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Abstract

We consider here the 3-sphere S3 seen as the boundary at infinity of the
complex hyperbolic plane H2

C. It comes equipped with a contact structure and
two classes of special curves. First R-circles are boundaries at infinity of totally
real totally geodesic subspaces and are tangent to the contact distribution.
Second, C-circles, which are boundaries of complex totally geodesic subspaces
and are transverse to the contact distribution.

We define a quantitative notion, called slimness, that measures to what
extent a continuous path in the sphere S3 is near to be an R-circle. We
analyze the classical foliation of the complement of an R-circle by arcs of C-
circles. Next, we consider deformations of this situation where the R-circle
becomes a slim curve. We apply these concepts to the particular case where
the slim curve is the limit set of a quasi-Fuchsian subgroup of PU(2, 1). As
a consequence, we describe a class of spherical CR uniformizations of certain
cusped 3-manifolds.

1 Introduction
The frame of this work is the study of quasi-Fuchsian deformations in complex hy-
perbolic space H2

C, which can be thought of as the unit ball in C2. Using a projective
model, the isometry group of H2

C can be identified with PU(2, 1), the subgroup of
PGL(3,C) corresponding to those transformations preserving a Hermitian form of
signature (2, 1).

Complex hyperbolic space is a rank one Hermitian symmetric space and as
such, it is a Kähler manifold with negative 1

4 -pinched curvature. Totally geodesic
real planes and complex lines realize the extremal values of the sectional curvature
(namely, −1 for complex lines and − 1

4 for real planes). The boundary at infinity
of H2

C can be seen as the 3-sphere S3. Complex lines and totally geodesic real
planes give rise to two distinguished classes of curves in S3 : C-circles and R-circles
respectively (see [Gol99]). The sphere S3 inherits a CR structure from the complex
hyperbolic space. This CR structure defines a contact structure for which C-circles
are everywhere transverse (they are the chains of the CR structure) and R-circles
are Legendrian. We review these structures in Section 2.
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We first consider PO(2, 1) seen as the stabilizer of a totally real totally geodesic
subspace of H2

C. These subspaces are often called real planes for short, and the
typical example is H2

R ⊂ H2
C, which, in coordinates, is the set of real points of

the complex unit ball. This embedding PO(2, 1) ⊂ PU(2, 1) gives isometric actions
of Fuchsian subgroups of PO(2,1) preserving H2

R. Such subgroups are called R-
Fuchsian. The main theme we address here is to study deformations of R-Fuchsian
subgroups of PU(2, 1).

The complex hyperbolic plane has another type of totally geodesic subspaces :
complex lines, which give rise to the notion of C-Fuchsian subgroups of PU(2,1).
But, contrary to the R-Fuchsian case, any deformation of a cocompact C-Fuchsian
subgroup of PU(2, 1) is still C-Fuchsian (see [Tol89] for this rigidity result and
[KM17] for a review and further generalizations).

For a discrete subgroup of PU(2, 1), a most natural object to consider is its
limit set in S3 , which is a topological circle in the quasi-Fuchsian case. We aim at
understanding the relative position of the limit set of a quasi-Fuchsian group and
C-circles in S3.

1.1 Horizontality, hyperconvexity and slimness in the sphere
We consider three related notions for subsets in S3. For the definition of these
notions, we use the Cartan invariant A of triples of points in S3. It is a numerical
invariant that classifies oriented triples up to the action of PU(2, 1). For now, let
us only mention that the Cartan invariant takes all values in [−π2 ,

π
2 ], and that a

triple (of pairwise distinct points) (p1, p2, p3) is contained in an R-circle (resp. a
C-circle) if and only if A(p1, p2, p3) = 0 (resp. A(p1, p2, p3) = ±π2 ). In particular,
we note that if |A(p1, p2, p3)| < π

2 and the three points are distinct then the triangle
(p1, p2, p3) does not belong to any C-circle. A more detailed presentation is given
in Section 2.3.

Though our initial interest was for limit sets, we will first drop the invariance
assumption. In Section 3, we work with arbitrary compact subsets E of S3 and
consider the following three properties:

• Horizontality. This is an extension for arbitrary compact subsets of S3 of
the concept of Legendrian submanifolds and is a local property. It is defined
in Definition 3.1. It amounts to ask that convergences pn → p in E only
happen tangentially to the contact structure, see Lemma 3.5. We describe in
Section 3.2 some horizontal orbits of one-parameter subgroups.

• Hyperconvexity. A subset of S3 is called hyperconvex if its intersection with
any C-circle contains at most two points. This notion is a version of a central
notion in the theory of Anosov representations, stemming from [Lab06] and,
in a context similar to this paper, in [PSW21].

• Slimness. This is a quantitative notion that implies hyperconvexity and hor-
izontality. For a closed subset E of S3, we define

A(E) = sup{|A(p, q, r)|, p, q, r ∈ E}.

We say that E is α-slim whenever A(E) 6 α < π/2, see Definition 3.9. It
directly implies hyperconvexity, from the above mentionned properties of A.
But it also implies horizontality, as proven in Proposition 3.11. In case E is
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the limit set of a representation of a surface group, the quantity A(E) can be
interpreted using bounded cohomology as a Gromov norm of a cohomology
class in the case of limit sets, see Point 5 in Remark 3.10.

We give geometric interpretations of slimness in Section 3.4. The simplest examples
to study these three properties and their consequences are R-circles (boundaries of
real planes). They are Legendrian, hyperconvex and 0-slim since any ideal triangle
in an R-circle has vanishing Cartan invariant. We will describe other families of
examples and non-examples in Section 3.5. In particular, we show that slim de-
formations of R-circles do exist. We define bent R-circles, see Section 3.5.1. In
Heisenberg coordinates, for each 0 < θ < π, the set

Eθ = {[r, 0], r ∈ R+} ∪ {[reiθ, 0], r ∈ R+} ∪ {∞}

is slim, see Proposition 3.19. Note that Eπ is in fact an R-circle.
Moreover, as explained in 3.5.4, if Γ ⊂ PO(2, 1) is a cocompact R-Fuchsian

group, then it can be deformed in PU(2, 1) and the limit sets will be slim along this
deformation, at least locally. This remark is essentially borrowed from [PSW21].

1.2 A foliation on the complement of an R-circle
We relate the three properties above and a known identification between the com-
plement of R-circles and the unit tangent bundle UTH2

R. Assume Λ0 is the R-circle
∂∞H2

R and denote by Ω0 its complement in S3. Then for any pair of distinct points
p 6= q in Λ0, denote by L(p, q) ⊂ H2

C the unique complex line containing p and
q. The C-circle ∂∞L(p, q) ⊂ S3 is naturally oriented by the complex structure of
L(p, q). Moreover, it intersects Λ0 only at p and q since Λ0 is hyperconvex. It is
therefore divided into two connected components, which are oriented intervals. We
will denote these intervals by p y q and q y p. The starting point of our work is
the following classical proposition:

Proposition. The open set Ω0 is homeomorphic to the unit tangent bundle of H2
R.

In this homeomorphism, the arcs py q correspond to the orbits of the geodesic flow
on UTH2

R.

We refer to Section 2.6 for more details. This proposition also tells us that Ω0 is
foliated by the arcs p y q. All along this paper, we reinterpret it in various ways,
see Corollary 2.16, Proposition 2.17, Corollary 4.2, Proposition 4.7.

If H2
R is acted on by an R-Fuschsian subgroup of PO(2,1)⊂PU(2,1) then so is

Ω0 and the above homeomorphism descends to a homeomorphism between Γ\Ω0
and the unit tangent bundle UT(Γ\H2

R) of Γ\H2
R where orbits of the geodesic flow

correspond to projection of arcs.

1.3 Deforming the foliation
Describing deformations of this foliation when deforming Λ0 is one of the main
points of this article (Section 4). As explained before, there exist deformations (Λt)
of Λ0 such that all Λt are slim. Denote by Ωt the complement of Λt. First, we prove
that arcs of C-circles sweep out Ωt:

Theorem (First point of Theorem 4.4). Let Λt be a continuous family of slim
circles, with Λ0 an R-circle. Then, for all t, the arcs p y q, for p 6= q ∈ Λt, sweep
out Ωt.
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The strategy to prove this theorem is interesting per se. We first prove in
Section 4.2 that a horizontal and hyperconvex circle Λ can be continuously extended
outside the complex hyperbolic space: there is an explicit continuous embedding
of the Möbius strip in CP2 \H2

C whose intersection with ∂∞H2
C is exactly Λ. Our

construction is flexible enough to prove that, under deformations of Λ, the Möbius
strips deform by homotopy, see Section 4.3. One can then apply an argument of
intersection in homology to prove the theorem.

Thanks to this theorem, we can exhibit an actual deformation Λt such that arcs
of C-circles define a foliation of Ωt:

Theorem (Theorem 4.16). For any θ ∈ [π/2, 3π/2], the set of arcs of C-circles
with endpoints in Eθ defines a foliation of S3 \ Eθ.

A caveat is necessary here: not all bent R-circles give rise to a foliation. Indeed,
if the bending is too strong (|π − θ| > π

2 ), then some arcs do intersect.
It is hard to deform an R-circle into a slim circle invariant under a group and

such that the arcs between couples of its points define a foliation. Indeed, the
invariance by a single non-real loxodromic element implies that some arcs intersect.
Recall that a loxodromic element of PU(2, 1) is non real if the trace of its cube -
which is well defined - is not real.

Theorem (Second point of Theorem 4.4). Let Λ be a slim circle, that is invariant by
a non-real loxodromic transformation. Then there are arcs p y q, with p 6= q ∈ Λ,
that intersect in the complement Ω of Λ.

We get as a corollary that no non−R-fuchsian deformation of a lattice in PO(2, 1)
determines a foliation of the complement of its limit set by arcs of C-circles. This
can also be interpreted as the following rigidy theorem:

Theorem (See Theorem 4.20). Let Γ be a cocompact lattice in PO(2, 1) and ρ :
Γ→ PU(2, 1) be a small deformation of the inclusion. Let Λ be its limit set and Ω
its complement.

If Ω is foliated by arcs py q, for p 6= q ∈ Λ, then ρ is R-fuchsian.

1.4 Drilling and crown-type uniformisations
We will call here CR-spherical uniformization of a manifold M a homeomorphism
M ' Ω/ρ(π1(M)), where Ω is an open subset of the sphere on which ρ(π1(M)) acts
properly discontinuously (see [Kas18]). One should be careful with this definition
as, sometimes, uniformization refers to the case where Ω is assumed to be the
domain of discontinuity of ρ(π1(M)). This is for instance the definition taken by
Deraux in [Der15] (see Definition 1.3 there). In particular when Ω is the domain of
discontinuity of ρ(π1(M)), then the 3-manifold that is uniformized appears as the
boundary at infinity of a quotient of the complex hyperbolic plane. This happens
for most of the examples of uniformizations of hyperbolic 3-manifolds that have
been constructed (see for instance [Sch03, DF15, PW17]), but we will consider here
examples where it is not the case. Note also that Ω needs not be simply connected
- and is not in our examples. As a consequence, ρ is not injective in general.

Going back to deformation of R-fuchsian surface groups, general arguments
about geometric structures, namely Ehresmann-Thurston principle and work by
Guichard-Wienhard [GW12], imply that, when deforming Γ by a deformation ρ
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close enough to the inclusion, the complement Ω of the limit set Λ of ρ(Γ) still
uniformizes UTΣ. We recall these arguments in Proposition 5.8.

We can drill along closed orbits of the geodesic flow in UTΣ. For an oriented
closed geodesic λ, denote by UTΣ(λ) the unit tangent bundle drilled out along the
natural lift of λ. The uniformizations of UTΣ described above naturally give uni-
formizations of UTΣ(λ). The manifolds constructed in this way cover in particular
a number of hyperbolic cusped manifolds. We say that λ is filling if its complement
in Σ is a union of discs. Then, by [FH13], as soon as λ is filling, the drilled out unit
tangent bundle is hyperbolic. We sum up this discussion in the proposition:

Proposition 1.1 (Corollary 5.4). Every manifold obtained by drilling a closed orbit
of the geodesic flow in the unit tangent bundle of a hyperbolic surface admits a family
of CR-spherical uniformizations.

An infinite number of cusped hyperbolic 3-manifolds can be obtained this way.

We use the previous work to describe explicitly these uniformizations: having
fixed a small deformation ρ, we want to describe an open subset whose quotient by
ρ(Γ) is homeomorphic to UTΣ(λ). To achieve that goal, we consider an element γ
in Γ whose oriented axis lifts λ. A small deformation ρ verifies that ρ(γ) is still a
loxodromic transformation: it has a repelling and an attractive fixed points, denoted
by ρ(γ)− and ρ(γ)+, both belonging to the limit set Λ of ∆ := ρ(Γ). We call the
axis at infinity of δ := ρ(γ) the arc α(δ) = ρ(γ)− y ρ(γ)+. Then, we define in
Section 5 the crown:

Crown∆,δ = Λ ∪
(⋃
g∈Γ

ρ(g) · αδ
)
.

The crown is a closed set containing the limit set and is invariant under the action
of ∆ = ρ(Γ). We denote by Ω∆,δ its complement. We describe the following explicit
family of uniformizations of UTΣ(λ):

Theorem (See Theorem 5.6). For a small enough deformation ρ, the quotient
∆\Ω∆,δ is homeomorphic to UTΣ(λ).

The proof works by deformation: if ρ is R-fuchsian, this proposition is only
a rephrasing of the foliation property. By small deformations, everything varies
continuously and the family of axis ρ(g) · α(δ) do not intersect.

1.5 Further questions and open problems
As mentioned above, many of the previously known examples of spherical CR uni-
formizations of hyperbolic 3-manifolds have been constructed as quotients of the
whole discontinuity region of a discrete subgroup of PU(2,1). Many of them also
share a another common feature: the holonomy groups of the structure appear as
degenerations of quasi-Fuchsian deformations of discrete subgroups of PO(2,1), typ-
ically (p, q, r)-triangle groups. Note that other uniformizations have been obtained
by applying Dehn-filling techniques to uniformizations obtained from these degen-
erations [Sch07, Aco16, Aco19b]. The typical situation observed is the following.

