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Abstract. Temporal-difference learning is a popular algorithm for policy evaluation. In this
paper, we study the convergence of the regularized non-parametric TD(0) algorithm, in both
the independent and Markovian observation settings. In particular, when TD is performed in a
universal reproducing kernel Hilbert space (RKHS), we prove convergence of the averaged iterates
to the optimal value function, even when it does not belong to the RKHS. We provide explicit
convergence rates that depend on a source condition relating the regularity of the optimal value
function to the RKHS. We illustrate this convergence numerically on a simple continuous-state
Markov reward process.

1. Introduction

One of the main ingredients of reinforcement learning (RL) is the ability to estimate the long-term
effect on future rewards of employing a given policy. This building block, known as policy evaluation,
already contains crucial features of more complex RL algorithms, such as SARSA or Q-learning [59].
Temporal-difference learning (TD), proposed by [57], is among the simplest algorithms for policy
evaluation. The estimation of the performance of the policy is made through a value function. It is
updated online, after each new observation of a couple composed of a state transition and a reward.

Although the formulation of TD is quite natural, its theoretical analysis has proved more challenging,
as it combines two difficulties. The first one is that TD bootstraps, in the sense that it uses its
previous – possibly inaccurate – predictions to correct its next predictions, because it does not
have access to a fixed ground truth. The second difficulty is that the observations are produced
along a trajectory following a fixed policy (on-policy), hence they are correlated, which calls for
more involved stochastic approximation tools compared to independent identically distributed
(i.i.d.) samples. Moreover, using off-policy samples, produced by a different policy than the one
being evaluated, can make the algorithm diverge [15]. Off-policy sampling is out of our scope in
this paper.

A third element which is not inherent to TD further complicates the plot: function approximation.
While TD was originally proposed in a tabular setting, its large-scale applicability has been greatly
extended by its combination with parametric function approximation [16]. This enables the use of
any linear or non-linear function approximation method to model the value function, including neural
networks. However, one can exhibit unstable diverging behaviors of TD even with simple non-linear
approximation schemes [61]. This combination of difficulties has been coined the “deadly triad”
by [58]. We argue that convergence can be obtained even with non-linear function approximation,
by making use of the non-parametric formalism of reproducing kernel Hilbert spaces (RKHS),
involving linear approximation in infinite-dimension. Studying this case could bring us closer
to understanding what happens with other universal approximators used in practice, like neural
networks.

1.1. Contributions

We study the policy evaluation algorithm TD(0) in the non-parametric case, first when the
observations are sampled i.i.d. from the invariant distribution of the Markov chain resulting from
the evaluated policy, and then when they are collected from a trajectory of the Markov chain with
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geometric mixing. In that sense we follow a similar outline as the analysis of [10] which is dedicated
to the linear case.

The non-parametric formulation of TD closes the gap between the original tabular formulation and
the parametric formulation which involves semi-gradients. It allows the use of classical tools and
theory from kernel methods [19]. In particular, we highlight the central role of infinite-dimensional
covariance operators [5, 2] which already appear in the analysis of other non-parametric algorithms,
like least-squares regression. We study a regularized variant of TD, a widely used way of dealing
with misspecification in regression. Importantly, when the regularized TD approximation is run on
an infinite-dimensional RKHS which is dense in the space of square-integrable functions, then there
is no approximation error and the algorithm converges to the true value function. More precisely,
we provide a proof of convergence in expectation of TD without approximation error, even when the
true value function does not belong to the RKHS, under a weaker source condition. Furthermore,
we give non-asymptotic convergence rates related to this source condition, which measures the
regularity of the true value function relative to the RKHS, e.g., its smoothness if the RKHS is a
Sobolev space [46].

Note that using a universal kernel [43] to obtain convergence of TD to the true value function is
also interesting from a theoretical point of view. Indeed it exempts us from a possibly tedious study
of the approximation (or projection) error on a given basis, and simply removes an error term which
in general scales linearly with the horizon of the Markov reward process [44, 65].

In the rest of this section, we review the related literature. In Sec. 2, we present the algorithm,
along with generic results and notations. In Sec. 3, we analyze a simplified version of the algorithm,
namely population TD in continuous time. This allows to catch the main features of the analysis,
while postponing the technicalities related to stochastic approximation. Sec. 4 is dedicated to the
analysis of non-parametric TD with i.i.d. observations, while Sec. 5 consists in a similar analysis
for correlated observations sampled from a geometrically mixing Markov chain. Finally, in Sec. 6,
we present simple numerical simulations illustrating the convergence results and the role the main
parameters.

1.2. Related literature

Temporal-difference learning. The TD algorithm was introduced in its tabular version by [57],
with a first convergence result for linearly independent features, later extended to dependent features
by [24]. Further stochastic approximation results were proposed by [36] for the tabular case, and
by [53] for the linear approximation case. [61] provided a thorough asymptotic analysis of TD
with linear function approximation, while failure cases were already known [4]. A non-asymptotic
analysis was later proposed by [40] in the i.i.d. sampling case with constant step size, concurrently
to another approach extending to Markov sampling by [10]. Other problem-dependent bounds for
linear TD were derived around the same period [23, 55], along with an analysis of variance-reduced
TD [39, 64]. All of the analyses mentioned above focus either on the tabular or on the linear
parametric TD algorithm. A recent work by [42] deals with the batch counterpart of non-parametric
TD, namely the least-squares TD algorithm (LSTD), but they rather focus on the analysis of the
statistical estimation error. Importantly, LSTD only requires offline computations and is not related
to stochastic approximation. Most closely related to our work is the non-parametric regularized
TD setting studied by [38]. However, their analysis is limited to the case where the optimal value
function belongs to the RKHS. This is not sufficient to get rid of the approximation error term.
Also, we will show later that regularization is not necessary in this case. Furthermore, their analysis
is restricted to the i.i.d. setting, for which we will require fewer regularity assumptions.

Kernel methods in RL. To tackle large-dimensional problems, kernel methods have been combined
with various RL algorithms, including approximate dynamic programming [48, 11, 6, 34], policy
evaluation [22], policy iteration [32], LSTD [42], the linear programming formulation of RL [26],
upper confidence bound [29], or fitted Q-iteration [30]. Such kernel methods often come along with
practical ways to reduce the computational complexity that grows with the number of observed
transitions and rewards [7, 38].
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Stochastic approximation. The analysis of TD requires tools from stochastic approximation [8],
among which the ODE method [13]. Such tools are primarily designed for finite-dimensional
problems. Stochastic gradient descent (SGD) [14] is a specific instance of stochastic approximation
that has received extensive attention for supervised learning. In particular, the role of regularization
of SGD for least-squares regression has been studied [17, 21], as well as the effect of of sampling
data from a Markov chain [45]. Finally, we use a formalism which is close to the analyses [28, 49, 9]
of non-parametric SGD for least squares regression.

2. Problem formulation and generic results

2.1. The non-parametric TD(0) algorithm

We consider a Markov reward process (MRP), i.e., a Markov chain with a reward associated to
each state. This is what results from keeping the policy fixed in a Markov decision process (MDP)
for policy evaluation. We consider MRPs in discrete-time, but not necessarily with a countable
state space X. Specifically, we use the formalism of Markov chains on a measurable state space
which unifies discrete- and continuous-state Markov chains. Formally, let X ⊂ Rd a measurable set
associated with the σ-algebra A of Lebesgue measurable sets. Let (xn)n≥1 a time-homogeneous
Markov chain with Markov kernel κ. A Markov kernel [51, 37] is a mapping κ : X×A→ [0, 1] that
has the following two properties: (1) for every x ∈ X, κ(x, ·) is a probability measure on A, and (2)
for every A ∈ A, κ(·, A) is A-measurable. If X is a countable set, κ is represented by a transition
matrix Q such that Qi,j := P(j|i) = κ(i, {j}), for any i, j ∈ X.

We define a reward function r : X→ R uniformly bounded by R <∞, and a discount factor γ ∈ [0, 1).
The aim of policy evaluation is to compute the value function of the MRP:

∀x ∈ X, V ∗(x) = E
[ +∞∑
n=0

γnr(xn)
∣∣∣ x0 = x

]
, (1)

where the (xn)n≥1 are drawn from the Markov chain. A probability distribution p : A → R is a
stationary distribution for κ if for all A ∈ A, p(A) =

∫
X
κ(x,A)p(dx). The existence and uniqueness

of a stationary distribution p, along with the convergence of the Markov chain to p in total variation,
is ensured by ergodicity conditions. A sufficient condition is that the Markov chain is Harris
ergodic, i.e., it has a regeneration set, and is aperiodic and positively recurrent (see [1] and [31]
for an exposition of Harris chains). For discrete-state Markov chains, ergodicity conditions can be
expressed somewhat more simply, and any aperiodic and positive recurrent Markov chain has a
unique invariant distribution. Throughout this paper, we assume that p is the unique invariant
distribution of the Markov chain, and that it has full support on X. Only in Sec. 5, we will in
addition assume that the Markov chain is geometrically mixing.

We define L2(p), the set of squared integrable functions f : X → R with respect to p, with the
norm ‖f‖2L2(p) =

∫
X
f(x)2p(dx) < +∞. We also consider a reproducing kernel Hilbert space H of

A-measurable functions, associated to a positive-definite kernel K : X× X→ R. For all x ∈ X, we
use the notation Φ(x) := K(x, ·) for the mapping of x in H, and 〈·, ·〉H for the inner product in H

(we sometimes drop the index). We assume that MH := supx∈XK(x, x) is finite, which implies
that H ⊂ L2(p). More precisely, the H-norm controls the L2(p)-norm: any sequence converging
in H thus converges in L2(p). Indeed, if f ∈ H:

‖f‖2L2(p) =
∫
f(x)2dp(x) =

∫
〈f,Φ(x)〉2Hdp(x) ≤ ‖f‖2H

∫
‖Φ(x)‖2Hdp(x) ≤MH‖f‖2H. (2)

We also assume that r ∈ L2(p). The non-parametric TD(0) algorithm in the RKHS H is defined
as follows [48, 38]. Draw a sequence (xn)n≥0 according to the Markov chain with initial distribu-
tion p, and collect the corresponding rewards (r(xn))n≥0. Define a sequence of non-negative step
sizes (ρn)n≥1. We build recursively a sequence of approximate value functions (Vn)n≥0 in L2(p).
Throughout the paper, we take V0 = 0 for simplicity, but note that all the results can be adapted
to the case V0 ∈ H. For n ≥ 1:

∀y ∈ X, Vn(y) = Vn−1(y) + ρn

[
r(xn) + γVn−1(x′n)− Vn−1(xn)

]
K(xn, y), (3)
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where x′n := xn+1. The term in brackets is called a temporal-difference. Equivalently, in the RKHS:

Vn = Vn−1 + ρn

[
r(xn) + γVn−1(x′n)− Vn−1(xn)

]
Φ(xn). (4)

This update has a running time complexity of O(n2), which can be improved to O(n), e.g. using
Nyström approximation or random features [35]. More details on the implementation are given in
App. B.2. This non-parametric formulation is a natural extension of the tabular TD algorithm.
Indeed, if X is a countable set and K(x, y) = 1x=y is a Dirac kernel – a valid positive-definite kernel
– then we exactly recover tabular TD: the update rule (3) becomes, after observing a transition
(i, i′, ri) := (xn, x

′
n, r(xn)):

Vn(i) = Vn−1(i) + ρn

[
ri + γVn−1(i′)− Vn−1(i)

]
, and ∀j 6= i, Vn(j) = Vn−1(j). (5)

This also covers the semi-gradient formulation of TD for linear function approximation [59].
Suppose H has finite dimension d, then Vn can be identified to ξn ∈ Rd, and we are searching for
an approximation of the form Vn(x) = ξ>n Φ(x). Then (4) becomes:

ξn = ξn−1 + ρn

[
r(xn) + γVn−1(x′n)− Vn−1(xn)

]
∇ξVn(xn). (6)

Since V0 ∈ H, all the iterates Vn are in the RKHS, in particular Vn ∈ span{Φ(xk)}1≤k≤n. Conse-
quently, if the sequence (Vn) converges in the topology induced by the L2(p)-norm, it converges in
H, the closure of H with respect to the L2(p)-norm. In particular, for a dense RKHS and because p
has full support on X, H = L2(p), but in general it only holds that H ⊂ L2(p).

To understand the behavior of the algorithm, we will first consider the population version (also
called mean-path in [10]) of the algorithm: set V0 = 0 and for n ≥ 1:

Vn = Vn−1 + ρnE(x,x′)∼q [(r(x) + γVn−1(x′)− Vn−1(x)) Φ(x)] , (7)

where the expectation is taken with respect to q(dx, dx′) := p(dx)κ(x, dx′). Since Vn−1 ∈ H, the
reproducing property holds: Vn−1(x) = 〈Vn−1,Φ(x)〉H. Hence the update is affine and reads:
Vn = Vn−1 + ρn(AVn−1 + b), with A := Eq [γΦ(x)⊗ Φ(x′)− Φ(x)⊗ Φ(x)] and b := Ep [r(x)Φ(x)],
where ⊗ denotes the outer product in H defined by g ⊗ h : f 7→ 〈f, h〉Hg.

