1 = Υ1 +
π

2
and ΦN =

(
n +

1
2

)
π. (75)
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For N = 1, Eq. (75) is sufficient alone and leads to Υ1 = nπ.
Depending on the problem, it can also be convenient to express
the resonance condition as a series of frequency-dependent sine
terms, as we see in Sect. 6.4. Such an alternative formulation is
provided in Appendix C.

3.4. On the need for the multi-cavity approach

Before going further, it is worth discussing the need for the
multi-cavity approach, since we show in Sects. 3.1 and 3.2 that it
is possible to reinterpret the multi-cavity problem as the single-
cavity problem. Indeed, the combination of the cavities and bar-
riers below a given cavity Ci>1 can always be reinterpreted as
one single totally reflective barrier with an effective reflection
phase lag redefined appropriately. Actually, the same conclusion
holds true for the combination of the cavities and barriers above
a given cavity, Ci<N . This can be easily shown following the
same reasoning as in Sects. 3.1 and 3.2, except that the com-
putation of the mode amplitude has to be made starting from
the surface totally reflective condition and going toward deeper
cavities. We may therefore wonder whether the multi-cavity pic-
ture, which is more complicated, is justified or not. The answer
to this question depends on how the wave number integrals and
the reflection coefficients vary with frequency over a considered
range. On the one hand, if the wave number integral and the
reflection coefficients on both sides of the considered cavity are
constant over the frequency range of interest, then the single-
cavity picture appears sufficient to describe the oscillations. On
the other hand, if the mode parameters vary even slowly with fre-
quency, then we can expect that the effective phase lags resulting
from the combination of the cavities above and below the con-
sidered cavity behave in a complicated way with frequency. In
this case, the use of the single-cavity picture is not judicious.
In practice, for real stars, the wave number integrals and the
reflection coefficients always vary with frequency and choosing
a multi-cavity approach to describe the oscillation modes there-
fore appears necessary to understand their frequency spectra and
develop useful seismic diagnoses.

4. Linear boundary value problem picture

In Sect. 3, we describe the eigenmodes using a physical picture
that is analogous to ray tracing in optics. In this section, we aim
to describe the eigenmodes in a more mathematical way that con-
siders them as the solution to a linear boundary value problem.
Besides checking the validity of the previous scenario, such an
approach also has the advantage of being more convenient to
discuss the distribution of the mode energy and the mode ampli-
tudes ratios throughout stars, which is addressed in Sect. 5.

4.1. Amplitude vector

In each resonant cavity, the general solution for the wave func-
tion Ψ takes a similar form to Eqs. (23) and (26) depending on
whether the origin of the phase is taken at the lower or upper
boundary of the cavity, respectively. In each cavity Ci, we thus
define the amplitude vector in both cases as

ai,− =

 a(→)
i,−

a(←)
i,−

 and ai,+ =

 a(→)
i,+

a(←)
i,+

 . (76)

To find the stationary modes oscillating between the central and
surface boundaries of the star, we need to make the link between
all the amplitude vectors from the cavities C1 to CN .

4.2. Connection through the intermediate barriers

Around each barrier located between the cavities Ci and Ci+1,
a first solution for the wave function is the solution of the base
wave reflection-transmission problem presented in Sect. 2.3 and
is denoted by Ψ(1). This solution is associated in both cavities
with the amplitude vectors up to a given proportionality constant:

a(1)
i+1,− ∝

(
Ti,i+1

0

)
and a(1)

i,+ ∝

(
1

Ri,i+1

)
. (77)

As shown in Appendix B, another solution can then be obtained
by complex conjugation and time reversal. In other words, Ψ(2) =
Ψ(1)?(r,−t) is also a solution. According to Eq. (25) (see also
the example in Appendix B), this solution is associated with the
amplitude vectors, up to the same proportionality constant as in
Eq. (77),

a(2)
i+1,− ∝

(
0

T?
i,i+1

)
and a(2)

i,+ ∝

(
R?

i,i+1
1

)
. (78)

The two solutions Ψ(1) and Ψ(2) are linearly independent and
constitute a basis for the solution of the wave equation around
the considered barrier (indeed, it is straightforward to show that
their Wronskian is not null). They are thus sufficient to deduce
the general transformation making the connection between ai+1,−
and ai,+ for 1 ≤ i ≤ N − 1 in the following matrix form

ai,+ = Bi,i+1 ai+1,−, (79)

where Bi,i+1 is the transformation matrix:

Bi,i+1 =

(
T−1

i,i+1 R?
i,i+1T? −1

i,i+1
Ri,i+1T−1

i,i+1 T? −1
i,i+1

)
= C

(
−
δi,i+1

2

)
Ai,i+1C

(
π

2
−
δi+1,i

2

)
, (80)

where we have used Eq. (32) to decompose the matrix and where
we have defined

C(ε) =

(
e+iε 0
0 e−iε

)
(81)

Ai,i+1 =
1∣∣∣Ti,i+1

∣∣∣
(

1
∣∣∣Ri,i+1

∣∣∣∣∣∣Ri,i+1
∣∣∣ 1

)
. (82)

For our purpose, it is useful to specify how the C and Ai,i+1 matri-
ces transform a given amplitude vector in the form of:

w(ε) =

(
e+iε

e−iε

)
. (83)

It is straightforward to find that

C(ε2) w(ε1) = w(ε2 + ε1) (84)
Ai,i+1 w(ε) = Ai,i+1(ε) w

(
arctan

[
qi,i+1 tan (ε)

])
, (85)

where, using the convention in Eq. (71) for the branch of the
arctangent function3,

Ai,i+1(ε) =

√
q2

i,i+1 + (1 − q2
i,i+1) cos2 (ε)

qi,i+1
· (86)

3 When using the principal branch of the actangent function, Eq. (86)
has to be multiplied by an additional factor of sgn(cos(ε)).
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4.3. Wave function matching in the middle of the cavities

At this point, we need to connect the general solution around
the barrier between Ci and Ci+1 to the general solution around
an adjacent barrier, for instance, between Ci−1 and Ci. It is thus
sufficient to make the link between ai,+ and ai,− inside the cavity
Ci for 1 ≤ i ≤ N. This is provided by Eqs. (48) and (49), and can
be written in the following matrix form:

ai,− = Ci ai,+ ≡ C(−Θi) ai,+, (87)

where Θi and C are defined in Eqs. (46) and (81). This simple
transformation is actually equivalent to match the two JWKB
solutions for the wave functions coming from r−i and r+

i , respec-
tively, inside the cavity Ci, as usually done for instance in the
usual asymptotic analyses of stellar pulsations (e.g., Shibahashi
1979; Tassoul 1980; Takata 2016a).

4.4. General transformation between adjacent cavities

The two last operations can be composed to describe the general
transformation of the amplitude vector from a cavity to an adja-
cent cavity, that is, the transformation from ai+1,+ to ai,+. Using
Eqs. (79) and (87), we get for 1 ≤ i ≤ N − 1:

ai,+ = Bi,i+1Ci+1 ai+1,+ ≡ Ei,i+1 ai+1,+. (88)

It is also useful for the following to deduce the transformation
of a vector amplitude w(ε) as defined in Eq. (83) by the matrix
Ei,i+1. Using Eqs. (80), (84), (85), and (87), we find for 1 ≤ i ≤
N − 1 that

Ei,i+1 w(ε) = Ai,i+1

(
ε − Υi+1 +

δi+1,i+2

2

)
w [Ωi+1(ε)] , (89)

with

Ωi+1(ε) = arctan
[
qi,i+1 tan

(
ε − Υi+1 +

δi+1,i+2

2

)]
−
δi,i+1

2
, (90)

where we have used Eqs. (32) and (72) to express the result as a
function of the phase Υi.