Let Γ be a Fuchsian group, and ρ0 : Γ −→ PO(2, 1) ⊂ PU(2, 1) be an R-Fuchsian
representation. For a variety of examples of 1-parameter families of deformations
ρt of ρ0, there exists a word w in Γ which becomes parabolic for a critical value
tw (for any t < tw, all words are mapped to loxodromic transformations). The
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representation ρt is discrete and faithful on the interval [0, tw] and is either non-
discrete or non-faithful for t > tw. It is in particular the conjectured situation when
Γ is a triangle group. Indeed, the Schwartz conjectures [Sch02] predict precisely
which word w should become parabolic. In all cases where a detailed study of
the long-time deformations of a triangle group have been achieved, the manifold
at infinity for the critical value t = tw is a hyperbolic knot or link complement
[Sch03, DF15, PW17, JWX21, MX21]. Note that in the case of triangle groups the
character variety has dimension 1 thus the situation is relatively simple algebraically.
However, even in this simpler case, doing a complete analysis is a difficult and very
technical task based on the construction of fundamental domains. Also, it is not
completely clear to this day if one can predict what 3-manifold is likely to appear
as degeneration of a given triangle group deformation (see for instance the ubiquity
phenomenon described by Deraux in Theorem 1.5 of [Der15] and extended recently
by Alexandre in [Ale21]). The Schwartz conjectures have been generalized to some
extent for quasi-Fuchsian deformations of surface groups by Parker and Platis (see
Problem 6.2 in [PP10]). We hope that this work could be a step toward a better
understanding of these long time deformations.

Let us describe the situation of the (3, 3, 4)-triangle group, generated by three
reflections ι1, ι2, ι3, see Example 5.5 for precise notations. It is a known fact that
the degeneration of the (3, 3, 4)-triangle group corresponds to the word w = ι3ι2ι1ι2
becoming parabolic and yields a uniformization of the figure eight knot complement
by the even subgroup of the triangle group (see [DF15, PWX16]). The trace of the
image of w, denoted by τ , can be used (up to a 2-fold covering) as a coordinate for
the deformation space. We thus have a 1-parameter family of representations ρτ of
the (3, 3, 4)-triangle group in PU(2,1).

The R-fuchsian representation corresponds to the value τ = 2 + 2
√

2, whereas
the degeneration corresponds to τ = 3 (in that case w is mapped to a unipotent
parabolic). Note that it can happen that τ becomes smaller than 3, in which case
ρτ (w) is elliptic, and the representation is either non discrete or non-faithful in that
case. One can estimate the supremum of Cartan invariants A(Λρ) for the limit sets
of these representations. Numerical experimentations indicate that the supremum is
strictly increasing from 0 to π/2 as τ decreases from 2+2

√
2 ∼ 4.828 to 3, with π/2

being attained for the degeneration (see Figure 1, where the horizontal coordinate
is τ). In other words, the limit sets of the representations ρτ seem to remain slim
until the degeneration.

Applying techniques using fundamental domains (see [DF15, PWX16]), it is
possible to prove that the manifold uniformized by the action of the even subgroup
of the (3, 3, 4)-triangle group on its discontinuity region is as follows.

• For τ0 = 2 + 2
√

2 the group is R-Fuchsian, and the 3-manifold uniformised by
the action of the even subgroup of the (3, 3, 4)-triangle group on its disconti-
nuity region is the unit tangent bundle of the (3, 3, 4)-orbisurface.

• For τ ∈]3, 2 + 2
√

2[, the image of the group group remains discrete and iso-
morphic to the (3, 3, 4)-triangle group. The manifold at infinity remains the
same.

• For τ = 3, the word w becomes unipotent parabolic. This implies a pinching
of the limit set (the attractive and repulsive fixed points of ρτ (w) and of its
conjugates coalesce), and the manifold at infinity changes : it is the figure
eight knot complement.
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However, at the initial value τ0 = 2 + 2
√

2, the action of the group on the com-
plement of the crown associated to ρτ0(w) already uniformizes the figure eight knot
complement (this follows from [Deh]). Here the open subset giving the uniformisa-
tion is smaller than the discontinuity region. So we conjecture that all along this
deformation, the crowns remain embedded and we have a family of uniformizations
of the figure eight knot complement, with the last one being by the actual domain
of discontinuity of the represented group.

Our results show that in general the topological type of the uniformized 3-
manifold remains constant close to the R-Fuchsian crown-type uniformization, with-
out considering explicit fundamental domains.

Figure 1: Estimation of the supremum of Cartan invariant for the (3, 3, 4)-triangle
groups.

One can also consider larger deformation spaces. The website [ACGN22] presents
experimentations about the even subgroup of the (3, 3, 4)-triangle group, which has
a 2-parameter family of deformations around the R-fuchsian one, together with an
estimation of the supremum of the Cartan invariant. The following questions seem
very natural, for any R-Fuchsian group:

• Does the whole connected component of convex-cocompact (or, equivalently,
Anosov) deformation of the R-fuchsian representations consists of slim ones
(or, equivalently, hyperconvex Anosov)?

• Which words in the group can become parabolic at the boundary of slim
convex-cocompact representations?

• In the case of a representation at the boundary of slim convex-cocompact
deformations with a finite set of classes of words having become parabolic, is
the topology of the uniformized manifold related to the topology of a crown
for the R-fuchsian representation?

Acknowledgements. We thank Danny Calegari, Pierre Dehornoy, Patrick
Foulon, Julien Marché and Andrés Sambarino for enlightening exchanges.
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2 PU(2, 1)-geometry of CP2

One of the main thrusts behind this paper is that the geometry of some convex-
compact representations of surface groups in PU(2, 1) are best understood consider-
ing not only the natural action on the complex hyperbolic space H2

C and its 3-sphere
at infinity ∂H2

C but also on its complement H1,1
C in CP2. We hope to illustrate how

the whole PU(2, 1)-geometry of CP2 helps understanding these representations. In
this section, we review necessary material about this geometry.

We will constantly use points in the projective space CP2 and lifts to C3. In this
situation, we will denote the point and its lift by the same letter, but bolded for the
lift. As example, if p is a point (resp. A is a projective transformation), p is a lift
of p (resp. A is a matrix lift of A). We denote by PU(2, 1) the projective unitary
group associated to a Hermitian form 〈·, ·〉 of signature (2, 1) on C3. At this stage,
we do not specify this form.

2.1 Action of PU(2, 1) on CP2.
The action of PU(2, 1) on CP2 has three orbits which are the projections to CP2 of
the three cones in C3 defined by

V − = {Z ∈ C3, 〈Z,Z〉 < 0},
V + = {Z ∈ C3, 〈Z,Z〉 > 0}, (1)
V 0 = {Z ∈ C3, 〈Z,Z〉 = 0}.

Clearly the two orbits P(V ±) are open, and P(V0) is closed. We will say that a
point p ∈ CP2 has negative, null or positive type when it belongs respectively to
P(V −), P(V 0) or P(V +). As sets, the two open orbits identify respectively to the
homogeneous spaces

P(V −) ∼ PU(2, 1)/P(U(2)×U(1)) = H2
C

P(V +) ∼ PU(2, 1)/P(U(1)×U(1, 1)) = H1,1
C (2)

We thus view these two homogeneous spaces as subsets of CP2, where each of them
appears as the complement of the closure of the other. These two spaces can be
equipped with metrics : a Hermitian one for H2

C and pseudo-Hermitian one for
H1,1

C . Let us describe these metrics (see also [Web93]). First, whenever p ∈ CP2

does not have null type, we use the identification of the tangent space at p given by

TpCP2 = Hom
(
Cp,p⊥

)
. (3)

Now, if α, β are two linear maps Cp −→ p⊥, the metric is given by

hp(α, β) = −4 〈α(p), β(p)〉
〈p,p〉

(4)

Choosing a lift p of p so that 〈p,p〉 = −1 if p ∈ H2
C and 〈p,p〉 = +1 if p ∈ H1,1

C ,
and identifying α and β with the images of p denoted by α(p) = u, β(p) = v, we
obtain

hp(u, v) = 4〈u, v〉 if p ∈ H2
C

hp(u, v) = −4〈u, v〉 if p ∈ H1,1
C (5)

8



If p ∈ H2
C, the direction Cp has negative type, and the restriction of 〈·, ·〉 to (Cp)⊥

has signature (+,+). Thus in this case, h is a Hermitian metric on TH2
C, whose

real part is Riemannian. This is the complex hyperbolic metric. The factor 4
in (4) corresponds to normalising the sectional curvature of H2

C as being pinched
between −1 and − 1

4 . If p ∈ H1,1
C , the direction Cp has positive type, and the

restriction of 〈·, ·〉 to (Cp)⊥ has signature (+,−). Therefore, in this case, h is a
pseudo-Hermitian metric on TH1,1

C with (Hermitian) signature (1, 1), whose real
part is pseudo-Riemannian with signature (2, 2).

The complex hyperbolic distance on H2
C can be expressed in Hermtian terms by

cosh2
(
d(p, q)

2

)
= 〈p, q〉〈q,p〉
〈p,p〉〈q, q〉

. (6)

The third orbit P(V 0) of the PU(2, 1)-action on CP2, the closed one, is the
projection to CP2 of the quadric {Z ∈ C3, 〈Z,Z〉 = 0}. This orbit can be thought
of as the boundary at infinity of H2

C, and we will denote it as ∂H2
C (it is of course also

the boundary of H1,1
C as well). It is a 3-sphere and we will also often denote it simply

by S3. Once a lift p of p is chosen, the tangent space Tp∂H2
C can be identified with

the 3-dimensional real vector subspace of C3 defined by {Z ∈ C3, Re (〈Z,p〉) = 0}.
This tangent space contains the complex 1-dimensional subspace ker(〈·,p〉). This
defines a CR-structure on ∂H2

C, which is the homogeneous CR structure given by
the field of tangent complex lines

(
ker〈·,p〉

)
p∈∂H2

C
, see [BS76]. The contact structure

defined by this field of planes allows one to define horizontal submanifolds

Definition 2.1. A smooth submanifold of ∂H2
C is horizontal if at each point its

tangent space is included in the contact plane.

Such a manifold, if connected, can only be a point or a Legendrian curve. One
of the main point of Section 3 will be to extend this notion to non-smooth locally
closed sets.

2.2 Coordinate systems
Let us describe the objects considered in the previous section with the following
two special choices of Hermitian forms.

HB =

1
1
−1

 and HS =

 1
2

1

 . (7)

Using the Hermitian form given by HB leads to the so-called ball model of H2
C.

With this choice of coordinates, H2
C can be seen as the unit ball of C2, where C2

itself is seen as the affine chart Z3 = 1 of CP2. Any point in H2
C can be lifted to

C3 in a unique way as a vector [z1, z2, 1]T , where zi ∈ C and |z1|2 + |z2|2 < 1. In
this model, the boundary ∂H2

C is just the 3-sphere S3 defined by |z1|2 + |z2|2 = 1.
In turn, H1,1

C identifies with the complement in CP2 of the closed ball H2
C ∪ S3.

On the other hand, if one uses the form HS , then the projection of V − ∪ V0 to
CP2 is contained in the affine chart {Z3 = 1}, except for the projection of [1, 0, 0]T ,
which is at infinity. Thus any point in the closure of H2

C admits a unique lift to C3

which is given by

9



v(z,t,u) =

−|z|2 − u+ it
z
1

 and ∞ =

1
0
0

 , (8)

where z ∈ C, t ∈ R and u > 0. These coordinates are often called horospherical
coordinates since the level sets of u > 0 are the horospheres centered at ∞. When
necessary, we will call the vector given in (8) the standard lift of a point in H2

C. We
will denote by [z, t] the point in ∂H2

C which is the projection of vz,t,0. Note that

〈v(z,t,u), v(z,t,u)〉 = −2u,

so that the vectors v(z,t,u) for which u < 0 are lifts of those points of H1,1
C that

belong to the affine chart {Z3 = 1}. The line at infinity is the projection to CP2 of
ker(〈·,∞〉). It can be identified with the tangent complex line at ∞. Similarly, the
tangent complex line ker(〈,p〉) at points p = [x + iy, t] ∈ ∂H2

C is easily seen to be
the kernel of the 1-form

α = dt− 2xdy + 2ydx. (9)

The 1-form α is the contact form of the Heisenberg group. A C1 curve γ in ∂H2
C

is horizontal, or Legendrian, if and only if its velocity belongs to the contact plane.
This condition can be written with lifts in a simple way: γ is horizontal if and only
if it satisfies

∀s ∈ R, 〈 ·
γ(s),γ(s)〉 = 0, (10)

where γ(s) is the standard lift of γ(s).

2.3 Totally geodesic subspaces and the Cartan invariant
The maximal totally geodesic spaces of H2

C come in the following two types.

1. The complex lines of H2
C are the non-empty intersections with H2

C of projective
lines in CP2. Note that a projective line intersects H2

C iff it is the projectivisa-
tion of a hyperbolic 2-plane of C2,1 (that is, those where the restriction of 〈·, ·〉
has signature (+,−)). The sectional curvature along a complex line is con-
stant and equal to −1. Typical examples are the complex axes of coordinates
in the ball model of H2

C.

2. The real planes of H2
C are the non-empty intersections with H2

C of real pro-
jective planes. Real projective planes intersecting H2

C can be described as
projectivisations of totally real subspaces of C2,1, that is 3 dimensional real
subspaces of C2,1 for which the restriction of 〈·, ·〉 is real. These real planes
realize the other bound −1/4 of the sectional curvature.

As just said, complex lines and real planes of H2
C are the intersections with

H2
C of projective complex lines or projective real planes of CP2. When clear from

the context, we will often use the words complex line or real plane for both the
complex hyperbolic or projective objects. When necessary, we will precise complex
hyperbolic lines or real hyperbolic planes, as opposed to complex projective lines
and real projective planes.

We will make a constant use of the curves defined in ∂H2
C by intersecting complex

lines and real planes with H2
C.

10



Definition 2.2. A C-circle in ∂H2
C is the intersection of a complex line of H2

C with
∂H2

C. Similarly, an R-circle in ∂H2
C is the intersection of a real plane of H2

C with
∂H2

C.

Example 2.3. Examples of R- and C-circles in the Heisenberg space are depicted
in Figures 2 and 3. Their description is as follows:

1. In Heisenberg coordinates, the two axes of coordinates in the plane C×{0} are
examples of R-circles, and more generally, so is any line through the origin in
that plane. The axis {[0, t], t ∈ R} is a C-circle. More generally, the R-circles
that contain the point ∞ are the lines through a point p that are contained
in the contact plane at p. The C-circles through ∞ are the vertical lines.

2. The R-circles that do not contain the point ∞ are (compact) circles whose
projections onto C is a square lemniscate (the tangents at the double point
of the projection are orthogonal). The C-circles not containing ∞ are ellipses
contained in contact planes, that are centered at the contact point.

Note in particular that R-circles are horizontal, whereas C-circles are everywhere
transverse to the contact distribution. The latter facts are clear in the situation
where the considered R or C-circle contains ∞, and follow from the transitivity
of the action of PU(2, 1) on the two families of complex hyperbolic lines and real
hyperbolic planes.

Another notable difference between C-circles and R-circles is that C-circles have
a natural orientation which is induced by the complex structure of the complex line
they bound, whereas R-circles do not have a natural PU(2, 1)-invariant orientation.

Figure 2: Two R-circles: the red line is the x axis of the Heisenberg coordinates. It
is the boundary of H2

R = R2 ∩H2
C. The blue curve is the boundary of a real plane

orthogonal to H2
R. The left picture is a view in perspective in Heisenberg space,

and the right picture is the vertical projection of the two R-circles on C.