2.2. Covariance operators

Assume that the expectations Σ := Ep[Φ(x)⊗ Φ(x)] and Σ1 := Eq[Φ(x)⊗ Φ(x′)] are well-defined.
Σ and Σ1 are the uncentered auto-covariance operators of order 0 and 1 of the Markov process
(xn)n≥1, under the invariant distribution p. They are operators from H to H, such that, for all
f, g ∈ H, using the reproducing property:

Ep[f(x)g(x)] = Ep[〈f,Φ(x)〉H〈g,Φ(x)〉H] = 〈f,Ep[〈g,Φ(x)〉HΦ(x)]〉H = 〈f,Σg〉H
Eq[f(x)g(x′)] = Eq[〈f,Φ(x)〉H〈g,Φ(x′)〉H] = 〈f,Ep[〈g,Φ(x′)〉HΦ(x)]〉H = 〈f,Σ1g〉H.

(8)

In particular, for all y ∈ X and f ∈ H, (Σf)(y) = 〈Φ(y),Σf〉H = Ep[f(x)K(x, y)] and similarly,
(Σ1f)(y) = Eq[f(x′)K(x, y)]. Following [28], Σ and Σ1 can therefore be extended to operators Σe

and Σe1 from L2(p) to L2(p) defined by:

Σe : f 7→
∫
X

f(x)Φ(x)p(dx), such that ∀y ∈ X, (Σef)(y) = Ep[f(x)K(x, y)]

Σe1 : f 7→
∫∫

X2

f(x′)Φ(x)q(dx, dx′), such that ∀y ∈ X, (Σe1f)(y) = Eq[f(x′)K(x, y)].

(9)

These two operators are the building blocks of the TD iteration (7). In particular, A = γΣ1 − Σ
and b = Σer, the latter being valid for r ∈ L2(p). With a slight abuse of notation, we denote simply
as Σ, Σ1 the extended operators. Furthermore [28], Im(Σ) ⊂ H and Σ1/2 is an isometry from L2(p)
to H:

∀f ∈ H, ‖f‖L2(p) = ‖Σ1/2f‖H. (10)

The fact that p is a stationary distribution for κ implies a particular constraint linking Σ and Σ1:

Lemma 1. There exists a unique bounded linear operator Σ̃1 : H→ H such that Σ1 = Σ1/2Σ̃1Σ1/2

on H, and ‖Σ̃1‖op ≤ 1 (‖ · ‖op is the H-operator norm).
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This results from an application of [5, Thm. 1], valid on H and extended by continuity to H. See
also [33] for an exposition of cross-covariance operators specifically in an RKHS. In finite dimension,
this is retrieved with generic results on positive semi-definite (PSD) matrices. Specifically, ifH ⊂ Rm,
the uncentered covariance matrix of the random variable (Φ(x),Φ(x′)), when (x, x′) ∼ q is:(

Σ Σ1

Σ>1 Σ

)
� 0.

Using a classical condition on block matrices [12, Prop. 1.3.2], this matrix is PSD if and only if
there exists a matrix Σ̃1 such that ‖Σ̃1‖op ≤ 1 and Σ1 = Σ1/2Σ̃1Σ1/2 (‖ · ‖op is also the spectral
norm in this case). This corresponds to the fact that the Schur complement of a PSD block matrix
is also PSD.

Assumptions on Σ and V ∗. We assume that x 7→ K(x, x) is uniformly bounded by MH.
Therefore, the eigenvalues of Σ are upper-bounded. However, unlike [61] and [10], we do not assume
them to be lower-bounded, i.e., Σ � 0 is not invertible in general. We will formulate our convergence
results for two sets of assumptions. The first one recovers known results from [10] for linear function
approximation. The second one assumes that V ∗ verifies a source condition [27, Chap. 1]:

(A1) V ∗ ∈ H, H is finite-dimensional and Σ has full-rank;
(A2) V ∗ ∈ Σθ/2(H) for some θ ∈ (−1, 1] (and consequently, ‖Σ−θ/2V ∗‖H < +∞), and H = L2(p)

(i.e., K is a universal kernel).

In (A1), H is finite-dimensional because Σ cannot be simultaneously compact (x 7→ K(x, x) being
uniformly bounded) and invertible in infinite-dimension [18]. Recalling the isometry property (10),
the case θ = −1 always holds in (A2) because V ∗ ∈ L2(p) (which we prove in the next subsection).
The case θ = 0 is equivalent to V ∗ ∈ H. For θ > 0, it must be interpreted as: ‖Σ−θ/2V ∗‖2H :=

inf{‖V ‖2H | V s.t. V ∗ = Σθ/2V }, with ‖Σ−θ/2V ∗‖H = +∞ if V ∗ /∈ Σθ/2(H). Using a universal
approximation removes the need for a projection operator on H, as typically used for finite-
dimensional function approximation, and hence there will be no projection error [61].

2.3. Non-expansiveness of the Bellman operator

It is known that the value function V ∗ of the MRP is a fixed point of the Bellman operator T . We
define two operators P and T : L2(p) → L2(p) by, for V ∈ L2(p), PV (x) = Ex′∼κ(x,·)V (x′) and
TV (x) = r(x) + γPV (x). Both operators can be expressed in terms of Σ and Σ1. For V ∈ L2(p):{

ΣPV = Ep[Φ(x)(PV )(x)] = Eq[Φ(x)V (x′)] = Σ1V
ΣTV = Σr + γΣ1V.

(11)

Lemma 2. For any V ∈ L2(p): ‖PV ‖L2(p) ≤ ‖V ‖L2(p).

This is a direct reformulation of [61, Lemma 1], the proof of which is given in App. A.1. As stressed
by [61], this strongly relies on the fact that p is a stationary distribution of the Markov chain. It
implies that T is a γ-contraction mapping on L2(p) and has as unique fixed point V ∗. One can
check that if Σ is non-singular, Lemma 2 is exactly equivalent to ‖Σ−1/2Σ1Σ−1/2‖op ≤ 1, that is,
Lemma 1. Moreover, using Lemma 2, we obtain ‖V ∗‖L2(p) ≤ ‖r‖L2(p)/(1− γ) and V ∗ ∈ L2(p).

3. Analysis of a continuous-time version of the population TD algorithm

Before considering regularized TD with stochastic samples, we look at simplified versions of the
algorithm that momentarily remove the difficulties related to stochastic approximation. Specifically,
we consider the population version of TD to capture a “mean” behavior, and a continuous-time
algorithm to avoid choosing step sizes. Instead, we focus on the role of the regularization parameter.

3.1. Existence of a fixed-point for regularized TD

For λ ≥ 0, let us consider the regularized population recursion:

Vn = Vn−1 + ρn(Σr + (γΣ1 − Σ− λI)Vn−1). (12)
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If the TD iterations converge, its limit will be a solution of the regularized fixed point equation:

Σr + (γΣ1 − Σ− λI)V = 0. (13)

Proposition 1. If λ > 0, then γΣ1−Σ−λI is non-singular on H and the fixed point equation (13)
admits a unique solution V ∗λ in L2(p), defined by V ∗λ = (γΣ1 − Σ − λI)−1Σr. Furthermore,
V ∗λ ∈ H and:

‖V ∗λ ‖H ≤
‖Σr‖H
λ

≤
√
MH‖r‖L2(p)

λ
. (14)

The proof is in App. A.2. Hence, for λ > 0, the H-norm of V ∗λ is always bounded, unlike ‖V ∗‖H.

3.2. Convergence of the regularized fixed point to the optimal value function

Recalling that V ∗ ∈ L2(p), it satisfies the relation TV ∗ = V ∗, implying that ΣTV ∗ = ΣV ∗, i.e.,
Σr + (γΣ1 − Σ)V ∗ = 0. This unregularized fixed point equation possibly has other solutions, but
if K is a universal kernel, as assumed by (A2), then Σ is injective [56] and V ∗ is the unique solution.
Let us recall that (A2) does not imply that V ∗ has a bounded H-norm. However, we can control
the L2(p)-norm of V ∗λ − V ∗ when λ is small using the source condition (A2).

Proposition 2. Assume that λ > 0 and assumption (A2). Then:

‖V ∗λ − V ∗‖2L2(p) ≤
λθ+1

(1− γ)2
‖Σ−θ/2V ∗‖2H. (15)

The proof in App. A.2 is inspired by similar results [17, 21] in the context of ridge regression
(recovered for γ = 0). Note that only ‖V ∗λ − V ∗‖L2(p) is controlled, not ‖V ∗λ − V ∗‖H. Consequently,
we obtain the convergence of V ∗λ to V ∗ in L2(p)-norm when λ→ 0: the higher θ is, the faster the
rate of convergence. For universal Mercer kernels [20], if we drop the source condition (A2), using
only the fact that V ∗ ∈ L2(p) – corresponding to θ = −1 in (A2) – we can still prove that V ∗λ
converges to V ∗ in L2(p)-norm when λ→ 0, but without an explicit rate (see App. A.2, Cor. 1).

3.3. Convergence of continuous-time population TD

Following the ordinary differential equation (ODE) method [13], we study the continuous-time
counterpart of the population iteration (12). At least formally, this consists in defining Ṽt=Vn(t) for
t and n(t) satisfying t =

∑n(t)
i=1 ρi, and letting ρi tend to 0 for any i ≥ 1, where Vn(t) is defined by

recursion using (12). With a slight abuse of notation, we use the notation Vt instead of Ṽt. We
then obtain the following ODE in H: V0 = 0 and for t ≥ 0:

dVt
dt

= (A− λI)Vt + b. (16)

We can exhibit a Lyapunov function for this dynamical system, see [54]. This implies that Vt
converges to V ∗λ when t tends to infinity, where V ∗λ is defined in Prop. 1. More precisely, for
β ∈ {−1, 0}, we define W β , the Lyapunov function, by W β(t) := ‖Σ−β/2(Vt − V ∗λ )‖2H (please note
that β’s role in W β is an index, not a power). W 0(t) strictly decreases with t as follows:

Lemma 3 (Descent Lemma). For λ > 0, for all t ≥ 0, the following holds:

dW 0(t)

dt
≤ −2(1− γ)W−1(t)− 2λW 0(t), (17)

The proof mainly relies on the contraction property of the Bellman operator (see App. A.2). We
can then deduce the convergence of the ODE (16) to V ∗λ .

Proposition 3. Under assumption (A1), the solution Vt of the ODE (16) with λ = 0 is such that:

For T > 0, ‖V T − V ∗‖2L2(p) ≤
1

2(1− γ)

‖V ∗‖2H
T

, (18)

where V T is the Polyak-Ruppert average [50] of Vt, defined by V T := 1
T

∫ T
0
Vtdt.
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Under assumption (A2), the solution Vt of the ODE (16) with λ > 0 is such that:

For T ≥ 0, ‖VT − V ∗λ ‖2H ≤ ‖V ∗λ ‖2He−2λT . (19)

Under (A1), we recover the same O(1/T ) convergence rate as [10]. We focus on (A2), where we
get a fast convergence to V ∗λ in H-norm (stronger than L2(p)). However, we are rather interested
in convergence to V ∗. Prop. 2 quantifies how far V ∗λ is from V ∗. Indeed, the error decomposes as:

‖VT − V ∗‖2L2(p) ≤ 2MH‖VT − V ∗λ ‖2H + 2‖V ∗λ − V ∗‖2L2(p). (20)

Combining Propositions 1, 2, 3 shows a trade-off on λ: ‖VT − V ∗‖2L2(p) = O
(
e−2λT /λ2 + λθ+1

)
.

Taking λ = (3 + θ) log T/(2T ) balances the terms up to logarithmic factors: ‖VT − V ∗‖2L2(p) =

Õ
(
T−1−θ

)
(where Õ(g(n)) := O(g(n) log(n)`), for some ` ∈ R). In particular, for θ = 0, i.e., V ∗ ∈

H, we recover a convergence rate Õ (1/T ): up to logarithmic factors, it is the same as the
unregularized case with averaging, assuming (A1). In this case, regularization brings no benefits.