4.5. Surface boundary condition

We first apply the totally reflective boundary condition at the
surface of the star, which is represented by Eq. (36). In terms of
the amplitude vector in CN , it reads:

aN,+ = aN w
(
−
δs

2

)
, (91)

where aN is a complex constant. Imposing this surface condi-
tion, it is then possible to deduce the amplitude vectors in the
underlying cavities by successively applying the linear general
transformation Ei,i+1 in Eq. (88) from i = N − 1 to i = k. This
gives

ak,+ =

N−1∏
i=k

Ei,i+1

 aN w
(
−
δs

2

)
. (92)

Using Eq. (89) and setting for convenience

ΩN+1(ε) = ε −
δs

2
, (93)

this can be expressed in the simple form

ak,+ = ak w [Ωk+1 ◦ · · · ◦ΩN+1(0)] , (94)

where (◦) is the composition operator and ak is given by

ak

aN
=

N−1∏
i=k

Ai,i+1

[
Ωi+2 ◦ · · · ◦ΩN+1(0) − Υi+1 +

δi+1,i+2

2

]
, (95)

We note, according to Eq. (94), that in a given cavity, the ampli-
tudes of the upward and downward components have the same
modulus. This is the result of the totally reflective surface bound-
ary condition in Eq. (91) and has already been demonstrated
using the infinite-time reflection picture.

4.6. Central boundary and eigenvalue conditions

In the final step, we apply the bottom boundary condition close
to the core of the star, which is represented by Eq. (34). In terms
of the vector amplitude, this translates into

a1,− = ã1 w
(
δc

2

)
, (96)

where ã1 is a complex constant. Another expression of a1,− can
also be obtained but satisfying, this time, the surface boundary
condition. Using Eqs. (87) and (94), it is provided by

a1,− = C1 a1,+ = a1 w [Ω2 ◦ · · · ◦ΩN+1 (0) − Θ1] . (97)

Equations (96) and (97) have therefore to be met simultaneously
to obtain a solution of the boundary value problem. The eigen-
value condition is thus met if the amplitudes are chosen such as
ã1 = (−1)na1 and

Ω1 ◦ · · · ◦ΩN+1(0) = nπ, (98)

where we have defined

Ω1(ε) = −ε + Υ1 −
δ1,2

2
+
π

2
, (99)

and where n is the radial order. It is straightforward to show
that Eq. (98) is equivalent to the recurrence condition found
in the infinite-time reflection picture and provided by Eqs. (74)
and (75). Both approaches are therefore equivalent. The bound-
ary value problem scenario nevertheless turns out to be more
convenient to discuss the mode amplitude, as we show in the
next section.

5. Local mean mode energy and amplitudes

In addition to the eigenfrequencies, it is also interesting to know
the distribution of the mode energy throughout the ensemble of
cavities. This can provide information about the regions that the
modes can efficiently probe and this is essential for predicting
the surface mode displacement and, thus, the observed oscilla-
tion power spectra (e.g., Chaplin et al. 2005). In this section, we
briefly address this point based on the present basic formulation
of eigenmodes.

5.1. Mean mode energy in each cavity

Owing to the equipartition of the potential and kinetic energy of
short-wavelength gravito-acoustic waves (e.g., Lighthill 1978),
the mean mode energy averaged over one oscillation period T =
2π/σ in the cavity Ck is defined as:

Ek =
1
T

∫ +T/2

−T/2

∫ r+
k

r−k

"
Σ

ρ
∣∣∣Re

[
iσξ(r, t)

]∣∣∣2 r2d2Σdr
 dt, (100)
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where d2Σ = sin θdθds is the solid angle in the direction (θ, s).
First, to express Eq. (100), we note that the horizontal mode dis-
placement can be related to the Eulerian pressure perturbation
through the momentum conservation in the horizontal direction
and the equality (e.g., Unno et al. 1989):

ξ̃h =
p̃′

ρrσ2 · (101)

Then, using Eqs. (2), (15), (17), (18), and (101), and taking
advantage of the properties of the spherical harmonics, we find
at leading order for σ2 � (S 2

` and N2) or σ2 � (S 2
` and N2) that

(see Appendix D for details)

Ek ≈ |ak |
2|Θk |. (102)

The local mean mode energy is therefore first directly propor-
tional to the wave number integral in the cavity Ck defined in
Eq. (46); we can approximately write Θk ≈ πnk, where nk is
an integer whose modulus represents the number of oscillation
nodes in the radial direction in the cavity Ck. Second, it is propor-
tional to the squared modulus of the mode amplitude. Knowing
the actual value of this amplitude would require studies of the
excitation and damping of the modes, which is beyond the scope
of this work. The previous analysis can nevertheless provide us
with the amplitude ratios between adjacent cavities, as we show
in the next section.

5.2. Amplitude ratios

Using Eqs. (86) and (95), the squared amplitude in the cavity Ck
relatively to that in the surface cavity CN is equal to∣∣∣∣∣ ak

aN

∣∣∣∣∣2 =

N−1∏
i=k

q2
i,i+1 + (1 − q2

i,i+1) cos2 (Ξi+1)

qi,i+1
, (103)

where we define the quantity

Ξi+1 = Ωi+2 ◦ · · · ◦ΩN+1(0) − Υi+1 +
δi+1,i+2

2
· (104)

The squared amplitude ratio between the adjacent cavities Ck
and Ck+1 is thus merely equal to∣∣∣∣∣ ak

ak+1

∣∣∣∣∣2 =
q2

k,k+1 +
(
1 − q2

k,k+1

)
cos2 (Ξk+1)

qk,k+1
· (105)

We can thus see that the squared amplitude ratio of the wave
function between adjacent cavities depends on two ingredients:
first, the coupling factor associated with the intermediate barrier,
which measures how the energy is transmitted from one cavity
to the other cavity; second, the “optical” path during a back and
forth travel of a wave inside the ensemble of cavities above the
intermediate barrier, which is represented by Ξk+1 and measures
the level of constructive interference in the cavity Ck+1. In the
case when qk,k+1 is close to unity, Eq. (105) show that |ak/ak+1| is
on the order of unity. Indeed, in this case, both cavities are well
coupled and exchange comparable wave energy fluxes. In con-
trast, when qk,k+1 is much smaller than unity, the result depends
on the level of constructive interference in the cavity Ck+1. In
the limiting case where the level of constructive interference is
maximum, which is equivalent to Ξk+1 = (nk+1 + 1/2)π with nk+1
a given integer, Eq. (105) shows that the squared amplitude of
the wave function is smaller in the cavity Ck than in the cavity
Ck+1 by a factor of qk,k+1 � 1. Conversely, when the level of

constructive interference is minimum, that is Ξk+1 = nk+1π, the
squared amplitude of the wave function is larger in the cavity Ck
than in the cavity Ck+1 by a factor of 1/qk,k+1 � 1.