The Cartan invariant will play an important role in our work, from Section 3.3
on. It gives an easy characterization of triples of points that lie in a C-circle or in
an R-circle.
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Figure 3: Examples of C-circles in Heisenberg space. On both pictures, the black
line is a C-circle passing through ∞. Note that the pair of blue C-circles on the
left is unlinked, whereas the one the right picture they is linked.

Definition 2.4. Let (p, q, r) be a triple of points in ∂H2
C. If the points are pairwise

distinct we define the Cartan invariant of the triple (p, q, r) to be

A(p, q, r) = arg
(
−〈p, q〉〈q, r〉〈r,p〉

)
. (11)

If at least two of the points coincide we define it to be A(p, q, r) = 0.

The quantity (11) does not depend on the choices made for lifts, and is PU(2, 1)-
invariant. The following statement sums up the main features of this invariant (see
[Gol99, Chapter 7] for proofs).

Proposition 2.5. The Cartan invariant enjoys the following properties.

1. For any triple (p, q, r), A(p, q, r) ∈ [−π/2, π/2].

2. Two triples of pairwise distinct points (p1, p2, p3) and (q1, q2, q3) have the same
Cartan invariant if and only if there exists a map g ∈ PU(2, 1) such that
g(pi) = qi for i = 1, 2, 3.

3. For a triple of distinct points, |A(p, q, r)| = π/2 if and only if the triple (p, q, r)
lies on the boundary of a complex line.

4. A(p, q, r) = 0 if and only if the triple (p, q, r) lies on the boundary of a real
plane.

5. A is a 3-cocycle. In particular, if p, q, r, s are four points, we have:

A(p, q, r)− A(p, q, s) + A(p, r, s)− A(q, r, s) = 0. (12)

2.4 The line map and the duality between H2
C and H1,1

C

We will often work with projective lines in CP2. The set of lines in CP2 can be
described as the dual projective space, denoted by CP2∗. The Hermitian form
gives a natural identification between CP2 and CP2∗, which in turn gives a polarity
between points and lines of CP2. We review here some basic properties of this
notion of polarity.
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Definition 2.6. Let p be a point in CP2 and L a projective complex line. We say
that p is polar to L if L = P(p⊥).

The restriction of the Hermitian form on planes can be of signature (+,+),
(−,+) or degenerate. Using polarity we can describe the situation as follows:

• Positive type directions are orthogonal to 2-planes with signature (+,−). This
means that points in H1,1

C are polar to complex lines that intersect H2
C.

• Negative type directions are orthogonal to 2-planes with signature (+,+).
Thus points of H2

C are polar to complex lines contained in H1,1
C .

• Null type directions are orthogonal to 2-planes with signature (0,+). In fact,
a point p in ∂H2

C is polar to its orthogonal complex line p⊥ tangent to ∂H2
C

at p. It is the only case where p belongs to its polar line.

In particular, we observe that H1,1
C is in bijection with the Grassmanian of complex

lines of H2
C. This is indeed another usual definition of H1,1

C .
Let us denote by ∆ the diagonal of CP2 × CP2, and by ∆S3 the portion of ∆

given by S3. For any pair a, b of distinct points in CP2, we call L(a, b) the (unique)
complex line containing a and b. We note that this defines a PGL(3,C)-equivariant
map on (CP2 × CP2) \ ∆, where PGL(3,C) acts diagonally on CP2 × CP2. We
can extend this map to ∆S3 in a PU(2, 1)-equivariant way by defining L(a, a) to
be the complex line tangent to S3 at a, that is L(a, a) = P(ker(〈,a〉)). This is the
largest PU(2, 1)-equivariant extension of L to a subset of CP2 × CP2 larger than
(CP2 × CP2) \∆.

Definition 2.7. The map

L :
((

CP2 × CP2) \∆
)
∪∆S3 −→ CP2∗ (13)

defined above is called the line map.

The following proposition will play an important role in our work.

Proposition 2.8. The line map is continuous on CP2 × CP2 \ ∆, but it is not
continous at any point of ∆S3 .

Proof. Observe that for any neighborhood U of a point p in
((

CP2 × CP2) \∆
)
∪

∆S3 , L(p, U) = CP1 identified to the set of all lines passing through p. This shows
that the line map is not continuous at diagonal points.

As explained before, we can identify CP2∗ to CP2 using the Hermitian form.
Using this polarity, we define a variant of the line map:

Definition 2.9. For any pair (a, b) of distinct points in CP2 the point a� b is the
projection of the unique line orthogonal to both a and b.

As a direct consequence of the above discussion and definitions, we have

Lemma 2.10. 1. For any pair (a, b) of distinct points of CP2, the line L(a, b)
is polar to a� b.

2. For any point a in S3, the line L(a, a) is polar to a.
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By twisting the usual exterior product, one obtains a useful way of computing
a � b (see also Section 2.2.7 of [Gol99]). This will allow us, later on, to explicitly
compute when working with the line map.

Definition 2.11. Let a and b be two vectors in C3, and let J be the matrix of the
Hermitian form in the canonical basis. We denote by a � b (the box product) the
vector J−1a ∧ b

Remark that the vector a � b is orthogonal to a and b : this follows directly
from

〈X,a� b〉 = XTJ · J−1a ∧ b, (14)

which is clearly vanishing if X = a or X = b. The vector a�b vanishes if and only
if a and b are proportional. If a 6= b, the point P(a� b) is a� b.

Computing with the box product is made easier by the following relations, that
all come from standard identities for the usual exterior product. For any vectors
a, b, c,d ∈ C3, we have (see also section 2.2.7 of [Gol99])

〈a� b, c� d〉 = 〈d,a〉〈c, b〉 − 〈c,a〉〈d, b〉 (15)
〈a, b� c〉 = det(a, b, c) (16)

(a� b)� (a� c) = det(a, b, c) · a (17)

2.5 Geometry of H1,1
C

We will be most interested in this paper by C-circles, which are intersections of a
projective line meeting H2

C with its sphere at infinity. As stated before, these lines
are polar to points in H1,1

C . We thus describe here some needed properties of the
geometry of H1,1

C , in particular with respect to C-circles and polarity.
First, we can understand when two C-circles meet, using polarity:

Lemma 2.12. Let x 6= y be two points of H1,1
C . Then the C-circles polar to x and

y meet if and only if x� y ∈ S3. Their intersection is then the point x� y.
In particular, if a 6= b and c 6= d are four points in S3, not belonging to the same

complex line, the C-circle through a, b and the one through c, d meet if and only if
(a� b)� (c� d) ∈ S3.

Proof. The line polar to x and y meet in exactly the point x � y. So the C-
circles meet if and only if this point belong to the sphere. The second part follows
readily.

We denote by RP2 ⊂ CP2 the projection to CP2 of R3 ⊂ C3. As we have seen
above, the intersection of RP2 with H2

C is H2
R, and its intersection with S3 is the

R-circle ∂H2
R. No that RP2 is exactly the set of points in CP2 fixed by complex

conjugation.
Restricted to R3, the Hermitian form gives a scalar product. This comes with a

notion of polarity. This two notion are of course coherent:

Lemma 2.13. The following are equivalent.

1. A point m ∈ H1,1
C belongs to RP2

2. The complex line Lm polar to m intersects H2
R along a geodesic
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3. The C-circle ∂Lm intersects ∂H2
R in exactly two points.

Proof. The last two items are equivalent since H2
R is totally geodesic.

Assume Lm intersects H2
R along a geodesic γ, and pick two points p, q ∈ γ.

Then m = p� q by definition. As p and q belong to RP2, they are fixed by complex
conjugation and so does m. So m belongs to RP2.

Conversely, assume that m ∈ RP2, and pick a liftm with real coefficients. Then
the orthogonal m⊥ intersects R3 along a 2 dimensional (real) vector subspace V .
The projection of this subspace to CP2 intersects H2

C along a geodesic which is
contained in H2

R.

We can look at intersections of tangent lines to the sphere with RP2. Elementary
projective geometry gives:

Proposition 2.14. Let p ∈ S3 \ ∂H2
R. Then we have:

1. The complex line L(p, p) tangent to S3 at p intersects RP2 in exactly one point.

2. The pointm = L(p, p)∩RP2 is polar to a complex line whose C-circle intersects
∂H2

R twice and contains p.

Proof. Consider p̄ the complex conjugate of p. Two distinct complex lines intersect
at only one point say m = L(p, p) ∩ L(p̄, p̄). This point is then fixed by complex
conjugation and therefore m ∈ RP2. It is the only intersection point of L(p, p) with
RP2.

For the second part, observe that the line L(p, p̄) is polar to m as m is in the
tangent lines at p and p̄ simultaneously. It is invariant by complex conjugation,
so belong to RP2. One can then use the previous proposition to assert that its
associated C-circle intersects twice ∂H2

R.

Given a 6= b ∈ C and C the C-circle through a, b, we call arc of C-circle a
connected component of C \ {a, b}. The points a and b are called the endpoints of
the arc. Two distinct points of C define two arcs of C-circle supported by C. Note
that these two arcs are naturally oriented by the orientation of C. This leads to the
following notation:

Definition 2.15. Let a 6= b be two distinct points of S3. We call arc from a to b,
denoted by ay b, the portion of the C-circle through a and b oriented from a to b.

These arcs are chains in the CR-geometry. They are the main character of our
central object of study in this paper, that we describe below.

2.6 A foliation by arc of C-circles and unit tangent bundles
The geometry explained above may be used to describe a well-known foliation of
S3 \ ∂H2

R by arcs of C-circles – see Figure 5:

Corollary 2.16. Let R be an R-circle in S3. The set of arcs a y b of C-circles
whose endpoints a, b belong to R defines a foliation of S3 \R.

Proof. Since PU(2, 1) acts transitively on the set of real planes of H2
C, we may

assume that R = ∂H2
R. Now, let p ∈ S3 \ ∂H2

R. A complex line contains p if and
only if it is polar to a point n in the tangent complex line L(p, p), and intersects
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∂H2
R in two points if and only if n ∈ RP2. The result follows thus directly from

Proposition 2.14.
Moreover, if to such arcs ay b and cy d meet at p ∈ S3 \R, then the C-circles

supporting these arcs also meet at p̄. Since p 6= p̄, they have two common points,
so the C-circles are indeed the same one. This C-circle has only two intersection
point with R, by Proposition 2.14. So {a, b} = {c, d}. As two opposed arcs of a
single C-circle are disjoint, we have (a, b) = (c, d).

The foliation given by Corollary 2.16 is well-known and has the following nice
geometric interpretation. It follows from the fact that S3 \∂H2

R is naturally homeo-
morphic to the unit tangent bundle of H2

R. This homeomorphism can be described
as follows. We denote by J the complex structure on H2

C. Viewing H2
R as a subspace

of H2
C, a point in UTH2

R is a pair (p, ~u), where p ∈ H2
R and ~u is a unit vector at p,

tangent to H2
R. Then the homeomorphism is given by

ϕ : UTH2
R −→ S3 \H2

R

(p, ~u) 7−→ γ(p,−Jp~u,+∞),

where γ(p, Jp~u,+∞) is the point at infinity of the geodesic from p in the direction
~u (see Figure 4). Note that ϕ could be in fact defined on the whole UTH2

C. If
(p, ~u) ∈ UTH2

R, the associated orbit of the geodesic flow is obtained by applying J
to all unit tangent vectors along the geodesic in H2

R spanned and oriented by (p, ~u).
In particular, it is contained in the boundary of the complex line of H2

C spanned
by p and ~u. In fact, it is exactly the arc of C-circle connecting γ(p, Jp~u,−∞) and
γ(p, Jp~u,+∞) on which the natural orientation (given by the complex structure)
coincide with the one given by ~u. On Figure 4, this arc is the "lower" one.

This foliation and its link to the unit tangent bundle UTH2
R may in turn be

used to understand CR-spherical structures on unit tangent bundles of hyperbolic
surfaces. Let us consider an R-Fuchsian group Γ ⊂ PO(2, 1) ⊂ PU(2, 1) acting on
H2

R. We note that the limit set of such a group is ΛΓ = ∂H2
R, and its disconinuity

region is ΩΓ = S3 \ ∂H2
R. The homeomorphism ϕ constructed above is clearly

PO(2, 1)-equivariant, thus ϕ descends to the quotient, and one easily obtain the
following classical result – see for instance [GKL01, Proposition 2.7], where the
same result is obtained by considering Euler numbers of circle bundles.

Proposition 2.17. Let Γ ⊂ PO(2, 1) ⊂ PU(2, 1) be a Fuchsian group, preserv-
ing H2

R. Then ϕ realizes an homeomorphism between the unit tangent bundle
UT(Γ\H2

R) and the quotient of ΩΓ by the action of Γ.
Moreover, in the cover, the map ϕ sends orbits of the geodesic flows in UTH2

R
to arcs ay b where a 6= b ∈ ∂H2

R.

The main goal of this paper is first to understand what happens to this foliation
when deforming the R-circle and second, in presence of a group acting, to under-
stand how the map ϕ deforms. But, if we consider any deformation, no meaningful
description can be given. So, we first define in Section 3 a notion of horizontality
for non-smooth curves and a quantitative version called slimness. Under these con-
ditions we will be able to understand how the foliation deforms in Section 4 and
understand better the equivariant case in Section 5.
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Figure 4: Identification between the
complement in S3 of an R-circle R and
the unit tangent bundle of H2

R

Figure 5: A few leaves of the foliation
of S3 \ ∂H2

R by arcs of C-circles (see
Corollary 2.16)

3 Horizontality and Slimness in the CR-sphere
From now on, we focus especially on the sphere at infinity S3 = ∂H2

C. So we will
rather work with R- and C-circles than complex hyperbolic lines and real hyperbolic
planes. All properties stated with R and C-circles can be equivalently stated with
their supporting complex lines and real planes.

Recall from Section 2.1 that the sphere comes with its contact structure, and the
notion of horizontality for smooth submanifolds, see Definition 2.1. Horizontality
will be one of the main concern of this paper. However, the typical sets we want
to describe are limit sets of discrete subgroups of PU(2, 1). Those subsets are not
usually smooth. In fact, they are smooth iff it is the whole sphere or the group is
not Zariski-dense. So we have to devise a notion of horizontality suitable for general
non-smooth subset of S3.

3.1 Horizontality for non-smooth subsets of S3 ⊂ CP2

One property of horizontal submanifolds can be expressed in the following way: any
C-circle through two close points is entirely contained in a small neighborhood of
the two points. We could try and write a definition using the topology on the set of
C-circles. The problem is that this set is not compact, as C-circles can degenerate to
a single point. And we exactly want to use this degeneration: the C-circle between
two points in a horizontal submanifold degenerates as the two points collapse. With
the previous section in mind, it appears more natural to take a step back and work
instead in CP2 and use the line map. Indeed, a C-circle is defined by a unique line
in CP2. Moreover, when a family of C-circles converges to a single point p ∈ S3,
then the family of associated lines converges to the line p⊥ in CP2∗ and their polar
converge to p.