4. Stochastic TD with i.i.d. sampling

We now consider stochastic TD iterations (4), where the couples (xn, x
′
n)n≥1 are sampled i.i.d. from

the distribution q(dx, dx′) = p(dx)κ(x, dx′). Such i.i.d. samples can be obtained by running the
Markov chain until it has mixed so that xn ∼ p, collecting a couple (xn, x

′
n), and restarting. With

An := γΦ(xn)⊗ Φ(x′n)− Φ(xn)⊗ Φ(xn) and bn := r(xn)Φ(xn), we study the recursion:

Vn = Vn−1 + ρn((An − λI)Vn−1 + bn). (21)

In particular, Eq[An] = A, Ep[bn] = b, and An and bn are independent of the past (Vk)k<n.
For β ∈ {0, 1}, let W β

n := ‖Σ−β/2(Vn − V ∗λ )‖2H. Adapting the proof of Lemma 3, we exhibit a
similar decreasing behavior of W 0

n in expectation, hence showing that E[‖Vn − V ∗λ ‖2H] → 0 for
well-chosen step sizes ρn. Finally, λ is chosen to balance E[‖Vn−V ∗λ ‖2L2(p)] and ‖V

∗
λ −V ∗‖2L2(p). We

define V (e)
n and V (t)

n as the exponentially-weighted and the tail-averaged n-th iterates respectively:

V (e)
n :=

∑n
k=1(1− ρλ)n−kVk−1∑n
k=1(1− ρλ)n−k

and V (t)
n :=

1

n− bn/2c+ 1

n∑
k=bn/2c

Vk−1. (22)

Theorem 1. Let n ≥ 9. Under assumption (A2) with −1 < θ ≤ 1, there exist a positive real
number λθ independent of n such that, for λ0 ≥ λθ,

(a) Using λ = λ0n
− 1

3+θ and a constant step size ρ = logn
λn , then:

E[‖Vn − V ∗‖2L2(p)] = O((log n)n−
1+θ
3+θ ).

(b) Using λ = λ0n
− 1

2+θ and a constant step size ρ = logn
λn , then:

E[‖V (e)
n − V ∗‖2L2(p)] = O((log n)n−

1+θ
2+θ ).

(c) Using λ = λ0n
− 1

2+θ and a constant step size ρ = 2 logn
λn for the first bn/2c − 1 iterates and

then a decreasing step size ρk = 1
λk , then:

E[‖V (t)
n − V ∗‖2L2(p)] = O((log n)n−

1+θ
2+θ ).

A similar exponentially-weighted averaging scheme as in (b) has been used to study constant
step size SGD in [25]. When γ = 0, the rates can be compared to existing results for SGD. For
example, for θ ∈ [0, 1], [60] proves almost sure convergence for regularized least-mean-squares
without averaging at rate O(n−

1+θ
2+θ ). The dependence in θ is similar to what we obtain. Moreover,

under assumption (A1), we recover the same O(1/
√
n) convergence rate as [10] (see Prop. 4 stated

in App. A.3). Finally, our bounds have a polynomial dependence in the horizon 1/(1 − γ) of
the MRP.
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5. Stochastic TD with Markovian sampling

We now consider the truly online TD algorithm, where the samples are produced by a Markov chain.
In particular, there is now a correlation between the current samples (xn, x

′
n) and the previous

iterate Vn−1. To control it, we assume that the Markov chain mixes at uniform geometric rate:

(A3) ∃m > 0, µ ∈ (0, 1) s.t. sup
x∈X

dTV (P(xn ∈ ·|x0 = x), p) ≤ mµn, (23)

where dTV denotes the total variation distance. This is always verified for irreducible, aperiodic
finite Markov chains [41]. We give an example of continuous-state Markov chain with geometric
mixing in Sec. 6. Furthermore, following [10], in our analysis we need to control the magnitude of
the iterates almost surely. To do so, we add a projection step at each TD iteration:

Vn = ΠB [Vn−1 + ρn((An − λI)Vn−1 + bn)], (24)

where ΠB is the projection on the H ball of radius B > 0. If ‖V ∗λ ‖H ≤ B, the convergence of the
method is preserved. In the following theorem, we consider two regimes with different rates of
convergence. In the first one, we assume like [10] that we are given an oracle B upper-bounding
‖V ∗λ ‖H, with B independent of λ. In the second one, we use the bound of Prop. 1, but this will
affect the convergence rate since in this case B = O(1/λ).

Theorem 2. Assuming (A2) and that the samples are produced by a Markov chain with uniform
geometric mixing (A3), the projected TD iterations (24) are such that:

(i) Using λ = n−
1

2+θ , a constant step size ρ = logn
2λn , and using a projection radius B independent

of λ provided by an oracle and such that ‖V ∗λ ‖H ≤ B, then:

E
[
‖V (e)

n − V ∗‖2L2(p)

]
≤ O

( (log n)2n−
1+θ
2+θ

log(1/µ)

)
. (25)

(ii) Using λ = n−
1

4+θ , ρ = logn
2λn , and the projection radius B =

√
MH‖r‖L2(p)/λ, then:

E
[
‖V (e)

n − V ∗‖2L2(p)

]
≤ O

( (log n)2n−
1+θ
4+θ

log(1/µ)

)
, (26)

with V (e)
n =

∑n
k=1(1− 2ρλ)n−kVk−1/

∑n
j=1(1− 2ρλ)n−j .

When an oracle is given for B (i.e., setting (i)), we recover the same rate as i.i.d. sampling, up
to a multiplicative factor log(n)/ log(1/µ) which represents the mixing time of the Markov chain.
If no oracle is provided (i.e., setting (ii)), the convergence will be slower because the bound B
is of order 1/λ. Note that the slight changes in the definitions of ρ, λ, V (e), and the absence of
constraint on λ, as compared to Thm. 1, are implied by the boundedness of the iterates. Following
a similar study for SGD [45], we might compare these rates to those of a naive algorithm which we
call “τ -Skip-TD”, for some τ ≥ 1, where only one every τ samples from the Markov chain is used to
make TD updates:

Vn = ΠB [Vn−1 + ρn((Anτ − λI)Vn−1 + bnτ )], (27)

For τ large enough, of the order of the mixing time of the Markov chain, the new sample (xnτ , x
′
nτ )

is almost independent from the past ones (xkτ , x
′
kτ )k<n. Of course, since we need to generate τ

times more samples to make a step, we must look at the distance of Vn/τ to the optimum. Such
convergence rates for τ -Skip-TD are derived in App. A.4, Cor. 2. In setting (i), they are similar
to Theorem 2 up to a log(n) factor. This suggests that making updates at each sample of the
Markov chain is not more efficient than τ -Skip-TD for large τ , at least in our theoretical analysis.
In practice, using all samples seems slightly better, especially for a slowly mixing Markov chain
(see App.B.3). In setting (ii), we obtain a rate for Skip-TD whose leading term does not depend on
log(1/µ) – which only appears in higher order terms – suggesting that the rate and parameters of
Thm. 2, setting (ii) might be suboptimal.
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6. Experiment on artificial data

Building a value function. We build a toy model for which the main parameters can be computed
in closed form. We consider the dynamics on the circle X = [0, 1] defined by: with probability ε,
xn+1 ∼ U([0, 1]), and with probability 1− ε, xn+1 = xn. Because the Markov kernel is symmetric,
the invariant distribution is p = U([0, 1]). In particular, the mixing parameter can be bounded
explicitly with m = 1 and µ = 1 − ε (see App. B.1). Also, simple computations show that V ∗

is an affine transform of r: V ∗(x) = ar(x) + b, with a = (1 − γ(1 − ε))−1 and b = −a
∫ 1

0
r(u)du.

Hence we can build a V ∗ with a given regularity by choosing an appropriate reward with the same
regularity. We consider two rewards: rabs(x) := 2|x− 1/2| and rcos(x) := (1 + cos(2πx))/2.

Kernels on the torus. We consider the RKHS of splines on the circle [62] of regularity s ∈ N∗,
denoted by Hs

per. It is a Sobolev space equipped with the following norm:

‖f‖2Hsper
=

(∫ 1

0

f(x)dx

)2

+
1

(2π)2s

∫ 1

0

|f (s)(x)|2dx. (28)

Its corresponding reproducing kernel Ks is a translation-invariant kernel defined by:

Ks(x, y) = 1 + (−1)s−1
(2π)2s

(2s)!
B2s({x− y}), (29)

where {x} := x− bxc and Bj is the j-th Bernoulli polynomial [47]. Let us recall that the Fourier
series expansion on the torus of a 1-periodic function f ∈ L2(p) is: f(x) =

∑
ω∈Z e

2iωπxf̂ω,
with f̂ω :=

∫ 1

0
f(x)e−2iωπxdx, for ω ∈ Z. The kernel Ks has an embedding in the space of

Fourier coefficients Φ(x) = (
√
cωe

2iωπx)>m∈Z with cω := |ω|−2s if ω 6= 0 and c0 := 1. Using
Parseval’s theorem in Eqn. (28), one can compute the norm of f from its Fourier coefficients
‖f‖2Hsper

=
∑
ω∈Z |f̂ω|2/cω. The operators Σ and Σ1 can be represented as countably infinite-

dimensional matrices Σ = diag(c) and Σ1 = (1−ε)Σ+ε
√
c(
√
c)>. Hence the source condition states

that |f̂0|2 +
∑
ω 6=0 |ω|2s(1+θ)|f̂ω|2 <∞. In particular, it holds if f ∈ Hs′

per, for any s′ ≥ s(1 + θ). In
our example, we consider two Sobolev spaces H1

per and H2
per, and our two example functions have

Fourier coefficients (r̂abs)ω = 1−(−1)ω
π2ω2 for ω 6= 0, and (r̂cos)ω = 0 for |ω| > 1. The largest θ ∈ [0, 1]

such that the source condition holds are indicated in the first row of Tab. 1.

Results. We run TD on functions rabs and rcos, with kernels K1 and K2. We use parameters λ
and ρ and exponential averaging as prescribed in Thm. 1 (b). Each experiment is repeated 10
times and we record the mean ± one standard deviation. The implementation is based on a finite
dimensional representation of the iterates (Vk)k≤n in Rn (see further details in App. B.2). This
implies computing the kernel matrix in O(n2) operations. To accelerate this computation when the
eigenvalues decrease fast, we approximate it with the incomplete Cholesky decomposition [3]. In
Tab. 1, we set ε = 0.8, γ = 0.5 and report the observed convergence rates v.s. the ones expected by
Thm. 2, which are fairly consistent. In Fig. 1, we show the respective effects of varying ε and γ.
Larger values of ε or γ make the problem more difficult and slow down convergence, presumably
in the constants without affecting the rates, as predicted by Thm. 2. Additional experiments are
provided in App. B.3.

Table 1. Predicted and observed convergence rates with different reward functions
and kernels.

Sobolev kernel s = 1 Sobolev kernel s = 2

r = rabs r = rcos r = rabs r = rcos

Maximal θ 1/2 1 −1/4 1
Predicted rate −0.6 −0.67 −0.43 −0.67
Observed rate −0.72 −0.64 −0.58 −0.64
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Figure 1. Respective effects of varying ε (for γ = 0.5 fixed) and γ (for ε = 0.8 fixed).

7. Conclusion

We have provided convergence rates for the regularized non-parametric TD algorithm in the
i.i.d. and Markovian sampling settings. The rates depend on a source condition that quantifies
the relative regularity of the optimal value function to the RKHS. They are compatible with our
empirical observations on a one-dimensional MRP, but we have not proved optimality of such
rates. Interesting directions include the extension to the TD(λ) algorithm, which we believe can be
achieved with similar tools, as well as more challenging extensions to control counterparts of TD
(Q-learning, SARSA,...) for which the policy is optimized.
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Appendix A. Proofs and intermediate results

A.1. Problem formulation and generic results

Proof of Lemma 2. Let V ∈ L2(p). Then:

‖PV ‖2L2(p) =

∫
X

(Ex′∼κ(x,·)V (x′))2p(dx)

≤
∫
X

Ex′∼κ(x,·)[V (x′)2]p(dx)

=

∫
X

(∫
X

V (x′)2κ(x, dx′)

)
p(dx)

=

∫
X

V (x′)2
(∫

X

κ(x, dx′)p(dx)

)
=

∫
X

V (x′)2p(dx′)

= ‖V ‖2L2(p).

The second line is an application of Jensen’s inequality, with equality if ∀x, V (x′)|x is constant
almost surely (a.s.). The fourth line is an application of Fubini-Tonelli’s theorem. The fifth line
results from the stationarity of p with respect to κ, and κ(·, dx′) being A-measurable. �

A.2. Analysis of a continuous-time version of the population TD algorithm

Proposition 1 is a consequence of the following Lemma 4:

Lemma 4. For λ > 0, the operator Σ + λI − γΣ1 : H→ H is bijective, and the operator norm of
its inverse is bounded as follows:

‖(Σ + λI − γΣ1)−1‖op ≤
1

λ
.

Proof of Lemma 4. From Lemma 1, there exists Σ̃1 with ‖Σ̃1‖op ≤ 1 such that Σ1 = Σ1/2Σ̃1Σ1/2.

For λ > 0, Σ + λI � 0, hence we have the decomposition:

Σ + λI − γΣ1 = (Σ + λI)1/2
[
I − γ(Σ + λI)−1/2Σ1/2Σ̃1Σ1/2(Σ + λI)−1/2

]
(Σ + λI)1/2. (30)

Since the operator norm is an induced norm:

‖(Σ + λI)−1/2Σ1/2Σ̃1Σ1/2(Σ + λI)−1/2‖op
≤ ‖(Σ + λI)−1/2Σ1/2‖op · ‖Σ̃1‖op · ‖Σ1/2(Σ + λI)−1/2‖op.

