
HAL Id: hal-03673079
https://hal.science/hal-03673079v1

Preprint submitted on 19 May 2022 (v1), last revised 19 Sep 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Linear Algebraic Framework for Quantum Internet
Dynamic Scheduling

Paolo Fittipaldi, Anastasios Giovanidis, Frédéric Grosshans

To cite this version:
Paolo Fittipaldi, Anastasios Giovanidis, Frédéric Grosshans. A Linear Algebraic Framework for Quan-
tum Internet Dynamic Scheduling. 2022. �hal-03673079v1�

https://hal.science/hal-03673079v1
https://hal.archives-ouvertes.fr

A Linear Algebraic Framework
for Quantum Internet Dynamic Scheduling

Paolo Fittipaldi∗ Anastasios Giovanidis† Frédéric Grosshans‡
Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

∗paolo.fittipaldi@lip6.fr †anastasios.giovanidis@lip6.fr ‡frederic.grosshans@lip6.fr

Abstract—Future quantum internet aims to enable quantum
communication between arbitrary pairs of distant nodes through
the sharing of end-to-end entanglement, a universal resource for
many quantum applications. As in classical networks, quantum
networks also have to resolve problems related to routing and
satisfaction of service at a sufficient rate. We deal here with
the problem of scheduling when multiple commodities must be
served through a quantum network based on first generation
quantum repeaters, or quantum switches. To this end, we introduce
a novel discrete-time algebraic model for arbitrary network
topology, including transmission and memory losses, and adapted
to dynamic scheduling decisions.

Our algebraic model allows the scheduler to use the storage
of temporary intermediate links to optimize the performance,
depending on the information availability, ranging from full global
information for a centralized scheduler to partial local information
for a distributed one. As an illustrative example, we compare a
simple greedy scheduling policy with several Max-Weight inspired
scheduling policies and illustrate the resulting achievable rate
regions for two competing pairs of clients through a network.

I. INTRODUCTION

Designing the Quantum Internet raises many challenges to
network scientists and quantum physicists alike. Among them,
the one of designing a scheduling policy is particularly familiar
to the former: whenever multiple users wish to communicate
through a network, a scheduling policy regulates fair and
efficient usage of the available resources. In the context of
networks based on first generation quantum repeaters [1] or
quantum switches [2], [3], users are linked through quantum
entanglement swapping: letting 𝐴𝐵 and 𝐵𝐶 be two links that
share one entangled pair each, entanglement swapping allows
to teleport their entanglement to the link 𝐴𝐶 through a local
measurement at node 𝐵. This consumes the 𝐴𝐵 and 𝐵𝐶 pairs
and yields one 𝐴𝐶 pair. Entangled pairs of qubits, or ebits, are
a universal resource for quantum communication [4]: together
with classical communications, they allow to implement a wide
array of quantum protocols [5].

The task of a quantum network is therefore to distribute
entanglement to multiple user pairs through a graph of
interconnected quantum repeaters. Since the routes of service
might not be disjoint, distribution along routes that share a
subpath creates conflict that must be carefully mediated by the
scheduler. In practice, a quantum scheduler must determine
which swapping operations to perform at a given time in order
to create a balance between serving user requests and keeping
a budget to improve future performance. Notice how the
scheduling challenge naturally descends from the introduction

of memories: without them, large scale networks only have
the option to either swap pairs as soon as they are distributed
or waste them. This work actively exploits the memory in the
scheduling process, which yields the possibility for the network
control system to store some pairs to swap at a following time,
leveraging this additional degree of freedom through carefully
taken scheduling decisions in a similar way to what [6] shows
for routing.

Throughout this work, the routing in the network is assumed
to be fixed and known, i.e. every user pair comes with a set of
routes along which the network will distribute entanglement
to serve requests.

We propose a linear algebraic discrete time model for
quantum scheduling including all the previously mentioned
factors which is suitable for any network topology including
heterogeneous ones, and is dynamically controlled, i.e. the
scheduling decisions are taken in real time given some degree
of information on the current network state. The algebraic
model is presented and formalized, and then applied to different
scheduling policies: a greedy one where each node swaps
randomly as soon as there is pair availability, a Max Weight
[7] inspired one that has full information about the state of
the network at any time and can therefore provide a best case
scenario, and an intermediate one where each node solves
its own individual Max Weight problem, using only local
information. The achievable rate regions of these policies are
shown and compared. The provided comparison ranges also in
terms of localization: a global scheduler is implemented as a
central block outside the network that receives information
about the system’s state and broadcasts back a decision,
while a localized one is implemented by giving the nodes
themselves the authority to decide. As will be analyzed in the
dedicated section, varying the degree of localization of the
scheduler changes the amount of time required for classical
communication, indirectly affecting the achievable performance
of the scheduler.