Recall that the restriction of the line map L to S3×S3 is defined in Definition 2.7
by: for e 6= f ∈ S3, L(e, f) is the line through e and f and L(e, e) is the line e⊥.
Using polarity, we will write equivalently L(e, f) = e � f and L(e, e) = e. Note in
particular that this map is not continuous at the diagonal, see Proposition 2.8. We
thus propose the following definition:
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Definition 3.1. Let E ⊂ S3 be a closed subset. We say that E is CR-horizontal if
the restriction LE of the line map L to E × E is continuous.

Away from the diagonal, the map LE is always continuous. So the previous
definition is in fact a local property. One could restate the continuity hypothesis
by asking that for any e ∈ E, for any sequences (en 6= fn) converging to e, the
sequence of lines (enfn) converges to e⊥.

We recover in the smooth case the usual definition:

Proposition 3.2. A submanifold E is CR-horizontal iff it is horizontal.

Proof. Consider the tangent space to the submanifold E at some point e ∈ E. This
tangent space contains a vector v iff there are sequences (en), (fn) of points in E,
that converges to e and such that the real line (enfn) converges to the real line l
through e containing v. The vector v belongs to the contact plane iff the line l is
included p⊥. After tensorizing by C, v belongs to the contact plane iff the complex
line (enfn) converges to p⊥. This proves the proposition.

Remark 3.3. In contact geometry and, more generally, in CR-geometry, horizontal
paths are usually defined as absolutly continuous paths with tangent vectors in a
fixed distribution. Here we don’t need existence of derivatives. On the other hand
we are using the extrinsic geometry of the CR-structure of the sphere embedded
in CP2. An intrinsic way to define horizontality for arbitrary CR-structures is to
use the special paths called chains. We are saying that E is horizontal if for any
converging sequence of points in E the directions defined by chains between the
limit and the points in the sequence converges to a direction in the contact plane.

Remark 3.4. Thanks to the previous definition, our notion of CR-horizontal man-
ifold is an extension of the usual notion of horizontality to non-smooth sets. So from
now on, we will drop the specification of "CR-" and just call this notion horizontality.

The following lemma translates in coordinates the local condition at a point p:
at first order, points arrive at p along the orthogonal line L(p, p) or equivalently
tangentially to the contact structure. Recall from Definition 2.11 that p � q is a
specific lift of p� q, even if in the following statement any lift could be used.

Lemma 3.5. Let E be a horizontal subset of S3 containing a point p. Let q be
another point in S3. Fix lifts p and q for p and q. Then any point a ∈ E \ {q}
admits a unique lift to C3 of the form

a = p+ xp� q + yq.

Moreover y = o(x) in a neighbourhood of p

Proof. Any point in CP2 has a unique lift of this kind but for points in the line
through q and p� q. This line is orthogonal to q, so is L(q, q). Its intersection with
the sphere is q, so the first point of the lemma is proven.

Suppose now by contradiction that there is a sequence of points an in E, con-
verging to p, with lifts an = p + xnp � q + ynq, such that yn is not negligible in
front of xn. Up to passing to a subsequence, it implies that there exist x∞ ∈ C,
y∞ ∈ C \ {0} and a sequence tn → 0 of positive real numbers such that, at the first
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order, an = p + tn(x∞p � q + y∞q) + o(tn). Then the polar p � an to the line
L(p, an) can be computed with box-product:

p� an = p� (p+ tn(x∞p� q + y∞q)) + o(tn)
= tn(x∞p� (p� q) + y∞p� q) + o(tn)

This implies that p� an converges to the projection of x∞p� (p� q) + y∞p� q.
Note that p�(p�q) is a multiple of p. So p�an is a point in p⊥, different from p as
y∞ 6= 0. This contradicts the horizontality condition on E: p� an should converge
to p as an goes to p.

The non-continuity of L at the diagonal has an interesting consequence in terms
of Cartan invariant. We will make a repeated use of the following lemma:

Lemma 3.6. Let e be a point in S3, and (en), (fn) be two sequences of points both
converging to e, and such that such that L(en, fn) converge to some complex line
` 6= e⊥. Then, for any point x ∈ S3 distinct from e, it holds that |A(x, en, fn)| −→
π/2.

Proof. It suffices to prove the result for en = e. Indeed, one can make x = ∞ and
en = 0 in Heisenberg coordinates by translating through PU(2, 1). We have fn → e
and we suppose by contradiction that |A(x, e, fn)| does not converge to π/2. There
is a subsequence of A(x, e, fn) converging to A ∈]− π/2, π/2[. Using standard lifts,
one write in coordinates the corresponding subsequence of fn as

fn =

|λn|2(−1 + ian)
λn
1


where an = A(x, e, fn)→ tanA and λn → 0 as fn → e. Now the line between e = 0
and fn is generated by two points whose lifts are:

e =

0
0
1

 and fn =

|λn|2(−1 + ian)
λn
0

 = λn

λ̄n(−1 + ian)
1
0

 .
The complex lines determined by these vectors converge to the line e⊥, which is a
contradiction with the assumption.

3.2 Characteristic foliation and one-parameter subgroups
A common construction of smooth horizontal curves is through the characteristic
foliation induced in an embedded surface in a contact manifold. One defines that
foliation (generically with singular points) by the field of directions given by the
intersection of the contact plane with the tangent space of the surface.

For example, if the surface is the complex plane through 0 in the Siegel model
union ∞, that is a sphere, the foliation has two singularities, at 0 and ∞, where
the contact plane is tangent to the surface. Closure of leaves of this foliation are
exactly the half-lines between 0 and ∞, so half of R-circles. One can glue two such
half lines at the two singularities, obtaining what we call bent R-circles. We will
come back on this example in Section 3.5.1.
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Due to homogeneity, two-dimensional orbits of a group G ⊂ PU(2, 1) acting on
∂∞H2

C have a characteristic foliation with no singular points. It is interesting to
determine those orbits whose foliations contain orbits of one-parameter subgroups
H ⊂ G.

There are four types of two dimensional orbits which correspond to the groups
C∗, R2, S1×R and S1×S1 and they are unique up to conjugation in PU(2, 1). The
first one corresponds to the group of all loxodromic elements fixing two points in
∂∞H2

C. The second one corresponds to a maximal abelian subgroup contained in
the Heisenberg group, the third one to the group generated by vertical translations
in the Hesisenberg group and rotations fixing its vertical axis and the fourth one to
a maximal torus.

Each group G acts transitively on the leaves of the characteristic foliation be-
cause it preserves the contact plane and therefore if one of the leaves is an orbit of
a one parameter subgroup of G, the same holds for every other leaf. Observe that
G will be the normalizer of each of its one-parameter subgroups.

We prove here that for the loxodromic case, all leaves are indeed orbits of a
one-parameter subgroup.

Proposition 3.7. Let L be a one-parameter loxodromic subgroup, normalized by a
two-parameter subgroup G.

Then there are exactly two surfaces invariant under G where the characteristic
foliation is given by one-parameter orbits of L.

Proof. We work in the Siegel model. Loxodromic 1-parameter subgroups are con-
jugate to one given by

Lα : s 7−→

esα es(α−α)

e−sα

 ,where α ∈ C∗ satisfies |α| 6= 1. (18)

The 1-parameter subgroup Lα fixes 0 and ∞. Now, if p0 = [z0, t0] is a point in
∂∞H2

C, represented by the null vector p = [−|z0|2 + it0, z0, 1]T , then the orbit of
p0 under Lα is the curve [z0e

s(2ᾱ−α), t0e
2Re(α)], which is a spiral inscribed on the

pararaboloïd with equation t|z0|2 = |z|2t0·. The normalizer of Lα consists of those
elements of PU(2, 1) that lift to diagonal matrices diag(λ, λ̄/λ, 1/λ̄). It is easy to
see that this normaliser acts simply transitively on any sheet of the paraboloïd.

Next, we remark that if p is a point in ∂H2
C and s 7−→ γ(s) is the orbit of p

under a 1-parameter subgroup (Gs)s of PU(2, 1), then γ is horizontal if and only if〈 d
ds

∣∣∣
s=0

γ(s),p
〉

= 0. (19)

Indeed, the contact plane at p is the kernel of 〈·,p〉, and horizontality is preserved
by the action of the 1-parameter subgroup.

Consider now the point in ∂H2
C given in Heisenberg coordinates by p = [z, t].

Then using (19), we see that the orbit of p is horizontal if and only if

t

|z|2
= 3Im(α)

Re(α) . (20)

This proves the existence part. The above condition on t and |z| defines a (two-
sheeted) paraboloïd in the Heisenberg group, which is acted on uniquely transitively
by the normaliser G of L. This proves the uniqueness part.
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This analysis raises the natural question of which one-parameter subgroups do
admit horizontal orbit. This question diverts us from our main goal, so we will
answer it in another forthcoming paper.

3.3 Slimness in the sphere
The notion of horizontality captures a local property of subsets of S3. We need a
quantitative and global version of this property. We define the relevant notion in
this section using the Cartan invariant to guarantee quantitatively that no C-circle
hits thrice the subset. We first single out this global property which is independent
of horizontality. This is a particular case of one of the central notion of the theory
of Anosov representations [Lab06, PSW21].

Definition 3.8. We say a subset E ⊂ S3 is hyperconvex if no three points in E
are contained in the same complex line.

3.3.1 A quantitative version of horizontality

If E is a subset of S3, we denote by E3 the set of triples in E and by E(3) the its
subset of pairwise distinct triples. We define now the central notion of this paper:

Definition 3.9. Let 0 6 α <
π

2 . We call α-slim any subset E of S3 such that the
absolute value of the Cartan invariant of any triple of points is bounded above by
α :

sup
{
|A(a, b, c)|, (a, b, c) ∈ E3} 6 α (21)

As a shortcut, we say that a subset E is slim if it is α-slim for some α < π
2 . More-

over, we denote by A(E) the supremum A(E) = sup
(
|A(a, b, c)|, (a, b, c) ∈ E3) .

This condition will prove to be a strong constraint on subsets of S3. A first
point to be proven is that this assumption indeed implies horizontality - see Propo-
sition 3.11. Some preliminary remarks, though, follow from the definition.

Remark 3.10. 1. If a subset E is 0-slim, then it is included in an R-circle.

2. If a subset E is slim, then its intersection with any C-circle has cardinality at
most 2: if E had 3 points on a C-circle, then this triple of points would have
Cartan invariant π/2 and thus we would have A(E) = π/2.

3. One could likewise define the notion of α-thickness by asking that every Cartan
invariant have absolute value at least α. A π

2 -thick set is then included inside
a C-circle.

4. If t → Et is a Hausdorff-continuous family of closed subsets in S3 then
t → A(Et) is upper semi-continuous. Is is not continuous in general, cf Sec-
tion 3.5.5.

5. The Cartan (measurable bounded) cocycle A determines a bounded cohomol-
ogy class on PU(2, 1) which coincides with the continuous bounded Kähler
class κ. Let ρ : Γ → PU(2, 1) be a representation and ρ∗(κ) ∈ H2(Γ,R) the
corresponding bounded cohomology class of Γ. One should observe that if
E = Λρ is the limit set of ρ(Γ), we obtain that the Gromov norm of this class

21



coincides with the supremum of the Cartan cocycle restricted to the limit set
(see Proposition 3.1 in [BI02], see also [BI12]). That is

||ρ∗(κ)|| = A(E).

We now use Lemma 3.6 to prove that α-slimness implies horizontality. Though
in a different setting, the following proposition is almost the same as [PSW21,
Theorem B]:

Proposition 3.11. If E is a slim subset of S3, then it is horizontal.

Proof. Let E be a slim set. Suppose that it is not horizontal. This means there
exist a point e and two sequences en 6= fn converging to e such that the sequence
of lines (enfn) in CP2 converges to a line l with l 6= e⊥.

Note that E ∩ l contains at most two points, as noted in the second point of the
previous Remark 3.10. So we fix an arbitrary x ∈ E \ l. By Lemma 3.6, we have
|A(en, fn, x)| → π

2 . The assumption that (enfn) → l 6= p⊥ implies therefore that

the sup of Cartan invariant is π2 so contradicts the slimness assumption.

For a submanifold, though, slimness implies that it is a Legendrian smooth
curve:

Corollary 3.12. A connected slim submanifold of S3 is a smooth Legendrian curve.

This applies as well as for absolutely continuous paths : their tangent vectors
are horizontal wherever they are defined.

3.3.2 Local picture in Heisenberg space

A first geometric way of seeing the horizontality of a slim subset is the following.
Assume E is α-slim and the points o = [0, 0] and∞ belong to E. Then any point in
E satisfies |A(∞,o, p)| 6 α. In Heisenberg coordinates the point p is [z, t]. Lifting
the three points of C3, we have

∞ =

1
0
0

 , o =

0
0
1

 ,p =

−|z|2 + it
z
1

 where z ∈ C and t ∈ R. (22)

A straightforward computation leads directly to

|A(∞,o,p)| ≤ α ⇔ |t| 6 tan(α)|z|2 (23)

This means that E \ {o,∞} is contained in the complement of the union of the two
open solid paraboloids defined by |t| > tan(α)|z|2. We denote by Pα this region.

The paraboloïds are illustrated in Figure 6. It makes visible that, if E is a
slim submanifold of S3, then it is CR-horizontal (see Proposition 3.11). Moreover,
Condition (23) may be used to enhance Lemma 3.5 under the hypothesis of slimness
rather than horizontality: in this case and with the notation of the lemma, y is easily
seen to be in fact O(|x|2) instead of o(x). We will not use this fact here, so we do
not go into details.
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·
c(s)

Pα

|t| = tan(α)|z|2

o

Figure 6: Local aspect of a α-slim curve close to the point [0, 0].

3.4 Projections of slim subsets
Before going on with the properties of slim subsets, one can give a few geometric
interpretations of the slimness condition.

In this section, we fix an α-slim subset of S3 = ∂H2
C. Recall that for a 6= b

in S3, the complex line through a and b is denoted by L(a, b), and that L(a, a) is
the complex line tangent to S3 at the point a. We are now going to interpret the
α-slimness condition in terms of three different projections.

3.4.1 Orthogonal projection on the hyperbolic disc through a and b in
E.

This interpretation explains the terminology: the maximum of the Cartan invariant
is a measure of the width of the the projection of the set on hyperbolic discs defined
by couple of points in the set. Let (a, b, c) be a triple of pairwise distinct points in
∂H2

C. Denote by La,b (resp. γa,b) the complex line (resp. the geodesic) spanned
by a and b. Let Πa,b be the orthogonal projection from S3 \ {a, b} onto La,b. Then
the Cartan invariant of (a, b, c) satisfies the following relation (see Theorem 7.1.2 in
[Gol99]).

sinh−1 (| tan(A(a, b, c))|) = d(Πa,b(c), γa,b). (24)

Denote by kα the number sinh−1 (tan(α)). Observe that kα = α + o(α2). We
obtain directly the following proposition, illustrated in Figure 7.