Finally, we first recall that the previous discussion address
the amplitude ratio of the wave function in both cavities and
that, in order to translate these results in terms of mode energy,
we also have to take the Θk factor in Eq. (102) into account,
which represents the local mode inertia in the asymptotic limit.
Second, it is worth mentioning that Eq. (105) expresses ak as a
function of the mode amplitude in the upper cavity CN since it
was obtained by imposing only the surface boundary condition;
it is thus valid under this sole condition, which is met by defini-
tion for eigenmodes (i.e., in the resonance condition). Imposing
instead the sole core boundary condition, it is also possible to
derive an expression of ak as a function of the mode amplitude a1
in the inner cavity C1, as shown in Appendix E. Such an expres-
sion is equivalent to Eq. (105) only and only for eigenmodes.

6. Simple cases

In this section, we apply the present formulation on simple cases
and check the compatibility with the eigenfrequency conditions
already obtained in previous works.

6.1. Gravity and acoustic modes with one single cavity

First, we consider the case of pure gravity or acoustic modes
propagating in one single cavity. The cavity is supposed to be
located between two turning-points close to the core and sur-
face and beyond which the modes are evanescent, in agreement
with the totally reflective boundary conditions. Using Eq. (75),
or equivalently Eq. (98) for N = 1, we generally find that:∫ r+

1

r−1

Krdr ±
(
δc

2
+
δs

2

)
= ±nπ, (106)

where the plus and minus signs correspond to the case of acous-
tic and gravity modes, respectively, and n is a positive integer
representing the mode radial order. In general, the values of the
phase lags δs and δc can be computed in a second step using a
single turning point asymptotic analysis, such as that performed
by Shibahashi (1979). Retaining the Cowling approximation and
neglecting the gradients in the equilibrium structure in the wave
equation everywhere inside the star, Shibahashi (1979) showed
that the wave function, Ψ, takes the form of an Airy function
of the first kind in the vicinity of a given single turning point.
Choosing the origins of the wave phase in Eq. (11) as equal to
the turning points, that is, such as Kr(r−1 ) = Kr(r+

1 ) = 0, we
show in Appendix F that δc + δs = π if the core and surface turn-
ing points have the same nature (i.e., both turning points satisfy
either σ2 = N2 or σ2 = S 2

` ); and then δc + δs = 0 otherwise.
As an illustration, we can consider the examples of the low-

frequency gravity modes and high-frequency acoustic modes in
low-mass main sequence stars. For the former, the core and sur-
face turning points (i.e., r−1 and r+

1 in the chosen convention) are
such that σ2 = N2(r−1 ) = N2(r+

1 ) (e.g., Appourchaux et al. 2010).
In this case, we thus have:

δc + δs = π. (107)

For the latter, the core and surface turning points are such that
σ2 = S 2

` (r
−
1 ) and σ2 = N2(r+

1 ), so that we get:

δc + δs = 0. (108)
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We note that we retrieve the same result as Shibahashi (1979) for
high-frequency acoustic modes, but that we find an additional
phase lag of π/2 in the quantization condition of low-frequency
gravity modes. This results from the fact that Shibahashi (1979)
considered in contrast that the upper turning point is such that
σ2 = S 2

` (r
+
1 ).

When accounting for the perturbation of the gravitational
potential, that is in the non-Cowling case, Takata (2005, 2006)
demonstrated for the ` = 1 modes that the nature of the core turn-
ing point changes. For high-frequency acoustic modes (respec-
tively, low-frequency gravity modes), the situation is actually
similar to assume simultaneously the Cowling approximation
and σ2 = N2(r−1 ) (respectively, σ2 = S 2

` (r
−
1 )); as a consequence,

δc +δs = 0 (respectively, δc +δs = π), that is, with a phase shift of
π compared to within the Cowling approximation (Takata 2016a;
Pinçon et al. 2019). This point emphasizes the importance to take
the perturbation of the gravitational potential into account for
dipolar modes to study the phase lag at reflection and transmis-
sion inside the deep interior of stars.

6.2. Two-cavity mixed modes

In a second example, we consider the case of mixed modes,
which can exist not only in red giant stars where they have
already been detected, but also in main sequence stars or the Sun.
Mixed modes can propagate through an inner buoyancy cavity
C1, where they behave as gravity modes, and an outer pressure
cavity C2, where they behave as acoustic modes. Using Eqs. (74)
and (75), or, equivalently, Eq. (98) for N = 2, we can easily get
the general resonance condition that states:

cot
(
−Θ1 −

δc

2
−
δ1,2

2
+
π

2

)
tan

(
Θ2 +

δs

2
+
δ2,1

2

)
= q1,2. (109)

Equation (109) can be shown to be similar to Eq. (18) of Takata
(2016b) using the relation δ2,1 = π − δ1,2 + 2γ1,2, with γ1,2 = 0.

At this point, we can also discuss the value of the phase
lags in the case of an evolved red giant star within the Cowling
approximation, following again the work by Shibahashi (1979).
In such considerations, the cavity C1 is located between two
turning points such as σ2 = N2(r−1 ) = N2(r+

1 ), and the cavity
C2 is located between a lower and upper turning points such
as σ2 = S 2

` (r
−
2 ) and σ2 = N2(r+

2 ), respectively (e.g., Hekker
& Christensen-Dalsgaard 2017). The boundaries of the cavities
are chosen equal to the turning points. The main assumption of
the analysis of Shibahashi (1979) then consists in considering
that the four turning points are far away from each other; this
permits us to exploit the results obtained from a single turning
point analysis of the stellar oscillation equations around each of
them. Within this context, neglecting the gradients of the equilib-
rium structure in the wave equation everywhere, we can deduce
δs = −δc = −π/2 according to Appendix F and Eq. (F.4). More-
over, as the intermediate evanescent region is thick (i.e., weak
coupling between C1 and C2), the phase lags associated with the
intermediate evanescent barrier δ1,2 and δ2,1 can also be shown to
follow the same rules as in Appendix F (see, e.g., Takata 2016a;
Pinçon et al. 2019). We therefore deduce δ1,2 ≈ δ2,1 ≈ π/2 and
γ1,2 = 0. In other words, in the Cowling and weak coupling
paradigm, Eq. (109) is reduced to cot(−Θ1) tan Θ2 = q1,2, which
is similar to Eq. (31) of Shibahashi (1979), since we recall that
Θ1 is minus the wave number integral in the cavity C1. To be
precise, we also first note that in the non-Cowling case, we must
apply a shift of π on δc, so that δc = −π/2. Moreover, the more
complex expressions of δ1,2 and δ2,1 in the approximation of a

very thin evanescent region (i.e., strong coupling hypothesis) are
also available (Takata 2016a).

6.3. Three-cavity mixed modes

More recently, Cunha et al. (2015), Deheuvels & Belkacem
(2018) tackled the case of mixed modes propagating in three res-
onant cavities. Using Eqs. (74) and (75), or equivalently Eq. (98)
for N = 3, we find for three cavities C1, C2, and C3 that the res-
onance condition reads in a general way

tan Υ3
(
1 − q1,2 tan Υ2 tan Υ1

)
+ q2,3 tan Υ2 + q1,2q2,3 tan Υ1 = 0.