The rest of this work has the following organization: Section
II reviews the scientific context around this work, Section III
describes in detail the system we are modeling and Section IV
shows application of the algebraic model to real scheduling
policies. Section V shows the numerical results we obtained
through our model, and Section VI concludes the paper.

mailto:paolo.fittipaldi@lip6.fr
mailto:anastasios.giovanidis@lip6.fr
mailto:frederic.grosshans@lip6.fr

II. CONTEXT AND RELEVANCE OF THIS WORK

A large amount of work in the quantum internet field consists
in adapting classical network theory concepts through novel
ideas that bridge the gap. An introduction to the subject and
definition of the quantum network stack can be found in [8].
Delving deeper, one may see this work as an extension of [9],
which treats the problem of routing without scheduling: this
work deals with scheduling and adds a treatment of memory
and loss. In [2], [3], a full stochastic analysis of a single
quantum switch is provided and some scheduling policies
are implemented on it: we state a similar problem but on
an arbitrary network topology, deriving results that should
prove relevant on several network scales. Finally, an optimal
theoretical bound for entanglement distribution across a network
with a single commodity is derived in [10] and expanded
upon in [11]. Our work extends the treatment to multiple
commodities on any arbitrary topology accounting for degrees
of freedom such as memory (or lack thereof), ebit generation
statistics, technology imperfections (such as memory and fiber
losses) and scheduling policy.

An important contribution of this work is the novel appli-
cation of an idea similar to [6], [11], in a non-trivial way to
general topologies and multiple commodities: the introduction
of memory at the nodes allows them to decide between
employing an entangled pair for swapping or keeping it for
future use. The deeper implication of this point is that the
network is free to create intermediate links and store them: this
leads to distributing pairs across a service route in a “growing”
fashion, that both increases performance and removes the need
for end-to-end link state information.

III. SYSTEM DESCRIPTION

Given an arbitrary connected graph G = (V, E), the
physical system that will be modeled is a network of quantum
switches. These are devices that can hold qubits and perform
entanglement swapping across multiple pairs of clients, akin to
a quantum repeater with multiple possible linking paths. The
switches are deployed at the locations specified by the vertices
of G and interconnected by lossy fiber links running along
each edge (𝑖, 𝑗) ∈ E. Every switch has a number of memory
slots, assumed to be infinite in this work, in which qubits may
be stored. Ebits (pairs of entangled qubits) are generated by
each fiber link with a given constant average rate, which may
be different for each link, and stored inside memories at the
end nodes of the respective link. Among the network nodes,
there are 𝑛 fixed pairs {(Alice1,Bob1), . . . , (Alice𝑛,Bob𝑛)} that
request ebits in a random way to realize a generic application.
The (Alice𝑛,Bob𝑛) pairs are connected by fixed known routes
that are not necessarily disjoint and therefore can create
congestion across some of the network links, that needs to be
managed by a scheduler.

The task of the network is to distribute ebits according
to user demand through entanglement swapping, while being
hindered by loss: other than the losses across the fiber links, an
additional form of loss is tied to memory imperfections, which

cause stored qubits to effectively disappear and entanglement
to be lost.

Memory and fiber losses are the only two sources of
imperfection that are accounted for in this paper: swaps in the
switches are assumed to always succeed and memory slots at
each switch are infinite, but neither of these assumptions is too
limiting and they could easily be included in future works. On
the other hand, we also neglect all noise inducing imperfection,
which would need a more complex framework to be included.

For practical reasons, our model assumes a discrete time:
swapping operations are supposed to occur at fixed time
intervals, thus it is natural to take a discrete time step Δ𝑡

as the time unit of interest. Between two subsequent clock
ticks, the system is free to evolve, and at the end of each time
step a scheduling decision is taken. This places a lower bound
on Δ𝑡: no decision can happen before all information has been
successfully communicated to all deciding agents, therefore
Δ𝑡 must be at least as large as the classical communication
delay introduced by state-related information exchange. This in
turn introduces a tradeoff: large Δ𝑡 means that information can
travel farther before the scheduling decision is taken (allowing
for larger networks or scheduling policies that require several
physically spaced nodes to communicate), but it increases
losses, as detailed below, and it introduces the issue of stale
information: during the time it takes for state information to
reach its recipient, the system continues its stochastic evolution,
making the communicated state information less relevant by
the time it reaches the place where the scheduling decision is
taken.

To model ebits stored at memory nodes, the concept of an
ebit queue is introduced: each pair of nodes 𝑒 = (𝑖, 𝑗) inside
the extended edge set Ẽ = V ×V is said to possess an ebit
queue 𝑄𝑖 𝑗 (𝑡). Furthermore, among ebit queues, every 𝑄𝑖 𝑗 (𝑡)
associated to an edge (𝑖, 𝑗) ∈ E equipped with fiber is called
a physical queue, while all other ebit queues are called virtual
queues. Ebit queues are an abstraction for memory slots on
pairs of nodes: generation, loss and swapping may be modeled
as addition, subtraction and exchange along the relevant queues.