Proposition 3.13. Let E be an α-slim subset of ∂H2
C. Then

E ⊂
⋂

a,b∈E,a6=b
(Πa,b)−1 (Nkα(γa,b)

)
, (25)
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a

La,b

b
γa,b

c

Πa,b(c)

Figure 7: Orthogonal projection onto the complex line La,b. The region bounded
by dashed lines in La,b is a k-tubular neighbourhood of γa,b.

where Nkα(γa,b) is the kα-tubular neighborhood in La,b of the geodesic γa,b.
In coordinates, we can always assume that a = [0, 0] and b = ∞ in the Heisen-

berg group, so that the complex line through a and b corresponds to those vectors
[z, 0, 1]T , where Re(z) < 0. The orthogonal projection of a point c = [z1, z2, 1]T in
S3 is just [z1, 0, 1]T , and the Cartan invariant is A(a, b, c) = arg(−z1). Thus the
projection of c belongs to the cone arg(z) 6 α

3.4.2 Projection on the complex line in CP2 through a and b in E

We can visualize the former property in the whole complex line L(a, b) in CP2, for
a, b in E, and link it to another projection of E, defined as follows.

Π∗a,b : S3 \ {a, b} → L(a, b)
e 7→ L(e) ∩ L(a, b) (26)

Note that this intersection point is always outside the ball H2
C. This projection is

more adapted to projective geometry and inspired by considerations for generalized
Hilbert distance in [FGW20]. We will see shortly that our two projections Π⊥a,b
and Π∗a,b are closely related, but they serve different purposes. The former is well-
adapted to arguments relating to hyperbolic geometry. The latter, instead, will
give information on the large scale Hilbert geometry of the complement of a slim
set which we will pursue in a forthcoming work.

Here again, we can chose coordinates so that a = [0, 0] and b = ∞. If e =
[z1, z2, 1]T is a point in S3, the intersection of L(e) and L(a, b) is the point [−z1, 0, 1]T .

We obtain thus a link between Π and Π∗:
Lemma 3.14. We have −Πa,b = Π∗a,b.

The previous discussion translates into the following

Proposition 3.15. Let E ⊂ S3 be α-slim for some 0 6 α <
π

2 containing at
least two distinct points a and b. Then, in the line (ab) equipped by the previous
coordinate, both our coordinates are included in positive cones of angle 2α:

• Π∗a,b is included in {z ∈ C, | arg(z)| ≤ α}.

• Πa,b is included in {z ∈ C, | arg(−z)| ≤ α}.

24



b = ∞
Π∗
a,b(E)a

Π⊥
a,b(E)

2α

L(a, b) ∩H2
C

Figure 8: Projections of an α-slim set E on the complex line through two of its
points.

3.4.3 Projection on a tangent line at e ∈ E

This last geometric interpretation uses the line map and in fact only relies on the
hyperconvexity. Indeed, let E be a hyperconvex subset of S3 and e ∈ E. We can
project E to the line e⊥ via the map Πe defined on S3 by Πe(p) = p � e and
Πe(e) = e. Geometrically, for p 6= e, Πe(p) is the intersection point of the two lines
e⊥ and p⊥. We have:

Proposition 3.16. The map Πe is surjective.
Moreover, suppose that E is hyperconvex. Then the map Πe restricted to E is

injective.

Proof. The preimage of any x ∈ e⊥ by Πe is the intersection between the polar line
to x and S3. This preimage is non empty for any point x ∈ e⊥.

More precisely the preimage of e ∈ e⊥ in S3 is the singleton {e}. On the other
hand, the preimage of x = Πe(q) 6= e is exactly the C-circle through e and q. When
E is hyperconvex, this C-circle can intersect E at most twice. And we already know
two intersection points: e and q. This proves that Πe : E → e⊥ is injective.

The projections Πe(E) play the role of space-like geodesics on L(E,E). In the
case where E = ∂∞H2

R, they are exactly these geodesics.

Remark 3.17. Assume that e = ∞. Then if a point m ∈ E has Heisenberg
coordinates [z, t], it is easy to see that Π∞(m) lifts to the vector [2z̄, 1, 0]T . In
particular, the slimness of E cannot be deduced from its projection on L(e, e) for
e ∈ E, as the coordinate t disappears. In the case where e = ∞ the map Πe

corresponds, up to a factor 2 and complex conjugation to the vertical projection
onto C, and the fact that it is one-to-one says that two points of E cannot be
vertically aligned if E contains ∞.

3.5 Examples and non-examples
We describe here examples of slim or non-slim subsets. We also introduce limit sets
of surface groups, on which we will further focus in the next sections.
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3.5.1 R-circles and bent R-circles

As recalled in Proposition 2.5, three points are on a common R-circle iff their Cartan
invariant is 0. As such, any R-circle is 0-slim. One can go a step further: those are
maximal slim subsets:

Proposition 3.18. Let E be a slim subset of S3 containing an R-circle R. Then
E equals R.

Proof. The set of arcs of C-circles connecting two points of R defines a foliation of
the complement of R in S3, as stated in Corollary 2.16.

Therefore, if E contains a point outside R, this point belongs to (exactly) one
of these arcs. This gives three points in E that lie on a C-circle, thus have Cartan
invariant equal to ±π/2. So if E strictly contains R, E is not slim.

A simple example of a slim set which is not an R-circle is given by the union of
two half R-circles through 2 points, see the beginning of Section 3.2. In coordinates,
we may write:

Proposition 3.19. For all 0 < θ < 2π, the union

Eθ = {[x, 0], r ∈ R+} ∪ {[yeiθ, 0], r ∈ R+}

is α-slim for α =
∣∣∣∣π − θ2

∣∣∣∣.
Proof. Let R1 and R2 be the two sets appearing in the union Eθ. We want to
compute the maximum of A(p, q, r) for (p, q, r) in E(3)

θ . First, if they all belong to
R1 or all to R2, as they are halves of R-circles, this Cartan invariant is 0. So we
may assume, up to permutations, that p, q are in R1 and r in R2. Denote by 0 the
point [0, 0].

Using the last point of Proposition 2.5 and the fact that p, q and 0 belong to
R1, we have the equality:

A(p, q, r) = A(p, q, 0)− A(p, r, 0) + A(q, r, 0) = A(q, r, 0)− A(p, r, 0)

We first estimate A(q, r, 0). Write q = [x, 0] and r = [yeiθ, 0] where x and y are
positive. We can write x+ iy = ρeit with 0 < t < π/2. Then, a direct computation
in Heisenberg coordinates gives:

A(q, r, 0) = arg(− < q, r >) = arg(1− sin(2t)e−iθ).

Note that 0 < sin(2t) ≤ 1. It is easily seen that 0 < A(q, r, 0) ≤ π−θ
2 with the

maximum attained at t = π/4 or equivalently x = y.
It implies that the difference A(p, q, r) = A(q, r, 0)−A(p, r, 0) (where p and q are

in R1 and r in R2) is bounded between θ−π
2 and π−θ

2 , proving the proposition.

3.5.2 Slim circles are unknotted

We will from now on be especially interested in slim subsets homeomorphic to
circles. We give a straightforward name to these sets:

Definition 3.20. A subset E ⊂ S3 is a slim circle if it is both homeomorphic to
the circle and a slim subset of S3.
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We remark here that slim circles are unknotted. This rules out a non-trivial
knot in the sphere being slim. We prove it by constructing a diagram of the knot
without self-intersection.

Proposition 3.21. A slim circle is unknotted.

Proof. E is a knot in S3. Let e be a point in E, and consider the projection Πe

defined in Section 3.4.3. Then Πe(E) is a subset of the line eperp and as such is
a diagram of the knot. By slimness and Proposition 3.16, Πe is injective on E, so
Πe(E) has no double points.

The image of E under π is a diagram of the knot with no double point: E is the
trivial knot.

The following corollary is proven in the same way.

Corollary 3.22. Suppose E is a slim subset of S3. Let F ⊂ E be a subset homeo-
morphic to the disjoint union of circles. Then F is an unknotted link.

For example, if E is an immersion of a circle with several double points, E
contains disjoint circles. They cannot be knotted nor linked.

3.5.3 Slim orbits of 1-parameter subgroups

Section 3.2 describes some very specific families of horizontal orbits of 1-parameter
subgroups. The previous Proposition 3.11 implies that among all 1-parameter or-
bits, those are the only one that can be slim. We will not go into the whole
classification of slimness for these orbits and especially not look at all at the elliptic
case. We will prove that horizontal orbits of 1-parameter loxodromic subgroups are
indeed slim. This gives concrete examples that are not R-circles. On the contrary,
horizontal orbits of 1-parameter parabolic subgroups are not slim unless the group
is horizontal unipotent. In this last case, the orbit is an R-circle.

Let us first look at the parabolic case. We indeed prove that invariance by a sin-
gle parabolic transformation is compatible with slimness only if this transformation
is horizontal unipotent.

Proposition 3.23. Let E be a closed slim subset of S3 wih at least two distinct
points that is invariant under the action of parabolic element u of PU(2, 1). Then
u is horizontal unipotent.

Proof. We prove it by a case disjonction. Note that in any case, E contains the
fixed point p of u and another point q ∈ E.

• If u is vertical unipotent, then the (infinite) orbit un(q) completely lies inside
the C-circle through p and q. So A(p, q, u(q)) = ±π2 , which prevents the
slimness of E.

• If u is ellipo-parabolic, then the orbit un(q) is contained in a cylinder foliated
by C-circles. Let L be the compact set of lines in CP2∗ supported by this
C-circles. Note that L does not contain p⊥. We can extract a subsequence
qj = unj (q) such that the line (qjqj+1) converges to one of the line in L. Then,
the sequence (qj) of points in E converges to p and the line (qjqj+1) does not
converges to p⊥. Lemma 3.6 proves that the supremum of Cartan invariants
is π2 .
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The only remaining case is that u is horizontal parabolic. It is of course possible,
as an R-circle is invariant under some horizontal parabolic elements.

A direct corollary reads:

Corollary 3.24. A horizontal orbit of a 1-parameter parabolic subgroup is slim if
and only if the subgroup is horizontal unipotent. In this case, it is an R-circle.

The proof of slimness in the loxodromic case, however, is more involved than
for horizontality, as a marker of how much constrained is a slim set. Moreover,
we are not able to estimate the parameter of slimness, leaving us with an indirect
proof. We will just give a detailed sketch of the proof and spare some technicalities.
Recall from Equation (18) that the one-parameter loxodromic subgroups can be
parametrized by:

Lα : s 7−→

esα es(α−α)

e−sα

 ,where α ∈ C∗ satisfies |α| 6= 1.

Their horizontal orbits are described in Section 3.2. We now prove:

Proposition 3.25. If an orbit of Ls is horizontal, then it is slim.

Proof. Recall from Section 3.2 that the orbit ps = Ls · p is horizontal if and only if
the Heisenberg coordinates [z, t] of p satisfy condition (20), that is

t = 3|z|2 Im(α)
Re(α) .

Denote by Pα the paraboloid defined by the above condition. It is a simple compu-
tation in Heisenberg coordinates to verify that a C-circle is either contained in Pα
or intersects Pα in at most two points. Moreover, C-circles contained in Pα are all
contained in horizontal planes t = cst. Since the orbits of Ls are never contained
in such planes, this implies that the orbit we consider never intersects a C-circle
thrice, i.e. they are hyperconvex. Therefore no triple of points in the orbit has
Cartan invariant equal to π/2. This means in particular that if the orbit were not
slim, then the supremum of the Cartan invariant (which would be equal to π/2)
would not be attained.

Up to a reparametrization of the 1-parameter subgroup, and conjugating α if
necessary, we may assume that α = 1 + ia for some a > 0. Applying an element of
the normaliser of Ls, we may moreover assume that the z-coordinate of p is equal
to 1. The horizontality condition becomes then p = [1, 3a]. Denote by p− = [0, 0] =
lims→−∞ ps. Taking lifts, we have

p− =

0
0
1

 , p =

−1 + 3ia
1
1

 and ps =

es(−1 + 3ia)
e−3isa

e−s

 . (27)

We obtain then directly

A(p−, p, ps) = arg
(
es(1 + 3ia) + e−s(1− 3ia)− 2e3isa) .

Denote the latter quantity by:

P(s) = arg
(
es(1 + 3ia) + e−s(1− 3ia)− e−isa

)
.
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When s→ 0, P(s) goes to 0. When s→ ±∞, then P(s) goes to ± arctan(3a). As
the real part of the complex number inside the argument does not vanish, |P| < π

2 .

So |P| admits a maximum ma <
π

2 . Note moreover that P(−s) = −P(s).
Recall from (12) the cocycle property for the Cartan invariant, with p, q, r, s four

points in S3:
A(p, q, r) + A(p, q, s) + A(p, r, s) + A(q, r, s) = 0.

Let s < x < t be three reals. We want to estimate the Cartan invariant A(ps, px, pt).
By invariance of the Cartan invariant under the action of L−x, one may assume that
x = 0, so that p0 = p. Using the cocycle equality to introduce p−, we deduce that

A(ps, p, pt) = −P(−s)− P(t− s)− P(t).

To prove that the supremum of the Cartan invariant is strictly less than π

2 , we
have to control the boundary behaviour. So we are left to understand what happens
when s goes to 0 or −∞ and/or t to 0 or +∞. In each case, one proves that at the
limit the absolute value of the Cartan invariant remains bounded above by ma.

3.5.4 Deformations of R-Fuchsian limit sets

Limit sets Λρ of convex cocompact representations ρ of surface groups Γ give rise
topological circles in the sphere. A natural question is whether Λρ is slim. Clearly,
if Λρ is α-slim, with α 6= 0, then ρ(Γ) is discrete. A first observation is the following:

Proposition 3.26. Let Λρ be the limit set of a convex cocompact representation ρ
of the fundamental group Γ of a compact hyperbolic surface. Then the supremum
of the Cartan invariant A(Λρ) on the limit set Λρ is attained at a triple of distinct
points.

Proof. There exists a boundary map Bρ : ∂∞Γ ∼−→ Λρ. For any ρ, denote by Aρ the
map defined on the set of triples of distinct points ∂∞Γ(3) by

Aρ(p, q, r) = A(Bρ(p), Bρ(q), Bρ(r)).

As Bρ is a bijection between ∂∞Γ and Λρ, we deduce that:

A(Λρ) = sup
(p,q,r)∈∂∞Γ(3)

Aρ(p, q, r).

As moreover Bρ is Γ-equivariant, we have for all γ ∈ Γ and for all (p, q, r) ∈ ∂∞Γ(3),
the equality Aρ(p, q, r) = Aρ(γ ·p, γ · q, γ · r). The action of Γ on the set of triples of
distinct points (∂∞Γ)(3) is cocompact: the quotient X may be identified with the
unit tangent bundle to the surface [Bow98].