(110)

When q2,3 = 0, we note that the term in the brackets is equal
to zero and we retrieve the resonance condition in Eq. (109) for
two-cavity eigenmodes with the substitution δ2,3 ← δs.

As an additional check, it is interesting to compare in more
details this result with the asymptotic analysis of mixed modes
by Deheuvels & Belkacem (2018) in the case of helium-core
flash red giant stars. In contrast with less evolved red giant stars,
the presence of a convective region at the border of the helium
core locally creates an evanescent region that splits the radiative
core into two cavities. where the modes behave as gravity modes
(see, e.g., Fig. 2 of Deheuvels & Belkacem 2018). Assuming the
Cowling approximation, the turning points of the two inner cavi-
ties are such asσ2 = N2 while the configuration in the upper cav-
ity is similar to the case of acoustic modes studied in Sect. 6.2.
Choosing the turning points as the origin of the wave phase and
using the low-coupling hypothesis in both evanescent regions,
the same arguments as in Sect. 6.2 thus hold true and we can
write

δc + δ1,2 = δ2,1 + δ2,3 = π and δ3,2 + δs = 0. (111)

Therefore, using Eqs. (72) and (73) with Eqs. (110) and (111)
can be expressed as

cot (−Θ1) cot (−Θ2) tan Θ3 − q1,2 tan Θ3 − q2,3 cot (−Θ1)
− q1,2q2,3 cot (−Θ2) = 0. (112)

We retrieve here, based on basic arguments, the same expres-
sion as in Eqs. (9) and (10) of Deheuvels & Belkacem (2018),
keeping in mind the fact that the minus sign in front of Θ1 and Θ2
comes from the definition of Θi in Eq. (46) for gravity-dominated
modes. We finally note that Cunha et al. (2015, 2019) formulated
the resonance condition in an equivalent way to Eq. (110), but,
in addition, these authors expressed the q1,2 factor by assuming
that the barrier corresponds to either a sharp Dirac or Gaussian
peak in the Brunt–Väisälä frequency.

6.4. Low-amplitude glitches

As a final illustration, we consider the important case of low-
amplitude glitches, that is, low-amplitude sharp and very local-
ized features in the equilibrium structure. In most previous stud-
ies, the effect of such sharp gradients on the eigenfrequencies
was usually treated as a small perturbation of the “smooth” case,
that is, the case where these local sharp features are not taken
into account. In order to make a comparison with these previ-
ous results, we thus need to express the eigenfrequency devi-
ations induced by low-amplitude glitches that is predicted by
the present framework, while additionally using the small per-
turbations hypothesis. This is actually equivalent to assuming
that (a) the barriers are very thin and localized at a frequency-
independent radius, namely, r−i+1(σ) = r+

i (σ) = rg,i; and (b) the
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barriers are weakly reflective, that is, |Ri,i+1| � 1. The goal is
then to find the frequency perturbation σ1 induced by the barri-
ers, that is,

σ1 = σ − σ0, (113)

where σ is the actual mode angular eigenfrequency and σ0 indi-
cates its value in the smooth case without any barrier.

6.4.1. One single glitch

We first consider the most familiar case of one single glitch
located between two resonant cavities C1 and C2. Within the per-
turbation framework, the phase terms in Eq. (72) can be rewritten
in any cavity Ci as

Υi(σ) = Υ
(0)
i (σ) + Υ

(1)
i (σ), (114)

where the superscript (1) indicates in the following a perturba-
tion induced by the barriers whereas the superscript (0) indicates
a value (or any structural function) in the smooth case when the
barrier is not taken into account. Neglecting the perturbation of
the wave number integral function because of the hypothesis (a)
and making use of the fact that the core and surface phase lags
are not perturbed by the barriers, we can deduce for the two-
cavity case that

Υ
(0)
1 (σ) = Θ

(0)
1 (σ) +

δ(0)
c (σ)

2
(115)

Υ
(0)
2 (σ) = Θ

(0)
2 (σ) +

δ(0)
s (σ)

2
, (116)

and

Υ
(1)
1 (σ) =

δ(1)
1,2(σ)

2
−
π

2
(117)

Υ
(1)
2 (σ) =

δ(1)
2,1(σ)

2
, (118)

which is consistent with the definitions in Eqs. (72) and (73).
First, in the “smooth” configuration without any barrier, the fre-
quency condition is similar to Eq. (106) in the case of one single
cavity located between the center and surface of the star, that is:

Υ
(0)
2 (σ0) = nπ, (119)

where n is the radial order and where the overline notation for
any integers i and k is defined as

Υ
(k)
i =

i∑
j=1

Υ
(k)
j . (120)

Second, adding the intermediate glitch, we choose to write the
general resonance condition in Eqs. (74) and (75), or equiva-
lently in Eq. (98), as a series of sine terms as in Eq. (C.12), that
is, for N = 2:

sin [Υ1(σ) + Υ2(σ)] = −
∣∣∣R1,2(σ)

∣∣∣ sin [Υ2(σ) − Υ1(σ)] . (121)

We emphasize that this resonance condition is also valid to
describe mixed modes, except that in the present case, the modes
have the same nature (i.e., gravity or acoustic) on both sides of
the intermediate barrier (and thus the same sign in front of the
wave number integral in both cavities). Within the small pertur-
bation limit, we assume that the frequency perturbation σ1 is

small enough that the perturbations of the reflection coefficient
and of the total “optical” path of the waves during one travel
through the ensemble of cavities is also small compared to the
smooth case, that is,(

d ln |R1,2|

dσ

)
σ0

σ1 � 1, Υ
(1)
2 (σ) � π,

dΥ
(k)
i

dσ


σ0

σ1 � π. (122)

Using Eqs. (114) and (119), a first-order Taylor expansion of
Eq. (121) in |R1,2| by hypothesis (b) and in the quantities in
Eq. (122) leads to

πσ1

∆σ
+ Υ

(1)
2 (σ0) ≈

∣∣∣R1,2(σ0)
∣∣∣ sin

(
2
[
Υ

(0)
1 (σ0) + Υ

(1)
1 (σ0)

])
, (123)

where we have defined the “pseudo” pulsation large separation
in the general case of N cavities as

∆σ = π

dΥ
(0)
N

dσ


−1

σ0

. (124)

Using Eqs. (32), (117), and (118), Eq. (123) can be rewritten as

σ1

∆σ
≈ −

∣∣∣R1,2(σ0)
∣∣∣

π
sin

(
2Υ

(0)
1 (σ0) + δ1,2(σ0)

)
−
γ(1)

1,2(σ0)

π
· (125)

Moreover, using Eqs. (46) and (115), we obtain:

Υ
(0)
1 (σ0) = ±

∫ rg,1

r−1 (σ0)
Kr (σ0) dr +

δ(0)
c (σ0)

2
· (126)

The frequency deviation induced by the low-amplitude glitch
from the smooth case therefore takes the form of a small off-
set term plus a sinusoidal term. The magnitude of the sinusoidal
perturbation is proportional to the reflection coefficient associ-
ated with the glitch. Moreover, its argument depends on the wave
number integral from the core to the radius of the glitch, and is
related to the so-called acoustic radius. The phase offset results
from the phase lag introduced at reflection on the glitch. We note
that it is also possible to formulate Eq. (125) as a function of
Υ

(0)
2 (σ0) instead of Υ

(0)
1 (σ0) using Eq. (119), that is as a function

of the wave number integral from the glitch radius to the surface,
which is related to the so-called acoustic depth.