At each time step, every fiber link — and as a result
every physical queue — generates a number of ebits 𝐴𝑖 𝑗 (𝑡).
This can model different ebit generation processes: either the
physical link (𝑖, 𝑗) corresponds to a twin photon source which
propagates to the switches 𝑖 or 𝑗 , or alternatively it corresponds
to two photons — each one entangled with one of the switches
— that meet in the middle of the link where they are subjected
to a (possibly probabilistic) Bell state measurement (BSM).
It can also model more elaborate entanglement distillation
protocols or error correction based protocols based on logical
qubits. Since most of these processes are probabilistic in nature
𝐴𝑖 𝑗 (𝑡) will here be assumed to be a random process, which we
assume to be Poissonian of mean value 𝛼𝑖 𝑗 , constant in time.
This allows to model the link imperfections — finite brightness
of the source, propagation losses, finite success probability of
photonic BSMs, etc. — as a Poisson filtration process, which
simply decreases the value of 𝛼𝑖 𝑗 . Of course, more elaborate
models for 𝐴𝑖 𝑗 (𝑡) are possible, e.g. to model an almost perfect

Fig. 1. Example of simulation of two time steps over the whole topology.
Continuous lines represent physical queues and dashed lines virtual ones. All
other symbols have the same meaning as 2. Upper figures (a) at the beginning
of the time step, lower figures (b) at the end of the time step

pulsed periodic twin-photon source.
The modelization of memory loss is slightly more complex:

a qubit stored inside a quantum memory has a probability 𝜂

to survive for a time Δ𝑡 that is exponentially decreasing as
𝜂 = exp

(
−Δ𝑡

𝜏

)
, where 𝜏 is the expected lifetime of a qubit in the

memory, a technological parameter expected to vary between
nanoseconds and milliseconds in near term implementations
[12]. By setting Δ𝑡 to the duration of a time step, we obtain
the probability 𝜂 for a stored ebit to survive for one time step.
The number of timesteps an ebit survives in memory is then
given by the geometric distribution defined by 𝜂. It is easy to
show its mean value 1

1−𝜂 tends to the expected 𝜏
Δ𝑡

for small
Δ𝑡
𝜏

, 𝜏 being the actual lifetime of the memories. The remaining
difference is an effect of the dicretization. Looking now at all
the ebits in queue 𝑄𝑖 𝑗 (𝑡) collectively from one timestep to
the next, their losses are modeled by a binomially distributed
random variable 𝐿𝑖 𝑗 (𝑡), with as many trials as there are ebits
stored in queue (𝑖, 𝑗) and probability to lose one pair 1 − 𝜂.
Accounting for losses in such a time-dependent way makes
the presented framework valid also as a tool to determine
the optimal frequency at which scheduling decision should be
taken, given the technological parameters.

For what concerns scheduling decisions, let 𝑅𝑖 [𝑗]𝑘 (𝑡) indicate
the number of swapping operations that happen at a given time
step, at node 𝑗 , from queues (𝑖, 𝑗) and (𝑗 , 𝑘) to queue (𝑖, 𝑘).
Every node will be associated to as many 𝑅 variables as there
are swapping operations that can be performed at the node in
the given routing, and the scheduler’s task will be to set such
variables to control the network’s behavior. To clarify, suppose
to have the service route 𝐴𝐵𝐶𝐷 across the users 𝐴 and 𝐷,
as shown in Fig. 1. Assume the average arrival rates to be
𝛼𝐴𝐵, 𝛼𝐵𝐶 and 𝛼𝐶𝐷 = 1 (time steps)−1. Lastly, assume that all
the memories in the system have 𝜂 = 0.9 storage-and-retrieval
efficiency. Fig. 2 shows the same test run but focusing on
queue 𝐴𝐵, to highlight the timing of the simulation.
• During time step 1:
1) At the beginning of the time step, the queue states are:

𝑄𝐴𝐵 (0) = 𝑄𝐶𝐷 (0) = 1, 𝑄𝐵𝐶 (0) = 0
2) At the end of the time step, some fresh ebits have been

generated (𝐴𝐴𝐵 (0) = 2, 𝐴𝐵𝐶 (0) = 1) and one has been
lost (𝐿𝐶𝐷 (0) = 1). The scheduling decision is taken
from this configuration and it amounts to 𝑅𝐴[𝐵]𝐶 = 1:

Fig. 2. Example of two time steps from the point of view of queue 𝐴𝐵. Grey
circles represent ebits that were in the queue at the beginning of a time step,
red ones ebits that arrived during that time step. Blue crosses represent loss
of an ebit. Queue snapshots are taken at the very beginning of a time step,
while arrivals and losses happen during but are only assessed at the end of
the step as soon as the scheduling decision is taken. Ebits arriving during the
current time step are not subject to losses in this model.

one swap will be performed at node 𝐵 from queues 𝐴𝐵

and 𝐵𝐶 to 𝐴𝐶.
• During time step 2:
1) The initial configuration features the two stored pairs

in 𝐴𝐵 which were not employed in the last time step
(𝑄𝐴𝐵 (1) = 2) and the freshly swapped one in 𝐴𝐶

(𝑄𝐴𝐶 (1) = 1).
2) Throughout the time step, one pair was lost across

𝐴𝐵 (𝐿𝐴𝐵 (1) = 1) and one generated across 𝐶𝐷. The
scheduler may now decide 𝑅𝐴[𝐶]𝐷 (1) = 1 to move to
𝐴𝐷 or store the pairs for future use.