To sum up, the map Aρ descends to a continuous map defined on the compact
set Γ\∂∞Γ(3) and the supremun is attained.

As a corollary, if the limit set of a convex cocompact representation is hypercon-
vex then it is slim: the supremum is attained and cannot be π2 by hyperconvexity.
The following proposition gives a rich family of examples of slim circles that are not
R-circles. It is proven by Pozzetti-Sambarino-Wienhard [PSW21, Proposition 6.2].
They work with the notion of (1, 1, 2)-hyperconvex representations. But note, by
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the previous proposition, that the limit set Λ of a convex-cocompact representation
ρ of Γ is slim if and only if the representation is (1, 1, 2)-hyperconvex Anosov: if
x, y, z are in the limit set, then the projective complex line generated by x, y does
not contain the point z.

Proposition 3.27. [Pozzetti-Sambarino-Wienhardt] Let Γ be the fundamental group
of a compact hyperbolic surface and let ρ0 : Γ −→ PO(2, 1) ⊂ PU(2, 1) be a repre-
sentation of Γ. Then for any sufficiently small deformation ρ of ρ0, the limit set of
ρ(Γ) is a slim circle.

We nevertheless give a proof of this proposition as it is important for our work.
In fact, we prove the following proposition, which implies the previous one:

Proposition 3.28. If Γ is the fundamental group of a compact hyperbolic surface,
then the sup of the Cartan invariant A(Λρ) on the limit set Λρ of a convex co-
compact representation ρ varies continuously with ρ in the set of convex-cocompact
representations of Γ.

Proof. It is known that the limit set Λρ of ρ(Γ) varies continuously when ρ varies
inside convex-cocompact representations [Bou93, Lemma 5.5.4 and Remark 5.5.7].
We consider again the boundary map Bρ : ∂∞Γ ∼−→ Λρ which varies continuously
with ρ.

The map ρ 7→ Aρ is continuous, as ρ → Bρ is continuous. The max on the
compact set Γ\∂∞Γ(3) of the continuous function Aρ depends continuously on the
function. As the function varies continuously, the dependance in ρ of A(Λρ) =
maxΓ\∂∞Γ(3) Aρ is continuous.

This gives examples of slim circles having low regularity. We will come back on
these examples in Section 5.

3.5.5 Deformation of the Farey triangulation and (non)-slimness

We explore here another family (Λα), for −π/2 ≤ α ≤ π/2, of limit sets of surface
groups. In this geometrically finite setting, we can see that the supremum of Cartan
invariant of Λα is always π/2 except for α = 0 where it vanishes. This proves that,
in general, semicontinuity of E 7→ A(E) is the best we can hope. It also makes clear
that in the previous section, the cocompactness assumption was crucial.

Let us describe the explicit construction that appeared in the works on PU(2, 1)-
representations of the modular group PSL(2,Z) by Falbel-Koseleff [FK02], Gusevskii-
Parker [GP03] and Falbel-Parker [FP03] (see also [Wil16, Section 8] for a survey).

Let Γ be the group (Z2)∗3 = 〈ι1, ι2, ι3|ι2k = 1〉. We fix (Tα)α∈[−π/2,π/2] a contin-
uous family of ideal triangles such that A(Tα) = α. We denote by p1, p2, p3 ∈ S3 the
ideal vertices of Tα, and qk the projection of pk onto the geodesic (pk+1pk−1) (indices
are taken mod. 3). Consider the half-turns Rk about qk. The Rk’s are conjugate
to the transformation given by (z1, z2) 7−→ (−z1,−z2) in ball model coordinates.
Then one defines a representation ρα : Γ −→ PU(2, 1) by setting

ρA(ιk) = Rk, k = 1, 2, 3.

This gives rise to a continuous 1-parameter familly of representations of Γ in
PU(2, 1). The groups ρ0(Γ) and ρ±π/2(Γ) are respectively R and C-Fuchsian : they
are discrete, isomorphic to Γ and preserve totally geodesic copies of the Poincaré
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disc, that are real if α = 0 and complex if α = ±π/2. The orbits of the geodesics
connecting the pk’s generate the Farey tesselation in the R or C-Fuchsian case. The
striking result of the aforementionned works is

Theorem (Falbel-Koseleff, Gusevskii-Parker). For any value of α, the representa-
tion ρα is discrete and faithful. Morever, the type of elements remains the same all
along the deformation.

The limit set Λα of ρα(Γ) is a C-circle when α = ±π/2, an R-circle if α = 0 and
a circle when 0 < |α| < π/2. It is not slim unless α = 0:

Proposition 3.29. We have A(Λα) = π

2 unless α = 0, in which case A(Λα) = 0.

Proof. The group ρα(Γ) contains a primitive class of parabolic elements, unique
up to conjugation in Γ, which is the one of R1R2R3. It follows from the above
works that this parabolic element is screw-parabolic for any value α 6= 0, and 2-step
unipotent if α = 0. By Proposition 3.23, this proves that Λα is not slim unless
α = 0, in which case it is an R-circle, so 0-slim.

4 Deforming the foliation by arcs of C-circles
We now come back to the foliation described in Corollary 2.16. Recall that it
expresses that the complement of an R-circle R is foliated by arcs of C-circles with
endpoints on R. We study in this section how this picture deforms when R is
deformed among slim curves. One important tool to understand this is to realize
any slim circle as the boundary of a Möbius band in H1,1

C .

4.1 The foliation and the unit tangent bundle over H2
R

Before actually deforming slim circles, we explain another way to look at the folia-
tion described in Section 2.6, that will be more adapted to the study of deformations.
Along the way, we will come back to the natural isomorphism between the foliation
and the unit tangent bundle UTH2

R over H2
R. This last point will be useful for

studying limit sets of surface groups.

4.1.1 Reinterpretation of the foliation property.

Consider a subset E in the sphere S3. We first define a notation for its complement
and the subset of the sphere sweeped by arcs of C-circles with endpoints in E:

Definition 4.1. For any subset E in the sphere, we define the sets

ΩE = S3 \ E and ME = {(x, y, p) ∈
(
S3)3 such that x 6= y ∈ E, p ∈ xy y}.

Moreover, let FE : ME → S3 be the forgetful map (x, y, p) 7→ p.

When the context makes things clear, we may drop the notation of the depen-
dence in E, considering the sets Ω, M and the map F . Corollary 2.16 may be
rephrased as the following equivalent statement:

Corollary 4.2. If R is an R-circle, the map FR realizes an homeomorphismMR
∼−→

ΩR.
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The previous corollary splits in fact in three substatements, that we will study
for slim circles:

• The map FR takes values inside ΩR,

• it is actually surjective on ΩR,

• and it is injective.

The first point generalizes readily in the context of slim subsets:

Lemma 4.3. Let E be a slim subset of S3. Then the map FE : ME → S3 takes
values inside ΩE.

Proof. Let (x, y, p) be an element of ME . Then p is a point of the C-circle through
x and y, distinct from x and y. This C-circle meets E at x and y. As E is slim, it
cannot meet E also in p. So p belongs to the complement ΩE of E.

The goal of this whole Section 4 is to understand what happens with the last
two points when E is a slim circle more general that an R-circle. We will prove the
following theorem:

Theorem 4.4. Let E be a slim circle and consider the map FE : ME → ΩE. We
have:

• [Surjectivity] If there is a continuous family of slim circles (Et), for 0 ≤ t ≤
1, with E = E1 and E0 a R-circle, then FE is surjective.

• [Non-Injectivity] If E is invariant by a non real loxodromic transformation,
then FE is not injective.

We will prove the two parts of this theorem independently and with arguments
of very distinct flavour. The surjectivity property will be proven in Section 4.3,
see Proposition 4.13. The non-injectivity statement, instead, will be proven in
Section 4.5. This theorem raises in particular the following question: is FE always
surjective onto ΩE for any slim circle E?

Before going further, we continue to review the case of Corollary 2.16 and its
link with the unit tangent bundle UTH2

R. It will in particular help understand
better the set ME .

4.1.2 Back to the unit tangent bundle

The relevance of the set ME is made clearer when we see how closely it is related
to the unit tangent bundle UTH2

R over H2
R. Recall that the latter is homeomorphic

to the set of triples (x, y, z) of distinct points in ∂H2
R that are cyclically positively

oriented: a triple (x, y, z) is associated to the unit tangent vector to the geodesic
from x to y in H2

R with base point the orthogonal projection of z on this geodesic.
Let E be a slim circle. Using a parametrization ϕ : ∂H2

R
∼−→ E, we now define a

natural map UTH2
R →ME . A straightforward geometric lemma will prove useful:

Lemma 4.5. Let x, y and z be distinct points in S3. Then, there exists a unique
point p ∈ x y y such that the projections of p and z on the (real) geodesic xy
coincide.

This lemma is used in the following construction:
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Definition 4.6. Let E be a slim circle in S3 and ϕ : ∂H2
R → E an homeomorphism.

Then we define the map ΦE,ϕ : UTH2
R → ME by sending a point (x, y, z) to the

point (ϕ(x), ϕ(y), p) in ME where p ∈ x y y is the unique point whose projection
on the real geodesic ϕ(x), ϕ(y) coincides with the one of ϕ(z).

As before, we will often denote this map simply by Φ. This map is natural: if
ϕ is equivariant for a representation ρ of a group Γ ⊂ Isom(H2

R) to PU(2, 1), then
so is Φ.

In the case where R is an R-circle, R is the boundary of a real hyperbolic plane.
So one can parametrize it by a map ϕ : ∂H2

R → R which is Isom(H2
R)-equivariant.

Denote for simplicity M = MR, Ω = S3 \ R, F = FR the forgetful map and
Φ = ΦR,ϕ the map we just defined. The following proposition then expresses the
foliation described in Section 2.6 using this map Φ.

Proposition 4.7. Let R be an R-circle. Then, the map Φ : UTH2
R → MR is a

Isom(H2
R)-equivariant homeomorphism.

Moreover the composition FR ◦ Φ induces a Isom(H2
R)-equivariant homeomor-

phism UTH2
R ' ΩR. This homeomorphism sends orbits of the geodesic flow to arcs

ay b, a 6= b ∈ R.

Note that if now one consider an R-Fuchsian representation ρ of a surface group
Γ ⊂ Isom(H2

R), then the map F ◦ Φ descends into a CR-spherical uniformization
U(Γ\H2

R) ' ρ(Γ)\Ω.
With the foliation fully reinterpreted, we can move on and see how each of its

aspects vary when deforming the R-circle into a slim circle E. The first tool is the
construction of a surface RP(E) in CP2, homeomorphic to RP2 and that extends E
outside the sphere.

4.2 Extensions of slim circles
In this section we will usually identify a line L(x, y) between two points in S3 to its
polar point in CP2. Indeed, any point p outside the ball in RP2 is orthogonal to a
unique geodesic inside H2

R, whose endpoints (x, y) verify x� y = p. Moreover, any
point p in S3 equals L(p, p).

Consider the simplest example of a slim circle, i.e. an R-circle R. By definition,
it is the intersection of a copy of a real projective plane RP2 ⊂ CP2 with the sphere
S3. The part outside of the ball H2

C is the projective plane minus an open disc: it is
a Möbius band. Moreover, we have a natural parametrization of this closed Möbius
band by (R ×R)/(x, y) ∼ (y, x), given by the map (x, y)→ L(x, y) from R ×R to
CP2.

The goal of this section is to extend this construction to any slim circle E.
We will define an extension RP(E) to CP2 similar to the case of R-circles. Our
construction of the extension outside the ball H2

C is canonical, whereas inside we
make some arbitrary choices. We will mainly focus on what happens outside later
on, so this will not be a problem. Recall that a subset of the sphere is hyperconvex
if no three points are contained in a C-circle, see Definition 3.8.

Proposition 4.8. Let E be a horizontal and hyperconvex circle. Then the map L
from E ×E to CP2 defines an embedding of the Möbius band E ×E/(x, y) ∼ (y, x)
into H1,1

C whose intersection with the sphere S3 is E.
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Proof. As E is slim, it is horizontal. This means that L is continuous. Moreover,
for any x 6= y in E, we have L(x, y) = x � y, which is a point outside the closed
ball, whereas L(x, x) = x ∈ E. So L descends into a continuous immersion of
E × E/(x, y) ∼ (y, x) into CP2 \H2

C whose intersection with the sphere S3 is E.
As E ×E/(x, y) ∼ (y, x) is compact, the last point to prove is the injectivity of

our map. We have to check that L(x, y) = L(x′, y′) if and only if (x, y) = (x′, y′)
or (x, y) = (y′, x′). So let p = L(x, y) = L(x′, y′). First, if p ∈ E, then we have
p = x = y = x′ = y′ which proves what we want. Assume now that p 6∈ E. This
means x 6= y, x′ 6= y′ and p = x � y = x′ � y′. This translates into the fact that
x, y, x′ and y′ all lie in the C-circle p⊥ ∩ S3. As E is hyperconvex, it intersects at
most twice this C-circle. This means, as wanted, that the sets {x, y} and {x′, y′}
are equal.

We also want to extend E inside. We do not have a nice construction as above,
so will arbitrarily choose a good enough extension. From now on, we choose an
arbitrary origin o in H2

C. We denote by D(E) the union of all (real) geodesics from
o to a point x ∈ E. As two distinct geodesics from o cannot meet again in H2

C, the
set D(E) is a disk inside the ball H2

C, whose closure meet the sphere S3 exactly at
E.

Definition 4.9. For a slim circle E, we denote by RP(E) the union of D(E) and
L(E,E).

The Möbius band L(E,E) is invariant by any PU(2, 1)-transformation leaving
E invariant, by construction. Moreover we will see that it varies continuously with
E varying among slim circles. But the disc D(E) does not enjoy the first property.
This raises the question: Is it possible to construct a natural disc D(E) bounded by
E, i.e. such that it is invariant by any PU(2, 1)-transformation leaving E invariant
and it varies continuously with E?

From the previous discussion, we deduce that RP(E) is topologically a projective
plane RP2:

Proposition 4.10. For any slim circle E, the set RP(E) is homeomorphic to RP2.

Proof. The disc D(E) is a disc whose boundary is E. L(E,E) is a Möbius band
whose boundary is also E. Their union is thus homeomorphic to the gluing of a
disc and a Möbius band along their boundary: it is a real projective plane.

Now, we want to understand how these surfaces RP(E) deform when deforming
E inside the set of slim circles.

4.3 Deformations of slim subsets and surjectivity
We investigate in this section C0-deformations of horizontal sets. However, it is
easily seen that C0-deformations do not preserve horizontality. For example, fix a
loxodromic one-parameter subgroup A, and take a continuous family pt of points
in the sphere such that only p0 belongs the surface singled out by Proposition 3.7.
Then the familiy of sets (A · pt)t is C0-continuous and only A · p0 is horizontal.