The description of the first-order effect of low-amplitude
glitches on the eigenfrequencies that is provided by Eq. (125)
finally appears to be consistent with the computation of Pinçon
(2019). It is also compatible with previous works based on the
variational principle (see Sect. 1 for references); in addition, it
has the advantage of clarifying the general physical meaning
of the different terms inside the glitch-induced deviation (e.g.,
amplitude, offsets). While the approach based on the variational
principle is limited to the first-order small-amplitude glitches
only, we stress that the formulation developed in this paper is
more general and can also be used to treat big glitches (e.g.,
mode-trapping phenomena).

6.4.2. Multiple glitches

In a second step, it is straightforward to extend the last first-order
expansion to the case of N −1 low-amplitude glitches. Using the
hypothesis (a) and the non-perturbation of the core and surface
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phase lags, the phase terms in Eq. (114) can be expressed for
1 ≤ i ≤ N within the perturbation framework as:

Υ
(0)
i (σ) = Θ

(0)
i (σ) + δK(i − 1)

δ(0)
c (σ)

2
+ δK(i − N)

δ(0)
s (σ)

2
, (127)

Υ
(1)
i (σ) =

δ(1)
i,i+1(σ)

2
+
δ(1)

i,i−1(σ)

2
−
π

2
, (128)

where δK(i) is the Kronecker delta function and we set

δ(1)
1,0 = 0 and δ(1)

N,N+1 = π (129)

in order to be consistent with the definitions in Eqs. (72)
and (73). First, in the “smooth” configuration without any
barrier, the frequency condition is expected to be similar to
Eq. (119) but for N cavities, that is,

Υ
(0)
N (σ0) = nπ. (130)

Second, we add the N − 1 low-amplitude glitches. Within the
perturbation limit, we assume as previously that the frequency
perturbation is small enough that:(

d ln |Ri,i+1|

dσ

)
σ0

σ1 � 1, Υ
(1)
N (σ) � π,

dΥ
(k)
i

dσ


σ0

σ1 � π. (131)

Using the resonance condition in Eq. (C.12) for N cavities, a
first-order Taylor expansion as a function of |Ri,i+1| by hypothesis
(a) and of the small quantities in Eq. (131) leads to:

σ1

∆σ
≈

N−1∑
i=1

∣∣∣Ri,i+1(σ0)
∣∣∣

π
sin

(
2Υ

(0)
i (σ0) + 2Υ

(1)
i (σ0)

)
−

Υ
(1)
N (σ0)
π

·

(132)

Moreover, using Eqs. (46) and (127), and hypothesis (a) on the
one hand, and Eqs. (32), (128), and (129) on the other hand, we
can deduce for i ≤ N − 1 that:

Υ
(0)
i (σ0) = ±

∫ rg,i(σ0)

r−1 (σ0)
Kr(σ0)dr +

δ(0)
c (σ0)

2
(133)

Υ
(1)
i (σ0) =

i−1∑
j=1

γ(1)
j, j+1(σ0) +

δ(1)
i,i+1(σ0)

2
−
π

2
· (134)

The total frequency deviation from the smooth case therefore
reduces to the superposition of the perturbations resulting from
each glitch, which are related to the acoustic radius and the phase
lags at transmission and reflection.

7. Concluding remarks and discussion

In this work, we derive a general analytical expression for the
asymptotic resonance condition of global oscillation modes in
spherical stars. While this can seem complex at first glance, we
show that this is, in fact, merely analogous to regard a star as
a one-dimensional giant Fabry-Pérot interferometer, composed
of a multitude of resonant cavities and impermeable surface
and core boundaries. In the adopted view, a star is decomposed
into an ensemble of resonant cavities where waves can prop-
agate within the short-wavelength JWKB approximation. The
cavities are separated by intermediate barriers corresponding to
evanescent regions or glitches. Each barrier is associated with
a reflection and transmission coefficient. The core and surface

boundary conditions are represented by totally reflective barri-
ers. Within this framework, we obtained the resonance condition
while considering two different physical pictures. In the infinite-
time reflection picture, we follow the back-and-forth travel of
a wave energy ray through the ensemble cavities and assume
constructive interferences; the resonance condition is provided
by Eqs. (74) and (75). In the second picture, the eigenmodes
are considered as the solution of a linear boundary value prob-
lem and the resonance condition is provided by Eq. (98). Both
pictures are equivalent and predict the same resonance condi-
tion, which turns out to depend on a number of parameters: the
wave number integral over each cavity; the coupling factor asso-
ciated with each barrier between adjacent cavities; the phase lags
at reflection and transmission through the stars. In addition, the
amplitude ratio between adjacent cavities is also expressed ana-
lytically as a function of these parameters in Sect. 5 and can
inform us on the distribution of the mode energy through the star.
The present formulation enables us to retrieve in a convenient
way simple cases already widely studied in the past, as one single
cavity acoustic or gravity mode or two- and three-cavity mixed
modes as well as the case of multiple low-amplitude glitches.

This general formulation provides a physically grounded
interpretation of the mode resonance condition in stars. It also
provides a useful tool for analyzing, interpreting, or predict-
ing the oscillation power spectra in a practical way and across
a broad variety of configurations and evolutionary stages. This
new diagnosis tool is for instance expected to bring a valu-
able help for the development of automated seismic analysis
pipelines, which are needed in the current era of space missions
and especially for the future PLATO mission (e.g., Rauer et al.
2014). The next step in the investigation will consist in express-
ing the wave reflection and transmission coefficients around the
barriers for specific cases using either toy models or more real-
istic stellar structure models. By means of either analytical or
numerical methods to solve the wave equation, such a study can
allow for a link to be forged between the mode parameters, the
mode frequencies, and the stellar interior properties. This will be
further developed in future works and practical applications on
observed spectra will be undertaken.

Finally, we also note that the present general formulation
can be applied to study the transmission of progressive waves
through layered media in stellar interiors or planetary atmo-
spheres since it offers the possibility to easily retain and remove
the boundary conditions according to the configuration. This can
be useful in addressing the problem of the transport of angular
momentum, heat, or chemical elements by waves in these objects
and the present results provide a general formalism for tackling
such issues (e.g., André et al. 2019; Cai et al. 2021).
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Appendix A: Gravito-acoustic wave equations in
the Cowling approximation

In this section, we briefly recall the form of the second-
order equations for gravito-acoustic waves as formulated by
Shibahashi (1979) under the Cowling approximation.

A first version is provided by Eqs. (3)–(5) where the M func-
tion is equal to

M(r) = f [P(r)] , (A.1)

where

f (y) = H2
p |y|

1/2 d2 |y|−1/2

dr2 = −
H2

p

2
d2 ln |y|

dr2 +
H2

p

4

(
d ln |y|

dr

)2

(A.2)

P(r) =
r2h(r)

c2

S 2
`

σ2 − 1
 (A.3)

h(r) = exp
[∫ r

0

(
N2

g
−
g

c2

)
dr

]
. (A.4)

We also have the following relations linking the radial displace-
ment with the perturbation of pressure denoted by p̃′(r) in Eq. (1)
(e.g., Unno et al. 1989),

Ψ̃ = ρ−1/2r
∣∣∣N2 − σ2

∣∣∣−1/2
p̃′e−iσt (A.5)

Ψ̃ = sgn(P)
1
|Kr |

(
dΨ

dr
+

1
2

d ln |P|
dr

Ψ

)
, (A.6)

where sgn() is the sign function. We note that the M function is
on the order of unity at most over regions that are far away from
the turning points where P = 0 (i.e., where σ2 = S 2

` ) or from the
sharp gradients in the structure.