Furthermore, Σ1/2(Σ + λI)−1/2 � I, hence:

‖γ(Σ + λI)−1/2Σ1/2Σ̃1Σ1/2(Σ + λI)−1/2‖op ≤ γ < 1.

We can then apply Theorem 5.11 from [63], showing that the term inside the brackets in Eqn. (30)
is invertible, with inverse equal to:

+∞∑
k=0

γk[(Σ + λI)−1/2Σ1/2Σ̃1Σ1/2(Σ + λI)−1/2]k. (31)

Hence, Σ + λI − γΣ1 is invertible, with inverse equal to:

(Σ + λI)−1/2
[
I − γ(Σ + λI)−1/2Σ1/2Σ̃1Σ1/2(Σ + λI)−1/2

]−1
(Σ + λI)−1/2.

We will now upper-bound the operator norm of (γΣ1 − Σ− λI)−1. Let us take f, g ∈ H such that
g = (λI + Σ− γΣ1)f and ‖g‖H = 1, we get

1 = ‖(λI + Σ− γΣ1)f‖2H
= λ2‖f‖2H + 2λ〈f,Σf〉H − λγ〈f, (Σ1 + Σ∗1)f〉H + ‖(Σ− γΣ1)f‖2H
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≥ λ2‖f‖2H + 2λ〈f,Σf〉H − λγ〈f, (Σ1 + Σ∗1)f〉H.

Moreover, we have:

〈f,Σ1f〉H = Eq[f(x)f(x′)]

≤ Eq
[
f(x)2

2
+
f(x′)2

2

]
= Ex∼p

[
f(x)2

2

]
+ Ex′∼p

[
f(x′)2

2

]
= 〈f,Σf〉H,

because p is an invariant distribution. Similarly,

〈f,Σ∗1f〉H = 〈Σ1f, f〉H = 〈f,Σ1f〉H ≤ 〈f,Σf〉H.

Consequently, since γ ≤ 1, we get 1 ≥ λ2‖f‖2 = λ2‖(λI + Σ− γΣ1)−1g‖2H. We conclude by using
the definition of the operator norm, i.e.,

‖(λI + Σ− γΣ1)−1‖op = sup
‖g‖H=1

‖(λI + Σ− γΣ1)−1g‖H ≤ 1/λ.

�

Proof of Proposition 1. Consider the fixed point equation (13). Since λ > 0, it is equivalent to:

V =
1

λ
[Σr + γΣ1V − ΣV ] .

As a consequence, any solution of this equation is in H. Using Lemma 4, it is unique and such that:

V = (γΣ1 − Σ− λI)−1Σr.

�

Proof of Proposition 2. The fixed point equations verified by V ∗λ and V ∗ are respectively:

Σr + (γΣ1 − Σ− λI)V ∗λ = 0. (32)
Σr + (γΣ1 − Σ− λI)V ∗ = −λV ∗ (33)

Let V̄ ∗ := Σ1/2V ∗, V̄ ∗λ := Σ1/2V ∗λ , and r̄ := Σ1/2r. Then V̄ ∗, V̄ ∗λ and r̄ are all in H. Using
Lemma 1, there exists Σ̃1 : H → H with ‖Σ̃1‖op ≤ 1 such that Σ1 = Σ1/2Σ̃1Σ1/2. Because of
assumption (A2), this equality holds on H = L2(p). In particular, Σ1/2Σ1V

∗ = ΣΣ̃1V̄
∗.

Left multiplying Eqns. (32) and (33) by Σ1/2, we get:

Σr̄ + (γΣΣ̃1 − Σ− λI)V̄ ∗λ = 0. (34)

Σr̄ + (γΣΣ̃1 − Σ− λI)V̄ ∗ = −λV̄ ∗ (35)

Subtracting Eqns. (34) and (35), we get:

(Σ + λI − γΣΣ̃1)(V̄ ∗λ − V̄ ∗) = −λV̄ ∗. (36)

Since Σ + λI � 0, then:

(I − γ(Σ + λI)−1ΣΣ̃1)(V̄ ∗λ − V̄ ∗) = −λ(Σ + λI)−1V̄ ∗.

Let Σ̃1,λ := (Σ + λI)−1ΣΣ̃1. Since (Σ + λI)−1Σ � I, we know that ‖γΣ̃1,λ‖op ≤ γ < 1. Hence
(I − γΣ̃1,λ) is invertible and:

V̄ ∗λ − V̄ ∗ = −λ(I − γΣ̃1,λ)−1(Σ + λI)−1V̄ ∗

= −λ
+∞∑
k=0

γkΣ̃k1,λ(Σ + λI)−1Σ1/2V ∗.
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Taking the H-norm on both sides, and using the isometry property (10), valid on H = L2(p) since
we are using a universal kernel:

‖Σ1/2(V ∗λ − V ∗)‖H ≤ λ
+∞∑
k=0

γk‖Σ̃k1,λ(Σ + λI)−1Σ1/2V ∗‖H (37)

‖V ∗λ − V ∗‖L2(p) ≤ λ
+∞∑
k=0

γk‖(Σ + λI)−1Σ1/2V ∗‖H (38)

=
λ

1− γ
‖(Σ + λI)−1Σ1/2V ∗‖H. (39)

Assuming that V ∗ verifies the source condition with constant θ, the norm on the right-hand side
can be bounded as follows:

‖(Σ + λI)−1Σ1/2V ∗‖H = ‖(Σ + λI)−1Σ(1+θ)/2Σ−θ/2V ∗‖H
= ‖(Σ + λI)(θ−1)/2(Σ + λI)−(1+θ)/2Σ(1+θ)/2Σ−θ/2V ∗‖H
≤ λ(θ−1)/2‖(Σ + λI)−(1+θ)/2Σ(1+θ)/2Σ−θ/2V ∗‖H,

because 0 ≺ (Σ + λI)(θ−1)/2 � λ(θ−1)/2I, since (θ − 1)/2 ≤ 0. Also, since (1 + θ)/2 ≥ 0, we have:
(Σ + λI)−(1+θ)/2Σ(1+θ)/2 � I, hence:

‖(Σ + λI)−1Σ1/2V ∗‖H ≤ λ(θ−1)/2‖Σ−θ/2V ∗‖H. (40)

Combining Eqns. (39) and (40), we can then conclude that:

‖V ∗λ − V ∗‖L2(p) ≤
λ

1+θ
2

1− γ
‖Σ−θ/2V ∗‖H.

�

Corollary 1. Assume that K is a universal Mercer kernel, and that V ∗ ∈ L2(p) (which holds as
soon as r ∈ L2(p), see Sec. 2.3), then:

‖V ∗λ − V ∗‖L2(p) −−−−→
λ→0+

0.

Proof of Corollary 1. We can reproduce the beginning of the proof of Prop. 2, until Eqn. (39):

‖V ∗λ − V ∗‖L2(p) ≤
λ

1− γ
‖(Σ + λI)−1Σ1/2V ∗‖H.

Using the isometry property (10) because K is a universal kernel:

‖V ∗λ − V ∗‖L2(p) ≤
λ

1− γ
‖(Σ + λI)−1V ∗‖L2(p).

Because K is a Mercer kernel, there exists a sequence (ψn)n≥1 in L2(p) which is an orthonormal
eigenbasis of H = L2(p) (because K is universal) for the L2(p) inner product, with strictly positive
eigenvalues (λn)n≥1, ordered in decreasing order, such that [28]:

∀n ≥ 1, Σψn = λnψn.

Then, since V ∗ =
∑
n≥1〈V ∗, ψn〉L2(p)ψn:

‖V ∗λ − V ∗‖2L2(p) ≤
λ2

(1− γ)2
‖(Σ + λI)−1V ∗‖2L2(p)

=
1

(1− γ)2

∑
n≥1

λ2

(λ+ λn)2
〈V ∗, ψn〉2L2(p).

For λ > 0, the series on the right-hand side is dominated by∑
n≥1

〈V ∗, ψn〉2L2(p) = ‖V ‖2L2(p) <∞,
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and for each n ≥ 1:
λ2

(λ+ λn)2
〈V ∗, ψn〉2L2(p) −−−−→

λ→0+
0,

because each λn is strictly positive. Then by Lebesgue’s dominated convergence theorem [52]:

‖V ∗λ − V ∗‖2L2(p) −−−−→
λ→0+

0.

�

Proof of Lemma 3. For β = 0, and λ > 0, Vt − V ∗λ ∈ Σ0/2(H) = H is always true as proved in
Prop. 1, hence W 0(t) is finite for all t ≥ 0. Similarly, W 1(t) is finite for all t ≥ 0 because Vt and
V ∗λ ∈ L2(p).

dW 0(t)

dt
= 2〈Vt − V ∗λ ,

dVt
dt
〉H

= 2〈Vt − V ∗λ , (A− λI)Vt + b〉H
= 2〈Vt − V ∗λ , (γΣ1 − Σ− λI)Vt) + Σr〉H.

We remind that V ∗λ is a solution of Eqn. (13). Then:

dW 0

dt
= 2〈Vt − V ∗λ , (γΣ1 − Σ− λI)(Vt − V ∗λ )〉H
= 2γ〈Vt − V ∗λ ,Σ1(Vt − V ∗λ )〉H − 2λ〈Vt − V ∗λ , Vt − V ∗λ 〉H − 2〈Vt − V ∗λ ,Σ(Vt − V ∗λ )〉H
= 2γ〈Vt − V ∗λ ,ΣP (Vt − V ∗λ )〉H − 2λW 0(t)− 2W−1(t)

= 2γ〈Σ1/2(Vt − V ∗λ ),Σ1/2P (Vt − V ∗)〉H − 2λW 0(t)− 2W−1(t),

where the third line results from Eqn. (11). Using Cauchy-Schwarz inequality for 〈·, ·〉H, the first
term is bounded by:

2γ〈Σ1/2(Vt − V ∗λ ),Σ1/2P (Vt − V ∗)〉H ≤ 2γ‖Σ1/2(Vt − V ∗λ )‖H · ‖Σ1/2P (Vt − V ∗λ )‖H
= 2γ

√
W−1(t) · ‖P (Vt − V ∗λ )‖L2(p)

≤ 2γ
√
W−1(t) · ‖Vt − V ∗λ ‖L2(p)

= 2γW−1(t),

where we have used successively Eqn. (10) (on an element of H) and Lemma 2.

Finally, we get:

dW 0(t)

dt
≤ 2γW−1(t)− 2λW 0(t)− 2W−1(t),

where all of the above quantities are finite. �

Proof of Proposition 3. We treat separately the two sets of assumptions.

• Under assumption (A1), we define the sequence of Polyak-Ruppert averaged iterates:

V t :=
1

t

∫ t

0

V (s)ds, for t ≥ 0.

Lemma 3 can be easily adapted to the case where λ = 0, Σ � 0 and V ∗ ∈ H. The proof is the
same, and all quantities are finite because ‖V ∗‖H is finite. Then we get:

d‖Vt − V ∗‖2H
dt

≤ −2(1− γ)‖Vt − V ∗‖2L2(p).

Let T > 0. Integrating between 0 and T and dividing by T :

W 0(T )−W 0(0)

T
≤ −2(1− γ)

1

T

∫ T

0

‖Vt − V ∗‖2L2(p)dt.

1

T

∫ T

0

‖Vt − V ∗‖2L2(p)dt ≤
1/2

1− γ
W 0(0)−W 0(T )

T
≤ 1/2

1− γ
W 0(0)

T
.
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Using Jensen’s inequality:

‖V T − V ∗‖2L2(p) ≤
1

T

∫ T

0

‖Vt − V ∗‖2L2(p)dt,

and then:

‖V T − V ∗‖2L2(p) ≤
1

2(1− γ)

‖V ∗‖2H
T

.

• Under assumption (A2), Lemma 3 gives:

d‖Vt − V ∗λ ‖2H
dt

≤ −2(1− γ)‖Vt − V ∗λ ‖2L2(p) − 2λ‖Vt − V ∗λ ‖2H
≤ −2λ‖Vt − V ∗λ ‖2H.

Using Grönwall’s lemma, we directly get linear convergence of Vt to V ∗λ in H norm:

‖Vt − V ∗λ ‖2H ≤ ‖V ∗λ ‖2He−2tλ.
�

A.3. Stochastic TD with i.i.d. sampling

First, we need to state a technical lemma which will be used several times:

Lemma 5. For any fixed V ∈ L2(p), and n ≥ 1:

Eq‖AnV ‖2H ≤ 2MH(1 + γ2)‖Σ1/2V ‖2H.

Proof of Lemma 5.