But the additional quantitative information given by slimness guarantees that
deformations remain horizontal and the projective lines given by the line map L
vary continuously.
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Proposition 4.11. Let E ⊂ S3 be an horizontal subset and ε > 0. For t ∈ (−ε, ε),
let Et = ft(E) be a continuous deformation. We assume that there is 0 ≤ α <

π

2
such that all the sets Et are α-slim.

Then the sets Et are all horizontal and the map (t, p, q) 7→ L(ft(p), ft(q)) is
continuous on (−ε, ε)× E2.

Proof. The horizontality of Et is granted by the assumption that they are slim.
What we really want to control is the second point.

We argue by contradiction. Suppose there exists converging sequences pn →
p, qn → q in E and tn → t in (−ε, ε) such that the sequence of lines ln =
L(ftn(pn), ftn(qn)) does not converge to l = L(ft(p), ft(q)).

We first note that this cannot happen if p 6= q, by the assumption that Et is a
continuous deformation: we have ftn(pn) → ft(p) and ftn(qn) → ft(q). ft is still
an homeomorphism, so ft(p) 6= ft(q) and the lines ln converge to l by continuity of
L outside the diagonal.

Assume now p = q. Fix a sequence rn of points in E such that ftn(rn)→ r 6= p.
Suppose by contradiction that ln → l∞ 6= l = L(p, p). Then, by Lemma 3.6,
A(ftn(pn), ftn(qn), ftn(rn)) goes to ±π/2. It is impossible, as all the fs are α-slim.
This concludes the proof.

A corollary is that the surfaces RP(Et) vary continuously.

Corollary 4.12. Under the hypothesis of the previous proposition, the map t, p 7→
ft(p) can be extended into a homotopy t, p 7→ Ft(p) between RP(E) and RP(Es).

Proof. Fix t ∈ (−ε, ε) and let us define the map Ft : RP(E)→ RP(Et). Let p be a
point in RP(E). We shall consider three cases:

1. if p is in E, then we set Ft(p) = ft(p).

2. if p is in D(E), then it is on a geodesic ox for a unique x ∈ E, at distance
d ≥ 0 of o. We set Ft(p) to be the point at distance d of o in the geodesic
oft(x).

3. if p is outside the ball, there are two points x, y ∈ E such that p = L(x, y).
Note that the pair x, y is unique: they are the only 2 intersections between E
and the C-circle polar to p. We define Ft(p) to be the point L(ft(x), ft(y)).

From the previous section and proposition, we see that t, p → Ft(p) is continuous,
that F0 is the identity map and that for each t, Ft realizes a homeomorphism from
E to Et.

This corollary is the crucial point to prove that for slim deformations E of
an R-circle, the map FE is still surjective or, equivalently, they still are maximal
slim subset of S3. The following proposition rephrases the Surjectivity item of
Theorem 4.4:

Proposition 4.13. Fix 0 < α <
π

2 . For t ∈ [0, 1], let ϕt : S1 → S3 be a continuous
deformation such that, for each t, the set Et = ϕt(S1) is α-slim and moreover E0
is a R-circle.

Then, for all t, the map FEt : MEt → ΩEt is surjective. Equivalently, the set
Et is a maximal slim circle of S3: any slim set containing Et is Et itself.
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The proof uses the construction of the surfaces RP(Et). More precisely, we will
use that such surfaces intersect any (complex) line in CP2, as shown in the following
lemma.

Lemma 4.14. Under the assumption of the theorem, for any line l ⊂ CP2, and
any 0 ≤ t ≤ 1, the intersection between l and RP(Et) is non-empty.

Proof. Any complex line l meets the usual RP2 at any point inside l ∩ l̄. The
intersection is moreover transverse unless l is a real line.

Now, we work in the homology group H2(CP2, Z
2Z ), with its intersection form

denoted by i. The previous remark translates in this setting into the property
i([l], [RP2]) = 1 ∈ Z

2Z . Note that working with Z
2Z -coefficients avoids problems

related to the non-orientability of RP2.
The previous Corollary 4.12 proves that, for any t, the surface RP(Et) is a

continuous deformation of RP(E0). By assumption, E0 is an R-circle so that RP(E0)
is a copy of RP2. So we obtain [RP(Et)] = [RP2]. This in turn translates into the
intersection property i([l], [RP(Et)]) = 1.

We conclude that any line l intersects RPt. Moreover, if the intersection is
transverse, it is an odd number of points.

We can now conclude the proof of the theorem.

Proof. Fix t ∈ [0, 1], and p ∈ S3 \ Et. We want to prove that p belongs to an arc
xy y, with x 6= y ∈ Et. This implies that p belongs to the image of FEt .

Consider the line p⊥ in CP2. By the previous lemma, it intersects RP(Et). The
intersection of p⊥ with H2

C is empty, whereas its intersection with the sphere is
reduced to {p}. Note that, by assumption, p is not in Et = RP(Et) ∩ S3. So the
intersection point is not in the disc D(Et). This means by construction that p is a
point x� y for some x 6= y ∈ Et. This implies that one of the arcs xy y or y y x
contains p.

We have just proven that any point p 6∈ Et belongs to an arc. This proves the
surjectivity of FEt .

Remark 4.15. The proof of Proposition 4.13 is valid as soon as E0 verifies that
i([RP (E0)], [l]) = 1.

Before moving on and proving the last point of Theorem 4.4, we exhibit in the
next subsection a simple example where the foliation does indeed deform as a new
foliation.

4.4 A one-parameter deformation of the foliation by arcs of
C-circles

Let us come back to the example we have studied in Section 3.5.1. For any angle
0 < θ < 2π, we consider the subset of S3 defined in Heisenberg coordinates by

Eθ = {[x, 0], x ∈ R+} ∪
{

[yeiθ, 0], y ∈ R+
}
.

Note that when θ = π, the curve Eθ is the boundary of H2
R in S3.

Theorem 4.16. For any θ ∈ [π/2, 3π/2], the set of arcs of C-circles with endpoints
in Eθ defines a foliation of S3 \ Eθ.
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Proof. To prove Proposition 4.16, we need to

1. prove that any point p ∈ S3 outside Eθ belongs to some arc of C-circle hitting
Eθ twice;

2. prove that any two arcs of C-circle both hitting Eθ twice never meet unless
they share at least one endpoint in Eθ.

The first point follows directly from Proposition 4.13 and Proposition 3.19 : Eθ
is |π − θ|/2-slim, and it is obtained from an R-circle by a homotopy which is given
by the bending.

To prove the second point, we use a numerical criterion to determine when two
C-circles are disjoint. From Lemma 2.12, we know that, given four points a, b, c, d
in S3 such that a 6= b and c 6= d, the C-circles Cab and Ccd spanned by (a, b) and
(c, d) respectively are disjoint if and only if

〈(a� b)� (c� d), (a� b)� (c� d)〉 6= 0 (28)

So what we need to do is to take a, b, c, d as above in Eθ and prove the the left-
hand side of (28) doesn’t vanish when |θ−π| 6 π/2 unless one of a = c, a = d, b = c,
b = d happens. We denote by ∆1 = {[x, 0], x ∈ R+} and ∆2 =

{
[yeiθ, 0], y ∈ R+

}
the two half-lines whose union is Eθ.

Considering the possible relative positions of the two arcs of C-circles, we are
left with the following four cases.

1. The four endpoints all belong to
one of the ∆i’s,

2. Three of the endpoints lie in ∆1
and one in ∆2,

3. One of the two arcs has its end-
points in ∆1 and the other in ∆2,

4. Both arcs have one endpoint in ∆1
and one in ∆2.

The first case follows direcly from Corollary 2.16. We will not give details for
each of the other three cases, but let us consider the fourth one, which is the most
intricate. Assume that a and c are in ∆1 and that b and d are in ∆2. We may then
chose lifts as in (8) so that there exists four non-negative real numbers x, y, z, t,
such that (x 6= 0 or z 6= 0) and (y 6= 0 or t 6= 0), for which we have:

a =

−x2

x
1

 , b =

−y2

yeiθ

1

 , c =

−z2

z
1

 , d =

−t2teiθ

1

 , (29)

Plugging these values into the left-hand side of (28) and reorganising, the con-
dition becomes

0 6= (x− z)(t− y)
(
−α cos2 θ + β cos θ − γ

)
(30)

where

α = 16xyzt(x+ z)(y + t)
β = 4((xt+ yz)2 + (ty + xz)2 + 2(tx+ yz)(xy + tz))(ty + xz)

γ = 4
(
t2 + 2ty + z2)ty2z + (t2 + 2xz + z2)tx2z

+(x2 + 2ty + y2)t2xy + (x2 + y2 + 2xz)xyz2
)
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The conditions on x, y, z and t impose that α > 0, β > 0 and γ > 0. Since
cos θ 6 0 the right-hand side of (30) can only vanish if x = z or t = y, which is the
expected result in this case.

The remaining two cases are treated in the same way, only simpler since the
analogue of (30) has degree 1 in cos θ.

4.5 Obstruction to the foliation property and rigidity
We prove in this section the second part of Theorem 4.4, namely the non-injectivity.
It shows that the deformation of the previous subsection is very specific and we
can not hope to deform the foliation in general. First of all, we introduce a bit
of vocabulary for loxodromic transformations. Let γ ∈ PU(2, 1) be loxodromic.
Let λ = reiθ be its eigenvalue of greatest modulus, with θ ∈ (−π, π] and r > 1.
λ is well-defined only up to multiplication by e

2iπ
3 , so we normalize by choosing

−π/3 < θ ≤ π/3. Up to conjugation, we choose the representative of γ in SU(2, 1)
to be the diagonal matrix with diagonal entries (λ, λ̄/λ, 1/λ̄). The trace of this
matrix is real if and only if λ is real. Equivalently, the trace of γ3 is well-defined
for γ ∈ PU(2, 1) and it is real iff the trace of the choosen lift is real.

Definition 4.17. A loxodromic element γ is non-real if its trace is non-real.
Its rotation factor is the angle 3θ ∈ (−π, π] where θ is the normalized argument

of its eigenvalue of greatest modulus.

Note that 3θ = π corresponds to a real loxodromic element even if its rotation
factor is not 0. With this definition, we can state the following slightly more gen-
eral version of the non-injectivity property. Note in particular that the slimness
assumption is not fully needed and the hyperconvexity property is enough:

Theorem 4.18. Let E be a hyperconvex circle which is invariant under the action
of a non-real loxodromic map γ ∈ PU(2, 1) with fixed repulsive and attractive fixed
points p−, p+ ∈ E. Then there exists an infinite family of C-circles Cn such that

1. For all n, Cn meets E twice.

2. For all n, Cn meets the C-circle through p− and p+ outside {p−, p+}.

Let us make a series of reductions before actually proving the theorem. First,
note that E \ {p−, p+} has two connected components. So, up to passing to the
action of γ2, we may assume that γ preserves each of this component. Note that if
γ is non-real, γ2 has a rotation factor different from 0. Moreover, up to conjugation,
one can suppose that γ is diagonal with fixed points 0 and ∞ in Heisenberg model.
The action of γ then forces E to spiral around 0. This can be stated, in Heisenberg
coordinates:

Lemma 4.19. Let γ be a loxodromic map fixing 0 and ∞ with rotation factor
β = 3θ 6= 0. Let c : [0,+∞] be a path c(s) = [z(s), t(s)] that is an homeomorphism
on its image. Assume that this image that is γ-invariant and hyperconvex, and
moreover c(0) = 0 and c(+∞) =∞.

Then any continuous lift s 7→ ˜arg(z(s)) of the argument of z over 0 < s < +∞
is onto R and proper.

38



Proof. Since c is hyperconvex, the vertical projection s 7→ z(s) = 1
2Π∞(c(s)) is

injective, see Remark 3.17. As c(s) is never 0 for 0 < s < +∞, the quantity z(s)
never vanishes, and the lift of argument is well-defined once choosen the lift of the
argument of c(1).

Applying the loxodromic element in coordinates, we compute that γ · c(s) =
[re−3iθz(s), r2t(s)] = c(s′). The lift ˜arg(z(s′)) of the argument of z(s′) is of the
form ˜arg(z(s)) − 3θ + 2kπ for some k ∈ Z. Note that, by our assumption on the
rotation factor, we have −3θ + 2kπ 6= 0. So the image of ˜arg(z(s)) is invariant by
translation by −3θ + 2kπ 6= 0. It proves it is onto R and proper.

Proof of Theorem 4.18. Following the discussions above, we can assume that p− =
0, p+ = ∞ with their usual lifts, and γ preserves both connected components of
E \ {p−, p+}. The proof below shows the the Theorem is true under the weaker
assumption of horizontality.

Let a be close to p− and b to p+. Using the local parametrization given by
Lemma 3.5, we can write for lifts:

a = p− + xp− � p+ + o(x) and b = p+ + yp− � p+ + o(y)

These coordinates are directly linked to the Heisenberg coordinates: we have a =
[z(a), t(a)] and b = [z(b), t(b)] where:

z(a) = −x2 + o(x) and 2
z(b) = y + o(y).

In particular, Lemma 4.19 implies that the arguments mod. 2π of x and y oscillates
infinitely as a goes to p− and b to p+.

By Lemma 2.12, the fact that the C-circle through a, b intersects the one through
p−, p+ is equivalent to the equality (a�b)�(p−�p+) = 0. We can compute directly,
once noticed that p− � (p− � p+) = 1

2p
− and (p− � p+)� p+ = 1

2p
+. Indeed, we

have
a� b = p− � p+ + xp+ + yp−

2 + o(
√
|x|2 + |y|2).

Computing the box-product with p− � p+ leads to:

(a� b)� (p− � p+) = yp− − xp+

2 + +o(
√
|x|2 + |y|2).

One can now compute the square of the Hermitian norm of this last vector, getting:

〈(a� b)� (p− � p+), (a� b)� (p− � p+)〉 = −Re(xȳ) + o(x2 + y2)

Since the arguments of x and y oscillates, this last value has an infinite number
of change of signs as a goes to p− and b to p+. Hence, it vanishes infinitely many
times: this gives an infinite number of C-circles hitting the one through p−, p+.

This concludes the proof of Theorem 4.4. It is the main ingredient in the follow-
ing rigidity theorem. Let us recall that a representation ρ is a convex-cocompact
and slim deformation of a R-fuchsian representation ρ0 if there is a path of convex-
cocompact and slim representations linking ρ to ρ0.

Theorem 4.20. Let Σ be a closed hyperbolic surface. Denote by Γ the fundamental
group of Σ. Consider ρ0 : Γ→ PO(2, 1) ⊂ PU(2, 1) an R-fuchsian representation.

Then, for any convex-cocompact and slim deformation ρ of ρ0, we have:
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1. The limit set Λρ is a maximal slim circle.

2. The arcs x y y, for x 6= y ∈ Λρ, are pairwise disjoint if and only if ρ is
R-fuchsian.

Proof. The first item follows from Proposition 4.13: the map F is surjective on Ωρ,
which means that any point in Ωρ := S3 \ Λρ belongs to an arc with endpoints in
Λρ. In particular, any superset of Λρ has 3 points on a C-circle, so is not slim.