In the vicinity of a turning point where P = 0, the first ver-
sion of the wave equation in Eq. (3) is singular. Around such a
turning point, it is therefore more convenient to use the second
version of the wave equation, which is provided by

d2Ψ̃

dr2 +

K2
r −

L(r)
H2

p

 Ψ̃ = 0, (A.7)

where

L(r) = f [Q(r)] (A.8)

Q(r) =
1

r2h(r)
(σ2 − N2). (A.9)

The link between the perturbation of pressure and the radial dis-
placement can in this case be obtained through the equation

Ψ = sgn(Q)
1
|Kr |

dΨ̃

dr
+

1
2

d ln |Q|
dr

Ψ̃

 . (A.10)

The L function is on the order of unity at most over regions that
are far away from the turning points where Q = 0 (i.e., where
σ2 = N2) or from the sharp gradients in the structure. Moreover,
at turning points such as Q = 0, this second version of the wave
equation is conversely singular, and it is therefore more conve-
nient to consider the first version of the wave equation in Eq. (3).

Appendix B: Relation between the base and adjoint
wave transmission-reflection coefficients

As shown by Takata (2016b), the reflection and transmission
coefficients in a base wave transmission-reflection problem are
related to those of the adjoint wave transmission-reflection prob-
lem (see Sect. 2.3 for a description of the two configurations).
In this section, we recall the result obtained in Sect. 2 of Takata
(2016b) and generalize it to the case of a complex transmission
coefficient (i.e., accounting for a transmission phase lag).

In the base wave reflection-transmission problem, the global
wave function Ψ(r, t) is provided in the cavity Cn, within the con-
vention considered in Sect. 2.3 and up to a proportionality con-
stant, by

Ψn(r, t; r+
n ) = ψ(→)(r, t; r+

n ) + Rn,n+1 ψ
(←)(r, t; r+

n ), (B.1)

while in the overlying cavity Cn+1, it is written

Ψn+1(r, t; r−n+1) = Tn,n+1 ψ
(→)(r, t; r−n+1). (B.2)

The goal is then to build a solution of the adjoint problem from
the two representations of the global wave function Ψ(r, t) in
Eqs. (B.1) and (B.2). To do so, we can use the fact that the oscil-
lation equations are invariant by the operations of (a) time rever-
sal and (b) complex conjugation. As a justification, (a) the wave
equation introduced in Eqs. (3)–(5) and Appendix A is indepen-
dent of the sign of σ, and (b) its coefficients are real. Therefore,
if Ψ(r, t) is a solution, then Ψ′(r, t) = Ψ?(r,−t) is also a solution.
According to Eq. (25), applying the operations of time rever-
sal and complex conjugation on Eqs. (B.1) and (B.2) provides
the form of the new solution Ψ′(r, t), which can be respectively
expressed in the cavities Cn and Cn+1 as

Ψ′n(r, t; r+
n ) = R?

n,n+1ψ
(→)(r, t; r+

n ) + ψ(←)(r, t; r+
n ) (B.3)

Ψ′n+1(r, t; r−n+1) = T?
n,n+1 ψ

(←)(r, t; r−n+1). (B.4)

Another solution can then be built from a linear combination of
the solution Ψ represented by Eqs. (B.1)–(B.2) and the solution
Ψ′ represented by Eqs. (B.3)–(B.4). This must be done in such
a way that the upward component in the cavity Cn vanishes in
order to retrieve the adjoint problem. Such a solution Ψ′′ can be
obtained by the following linear combination

Ψ′′(r, t) = e2iγn,n+1

[
−R?

n,n+1Ψ(r, t) + Ψ′(r, t)
]

Tn,n+1
, (B.5)

which must be simultaneously applied in the cavity Cn, that is,

e2iγn,n+1

[
−R?

n,n+1Ψn(r, t; r+
n ) + Ψ′n(r, t; r+

n )
]

Tn,n+1
= Tn,n+1ψ

(←)(r, t; r+
n ),

(B.6)

and in the cavity Cn+1, that is,

e2iγn,n+1

[
−R?

n,n+1Ψn+1(r, t; r−n+1) + Ψ′n+1(r, t; r−n+1)
]

Tn,n+1

= −R?
n,n+1e2iγn,n+1 ψ(→)(r, t; r−n+1) + ψ(←)(r, t; r−n+1). (B.7)

By comparing Eq. (B.6) with Eq. (23) and Eq. (B.7) with
Eq. (26), and using the definitions in Eqs. (30) and (31), we can
conclude by identification:

Tn+1,n = Tn,n+1 and Rn+1,n = |Rn,n+1| ei(π−δn,n+1+2γn,n+1). (B.8)
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Appendix C: Alternative formulation for the
resonance condition

Depending on the problem, it can be better to express the res-
onance condition as a series of sine terms that are functions of
the Υi phases in Eq. (72). To do so, we first rewrite, for sake of
the convenience, the resonance condition provided in Eqs. (74)
and (75) in such a way to isolate the recurrence variable on the
level i rather than on the level i − 1. This can be done in a sim-
ple way by defining τi = arctan

[
qi−1,i cot Φi−1

]
, so that Eqs. (74)

and (75) are equivalent, for i ≥ 2, to the conditions

tan τi = −qi−1,i tan (Υi−1 − τi−1) , τ1 = 0 and τN = ΥN . (C.1)

Second, we can proceed step by step. Using Eq. (67) and usual
trigonometric formula, Eq. (C.1) for i = N provides

sin (ΥN + ΥN−1 − τN−1) +
∣∣∣RN−1,N

∣∣∣ sin (ΥN − ΥN−1 + τN−1) = 0.
(C.2)

Then, using Eq. (C.1) to express τN−1 as a function of τN−2
and using the identities cos(arctan x) = 1/(1 + x2)1/2 and
sin(arctan x) = x/(1 + x2)1/2, we can express Eq. (C.2) as

AN +
∣∣∣RN−1,N

∣∣∣ BN = 0, (C.3)

with

AN ∝ sin (ΥN + ΥN−1 + ΥN−2 − τN−2)

+
∣∣∣RN−2,N−1

∣∣∣ sin (ΥN + ΥN−1 − ΥN−2 + τN−2) (C.4)

BN ∝ sin (ΥN − ΥN−1 − ΥN−2 + τN−2)

+
∣∣∣RN−2,N−1

∣∣∣ sin (ΥN − ΥN−1 + ΥN−2 − τN−2) , (C.5)

where the proportionality constant is the same for AN and BN .
We note that the expressions of AN and BN are very similar to
the left-hand side of Eq. (C.2). Successively performing the same
operation as before, that is, using Eq. (C.1) to express τN−2 as a
function of τN−3, we can express Eqs. (C.4) and (C.5) as