Eq‖AnV ‖2H = Eq‖(γΦ(xn)⊗ Φ(x′n)− Φ(xn)⊗ Φ(xn))V ‖2H
= Eq‖Φ(xn)⊗ (γΦ(x′n)− Φ(xn))V ‖2H
= Eq‖Φ(xn)‖2H|〈V, γΦ(x′n)− Φ(xn)〉H|2

≤ 2MH(γ2Eq[〈V,Φ(x′n)〉2H] + Eq[〈V,Φ(xn)〉2H]).

Since the expectation is according to the distribution q, the two random variables inside the
expectations have the same marginal distribution p, and their expectation is equal to:

Ex∼p[〈V,Φ(x)〉2H] = Ex∼p[〈V, 〈V,Φ(x)〉HΦ(x)〉H]

= Ex∼p[〈V,Φ(x)⊗ Φ(x)V 〉H]

= 〈V,ΣV 〉H = ‖Σ1/2V ‖2H,
which yields the result. �

We now derive the stochastic equivalent of the Descent Lemma 3.

Lemma 6. Let σ2 := 10MH‖r‖2L2(p) +
(

8(1+γ2)
(1−γ)2 + 16(1 + γ2)

)
MH‖V ∗‖2L2(p).

Then for n ≥ 1:

EW 0
n ≤ (1− 2ρnλ+ 2ρ2nλ

2)EW 0
n−1 −

(
2ρn(1− γ)− 8ρ2n(1 + γ2)MH

)
EW−1n−1 + 4ρ2nσ

2.

In particular, for ρn ≤ min
{

1
2λ ,

1−γ
8MH(1+γ2) =: ρ̄

}
:

EW 0
n ≤ (1− ρnλ)EW 0

n−1 − ρn(1− γ)EW−1n−1 + 4ρ2nσ
2.

Proof of Lemma 6. We have the following decomposition, almost surely:

W 0
n = 〈Vn − V ∗λ , Vn − V ∗λ 〉H

= 〈Vn−1 + ρn((An − λI)Vn−1 + bn)− V ∗λ , Vn−1 + ρn((An − λI)Vn−1 + bn)− V ∗λ 〉H
= 〈Vn−1 − V ∗λ , Vn−1 − V ∗λ 〉H + 2ρn〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H

+ ρ2n‖(An − λI)Vn−1 + bn‖2H.
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Let zi := (xi, x
′
i), for i ≥ 1. The zi are i.i.d. with probability distribution q. Taking the expectation

with respect to the filtration Fn := σ(z1, ..., zn), we get three terms:

EW 0
n = EW 0

n−1 + 2ρnE [〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H]

+ ρ2nE
[
‖(An − λI)Vn−1 + bn‖2H

]
.

• We first consider the inner product:

E [〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H] = E [E [〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H|Fn−1]]

= E [〈Vn−1 − V ∗λ , (A− λI)Vn−1 + b〉H]

≤ −(1− γ)EW−1n−1 − λEW 0
n−1,

where we used the expectation of Lemma 3 on the last line:

〈V − V ∗λ , (A− λI)V + b〉H ≤ −(1− γ)‖V − V ∗λ ‖2L2(p) − λ‖V − V
∗
λ ‖2H.

• Now we need to upper-bound the final variance term:

E
[
‖(An − λI)Vn−1 + bn‖2H

]
≤ 2E

[
‖λ(Vn−1 − V ∗λ )‖2H

]
+ 2E

[
‖AnVn−1 + bn − λV ∗λ ‖2H

]
≤ 2λ2EW 0

n−1 + 4E
[
‖An(Vn−1 − V ∗λ )‖2H

]
+ 4E

[
‖(An − λI)V ∗λ + bn‖2H

]
≤ 2λ2EW 0

n−1 + 4E
[
E
[
‖An(Vn−1 − V ∗λ )‖2H|Fn−1

]]
+ 4E

[
‖(An − λI)V ∗λ + bn‖2H

]
≤ 2λ2EW 0

n−1 + 8MH(1 + γ2)EW−1n−1

+ 4E
[
‖(An − λI)V ∗λ + bn‖2H

]
,

the last inequality being an application of Lemma 6 to Vn−1 − V ∗λ , deterministic given Fn−1.

Next, we are going to show that the remaining variance term E
[
‖(An − λI)V ∗λ + bn‖2H

]
is bounded

and give an explicit upper-bound σ2. This is the variance of the updates at the optimum:

E
[
‖(An − λI)V ∗λ + bn‖2H

]
≤ 2λ2‖V ∗λ ‖2H + 2E

[
‖AnV ∗λ + bn‖2H

]
≤ 2MH‖r‖2L2(p) + 2E

[
‖AnV ∗λ + bn‖2H

]
,

using Prop. 1. Then:

2E
[
‖AnV ∗λ + bn‖2H

]
≤ 4E

[
‖An(V ∗λ − V ∗)‖2H

]
+ 4E

[
‖AnV ∗ + bn‖2H

]
≤ 8MH(1 + γ2)‖Σ1/2(V ∗λ − V ∗)‖2H + 4E

[
‖AnV ∗ + bn‖2H

]
,

applying Lemma 6 to V ∗λ − V ∗. Then, using Prop. 2 with θ = −1 (which always holds):

2E
[
‖AnV ∗λ + bn‖2H

]
≤

8MH(1 + γ2)‖V ∗‖2L2(p)

(1− γ)2
+ 4E

[
‖AnV ∗ + bn‖2H

]
≤

8MH(1 + γ2)‖V ∗‖2L2(p)

(1− γ)2
+ 8E

[
‖AnV ∗‖2H

]
+ 8E

[
‖bn‖2H

]
≤

8MH(1 + γ2)‖V ∗‖2L2(p)

(1− γ)2
+ 16MH(1 + γ2)‖V ∗‖2L2(p)

+ 8MH‖r‖2L2(p),

where we have used again Lemma 6 applied to V ∗, and the fact that:

E[‖bn‖2H] = E[r(xn)2‖Φ(xn)‖2H] ≤MHEp[r(xn)2] = MH‖r‖2L2(p).

Hence the variance E
[
‖(An − λI)V ∗λ + bn‖2H

]
is finally bounded by:

σ2 := 10MH‖r‖2L2(p) +

(
8(1 + γ2)

(1− γ)2
+ 16(1 + γ2)

)
MH‖V ∗‖2L2(p).

Back to the main term, we get:

E
[
‖(An − λI)Vn−1 + bn‖2H

]
≤ 2λ2EW 0

n−1 + 8MH(1 + γ2)EW−1n−1 + 4σ2.



19

Then, we get the result:

EW 0
n ≤ EW 0

n−1 − 2ρn(1− γ)EW−1n−1 − 2ρnλEW 0
n−1

+ 2ρ2nλ
2EW 0

n−1 + 8ρ2nMH(1 + γ2)EW−1n−1 + 4ρ2n−1σ
2.

�

Proposition 4. Under assumption (A1), there exists an n0 > 0 such that, when using a constant
step size ρ = 1/

√
n and λ = 0, the Polyak-Ruppert averaged iterates V n, for n ≥ n0 verify:

E‖V n − V ∗‖2L2(p) ≤ O(1/
√
n).

Proof of Proposition 4. We use Lemma 6 with λ = 0: if ρk ≤ ρ̄,
EW 0

k ≤ EW 0
k−1 − ρk(1− γ)EW−1k−1 + 4ρ2kσ

2.

We use a constant step size ρ. Then:

EW−1k−1 ≤
EW 0

k−1 − EW 0
k

ρ(1− γ)
+

4ρσ2

1− γ
.

Summing for k and dividing by n, we get a telescoping sum:

1

n

n∑
k=1

EW−1k−1 ≤
EW 0

0 − EW 0
n

nρ(1− γ)
+

4ρσ2

1− γ
≤ EW 0

0

nρ(1− γ)
+

4ρσ2

1− γ
.

Using Jensen’s inequality:

E‖V n − V ∗‖2L2(p) ≤
‖V ∗‖2H

(1− γ)ρn
+

4ρσ2

1− γ
.

We choose a constant step size ρ = 1/
√
n. For n ≥ n0 := 1/ρ̄2, ρn ≤ ρ̄, hence the application of

Lemma 6 is valid and we get a rate:

E‖V n − V ∗‖2L2(p) ≤ O(1/
√
n).

�

Proof of Theorem 1. For each case, we first assume that λ and ρn are such that the conditions of
Lemma 6 are satisfied. Then we pick particular choices of λ and ρn to obtain the convergence rate,
and check that the conditions are indeed satisfied.

(a) Let λ > 0 and ρ a constant step size such that ρ ≤ ρ̄ and ρ ≤ 1/(2λ). In this case, Lemma 6
reads:

EW 0
n ≤ (1− ρλ)EW 0

n−1 − ρ(1− γ)EW−1n−1 + 4ρ2σ2.

In particular:

EW 0
n ≤ (1− ρλ)EW 0

n−1 + 4ρ2σ2. (41)

Removing the fixed point of this inequality (41) on both sides, we get:

EW 0
n −

4ρσ2

λ
≤ (1− ρλ)

(
EW 0

n−1 −
4ρσ2

λ

)
. (42)

Since ρλ ≤ 1/2, this is a contracting geometric sequence and, applying (42) recursively, we get:

EW 0
n −

4ρσ2

λ
≤ (1− ρλ)n

(
EW 0

0 −
4ρσ2

λ

)
≤ (1− ρλ)nEW 0

0 .

Finally, using Prop. 1:

EW 0
n ≤

4ρσ2

λ
+ (1− ρλ)n

MH‖r‖2L2(p)

λ2
. (43)

We now consider specific choices of λ and ρ. Let λ = λ0n
− 1

3+θ and ρ = logn
λn , for some λ0. Let us

look at the conditions of Lemma 6:
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• ρ ≤ 1/(2λ) if and only if logn
n ≤ 1/2, which is true for all n ≥ 1.

• ρ ≤ ρ̄ if and only if (log n)n
1

3+θ−1/λ0 ≤ ρ̄. Since θ > −1, 1
3+θ − 1 < −1/2, hence

(log n)n
1

3+θ−1/ρ̄→ 0. In particular it is bounded for all n ≥ 1. Hence defining:

λ
(0)
θ := max{(log n)n

1
3+θ−1/ρ̄ | n ≥ 1},

then for λ0 ≥ λ(0)θ , ρ ≤ ρ̄ is satisfied. Note that λ(0)θ is independent of n.

For this choice of λ and ρ, we get:

EW 0
n ≤

4σ2 log n

λ20n
1− 2

3+θ

+

(
1− log n

n

)n MH‖r‖2L2(p)

λ20n
− 2

3+θ

.

For n ≥ 1, log
(

1− logn
n

)
≤ − logn

n , hence
(

1− logn
n

)n
≤ 1/n and:

EW 0
n ≤

4σ2(log n)n−
1+θ
3+θ

λ20
+
MH‖r‖2L2(p)

λ20
n−

1+θ
3+θ .

We can then obtain convergence to V ∗ at the same rate, using Prop. 2:

E‖Vn − V ∗‖2L2(p) ≤ 2MHE‖Vn − V ∗λ ‖2H + 2‖V ∗λ − V ∗‖2L2(p)

≤ 8MHσ
2

λ20
(log n)n−

1+θ
3+θ +

2M2
H‖r‖2L2(p)

λ20
n−

1+θ
3+θ

+
2‖Σ−θ/2V ∗‖2Hλ

1+θ
0

(1− γ)2
n−

1+θ
3+θ .

(b) Let λ > 0 and ρ a constant step size such that ρ ≤ ρ̄ and ρ ≤ 1/(2λ). In this case, Lemma 6
reads, for each k ∈ {1, ..., n}:

EW 0
k ≤ (1− ρλ)EW 0

k−1 − ρ(1− γ)EW−1k−1 + 4ρ2σ2. (44)

Using (44) recursively, we obtain:

EW 0
n ≤ (1− ρλ)nEW 0

0 − (1− γ)ρ

n∑
k=1

(1− ρλ)n−kEW−1k−1 + 4σ2ρ2
n∑
k=1

(1− ρλ)n−k.

Re-arranging the terms, we get:
n∑
k=1

(1− ρλ)n−kEW−1k−1 ≤
(1− ρλ)n

ρ(1− γ)
EW 0

0 −
1

ρ(1− γ)
EW 0

n +
4σ2ρ

1− γ

n∑
k=1

(1− ρλ)n−k

n∑
k=1

(1− ρλ)n−kEW−1k−1 ≤
(1− ρλ)n

ρ(1− γ)

MH‖r‖2L2(p)

λ2
+

4σ2ρ

1− γ

n∑
k=1

(1− ρλ)n−k,

using Prop. 1 on the last line.