The second point is a corollary of Theorem 4.18. Indeed, from [Aco19a] the
fact that all loxodromic elements in the ρ(Γ) have real trace implies that ρ(Γ)
preserves a totally geodesic real plane and therefore ρ is R-fuchsian. So, let ρ
be a non-R-fuchsian deformation of ρ0. Then some element ρ(γ) is a non-real
loxodromic transformation. The limit set Λρ is invariant under this element. Then
Theorem 4.18 implies that some arcs x y y intersect. The other implication is
direct.

5 Crown-type spherical CR uniformisation of 3-
manifolds

We now look at the geometric meaning of slimness and the deformed foliation in
the equivariant case, i.e. assuming that the slim circle is the limit set of a convex-
cocompact group. We will see that it gives CR-spherical uniformizations on unit
tangent bundles and drilled unit tangent bundles.

So let Γ be a lattice in PO(2, 1) and denote by ρ0 the R-fuchsian representation
given by Γ ⊂ PO(2, 1) ⊂ PU(2, 1). Let Λ0 be the R-circles which is the limit set of
ρ0(Γ) and Ω0 its complement. We have seen in Section 3.5.4 that we have a natural
identification ρ0(Γ)\Ω0 ' UT(Γ\∂H2

R). This is a CR-uniformization of the unit
tangent bundle to the surface.

Now, let us deform ρ0 into a convex cocompact representation ρ. Denote by
Λρ the limit set of ρ(Γ) and by Ωρ its complement. In fact, ρ(Γ)\Ωρ is still home-
omorphic to UT(Γ\∂H2

R) (see Proposition 5.8). We want to use arcs of C-circles
to construct natural CR-uniformization on the unit tangent bundle drilled along a
geodesic. For that, we need to define supersets of the limit set, that we call crowns.

5.1 Crowns
Let γ ∈ PO(2, 1) be a loxodromic element. The axis of γ in H2

R is naturally oriented.
We call again axis of γ and denote by axis(γ) the oriented lift of the H2

R-axis of
γ to the unit tangent bundle UTH2

R. The goal of this section is to explore the
analogy between this notion of axis in UTH2

R and arcs of C-circles in S3. This
analogy has already been noticed in the discussion following Corollary 2.16, and in
Proposition 4.7.

For any loxodromic element δ ∈ PU(2, 1), we denote by αδ the arc of C-circle
a− y a+, where a+ and a− are the attractive and repulsive fixed points of δ. Note
that αδ is naturally oriented toward a+. We call αδ the axis at infinity of δ.

Definition 5.1. Let ∆ be a convex-cocompact subgroup of PU(2, 1) whose limit
set Λ∆ is a topological circle, and δ ∈ ∆ be a loxodromic element. We call the
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crown associated to δ the subset of S3 defined as

Crown∆,δ = Λ∆ ∪
(⋃
g∈∆

g · αδ
)
. (31)

We denote by Ω∆,δ ⊂ Ω∆ the complement of Crown∆,δ in S3.

Note that by construction Crown∆,δ is closed and ∆-invariant, and Ω∆,δ is
open and ∆-invariant. These two objects only depend on the ∆-conjugacy class of
δ. Moreover, the action of ∆ on Ω∆,δ is properly discontinuous. Eventually, the
stabilizer in ∆ of αδ is the cyclic group generated by δ, so that the union may be
rewritten: ⋃

g∈∆

g · αδ =
⋃

[g]∈∆/<δ>

[g] · αδ.

Definition 5.2. We say that Crown∆,δ is embedded whenever the arcs of C-circles
g · αδ are pairwise disjoint.

For a cocompact R-fuchsian group Γ ⊂ PO(2, 1) ⊂ PU(2, 1), the situation is
clear:

Proposition 5.3. Let Γ ⊂ PO(2, 1) ⊂ PU(2, 1) be a cocompact R-Fuchsian group
with limit set Λ = ∂H2

R ⊂ S3. Denote by Σ the surface Γ\H2
R. Then, for any

loxodromic element γ ∈ Γ, we have

1. CrownΓ,γ is embedded.

2. The quotient Γ\ΩΓ,γ is homeomorphic to the 3-manifold obtained by drilling
out from the unit tangent bundle UTΣ the orbit of the geodesic flow corre-
sponding to α.

Proof. The first item follows directly from Corollary 2.16. The second item follows
from Proposition 4.7. Using the notation therein, the map FΛ ◦ Φ restricts as a
Γ-equivariant homeomorphism from the complement in UTH2

R of the union of all
axes of elements conjugate to γ in Γ to ΩΓ,γ . The result is obtained by taking
quotient.

Let Σ be a closed hyperbolic surface and λ be a closed oriented geodesic of Σ.
We say that λ is filling whenever the complement of λ in Σ is a union of topological
discs. We denote by UTΣ(λ) the unit tangent bundle drilled out along the natural
lift of the oriented geodesic λ. A direct corollary of Proposition 5.3 reads:

Corollary 5.4. For any hyperbolic surface Σ and any closed oriented geodesic λ,
the 3-manifold UTΣ(λ) admits a CR-spherical uniformisation with a real fuchsian
holonomy.

Proof. Let Γ ⊂ PO(2, 1) ⊂ PU(2, 1) be the fundamental group of Σ and γ ∈ Γ
be a primitive element whose oriented axis is λ. Then, Proposition 5.3 states that
UTΣ(λ) is homeomorphic to Γ\ΩΓ,γ .

Note that one can construct a lot of cusped hyperbolic 3-manifolds in that way:
Theorem 1.12 in [FH13] states that UTΣ(λ) is hyperbolic as soon as λ is filling (see
also Calegari’s blog [Cal12]).
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Figure 9: Two views of an approximation of the crown CΓ,γ , where Γ is the R-
Fuchsian (3, 3, 4)-triangle group, and γ is the word ι3ι2ι1ι2 (see Example 5.5). Here
the blue curve is the R-circle which is the limit set of the group Γ. The red curves
form the orbit of the axis at infinity of γ.

Example 5.5. Let 2 ≤ p ≤ q ≤ r be three integers, with 1
p + 1

q + 1
r < 1. Consider

the group
Γ = 〈ι1, ι2, ι3|ι2k = (ι1ι2)p = (ι2ι3)q = (ι3ι1)r = 1〉.

It is the (p, q, r)-triangle group, which is hyperbolic. It can be seen uniquely - up
to conjugacy - as a subgroup of PO(2, 1) ⊂ PU(2, 1). Each of the ιk’s is a complex
reflection of order two that fixes pointwise a complex line of H2

C which intersects
H2

R along a geodesic γk. Let Γ2 be the even subgroup of Γ, and let γ be the geodesic
in H2

R which is the axis of a (hyperbolic) element w ∈ Γ2. By Proposition 5.3, the
quotient of S3 \ CrownΓ2,γ is homeomorphic to the complement of the axis of γ in
the unit tangent bundle of the orbisurface Γ2\H2

R.
In the special case where (p, q, r) = (3, 3, 4) and w is the word ι3ι2ι1ι2, then

the resulting 3-manifold is the figure eight knot complement. This fact is proved in
[Deh].

5.2 Deformations
We now prove that, after a small deformation of ρ0, the crown deforms and gives
new CR-spherical uniformization of the drilled unit tangent bundle, with non real
holonomy. By the analysis of the previous Section 4, the arcs of C-circles in the
crown could intersect. We prove that it is not the case, at least locally.

Theorem 5.6. Let Σ be a hyperbolic surface and λ be an oriented closed geodesic.
Denote by Γ the fundamental group of Σ and by γ a primitive element whose axis
lifts λ. Consider ρ0 : Γ→ PO(2, 1) ⊂ PU(2, 1) an R-fuchsian representation.

Then there exits a neighborhood U of ρ0 (of convex-cocompact and slim defor-
mations ρ of ρ0) such that for any ρ in U , we have:

1. Crownρ(Γ),ρ(γ) is embedded and homotopic in S3 to Crownρ0(Γ),ρ0(γ).
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2. The quotient ρ(Γ)\Ωρ(Γ),ρ(γ) is homeomorphic to UTΣ(λ).

In order to prove this theorem, we need two different arguments: first that the
crowns Crownρ(Γ),ρ(γ) remain embedded along a small deformation of ρ0 and second
that the whole quotient ρ(Γ)\Ωρ is always homeomorphic to the unit tangent bundle
UTΣ.

For the first argument, we prove in the following lemma that we have indeed
only a finite number of arcs to watch to insure that no intersection happen.

Lemma 5.7. Let ρ : Γ → PU(2, 1) be a convex cocompact representation with a
slim limit set Λρ. Fix a compact subset K of Ωρ.

Then, for all γ ∈ Γ with γ loxodromic, the following set is finite:{
[δ] ∈ Γ/ < γ > such that ρ(δ) · αρ(γ) ∩K 6= ∅

}
.

For the proof of this lemma, we use the polarity, that identifies any C-circle with
a point in H1,1

C . Recall from Section 4.2 that the Möbius band L(Λρ,Λρ) in RP(Λρ)
is exactly the set of points in H1,1

C polar to C-circles that hit Λρ twice.

Proof. Let H ⊂ H1,1
C be the set of polar to C-circles meeting K:

H :=
{
p ∈ H1,1

C |(∂Lp) ∩K 6= ∅
}
.

The intersection of the closure of H with S3 is exactly K: indeed, it consists of
points p in S3 whose polar line p⊥ meets K. But the only point in S3 ∩ p⊥ is p
itself, so p ∈ K.

The chosen compact K avoids Λρ: Λρ ∩K = ∅. Moreover, Λρ is the intersection
of S3 ∩ RP(Λρ) (see Section 4.2). We deduce that the intersection beween H and
the Möbius band L(Λρ,Λρ) is compact.

Now, the orbit of the geodesic axis(γ) in H2
R is discrete in the space of geodesic

of H2
R. Equivalently, using polarity in the real case, the orbit O0 of polars to these

geodesic axis in RP2 is discrete in the Möbius band H1,1
R = ∂∞Γ2/(x, y) ∼ (y, x).

Denote by pγ the polar point to the axis at infinity αρ(γ) of ρ(γ). By construction,
we have pγ = ρ(γ)− � ρ(γ)+. For any δ ∈ Γ, the polar to ρ(δ) · αρ(γ) is the point
ρ(δ)·pγ = (ρ(δ)·ρ(γ)−)�(ρ(δ)·ρ(γ)+). One can express this in other, more adapted,
terms. Recall from Section 3.5.4 that we have a boundary map Bρ : ∂∞H2

R → Λρ.
This boundary map induces an embedding (x, y) → L(Bρ(x), Bρ(y)) of H1,1

R into
H1,1

C whose image is the Möbius band L(Λρ,Λρ), see Proposition 4.8.
The above expression of ρ(δ) · pγ means that the orbit Oρ of pγ in RP(Λρ) is

exactly the image ofO0 by this embedding. It implies that this orbitOρ is discrete in
the Möbius band L(Λρ,Λρ). As H ∩L(Λρ,Λρ) is compact, the intersection between
the orbit Oρ and H is a finite number of points.

By polarity, we have proven that the set of axis at infinity in the orbit of αρ(γ)
that intersect K is finite.

The second argument is classical in the world of geometric structure and follows
from Ehresmann-Thurston principle. The next proposition is a consequence of a
theorem by Guichard and Wienhard [GW12, Thm 9.12]. The language in which
[GW12] states and proves this theorem is quite different from ours, so we provide a
short proof.
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Proposition 5.8. Let ρ be a convex cocompact deformation of ρ0. Then ρ(Γ)\Ωρ
is homeomorphic to UTΣ.

Proof. For any convex-cocompact representation ρ, let Xρ denote the compact quo-
tient ρ(Γ)\Ωρ. Note that Λρ is a circle in the sphere, so the quotient Xρ is con-
nected. We prove, following Guichard-Wienhard, that the diffeomorphism class of
Xρ is constant under small deformation.

Indeed, we know already that such ρ is the holonomy representation of a spher-
ical CR uniformisation of Xρ. Let X̂ be the Γ-covering of Xρ and fix a compact
fundamental domain D ⊂ X̂. The developing map sρ : X̂ → Ωρ ⊂ S3 sends D
far away from the compact Λρ. By the Ehresmann-Thurston principle [Gol88], any
small (convex-cocompact) deformation ρ′ is also a holonomy representation of a
spherical CR structure on Xρ. The developing map sρ′ is close to sρ. As Λρ′ varies
continuously (Proposition 3.28), sρ′(D) avoids Λρ′ for small enough deformations.
Hence, sρ′ is a local diffeomorphism from X̂ to Ωρ′ . By Γ-equivariance, it descends
to a local diffeomorphism ϕρ′ from Xρ to Xρ′ = Ωρ′/ρ′(Γ). Both Xρ and Xρ′ are
compact and connected, so ϕρ′ is a covering. As ϕρ′ deforms to ϕρ = IdXρ when ρ′
deforms to ρ, ϕρ′ is an actual diffeomorphism isotopic to the identiy.

By connexity arguments, for any ρ in the whole connected component of ρ0
in the space of convex cocompact representations, we have that Xρ = ρ(Γ)\Ωρ is
diffeomorphic to UTΣ = Xρ0 .

With these two preliminary results at hand, we may proceed with the proof of
Theorem 5.6.

Proof of Theorem 5.6. In order to prove the first point, we have to prove that the
arcs of C-circles ρ(δ) · αρ(γ) are pairwise disjoint for ρ close to ρ0.

We can choose a compact K ⊂ S3 such that for all small enough deformations ρ
of ρ0, K avoids Λρ and contains a fundamental domain for ρ(Γ) acting on Ωρ. So,
if some intersection happens between two arcs ρ(δ) ·αρ(γ) and ρ(δ′) ·αρ(γ), one such
intersection also happens inside K. So we just have to control the behavior of arcs
that meet K.

If the deformations are small enough, Λρ is always slim (Proposition 3.27). It
implies that the set of arcs ρ(δ) · αρ(γ) intersecting K is finite, by the previous
Lemma 5.7. Moreover this set is locally constant. So there is an open neighborhood
U of ρ0, for which the following set is finite:{

δ ∈ Γ,∃ρ ∈ U, ρ(δ) · αρ(γ) intersectsK
}
.

So we have to control a finite set of arcs of C-circles. At ρ0, from Proposition 5.3,
we know that these finite number of arcs do not meet. As they vary continuously
with ρ, it remains true in a small neighborhood.

The second point follows: in the quotient ρ(Γ)\Ωρ(Γ) ' UTΣ, the projection
of the set of arcs δ · αγ is a curve, which varies continuously with ρ from the first
point. For the R-fuchsian representation ρ0, the axis at infinity αγ identifies with the
geodesic axis(γ) = λ in UTΣ, so its projection remains homotopic to λ throughout
the deformation. As a consequence, the quotient ρ(Γ)\Ωρ(Γ),ρ(γ) is homeomorphic
to UTΣ(λ).
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