AN ∝ A(1)
N−1 +

∣∣∣RN−2,N−1
∣∣∣ B(1)

N−1 (C.6)

BN ∝ A(2)
N−1 +

∣∣∣RN−2,N−1
∣∣∣ B(2)

N−1, (C.7)

where

A(1)
N−1 = sin (ΥN + ΥN−1 + ΥN−2 + ΥN−3 − τN−3)

+
∣∣∣RN−3,N−2

∣∣∣ sin (ΥN + ΥN−1 + ΥN−2 − ΥN−3 + τN−3)
(C.8)

B(1)
N−1 = sin (ΥN + ΥN−1 − ΥN−2 − ΥN−3 + τN−3)

+
∣∣∣RN−3,N−2

∣∣∣ sin (ΥN + ΥN−1 − ΥN−2 + ΥN−3 − τN−3)
(C.9)

A(2)
N−1 = sin (ΥN − ΥN−1 − ΥN−2 − ΥN−3 + τN−3)

+
∣∣∣RN−3,N−2

∣∣∣ sin (ΥN − ΥN−1 − ΥN−2 + ΥN−3 − τN−3)
(C.10)

B(2)
N−1 = sin (ΥN − ΥN−1 + ΥN−2 + ΥN−3 − τN−3)

+
∣∣∣RN−3,N−2

∣∣∣ sin (ΥN − ΥN−1 + ΥN−2 − ΥN−3 + τN−3)
(C.11)

The final expression can therefore be obtained by performing the
same operation several times until reaching the variable τ1 = 0.

At the end of the day, the compact general form of the resonance
condition reads

sin

 N∑
j=1

Υ j

 +

N−1∑
i=1

 ∑
(pk)∈Ei

 i∏
k=1

∣∣∣Rpk ,pk+1
∣∣∣ sin

 N∑
j=1

c jΥ j


 = 0,

(C.12)

where Ei represents the set of the arrangements of i distinct ele-
ments in IN−1 = ~1,N − 1� listed in descending order, that is,
Ei = {(pk)1≤k≤i} such as pk ∈ IN−1 and pk+1 < pk. The coeffi-
cients {c j}1≤ j≤N in the sine function are equal to either c j = −1
if the k index of the lowest pk value such as pk ≥ j is odd or
c j = +1 otherwise (i.e., cN is always equal to +1). We note
that each set (Ei)i∈IN−1 is composed of C(N − 1, i) arrangements,
where C(N − 1, i) are the usual binomial coefficients. The num-
ber of terms in Eq. (C.12) is thus equal the sum of the number
of arrangements in each set (Ei)i∈IN−1 plus one for the first term,
which results in 2N−1 terms.

Appendix D: Local mean mode energy in cavities

We detail in this section the calculation of Eq. (100) within the
asymptotic limit. First, using Eqs. (15) and (17), we can get the
JWKB form of the radial displacement inside a given cavity, that
is,

ξ̃r =

(
1

ρr2cσ

)1/2 ∣∣∣∣∣∣ S 2
` − σ

2

N2 − σ2

∣∣∣∣∣∣
1/4 (

ap eiϕ + ar e−iϕ
)
. (D.1)

Using Eqs. (18) and (101), we can also get the JWKB form of
the horizontal displacement function, that is,

ξ̃h = sgn
(
S 2
` − σ

2
)

i
(

c
ρr4σ3

)1/2 ∣∣∣∣∣∣N2 − σ2

S 2
`
− σ2

∣∣∣∣∣∣1/4 (
ap eiϕ − ar e−iϕ

)
.

(D.2)

Second, we recall that the orthonormal spherical harmonics are
given by

Ym
` (θ, s) = N`m Pm

` (cos θ) eims, (D.3)

where Pm
` are the associated Legendre polynomials. The normal-

ization constant is given by

N`m =

√
(2` + 1)

4π
(` − m)!
(` + m)!

, (D.4)

and is such that∫ π

0

[
Pm
` (cos θ)

]2
sin θdθ =

1
2πN2

`m

. (D.5)

We also recall that the spherical harmonics are solutions of the
eigenvalue equation r2∇2Ym

` = −`(` + 1)Ym
` . Multiplying this

eigenvalue equation by the complex conjugate of Ym
` , integrating

over the sphere, using Eq. (D.5) for the right-hand side of the
equations and integration by parts for the left-hand side, we can
retrieve the well-known relation∫ π

0

( d
dθ

[
Pm
` (cos θ)

])2

+
m2

sin2 θ

[
Pm
` (cos θ)

]2
 sin θdθ =

`(` + 1)
2πN2

`m

·

(D.6)

Finally, taking the square modulus of the real part of Eq. (2)
while considering the JWKB form of the displacement and the
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spherical harmonics expression in Eqs. (D.1)–(D.3), integrating
first on t and s, and then integrating over θ using Eqs. (D.5)
and (D.6), Eq. (100) can be rewritten to a good approximation
as

Ek ≈
|ap|

2 + |ar|
2

2

∫ r+
k

r−k

Kr

∣∣∣∣∣∣N2

σ2 − 1

∣∣∣∣∣∣−1

+

∣∣∣∣∣∣1 − σ2

S 2
`

∣∣∣∣∣∣−1 dr, (D.7)

where Kr is defined in Eq. (5) and where we have also used
the fact that the wave number integral is much higher than unity
within the asymptotic limit to neglect the residual oscillating
radial functions in the integrand. Either in the case of pressure-
dominated modes, namely, σ2 � (S 2

` and N2), or gravity-
dominated modes, namely,σ2 � (S 2

` and N2), the term in brack-
ets in the integrand of Eq. (D.7) is close to unity. Moreover, as
noted in Sect. 4.5, |ap| = |ar| = |ak | inside the cavity Ck in the
case of eigenmodes with totally reflective boundary conditions.
This justifies the validity of Eq. (102).

Appendix E: Supplementary expressions of the
amplitude ratios

In Sect. 4.5, we use the surface boundary condition to express
the mode amplitude in the cavity Ck as a function of that in the
upper cavity CN . Imposing instead the core boundary condition,
we aim in this section to express ak as a function of a1 in the
inner cavity C1. To do so, we first invert the relation in Eq. (88)
to obtain for 1 ≤ i ≤ N − 1

ai+1,+ ≡ Ei+1,i ai,+ (E.1)

where

Ei+1,i ≡ E−1
i,i+1 = C (Θi+1) C

(
δi+1,i

2
−
π

2

)
Ai+1,i C

(
δi,i+1

2

)
(E.2)

Ai+1,i ≡ A−1
i,i+1 =

1∣∣∣Ti,i+1
∣∣∣
(

1 −
∣∣∣Ri,i+1

∣∣∣
−

∣∣∣Ri,i+1
∣∣∣ 1

)
, (E.3)

with C(ε) and Ai,i+1 defined in Eqs. (81) and (82). Using Eq. (84),
it is then straightforward to show that the application of Ei+1,i on
a vector in the form of Eq. (83) leads to

Ei+1,i w(ε) = Ai+1,i

(
ε +

δi,i+1

2

)
w

[
Ω−1

i+1(ε)
]
, (E.4)

where

Ai+1,i(ε) =

√
1 + (q2

i,i+1 − 1) cos2 (ε)

qi,i+1
, (E.5)

and in which we have used the convention for the branch of the
arctan function in Eq. (71). Within this convention, Ω−1

i+1 is the
inverse function of Ωi+1 in Eq. (90) and is defined for 1 ≤ i ≤
N − 1 as