In term of ebits, a given transition 𝑖[𝑗]𝑘 is incoming for queue
(𝑖, 𝑘) and outgoing for queues (𝑖, 𝑗) and (𝑗 , 𝑘). A queue’s
evolution can therefore be summarized as follows, i.t. being a
shorthand for incoming transitions, o.t. for outgoing transitions:

𝑄𝑖 𝑗 (𝑡 + 1) = 𝑄𝑖 𝑗 (𝑡) + 𝐴𝑖 𝑗 (𝑡) − 𝐿𝑖 𝑗 (𝑡)
−
∑︁
𝑜∈o.t.

𝑅𝑜 (𝑡) +
∑︁
𝑘∈i.t.

𝑅𝑘 (𝑡). (1)

It should be noted that, while all terms of (1) are calculated for
every queue, 𝐴𝑖 𝑗 (𝑡) across a virtual queue will always be zero,
because virtual queues do not generate ebits. Additionally,
it is rare for a physical pair to have incoming transitions,
but not impossible: it may happen in a topology such as
a triangle. Finally, it should be stressed that the loss term
𝐿𝑖 𝑗 (𝑡) is calculated in the same way for all queues, because
ebit storage is always handled by memories at the network
nodes: the physical/virtual queue is a mere modeling artifact
to keep track of which memories store the two parts of a given
ebit. A description of the whole system requires |Ẽ | equations
like (1). To keep things compact, it is useful to define some
vector terms. The first ones are 𝑄(𝑡), 𝐴(𝑡) and 𝐿 (𝑡), which
are mere collections of their 𝑁queues scalar values (the ordering
is irrelevant as long as it is consistent). Furthermore, since the
effect of swapping on the queues is linear, it is possible to
describe it by introducing the vector 𝑅(𝑡), which has 𝑁transitions
elements — as many as there are allowed transitions — and
a matrix M with 𝑁queues rows and 𝑁transitions columns. The
𝑅(𝑡) vector stores all the 𝑅𝑖 [𝑗]𝑘 (𝑡) terms, and embodies the
scheduling decision, while the M matrix introduces an efficient
encoding of the network topology and the service routes: For
each of its columns, associated to transition 𝑖[𝑗]𝑘 , the M

TABLE I
M MATRIX FOR THE LINEAR 𝐴𝐵𝐶𝐷 NETWORK

𝐴[𝐵]𝐶 𝐵 [𝐶]𝐷 𝐴[𝐵]𝐷 𝐴[𝐶]𝐷
𝐴𝐵 −1 0 −1 0
𝐵𝐶 −1 −1 0 0
𝐶𝐷 0 −1 0 −1
𝐴𝐶 +1 0 0 −1
𝐵𝐷 0 +1 −1 0
𝐴𝐷 0 0 +1 +1

matrix has −1 on the rows associated to queues (𝑖, 𝑗) and
(𝑗 , 𝑘), and +1 on the row associated to queue (𝑖, 𝑘). All other
terms are zero. System-wide queue evolution can be restated
as the following simple linear equation:

𝑄(𝑡 + 1) = 𝑄(𝑡) − 𝐿 (𝑡) + 𝐴(𝑡) + M𝑅(𝑡). (2)

Notice that (2) entails an implicit assumption that the 𝑅(𝑡)
be not only a scheduling decision, but a feasible scheduling
decision, i.e. one that does not cause the queues to turn negative.
The meaning of this assumption will be clear when discussing
partially informed scheduling policies. An example of the M
matrix is given in table I.

The sum of each column of M is −1: this work only employs
binary swaps, and each binary swap consumes two ebits and
produces one, balancing to an overall −1 on the total ebit count.
Due to its construction, the M matrix gives an efficient and
concise description of the network topology and how the clients
are connected to each other: it is therefore topology and service
dependent, and provides all information about both. Given a set
of service routes, the M matrix can be automatically generated
with the code provided in the application section.