Since
∑n
k=1(1− ρλ)n−k = 1−(1−ρλ)n

ρλ , we get:∑n
k=1(1− ρλ)n−kEW−1k−1∑n

k=1(1− ρλ)n−k
≤ (1− ρλ)n

1− (1− ρλ)n

MH‖r‖2L2(p)

λ(1− γ)
+

4σ2ρ

1− γ

Using Jensen’s inequality, we get:

E‖V (e)
n − V ∗λ ‖2L2(p) ≤

(1− ρλ)n

1− (1− ρλ)n

MH‖r‖2L2(p)

λ(1− γ)
+

4σ2ρ

1− γ
, (45)

with V (e)
n :=

∑n
k=1(1−ρλ)

n−kVk−1∑n
k=1(1−ρλ)n−k

the exponentially weighted average iterate.

Let λ = λ0n
− 1

2+θ , for some λ0 > 0, and ρ = logn
λn . The conditions of Lemma 6 are:

• ρ ≤ 1/(2λ) if and only if logn
n ≤ 1/2, which is true for all n ≥ 1.
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• ρ ≤ ρ̄ if and only if (log n)n
1

2+θ−1/λ0 ≤ ρ̄. Since θ > −1, 1
2+θ−1 < 0, hence (log n)n

1
2+θ−1/ρ̄→

0. In particular it is bounded for all n ≥ 1. Hence defining:

λ
(e)
θ := max{(log n)n

1
2+θ−1/ρ̄ | n ≥ 1},

then for λ0 ≥ λ(e)
θ , ρ ≤ ρ̄ is satisfied. Again, λ(e)

θ is independent of n.

For this choice of parameters, for n ≥ 2:

(1− ρλ)
n

=

(
1− log n

n

)n
= exp

(
n log

(
1− log n

n

))
≤ exp

(
n

(
− log n

n

))
≤ 1

n
≤ 1

2
.

Hence:

E‖V (e)
n − V ∗λ ‖2L2(p) ≤ 2(1− ρλ)n

n
1

2+θMH‖r‖2L2(p)

λ0(1− γ)
+

4σ2(log n)n−
1+θ
2+θ

λ0(1− γ)

≤ 2

n
·
n

1
2+θMH‖r‖2L2(p)

λ0(1− γ)
+

4σ2(log n)n−
1+θ
2+θ

λ0(1− γ)

≤
2n−

1+θ
2+θMH‖r‖2L2(p)

λ0(1− γ)
+

4σ2(log n)n−
1+θ
2+θ

λ0(1− γ)
.

We then obtain convergence to V ∗ at the same rate, using Prop. 2:

E‖V (e)
n − V ∗‖2L2(p) ≤ 2E‖V (e)

n − V ∗λ ‖2L2(p) + 2‖V ∗λ − V ∗‖2L2(p)

≤
4MH‖r‖2L2(p)

λ0(1− γ)
n−

1+θ
2+θ +

8σ2

λ0(1− γ)
(log n)n−

1+θ
2+θ

+
2‖Σ−θ/2V ∗‖2Hλ

1+θ
0

(1− γ)2
n−

1+θ
2+θ .

(c) Let n ≥ 1 and λ > 0. We will consider a different step size schedule: first constant, then
decreasing. For k ∈ {1, ..., bn/2c−1}, set ρk = 2 logn

λn =: ρ. Then for k ∈ {bn/2c, ..., n}, set ρk = 1
λk .

• We first look at the first bn/2c − 1 iterates.

Assume that λ is chosen such that ρ ≤ min{1/(2λ), ρ̄}. Under this condition, using the result (43)
that we derived above for setting (a):

EW 0
bn/2c−1 ≤

4ρσ2

λ
+ (1− ρλ)bn/2c−1

MH‖r‖2L2(p)

λ2
. (46)

• Now for the next iterates, ρk = 1
λk . We also assume that λ is chosen such that ∀k ∈ {bn/2c, ..., n},

ρk ≤ min{1/(2λ), ρ̄}. Under this condition, for k ∈ {bn/2c, ..., n}, Lemma 6 reads:

EW 0
k ≤ (1− ρkλ)EW 0

k−1 − ρk(1− γ)EW−1k−1 + 4ρ2kσ
2.

Re-arranging the terms:

EW−1k−1 ≤
1

1− γ

(
1

ρk
− λ
)
EW 0

k−1 −
1

1− γ
1

ρk
EW 0

k +
4σ2

1− γ
ρk. (47)

The step size is such that:

1/ρk − λ = λk − λ = λ(k − 1) = 1/ρk−1,

where the very last equality only holds for k ≤ bn/2c+ 1 (because of overlapping notations).

Summing the above inequalities (47) for k ∈ {bn/2c, ..., n}, we obtain a telescoping sum:
n∑

k=bn/2c

EW−1k−1 ≤
1

1− γ

n∑
k=bn/2c

(EW 0
k−1

ρk−1
− EW 0

k

ρk

)
+

4σ2

1− γ

n∑
k=bn/2c

ρk

≤ 1

1− γ
λ(bn/2c − 1)EW 0

bn/2c−1 +
4σ2

1− γ

n∑
k=bn/2c

1

λk
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≤ λn

2(1− γ)
EW 0

bn/2c−1 +
4σ2

1− γ
1 + log n

λ
.

Using the result (46) on the first half of the iterates, (for n ≥ 3 so that 1 + log(n) ≤ 2 log n):
n∑

k=bn/2c

EW−1k−1 ≤
λn

2(1− γ)

[
4ρσ2

λ
+ (1− ρλ)bn/2c−1

MH‖r‖2L2(p)

λ2

]
+

8σ2

1− γ
log n

λ

≤ λn

2(1− γ)

[
8(log n)σ2

λ2n
+

(
1− 2 log n

n

)bn/2c−1 MH‖r‖2L2(p)

λ2

]

+
8σ2

1− γ
log n

λ
.

Let us look at the central term:(
1− 2 log n

n

)bn/2c−1
=

(
1− 2 log n

n

)n/2(
1− 2 log n

n

)bn/2c−1−n/2
Since 2 log n/n ∈ [0, 1] for any n ≥ 1, and bn/2c − n/2− 1 ≥ −2, we have:(

1− 2 log n

n

)bn/2c−1−n/2
≤
(

1− 2 log n

n

)−2
≤ max

u≥1

[(
1− 2 log u

u

)−2]
≤ 16.

Hence: (
1− 2 log n

n

)bn/2c−1
≤ 16

(
1− 2 log n

n

)n/2
≤ 16 exp

(
n/2 log

(
1− 2 log n

n

))
≤ 16 exp

(
−n/2× 2 log n

n

)
≤ 16/n.

Coming back to the telescoping sum:
n∑

k=bn/2c

EW−1k−1 ≤
λn

2(1− γ)

[
8(log n)σ2

λ2n
+

16

n

MH‖r‖2L2(p)

λ2

]
+

8σ2

1− γ
log n

λ
.

Dividing by n− bn/2c+ 1 ≥ n/2:

1

n− bn/2c+ 1

n∑
k=bn/2c

EW−1k−1 ≤
1

(1− γ)

[
8(log n)σ2

λn
+

16

n

MH‖r‖2L2(p)

λ

]
+

16σ2

1− γ
log n

λn
.

All the terms are of order Õ( logn
λn ).

Consider the n-th tail averaged iterate:

V (t)
n :=

1

n− bn/2c+ 1

n∑
k=bn/2c

Vk−1.

Using Jensen’s inequality, we have a bound on its distance to V ∗λ :

E‖V (t)
n − V ∗λ ‖2L2(p) ≤

16

n

MH‖r‖2L2(p)

λ(1− γ)
+

24σ2

1− γ
log n

λn
.

Now we need to choose λ such that ρk ≤ min{1/(2λ), ρ̄}, for all k. Let λ = λ0n
− 1

2+θ .

• For the first half, ρ = 2 logn
λn , and ρ ≤ 1/(2λ) if and only if log n/n ≤ 4, which is true for n ≥ 9.

Now ρ ≤ ρ̄ is equivalent to 2 logn
λn = (log n)n

1
2+θ−1/λ0 ≤ ρ̄. Since θ > −1, 1

2+θ − 1 < 0 and
(log n)n

1
2+θ−1/ρ̄→ 0. In particular it is bounded for all n ≥ 1. Hence using again:

λ
(e)
θ = max{(log n)n

1
2+θ−1/ρ̄ | n ≥ 1},
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then for λ0 ≥ λ(e)
θ , ρ ≤ ρ̄ is satisfied.

• For the second half, ρk is decreasing with k, hence a sufficient condition is that:
1

λbn/2c
= ρbn/2c ≤ min{1/(2λ), ρ̄}.

For n ≥ 4, bn/2c ≥ 2 and ρbn/2c ≤ 1/(2λ). On the other hand, the second condition reads:

1

λbn/2c
=

n
1

2+θ

λ0bn/2c
≤ 4n

1
2+θ−1

λ0
≤ ρ̄,

for n ≥ 2. Since θ > −1, 1
2+θ − 1 < 0 and 4n

1
2+θ−1/ρ̄→ 0. In particular it is bounded for all n ≥ 1.

Hence using:
λ
(t)
θ := max{max{4n

1
2+θ−1/ρ̄ | n ≥ 1}, λ(e)

θ },

then for λ0 ≥ λ(t)
θ , ρk ≤ ρ̄ is satisfied for all k.

For this specific choice of λ, we have the final bound:

E‖V (t)
n − V ∗‖2L2(p) ≤ 2E‖V (t)

n − V ∗λ ‖2H + 2‖V ∗λ − V ∗‖2L2(p)

≤ 32

n

MH‖r‖2L2(p)

λ(1− γ)
+

48σ2

1− γ
log n

λn
+

2‖Σ−θ/2V ∗‖2Hλ
1+θ
0

(1− γ)2
n−

1+θ
2+θ

≤
32MH‖r‖2L2(p)

λ0(1− γ)
n−

1+θ
2+θ +

48σ2

λ0(1− γ)
(log n)n−

1+θ
2+θ

+
2‖Σ−θ/2V ∗‖2Hλ

1+θ
0

(1− γ)2
n−

1+θ
2+θ .

Finally, we define λθ := max{λ(0)θ , λ
(e)
θ , λ

(t)
θ } which is used in the theorem as lower bound on λ0. �

A.4. Stochastic TD with Markovian sampling

We begin by reproducing Lemma 9 from [10]:

Lemma 7 (Control of couplings). Consider two random variables X and Y such that:

X → xn → xn+τ → Y

forms a Markov chain, for some fixed n ≥ 1 with τ > 0. Assume the Markov chain mixes at uniform
geometric rate. Let X ′ and Y ′ denote independent copies drawn from the marginal distributions of
X and Y , so that

P(X ′ = ·, Y ′ = ·) = P(X = ·)⊗ P(Y = ·).
Then for any bounded function h:

|E[h(X,Y )]− E[h(X ′, Y ′)]| ≤ 2‖h‖∞mµτ .

Note that, here, ⊗ does not refer to the outer product in the RKHS H but to the independent
product of probability distributions.

Then we can state a descent lemma, similar to Lemma 6:

Lemma 8. Assume that ‖V ∗λ ‖H ≤ B and that the Markov chain mixes geometrically. Let:
G2 := 4M2

HB
2 + λ2B2 +MHR

2/2
L := 12MHB + 2

√
MHR

C := 2MHB + λB +
√
MHR

C ′ := 8MHB
2 + 4

√
MHBR.

Then for n ≥ 1 and τ > 1:

EW 0
n ≤ (1− 2ρnλ)EW 0

n−1 − 2ρn(1− γ)EW−1n−1 + 2ρn

(
2C ′mµτ + LC

n−1∑
k=n−τ

ρk

)
+ 4G2ρ2n. (48)
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Proof of Lemma 8. Because of correlations between samples, the proof of Lemma 6 breaks here:

E[〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H] 6= E[〈Vn−1 − V ∗λ , (A− λI)Vn−1 + b〉H].

A similar thing occurs in the variance term, where we cannot apply Lemma 5. An easy fix is to
assume that what is inside the variance remains bounded a.s. This is allowed by our projection
step. We can now assume that a.s., ∀n, ‖Vn‖H ≤ B. Hence a.s.:

‖AnVn−1‖H ≤ ‖An‖opB ≤ 2MHB.

Indeed, for f ∈ H:

‖Anf‖H ≤ ‖Φ(xn)⊗ Φ(x′n)f‖H + ‖Φ(xn)⊗ Φ(xn)f‖H
≤
(
|〈f,Φ(x′n)〉H|+ |〈f,Φ(xn)〉H|

)
‖Φ(xn)‖H

≤ 2‖f‖H
√
MH

√
MH = 2MH‖f‖H.

Also, since the reward function is uniformly bounded by R:

‖bn‖2H = ‖r(xn)Φ(xn)‖2H ≤ R2MH.

Finally, since ΠB is a contraction mapping in H norm, this will not impact the proof.