Ω−1
i+1(ε) = arctan

[
1

qi,i+1
tan

(
ε +

δi,i+1

2

)]
+ Υi+1 −

δi+1,i+2

2
· (E.6)

Second, using the inverse of Eq. (87), the core boundary condi-
tion implies that

a1,+ = C(Θ1) a1 w
(
δc

2

)
, (E.7)

Finally, applying k − 1 times the transformation in Eq. (E.1) on
the upper core amplitude vector in Eq. (E.7), we can obtain the
amplitude vector in the cavity Ck for k > 1, that is,

ak,+ =

 1∏
i=k−1

Ei+1,i

 C(Θ1) a1 w
(
δc

2

)
. (E.8)

Using the properties in Eqs. (84) and (E.4), Eq. (E.8) can be
written for k > 1 as

ak,+ = ak w
[
Ω−1

k ◦ · · · ◦Ω−1
1 (0)

]
, (E.9)

where (◦) is the composition operator, Ω−1
1 is the inverse of the

function in Eq. (99), and ak is given by

ak

a1
=

1∏
i=k−1

Ai+1,i

[
Ω−1

i ◦ · · · ◦Ω−1
1 (0) +

δi,i+1

2

]
. (E.10)

According to Eqs. (E.5) and (E.10), we can therefore deduce that
the squared amplitude ratio between the adjacent cavities Ck and
Ck+1 is equal to∣∣∣∣∣ ak

ak+1

∣∣∣∣∣2 =
qk,k+1

q2
k,k+1 + (1 − q2

k,k+1) cos2
(
Ξ′k

) , (E.11)

where we have defined

Ξ′k = Ω−1
k ◦ · · · ◦Ω−1

1 (0) +
δk,k+1

2
+
π

2
, (E.12)

which measures the level of constructive interference in the
cavity Ck. The same discussion as that based on Eq. (105) in
Sect. 5.2 holds true here when only the core boundary condi-
tion is met, except that Ξk+1 and Ck+1 have to be replaced by
Ξ′k and Ck. We insist on the fact that Eqs. (105) and (E.11) are
strictly equivalent only within the resonance condition, that is,
when the core and surface boundary conditions are simultane-
ously met. Under this condition, we note that we can also obtain
another equivalent relation by multiplying both equations, which
is reduced to:∣∣∣∣∣ ak

ak+1

∣∣∣∣∣4 =
q2

k,k+1 + (1 − q2
k,k+1) cos2 (Ξk+1)

q2
k,k+1 + (1 − q2

k,k+1) cos2
(
Ξ′k

) . (E.13)

We notice that Eqs. (105), (E.11) and (E.13) generalize the
expressions of the amplitude ratios derived in Sect. 3.2 of Takata
(2016b) in the case of mixed modes.

Appendix F: Usual boundary reflection phase lags

In this section, we estimate in a simple way the reflection phase
lags introduced near the center and surface, δs and δc. The
surface and core boundaries are supposed to be turning points
denoted by rt and such as K2

r (rt) = 0, at the interface between a
resonant cavity and an evanescent region. Assuming the JWKB
approximation is met in the adjacent resonant cavities, it is then
possible to use a single turning point analysis of the stellar oscil-
lations equations such as performed by Shibahashi (1979) to
deduce the wave function in the vicinity of each of these turning
points. The analysis uses in addition the Cowling approximation,
neglects the gradients in the equilibrium structure everywhere in
the star and considers only regular solutions in the evanescent
region (i.e., with finite values of the wave function). Within this
framework, the asymptotic solution of the wave function inside
the resonant cavities can be expressed and the associated reflec-
tion phase lag turns out to depend on the nature of the considered
turning point.
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In the case of a turning point such as σ2 = N2(rt), Eq. (3) can
be solved using a Green-Liouville transformation while neglect-
ing the variations of the equilibrium structure (e.g., the M func-
tion). The regular solution of the transformed equation thus takes
the form of an Airy function of the first kind. The asymptotic
expansion of the wave function in the resonant cavity is finally
given using a complex notation by (e.g., Shibahashi 1979; Unno
et al. 1989)

Ψ ≈
a
√
Kr

e−iπ/4︸︷︷︸
A

ei|ϕ(r;rt)| + eiπ/4︸︷︷︸
B

e−i|ϕ(r;rt)|

 e−iσt, (F.1)

where a is a complex constant, ϕ(r; rt) is defined in Eq. (11),
and we choose in this case the origin of the wave phase at the
turning point rt. Since the progressive and regressive wave com-
ponents have the same amplitude modulus, we first note that
such a regular solution satisfies the totally reflective condition
at the turning point, as assumed close to the core and surface
in this work. Second, the phase lag at reflection δt can be com-
puted as the argument of the amplitude ratio of the upward to
the downward energy ray when the resonant cavity is above the
turning point (i.e., r > rt). When the resonant cavity is below
the turning point (i.e., r < rt), the phase lag is equal to the
argument of the amplitude ratio of the downward to the upward
energy ray. In both cases, the phase lag at reflection is reduced
to

δt = sgn
(
σ2 − S 2

`

)
arg

(A
B

)
= sgn

(
S 2
` − σ

2
) π

2
, (F.2)

where the first sign factor estimated well inside the cavity
accounts for the case of gravity-dominated waves (i.e.,σ2 � S 2

` )

for which the group velocity is in the opposite direction of the
phase velocity.

In the case of a turning point such as σ2 = S 2
` (rt), Eq. (3)

is singular at rt so that we first have to solve Eq. (A.7) for
the dependent variable Ψ̃. According to Shibahashi (1979), the
asymptotic expansion of Ψ̃ in the resonant cavity is also given
by Eq. (F.1). To compute the wave function Ψ (which is the ref-
erence dependent variable we consider in this paper), we can
use Eq. (A.10) while neglecting the derivative of the Q function
related to the variations of the equilibrium structure. Considering
the fact that (d|ϕ|/dr) = sgn(r − rt) |Kr |, we obtain:

Ψ ≈
ia
√
Kr

sgn
[
σ2 − N2

r − rt

] e−iπ/4︸︷︷︸
A′

ei|ϕ(r;rt)| −eiπ/4︸︷︷︸
B′

e−i|ϕ(r;rt)|

 e−iσt,

(F.3)

Similarly to the previous case we describe above, we thus find
that the phase lag at reflection is reduced to:

δt = sgn
(
σ2 − S 2

`

)
arg

(
A′

B′

)
= sgn

(
σ2 − S 2

`

) π
2
· (F.4)

In terms of synthesis, the comparison between Eqs. (F.2)
and (F.4) shows that the change of nature in the turning point
is associated with a shift in the phase lag at reflection of π (mod-
ulo 2π). Moreover, considering a mode with one single cavity
located between two turning points r−1 and r+

1 at the core and
the surface, we see that δc + δs = π (modulo 2π) if the turning
points have the same nature, namely, if σ2 = N2(r−1 ) = N2(r+

1 ) or
σ2 = S 2

` (r
−
1 ) = S 2

` (r
+
1 ); whereas it is δc + δs = 0 otherwise.
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