The final piece of the puzzle for ebit queues is consumption:
whenever there is availability of entangled pairs across one of
the final (Alice𝑛,Bob𝑛) pairs, the scheduler must be able to use
the available pairs to serve requests. This is implemented in the
model by extending the matrix M to a new M̃ =

[
M
��−𝕀𝑁queues

]
,

and the 𝑅 vector to have 𝑁transitions +𝑁queues components. What
this extension achieves is to have a set of transitions that
only remove one pair from a given queue, modeling actual
consumption of the distributed pair by the users. Putting it all
together, the vector of ebit queues evolves as:

𝑄(𝑡 + 1) = 𝑄(𝑡) − 𝐿 (𝑡) + 𝐴(𝑡) + M̃𝑅(𝑡). (3)

where the feasibility assumption from above is still taken.
The introduction of consumption completes modeling of the

ebits part of the system. However, there is no representation
of user requests yet: in a real quantum network, users would
request a given number of ebits to cater to a specific application
at random times, and a well designed scheduler needs to
take user requests into account when controlling the swapping
network. Similarly to ebits, demands arriving to the system
and being held for future service are also modeled through
queues: alongside every ebit queue, there exists a demand queue
𝐷𝑖 𝑗 (𝑡) that keeps track of the number of user-issued requests
(as introduced in [2] for a single switch and generalized in
this work for an arbitrary topology).

At each time step, every demand queue 𝐷𝑖 𝑗 (𝑡) receives
𝐵𝑖 𝑗 (𝑡) demands, which for simplicity are modeled as a Poisson
process with average value 𝛽𝑖 𝑗 (as in the case of ebit generation,
more complex models that accurately simulate real user
demands may be implemented). To maintain the model’s
uniformity, all edges belonging to Ẽ have a demand queue, but
only the ones that are associated to an (Alice𝑛,Bob𝑛) pair have
nonzero arrivals. All demand queues that are not associated to
an (Alice𝑛,Bob𝑛) pair are permanently zero.

Demand queues have a simpler evolution than ebit ones
because demands can only be generated, stored and eventually
served, i.e. they are neither lost nor swapped. To model
consumption without swapping, we introduce the matrix
Ñ =

[
𝟘𝑁queues×𝑁transitions

��−𝕀𝑁queues

]
as a mean of interfacing with

the consumption part of the 𝑅 vector. The evolution of demand
queues is therefore:

𝐷 (𝑡 + 1) = 𝐷 (𝑡) + 𝐵(𝑡) + Ñ𝑅(𝑡) (4)

Notice that the last 𝑁queues components of the 𝑅 vector regulate
both demand and ebit consumption: one demand always
consumes one ebit.

IV. SCHEDULING APPLICATION

The algebraic framework presented above poses as a tool to
gauge the performance and requirements of different scheduling
policies. In particular, a key point when discussing scheduling
policies is the availability of information: a scheduler working
with more information will understandably have much better
performance but pose harsher requirements on the classical
communication infrastructure that accompanies the quantum
system. This creates a clear tradeoff between information
requirements and performance, and the remainder of this work
is dedicated to exploring it, with the ideal result being a
scheduler that performs well while needing as little information
as possible and with a preference for decentralized policies
because they scale better.

We start by presenting a greedy scheduler which utilises min-
imal strictly local information: the greedy scheduler performs
swapping whenever there is availability of ebits and without
adapting to user demand. Therefore, in a greedy scenario,
every node randomly links pairs of queues connected to it,
until ebit resources are exhausted. In spite of the scheduling
being random, the greedy scheduler is still aware of routing:
on a 𝐴𝐵𝐶𝐷 linear topology with service routes 𝐴𝐵𝐶 and
𝐵𝐶𝐷, none of the schedulers examined in this work will
create 𝐴𝐷 entanglement because it is outside the service
routes. Despite its performance being much lower than more
refined schedulers, the greedy scheduler has the advantage
of not requiring any information about the system’s state,
thus lifting all the classical communication requirements and
being completely decentralized. Its main use is as a baseline
benchmark, in that any other scheduler must outperform it by
a large enough margin to justify the requirement for additional
information, i.e. additional communication infrastructures.

To gauge the improvement brought by additional information,
we also propose an analysis of two Max Weight policies. The

Max Weight protocol is a well-known result of classical network
theory [7] that revolves around solving a linear program at each
time step. As soon as a queue (either ebit or demand) grows,
the Max Weight scheduler will try to reduce it; the aim is to
guarantee a service tailored to user requests on the demand
queue side, and also efficient and fair resource exploitation on
the ebit queues side, that does not lead to useless accumulation.

To fully explore the range of improvement that informa-
tion availability can supply, we start from an ideal case
of fully informed Max Weight scheduler: at each time
step, the scheduler knows the full state of the network
(𝑄(𝑡), 𝐷 (𝑡), 𝐴(𝑡), 𝐿(𝑡), 𝐵(𝑡)...) and can therefore take the best
possible decision. The discrete linear problem is stated as:

min 𝑞(𝑡) · 𝑅(𝑡) [global-MW]
s.t. 𝑅(𝑡) ∈ R(𝑡), (5)

with the weights given by

𝑞(𝑡) = 𝛾(𝐷 (𝑡) + 𝐵(𝑡))𝑇 Ñ + (𝑄(𝑡) − 𝐿 (𝑡) + 𝐴(𝑡))𝑇 M̃, (6)

where 𝛾 is a tunable parameter that allows to prioritize demand
queues or ebit queues in the scheduling calculations. The set
R(𝑡) of all possible scheduling decisions 𝑅(𝑡) at time slot 𝑡 is
defined as:

R(𝑡) =
{
𝑅 ∈ N𝑑

�� −M̃𝑅 ≤ 𝑄(𝑡) − 𝐿 (𝑡) + 𝐴(𝑡)
& − Ñ𝑅 ≤ 𝐷 (𝑡) + 𝐵(𝑡)

}
(7)

with 𝑑 = 𝑁transitions + 𝑁queues a shorthand for the dimension of
𝑅. Note that the scheduling decisions are vectors of natural
numbers, each decision consuming some number of ebits.