Decomposition of errors. Let us now reproduce the beginning of the proof of Lemma 6. We
have this decomposition a.s.:

W 0
n = ‖Vn − V ∗λ ‖2H

= ‖ΠB [Vn−1 + ρn((An − λI)Vn−1 + bn)]−ΠBV
∗
λ ‖2H

≤ ‖Vn−1 + ρn((An − λI)Vn−1 + bn)− V ∗λ ‖2H
= ‖Vn−1 − V ∗λ ‖2H + 2ρn〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H

+ ρ2n‖(An − λI)Vn−1 + bn‖2H
≤W 0

n−1 + 2ρn〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H
+ 2ρ2n‖(An − λI)Vn−1‖2 + 2ρ2n‖bn‖2

≤W 0
n−1 + 2ρn〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H

+ 4ρ2n(4M2
HB

2 + λ2B2) + 2ρ2nR
2MH.

Taking the expectation with respect to Fn = σ(z1, ..., zn) (where zi = (xi, x
′
i)), we get three terms:

EW 0
n ≤ EW 0

n−1 + 2ρnE [〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H]

+ ρ2n (16M2
HB

2 + 4λ2B2 + 2MHR
2)︸ ︷︷ ︸

:=4G2

.

We then deal with the central expectation.

E [〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H] = E [〈Vn−1 − V ∗λ , (A− λI)Vn−1 + b〉H]

+ E [〈Vn−1 − V ∗λ , (An −A)Vn−1 + (bn − b)〉H] .

The first term has already been treated in Lemma 3:

E [〈Vn−1 − V ∗λ , (A− λI)Vn−1 + b〉H] ≤ −(1− γ)EW−1n−1 − λEW 0
n−1.

To control the remaining expectation (the bias), we must use a coupling argument. We use the
notation:

ζ(Vn−1, zn) := 〈Vn−1 − V ∗λ , (An −A)Vn−1 + (bn − b)〉H.
Note that in general:

Eζ(Vn−1, zn) = E[E[ζ(Vn−1, zn)|Fn−1]] 6= 0,

where Fk = σ(z1, ..., zk) = σ(z1, V1, ..., zk, Vk). The dependence between the random variables is
summarized in the following diagram.
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Markov process : z1 z2 z3 · · · zn−1 zn

TD iterates : V1 V2 V3 · · · Vn−1 Vn

Using the mixing assumption, we can control the deviation between the expectations of a bounded
function of two iterates separated by τ steps, in the coupled v.s. the decoupled case. In other words,
if τ is large, we can almost consider the iterates are independent. This is achieved using Lemma 7.

Bounding the bias. Our goal here is to find an upper-bound of E[ζ(Vn−1, zn)]. Let τ ∈ N, τ > 1.
This can be done in two steps:

(1) Relate E[ζ(Vn−1, zn)] to E[ζ(Vn−1−τ , zn)], because ζ is Lipschitz in the first variable, as a
quadratic function over a bounded domain. This is true almost surely, hence in expectation.

(2) Relate E[ζ(Vn−1−τ , zn)] to E[ζ(V ′n−1−τ , z
′
n)] = 0, where V ′n−1−τ and z′n are independent

copies of Vn−1−τ and zn that are decoupled.

(1) First we prove that ζ is L-Lipschitz in the first variable on the H ball of radius B: for fixed
V, V ′ ∈ H with norm bounded by B, and zn:

|ζ(V, zn)− ζ(V ′, zn)| =
∣∣∣〈(An −A)V + bn − b, V − V ∗λ 〉H

− 〈(An −A)V ′ + bn − b, V ′ − V ∗λ 〉H
∣∣∣

=
∣∣∣〈(An −A)V + bn − b, V − V ′〉H

+ 〈(An −A)(V − V ′), V ′ − V ∗λ 〉H
∣∣∣,

where we have used the equality:

〈a, b〉 − 〈c, d〉 = 〈a, b− d〉+ 〈a− c, d〉.

|ζ(V, zn)− ζ(V ′, zn)| ≤ ‖(An −A)V + bn − b‖H · ‖V − V ′‖H
+ ‖(An −A)(V − V ′)‖H · ‖V ′ − V ∗λ ‖H

≤ (4MHB + 2
√
MHR)‖V − V ′‖H + 8MHB‖V − V ′‖H

= L‖V − V ′‖H,

for L := 4MHB + 2
√
MHR+ 8MHB.

Then almost surely, since all the Vk are such that ‖Vk‖H ≤ B:

ζ(Vn−1, zn) ≤ ζ(Vn−1−τ , zn) + |ζ(Vn−1, zn)− ζ(Vn−1−τ , zn)|
≤ ζ(Vn−1−τ , zn) + L‖Vn−1 − Vn−1−τ‖H

≤ ζ(Vn−1−τ , zn) + L

n−1∑
k=n−τ

‖Vk − Vk−1‖H

= ζ(Vn−1−τ , zn) + L

n−1∑
k=n−τ

ρk‖AkVk−1 − λVk−1 + bk‖H

≤ ζ(Vn−1−τ , zn) + L

n−1∑
k=n−τ

ρk (2MHB + λB +
√
MHR)︸ ︷︷ ︸

=:C

.
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Taking the expectation w.r.t. P(z1, ..., zn):

Eζ(Vn−1, zn) ≤ Eζ(Vn−1−τ , zn) + LC

n−1∑
k=n−τ

ρk.

(2) Then we use a coupling argument with Lemma 7. First, we need to bound ‖ζ‖∞.

For fixed V , zn, with ‖V ‖H ≤ B, almost surely:

|ζ(V, zn)| = |〈(An −A)V + bn − b, V − V ∗λ 〉H|

≤ ‖V − V ∗λ ‖H
(
‖(An −A)V ‖H + ‖bn − b‖H

)
≤ 2B(4MHB + 2

√
MHR) =: C ′.

In Lemma 7, set X = (z1, ..., zn−1−τ ) and Y = zn. Since:

X → xn−τ → xn → Y

forms a Markov chain, then let X ′ and Y ′ denote independent copies drawn from the marginal
distributions of X and Y , so that P(X ′ = ·, Y ′ = ·) = P(X = ·)⊗P(Y = ·). Then applying Lemma 7
to the function h : (X,Y )→ ζ(Vn−1−τ , zn) (recalling that Vn−1−τ is fully determined by the values
of X):

|E[h(X,Y )]− E[h(X ′, Y ′)]| ≤ 2‖h‖∞mµτ .
In other words:

|Eζ(Vn−1−τ , zn)− Eζ(V ′n−1−τ , z
′
n)| ≤ 2C ′mµτ .

By definition of the random variables X ′, Y ′:

Eζ(V ′n−1−τ , z
′
n) = E[E[ζ(V ′n−1−τ , z

′
n)|V ′n−1−τ ]] = 0.

Putting everything together, we get:

Eζ(Vn−1, zn) ≤ Eζ(Vn−1−τ , zn) + LC

n−1∑
k=n−τ

ρk

≤ 2C ′mµτ + LC

n−1∑
k=n−τ

ρk.

Using this upper-bound is interesting if mµτ is of the order of
∑n−1
k=n−τ ρk. Else (for small n), one

can always choose τ = n− 1, so that, because V0 is deterministic:

Eζ(Vn−1, zn) ≤ Eζ(V0, zn)︸ ︷︷ ︸
=0

+LC

n−1∑
k=1

ρk.

�

Proof of Theorem 2. We use a constant step size ρ. From Lemma 8:

EW 0
n ≤ (1− 2ρλ)EW 0

n−1 − 2ρ(1− γ)EW−1n−1 + 2ρ (2C ′mµτ + LCτρ) + 4G2ρ2.

In particular, we choose τ such that µτ = ρ, that is τ = log ρ
log µ = log(1/ρ)

log(1/µ) . Then:

EW 0
n ≤ (1− 2ρλ)EW 0

n−1 − 2ρ(1− γ)EW−1n−1 + 2ρ

(
2C ′mρ+ LCρ

log(1/ρ)

log(1/µ)

)
+ 4G2ρ2

≤ (1− 2ρλ)EW 0
n−1 − 2ρ(1− γ)EW−1n−1 + ρ2

4C ′m+ 2LC
log(1/ρ)

log(1/µ)
+ 4G2︸ ︷︷ ︸

=:4σ̃2
λ,ρ

 .
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This expression is similar to (44). Adapting the proof of Thm. 1 (b), we obtain:

E‖V (e)
n − V ∗λ ‖2L2(p) ≤

(1− 2ρλ)n

1− (1− 2ρλ)n

MH‖r‖2L2(p)

λ(1− γ)
+

2ρσ2
λ,ρ

1− γ
,

with V (e)
n =

∑n
k=1(1−2ρλ)

n−kVk−1∑n
k=1(1−2ρλ)n−k

the exponentially weighted average iterate.

Finally:

E‖V (e)
n − V ∗‖2L2(p) ≤

2(1− 2ρλ)n

1− (1− 2ρλ)n

MH‖r‖2L2(p)

λ(1− γ)
+

4ρσ2
λ,ρ

1− γ
+

2‖Σ−θ/2V ∗‖2H
(1− γ)2

λ1+θ.

Note that σ2
λ,ρ depends on λ, ρ, and B. We look at two cases:

(i) we are given an oracle on B that does not depend on λ.
(ii) we use the bound of order O(1/λ) given by Prop. 1:

B =

√
MH‖r‖L2(p)

λ
.

Case (i): with oracle. For a fixed λ (later chosen to be the optimal one), assume we know a
bound B on ‖V ∗λ ‖H. Then B = O(1), and assuming λ = O(1), we only keep track of the dependence
in µ and put all the other constants in O(1):

σ2
λ,ρ = O

(
log(1/ρ)

log(1/µ)

)
+O(1).

Let us look for λ of the form λ = n−α with α ∈ (0, 1):

E‖V (e)
n − V ∗‖2L2(p) ≤ O

(
(1− 2ρλ)n

1− (1− 2ρλ)n
1

λ

)
+O

(
ρ

log(1/ρ)

log(1/µ)

)
+O(ρ) +O

(
λ1+θ

)
.

Let us now set ρ = logn
2λn :

E‖V (e)
n − V ∗‖2L2(p) ≤ O

(
1

nλ

)
+O

(
log n

λn

log(1/ρ)

log(1/µ)

)
+O(ρ) +O

(
λ1+θ

)
.

Expressing everything with n only:

E‖V (e)
n − V ∗‖2L2(p) ≤ O

(
nα−1

)
+O

(
(log n)2nα−1

log(1/µ)

)
+O

(
(log n)nα−1

)
+O

(
n−α(1+θ)

)
.

The first and third terms are smaller than the second one. We can choose α such that: α− 1 =
−α(1 + θ) ⇐⇒ α = 1

2+θ , hence we get the convergence rate:

E
[
‖V (e)

n − V ∗‖2L2(p)

]
≤ O

(
(log n)2n−

1+θ
2+θ

log(1/µ)

)
.

Case (ii): without oracle.

Now B = O(1/λ). Let us unroll all the constants to see the full dependencies:

σ2
λ,ρ = C ′m+

1

2
LC

log(1/ρ)

log(1/µ)
+G2

= 8mMHB
2 + 4m

√
MHRB

+
(

12MHB + 2
√
MHR

)(
2MHB + λB +

√
MHR

) log(1/ρ)

2 log(1/µ)

+ 4M2
HB

2 + λ2B2 +MHR
2/2

= B2

(
8mMH + 4M2

H + λ2 + 12M2
H

log(1/ρ)

log(1/µ)
+ 6λMH

log(1/ρ)

log(1/µ)

)
+B

(
4m
√
MHR+ 8M

3/2
H R

log(1/ρ)

log(1/µ)
+ λ
√
MHR

log(1/ρ)

log(1/µ)

)
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+

(
MHR

2/2 +MHR
2 log(1/ρ)

log(1/µ)

)
.

We focus on the case λ = O(1), so this simplifies a bit to:

σ2
λ,ρ = O(B2) +O

(
log(1/ρ)

log(1/µ)
B2

)
+O(B) +O

(
log(1/ρ)

log(1/µ)
B

)
+O(1) +O

(
log(1/ρ)

log(1/µ)

)
.

On the other hand, B = O(1/λ), hence:

σ2
λ,ρ = O(1/λ2) +O

(
log(1/ρ)

λ2 log(1/µ)

)
+O

(
1

λ

)
+O

(
log(1/ρ)

λ log(1/µ)

)
+O(1) +O

(
log(1/ρ)

log(1/µ)

)
.

Let us look for λ of the form λ = n−α with α ∈ (0, 1).

In this case σ2
λ,ρ = O(1/λ2) +O

(
log(1/ρ)
log(1/µ)1/λ

2
)
and:

E‖V (e)
n − V ∗‖2L2(p) ≤ O

(
(1− 2ρλ)n

1− (1− 2ρλ)n
1

λ

)
+O

( ρ
λ2

)
+O

(
ρ

λ2
log(1/ρ)

log(1/µ)

)
+O

(
λ1+θ

)
.