This full knowledge scenario provides a good performance
upper bound for Max Weight schedulers and a large perfor-
mance margin over the greedy policy, as shown in the numerical
evaluation section. Such a fully informed global scheduler is in
practice unrealistic as it requires complete information about
the instantaneous system state, right before each scheduling
decision. In fact, the full information would require a large
classical communication delay Δ𝑡, so the scheduler would
be based on stale information. This motivates to propose a
scheduling policy that requires less information, while retaining
to a certain level the performance benefits seen in the global-
MW case. The policy should rely on a limited amount of
exact quantities in the system’s state, together with suitable
assumptions about unknown information in order to carry out
a scheduling decision that is close to the optimal one. In
particular, we propose a Max Weight inspired scheduling policy
that works in a partially localized way: given a network, we
assume that all nodes have access to the network’s topology,
through knowledge over the matrix M and know average
quantities of interest, such as the intensity of Poisson generation
processes 𝛼𝑖 𝑗 , (𝑖, 𝑗) ∈ E, the memory efficiency 𝜂 and the
average demand arrival rates 𝛽𝑖 𝑗 , (𝑖, 𝑗) ∈ Ẽ. We furthermore
assume that every node knows the exact state of the network
at the beginning of each time step, i.e. 𝑄(𝑡) and 𝐷 (𝑡). Despite
𝑄(𝑡) and 𝐷 (𝑡) being global information, we remind the reader
that in our model this information is exact for the beginning

of the time step, and is communicated during the time step
Δ𝑡, to reach all nodes by the end of the slot, when the
scheduling decision is made. Moreover, each node has complete
information at the end of the slot about all the queues (both
physical and virtual) that are directly connected to it. This last
piece of information is also available to the greedy scheduler
and works as a leverage point that provides great performance
improvements.

Each node states its own Max Weight problem for the whole
network, combining its own perfect local information with
stale information received and with expected values for the
other nodes. Denoting as C𝑖 the set of all edges 𝑒 = (𝑖, 𝑗) ∈ Ẽ
that are connected to node 𝑖, the information available on node
𝑖 at step 𝑡 is

I𝑖 (𝑡) =
{
𝑄(𝑡), 𝐷 (𝑡), 𝜂, 𝛽, 𝛼, 𝐴𝑒 (𝑡), 𝐿𝑒 (𝑡), 𝐵𝑒 (𝑡), ∀𝑒 ∈ C𝑖

}
.

(8)

By definition ∀𝑖, 𝑗 , 𝑡, 𝛼𝑖 𝑗 = 𝔼[𝐴𝑖 𝑗 (𝑡)] and = 𝛽𝑖 𝑗 = 𝔼[𝐵𝑖 𝑗 (𝑡)],
so the vectors of all mean arrivals are 𝛼 and 𝛽 respectively.
The vectors 𝑄(𝑡), 𝐷 (𝑡) communicated to node 𝑖 as well as the
mean vectors 𝛼, 𝛽 are all of size Nqueues. Moreover, since 𝜂 is
the memory efficiency, 𝔼[𝐿𝑖 𝑗 (𝑡)] = (1 − 𝜂)𝑄𝑖 𝑗 (𝑡) ∀𝑖, 𝑗 , 𝑡.

The linear discrete scheduling problem localised on node 𝑖

can be stated as:

min 𝑞𝑖 (𝑡) · 𝑅(𝑡) [𝑖-local-MW]
s.t. 𝑅(𝑡) ∈ R𝑖 (𝑡), (9)

where the weights are given by

𝑞𝑖 (𝑡) = 𝛾𝔼[𝐷 (𝑡) + 𝐵(𝑡) |I𝑖 (𝑡)]𝑇 Ñ
+ 𝔼[𝑄(𝑡) − 𝐿 (𝑡) + 𝐴(𝑡) |I𝑖 (𝑡)]𝑇 M̃. (10)

Where 𝛾 serves the same purpose as before. The set R𝑖 (𝑡) of
all possible scheduling decisions 𝑅 at time slot 𝑡 localised at
node 𝑖 is defined as:

R𝑖 (𝑡) =
{
𝑅 ∈ N𝑑

�� −M̃𝑅 ≤ 𝔼[𝑄(𝑡) − 𝐿 (𝑡) + 𝐴(𝑡) |I𝑖 (𝑡)]
& − Ñ𝑅 ≤ 𝔼[𝐷 (𝑡) + 𝐵(𝑡) |I𝑖 (𝑡)]

}
. (11)

After every node 𝑖 ∈ V has solved its individual problem,
all the partial solutions 𝑅𝑖 (𝑛) must be blended together
to create the global solution. In the first step every node
determines its own swapping decisions. Notice that in some
cases this procedure might yield infeasible decisions. To evade
successfully the request, the notion of rank of a queue is
introduced: if a queue is physical, its rank is zero. Otherwise,
the rank of a queue is given by the minimum number of
swapping operations required to add an ebit to it starting
from an empty network. Orders are then given a random
timeout, so that they can be served on a first-come-first-serve
basis following rank order to mimic the operation of a real
experimental system, where swapping across a rank 𝑛 queue
could affect the ebit availability along a rank 𝑚 > 𝑛 one.
The consumption part of 𝑅(𝑡) must be handled with care
too: since there is one term per queue and each queue is
linked to two nodes, there are two possible candidates for
each term. To keep a conservative approach, we take the

0

12
5

25
0

37
5

50
0

62
5

75
0

87
5

10
00

Average demand rate across pair A-E, kHz

1000

875

750

625

500

375

250

125

0

Av
er

ag
e

de
m

an
d

ra
te

 a
cr

os
s p

ai
r B

-F
, k

Hz

% Unserved demands
Greedy

0

2

4

6

8

10

(a)

0

12
5

25
0

37
5

50
0

62
5

75
0

87
5

10
00

Average demand rate across pair A-E, kHz

1000

875

750

625

500

375

250

125

0

Av
er

ag
e

de
m

an
d

ra
te

 a
cr

os
s p

ai
r B

-F
, k

Hz

% Unserved demands
Full Information Max Weight

0

2

4

6

8

10

(b)

0

12
5

25
0

37
5

50
0

62
5

75
0

87
5

10
00

Average demand rate across pair A-E, kHz

1000

875

750

625

500

375

250

125

0

Av
er

ag
e

de
m

an
d

ra
te

 a
cr

os
s p

ai
r B

-F
, k

Hz

% Unserved demands
Localized Information Max Weight

0

2

4

6

8

10

(c)

Fig. 3. Simulation results: percentage of unserved demands by the three schedulers. The greedy scheduler (a) exhibits a square-shaped rate region whose sides
go from 0 kHz up to ∼ 300 kHz: this means that increasing demand across one commodity does not impair service of the other (with the current values of loss
and infinite memory). The fully informed (b) and locally informed’s (c) regions have a similar shape with a cut corner: the diagonal segment in the upper right
corresponds to a limitation of cumulative demand, that is of the sum of the two rates. The full information can serve individual demand up to ∼ 600 kHz,
twice the performance of the greedy scheduler, and a cumulative demand of ∼ 800 kHz, while the local information can serve ∼ 550 kHz and a cumulative
∼ 700 kHz. The diagonal segment is parallel to the optimal (𝛼, 0) − (0, 𝛼) bound (pictured), and in the lossless case it rests on it.

minimum of the two candidates for each term. Notice that
this is simply a design choice: other implementations could opt
to take the maximum or design more complex schemes. If a
conflict between a consumption operation and an intermediate
scheduling operation arises, priority is always given to user
service. We observe a great improvement in performance by
this policy compared to the greedy scheduler. Moreover, as this
policy is partially localized, it is practically implementable.

V. NUMERICAL RESULTS

This section shows a numerical comparison among the
presented scheduling policies through our algebraic model.
All the results were obtained through a simulator implemented
in Python that generates the M matrix given the Alice-Bob
pairs and service routes, and evaluates different policies. Its
source code is available at [13].

All simulations were carried out on the 𝐴𝐵𝐶𝐷𝐸𝐹 topology
with 𝐴𝐵𝐶𝐷𝐸 and 𝐵𝐶𝐷𝐸𝐹 as service routes, to create a
bottleneck and gauge how the different schedulers handle it. The
standard performance metric in classical network theory is the
achievable rate region, that can be described as follows: taking
average demand from the competing clients as a set of axes,
the achievable rate region is defined as the locus of points that
the network can serve in a stable way, i.e. with all the queues
returning to zero in a finite time. For our finite time simulation,
we approximate the rate region by the percentage of unserved
ebit requests (for an average user-demand), measured at the end
of the simulation 𝑡. In Fig. 3 all points in the dark blue region
are certainly servable and all yellow ones are unservable, with
the midway region providing an estimate for the achievable rate
region’s bound. All simulations were carried out on one node
of the LIP6 small cluster (2 x Intel Xeon E5645 12 cores, 24
threads at 2.4 GHz), with the simulator running for 105 time
steps of 1𝜇𝑠 each and an average ebit lifetime of 10𝜇𝑠, yielding
𝜂 = 0.9. 𝛼 was set at 1 (time steps)−1 = 1 MHz for all links.
In both the fully informed and partially informed schedulers,
the weight 𝛾 of demands in the scheduling calculation was

set to 1. The greedy, full information and local information
schedulers took respectively half an hour, 3 hours and 10
hours of wall time to complete their run.

Concerning the shape of the regions reported in fig. 3, we
remark that the ideal shape for a rate region in this context
would be the (0, 0) − (𝛼, 0) − (0, 𝛼) triangle, meaning that all
pairs coming to the 𝐵𝐶𝐷𝐸 bottleneck are effectively employed
in demand service. The Full Information scheduler provides an
upper bound for the potential benefits of applying Max Weight
scheduling to quantum networks, while the Partial Information
scheduler showcases tangible improvement with a policy that
is localized enough to be reasonably implementable.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

We have presented a novel algebraic model for scheduling
in quantum networks and shown how it can be used to design
original scheduling policies that bring notable improvements
to the performance of quantum network systems; these policies
may be global or more localized for practicality. Aside from
the simple Max-Weight policies here, other more elaborate
scheduling policies can be proposed and tested within our
framework. Furthermore, since the presented model takes static
routes as inputs, an interesting extension to this work can be to
integrate dynamic routing algorithms such as [9], [14] to obtain
a full-fledged modeling toolbox to design quantum networks.

ACKNOWLEDGEMENTS

We thank Kaushik Chakraborty for stimulating discussions.
PF’s work is funded by the French state through the Programme
d’Investissements d’Avenir managed by the Agence Nationale
de la Recherche (project ANR-21-CMAQ-0001)

REFERENCES

[1] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin,
and L. Jiang, “Optimal architectures for long distance quantum
communication,” Scientific Reports, vol. 6, no. 1, p. 20463, Feb 2016.
[Online]. Available: https://doi.org/10.1038/srep20463

https://doi.org/10.1038/srep20463

[2] W. Dai, A. Rinaldi, and D. Towsley, “Entanglement swapping in
quantum switches: Protocol design and stability analysis,” 2021. [Online].
Available: https://arxiv.org/abs/2110.04116

[3] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the stochastic anal-
ysis of a quantum entanglement distribution switch,” IEEE Transactions
on Quantum Engineering, vol. 2, pp. 1–16, 2021.

[4] M. M. Wilde, Quantum Information Theory. Cambridge university
press, 2017.

[5] “Quantum protocol zoo.” [Online]. Available: https://wiki.veriqloud.fr
[6] E. Schoute, L. Mancinska, T. Islam, I. Kerenidis, and S. Wehner,

“Shortcuts to quantum network routing,” 2016. [Online]. Available:
https://arxiv.org/abs/1610.05238

[7] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[8] A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpȩdek,
M. Pompili, A. Stolk, P. Pawełczak, R. Knegjens, J. de Oliveira Filho,
R. Hanson, and S. Wehner, “A link layer protocol for quantum
networks,” in Proceedings of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 159–173. [Online].
Available: https://doi.org/10.1145/3341302.3342070

[9] M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu,
D. Englund, and S. Guha, “Routing entanglement in the quantum
internet,” npj Quantum Information, vol. 5, no. 1, p. 25, Mar 2019.
[Online]. Available: https://doi.org/10.1038/s41534-019-0139-x

[10] W. Dai, T. Peng, and M. Z. Win, “Optimal remote entanglement
distribution,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 3, pp. 540–556, 2020.

[11] W. Dai and D. Towsley, “Entanglement swapping for repeater
chains with finite memory sizes,” 2021. [Online]. Available:
https://arxiv.org/abs/2111.10994

[12] M. Cao, F. Hoffet, S. Qiu, A. S. Sheremet, and J. Laurat, “Efficient
reversible entanglement transfer between light and quantum memories,”
Optica, vol. 7, no. 10, p. 1440, oct 2020. [Online]. Available:
https://doi.org/10.1364%2Foptica.400695

[13] “Simulator github repository.” [Online]. Available: https://github.com/
pfittipaldi/DynSchedSimulator

[14] K. Chakraborty, D. Elkouss, B. Rijsman, and S. Wehner, “Entanglement
distribution in a quantum network: A multicommodity flow-based
approach,” IEEE Transactions on Quantum Engineering, vol. 1, pp.
1–21, 2020.

https://arxiv.org/abs/2110.04116
https://wiki.veriqloud.fr
https://arxiv.org/abs/1610.05238
https://doi.org/10.1145/3341302.3342070
https://doi.org/10.1038/s41534-019-0139-x
https://arxiv.org/abs/2111.10994
https://doi.org/10.1364%2Foptica.400695
https://github.com/pfittipaldi/DynSchedSimulator
https://github.com/pfittipaldi/DynSchedSimulator

	Introduction
	Context and relevance of this work
	System Description
	Scheduling Application
	Numerical Results
	Conclusions and Future Perspectives
	References