Let us now set ρ = logn
2λn :

E‖V (e)
n − V ∗‖2L2(p) ≤ O

(
1

nλ

)
+O

(
log n

λ3n

)
+O

(
log n

λ3n

log(1/ρ)

log(1/µ)

)
+O

(
λ1+θ

)
.

Expressing everything with n only:

E‖V (e)
n − V ∗‖2L2(p) ≤ O

(
nα−1

)
+O

(
(log n)n3α−1

)
+O

(
(log n)2n3α−1

log(1/µ)

)
+O

(
n−α(1+θ)

)
.

The first and second term are smaller than the third one. We can choose α such that: 3α− 1 =
−α(1 + θ) ⇐⇒ α = 1

4+θ , hence we get the convergence rate:

E
[
‖V (e)

n − V ∗‖2L2(p)

]
≤ O

(
(log n)2n−

1+θ
4+θ

log(1/µ)

)
.

�

Corollary 2. Assuming (A2) and that the samples are produced by a Markov chain with uniform
geometric mixing (A3), the projected τ -Skip-TD iterations (27) are such that:

(i) Using λ = n−
1

2+θ , a constant step size ρ = logn
2λn , τ = d log(1/ρ)log(1/µ) + 1e, and a projection radius B

which is provided by an oracle and such that ‖V ∗λ ‖H ≤ B, then:

E
[
‖V (e)

n/τ − V
∗‖2L2(p)

]
≤ O

(
(log n)n−

1+θ
2+θ

log(1/µ)

)
. (49)

(ii) Using λ = n−
1

4+θ , ρ = logn
2λn , τ = d log(1/ρ)log(1/µ) + 1e, and the projection radius B of Prop. 1, then:

E
[
‖V (e)

n/τ − V
∗‖2L2(p)

]
≤ O

(
(log n)n−

1+θ
4+θ

)
, (50)

assuming that n is a multiple of τ , with V (e)
n =

∑n
k=1(1− 2ρλ)n−kVk−1/

∑n
j=1(1− 2ρλ)n−j.

Proof of Corollary 2. We consider the iterates (27), for some positive integer τ to be chosen later.
The beginning of the proof of Lemma 8 can be reproduced:

EW 0
n ≤ EW 0

n−1 + 2ρnE [〈Vn−1 − V ∗λ , (Anτ − λI)Vn−1 + bnτ 〉H] + 4ρ2nG
2

≤ (1− 2ρnλ)EW 0
n−1 − 2ρn(1− γ)EW−1n−1 + 4G2ρ2n + 2ρnEζ(Vn−1, znτ ).

The only difference is that we now consider Eζ(Vn−1, znτ ) instead of Eζ(Vn−1, zn). To bound it, we
do not need the step (1) (which exploits the fact that ζ is Lipschitz), and directly go to step (2).
The dependencies between the random variables are now:
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Markov process : zτ(n−1) zτ(n−1)+1 · · · zτn−1 zτn

Skip-TD iterates : Vn−1 Vn

Applying again Lemma 7, we get the upper-bound:

|Eζ(Vn−1, znτ )− Eζ(V ′n−1, z
′
nτ )| ≤ 2C ′mµτ−1,

where V ′n−1, and z′nτ are independent copies such that Eζ(V ′n−1, z
′
nτ ) = 0.

Now, using a constant step size ρ, we set τ := d log(1/ρ)log(1/µ) + 1e, such that µτ−1 ≤ ρ. Then:

EW 0
n ≤ (1− 2ρλ)EW 0

n−1 − 2ρ(1− γ)EW−1n−1 + 4G2ρ2 + 4ρ2C ′m.

Now we can do the same proof as for Theorem 2 with σ2
λ,ρ = C ′m+G2, now independent of ρ:

E‖V (e)
n − V ∗‖2L2(p) ≤

2(1− 2ρλ)n

1− (1− 2ρλ)n

MH‖r‖2L2(p)

λ(1− γ)
+

4ρσ2
λ,ρ

1− γ
+

2‖Σ−θ/2V ∗‖2H
(1− γ)2

λ1+θ.

Case (i): with oracle. Now σ2
λ,ρ = O(1). We look for λ of the form λ = n−α, α ∈ (0, 1):

E‖V (e)
n − V ∗‖2L2(p) ≤ O

(
(1− 2ρλ)n

1− (1− 2ρλ)n
1

λ

)
+O(ρ) +O

(
λ1+θ

)
.

Let us now set ρ = logn
2λn :

E‖V (e)
n − V ∗‖2L2(p) ≤ O

(
1

nλ

)
+O(ρ) +O

(
λ1+θ

)
.

Of course, to compute the n-th iteration, one needs to generate τn samples from the Markov chain.
So for a fair comparison, we must look at the convergence of Vn/τ (assuming n is a multiple of τ
for simplicity):

E‖V (e)
n/τ − V

∗‖2L2(p) ≤ O
( τ

nλ

)
+O(ρ) +O

(
λ1+θ

)
.

τ is such that:

τ = O

(
log(1/ρ)

log(1/µ)

)
= O

(
log n

log(1/µ)

)
.

Expressing everything with n only:

E‖V (e)
n/τ − V

∗‖2L2(p) ≤ O
(

log n

log(1/µ)
nα−1

)
+O

(
(log n)nα−1

)
+O

(
n−α(1+θ)

)
.

Choosing α such that: α− 1 = −α(1 + θ) ⇐⇒ α = 1
2+θ , we get the convergence rate:

E
[
‖V (e)

n/τ − V
∗‖2L2(p)

]
≤ O

(
(log n)n−

1+θ
2+θ

log(1/µ)

)
.

Case (ii): without oracle. Using B = O(1/λ), now:

σ2
λ,ρ = O(1/λ2) +O

(
1

λ

)
+O(1).



30

Let us look for λ of the form λ = n−α with α ∈ (0, 1). We also set ρ = logn
2λn . In this case

σ2
λ,ρ = O(1/λ2) and:

E‖V (e)
n − V ∗‖2L2(p) ≤ O

(
(1− 2ρλ)n

1− (1− 2ρλ)n
1

λ

)
+O

( ρ
λ2

)
+O

(
λ1+θ

)
≤ O

(
1

nλ

)
+O

( ρ
λ2

)
+O

(
λ1+θ

)
.

If n is a multiple of τ :

E‖V (e)
n/τ − V

∗‖2L2(p) ≤ O
( τ

nλ

)
+O

( ρ
λ2

)
+O

(
λ1+θ

)
.

τ is such that:

τ = O

(
log(1/ρ)

log(1/µ)

)
= O

(
log n

log(1/µ)

)
.

Expressing everything with n only:

E‖V (e)
n/τ − V

∗‖2L2(p) ≤ O
(

log n

log(1/µ)
nα−1

)
+O

(
(log n)n3α−1

)
+O

(
n−α(1+θ)

)
.

Choosing α such that: 3α− 1 = −α(1 + θ) ⇐⇒ α = 1
4+θ , we get the convergence rate:

E
[
‖V (e)

n/τ − V
∗‖2L2(p)

]
≤ O

(
(log n)n−

1+θ
4+θ

)
.

�

Appendix B. Experimental design

B.1. Geometric mixing of the Markov chain

Lemma 9. Consider the Markov chain defined on the torus [0, 1] by:

• with probability ε, xn+1 ∼ U([0, 1]);
• with probability 1− ε, xn+1 = xn.

This Markov chain mixes to the uniform distribution at uniform geometric rate (1− ε):
sup
x∈[0,1]

dTV
(
P(xn ∈ ·|x0 = x),U([0, 1])

)
≤ (1− ε)n.

Proof. Let x ∈ [0, 1], p = U([0, 1]) the uniform distribution, and pn := P(xn ∈ ·|x0 = x).

We will show that:
dTV (pn, p) ≤ (1− ε)n.

For n = 1, we have:

p1 = P(x1 ∈ ·|x0 = x) = εp+ (1− ε)δx.
Then for n = 2:

P(x2 ∈ ·|x0 = x, x1) = εp+ (1− ε)δx1
.

Taking the marginal with respect to x1|x0:
p2 = P(x2 ∈ ·|x0 = x)

=

∫
(εp+ (1− ε)δx1)dp1(x1)

= εp+ (1− ε)
∫
δx1

(εp(x1) + (1− ε)δx(x1))dx1

= εp+ ε(1− ε)p+ (1− ε)2δx.

A simple recursion on n shows that, for n ≥ 1:

pn = (ε+ (1− ε)ε+ ...+ (1− ε)n−1ε)p+ (1− ε)nδx
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= (1− (1− ε)n)p+ (1− ε)nδx.
Hence:

dTV (pn, p) = sup
A∈A

∣∣∣pn(A)− p(A)
∣∣∣

= (1− ε)n sup
A∈A

∣∣∣δx(A)− p(A)
∣∣∣

≤ (1− ε)n.
�

B.2. Implementation details

The “kernel trick” enables an implementation of the non-parametric TD algorithm up to iteration
n, which only uses the kernel matrix with entries Ki,j := K(xi, xj), for 1 ≤ i, j ≤ n+ 1.

Each value function Vk, for 1 ≤ k ≤ n belongs to the span of the basis of functions (Φ(xj))1≤j≤k:

Vk =

k∑
j=1

αk,jΦ(xj).

Hence Vk is represented in memory by the vector (αk,j)1≤j≤k.

The TD iterations are equivalent to filling the lower-triangular matrix α:
α1,1 = ρ1r(x1)
αk,j = (1− ρkλ)αk−1,j for 1 ≤ j < k ≤ n
αk,k = ρkr(xk) + ρk

∑k−1
j=1 αk−1,j (γKj,k+1 −Kj,k) for 1 ≤ k ≤ n.

At inference time, for x ∈ X, Vk(x) can be computed from α and the vector (K(xj , x))1≤j≤k:

Vk(x) =

k∑
j=1

αk,jK(xj , x).

Finally, averaging can be performed by simple operations on α, which correspond to exchanging
the indices of a triangular sum. Indeed, if:

V (e)
n =

n∑
k=1

wk,nVk−1,

for instance with wk,n := (1− ρλ)n−k/
∑n
k=1(1− ρλ)n−k, then, using that V0 = 0:

V (e)
n =

n∑
k=2

wk,n

k−1∑
j=1

αk−1,jΦ(xj)

=
∑

1≤j<k≤n

wk,nαk−1,jΦ(xj)

=

n−1∑
j=1

Φ(xj)

n∑
k=j+1

wk,nαk−1,j

=

n−1∑
j=1

α
(e)
n,jΦ(xj),

with α(e)
n,j :=

∑n
k=j+1 wk,nαk−1,j .

This implementation requires the storage of O(n2) values and O(n2) computations to compute Vn.
In our Python implementation, the limiting factor is the computation time of the kernel matrix.
When n ≥ 1500 and K2 is used (empirically, the eigenvalues of the kernel matrix have a fast
decrease), we use an incomplete Cholesky decomposition [3] with maximal rank 100 to approximate
the kernel matrix. It is computed online with a fast Cython implementation, and does not require
the compute the whole kernel matrix. Overall, the CPU time for computing Vn for n = 2000 is
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approximately 20 seconds on a standard laptop. Running all the experiments of this paper took a
few hours.

B.3. Additional experiments

We test the robustness of TD to inexact estimations of θ, hence resulting in too large or too
small λ. If θ is under-estimated, our theorems still guarantee convergence for θ > −1, but not if it
is over-estimated. In Fig. 2, we plot the convergence of the averaged iterates for different values
of θ, smaller or larger than the optimal θ = −1/4 (standard deviations have been removed for
readability). Fig. 2 shows that the convergence is quite robust and gives similar results for θ = 0 or
θ = −1/2. A strongly overestimated θ = 1 shows a slow convergence (not covered by our theorems).
However, as expected, with θ = −1, the algorithm does not converge.

102 103

n
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10−2

10−1

100

||V
(e

)
n

−
V

* |
|2 L2

r= rabs, K=K2

θ= − 1
θ= − 1/2
θ= θmax = − 1/4
θ= 0
θ= 1

Figure 2. Convergence of the averaged TD iterates as in Thm. 1(b)
with over and underestimated values of θ.

Finally, we compare TD and τ -Skip-TD, with τ prescribed by Cor. 2. Computing this τ requires
the access to an oracle on the mixing parameter µ (µ = 1 − ε in our example). We then use
τ = d log(1/ρ)log(1/µ) + 1e. We compare the results of TD and τ -Skip-TD for two different values of ε. We
expect similar convergence rates, but with different constants. The results are plotted in Figure 3.
For the fast mixing chain (ε = 0.8), we get comparable results. For the slowly mixing chain
(ε = 0.2), plain TD seems faster, although maybe the asymptotic regime has not been reached yet
for n = 2000.
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|2 L2
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plain TD, ε= 0.8
skip TD, ε= 0.8
plain TD, ε= 0.2
skip TD, ε= 0.2

Figure 3. TD vs τ -Skip-TD with fast (ε = 0.8) and slowly (ε = 0.2) mixing
Markov chains
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