Awaleh Houssein Meraneh

Christophe Clavier

Hélène Le Bouder

Julien Maillard

Gaël Thomas

Gaël Thomas Blind

Side Channel

Awaleh Houssein Meraneh

Blind Side Channel On The Elephant LFSR

Keywords: Blind Side Channel Analysis, Hamming Weight, Elephant, LFSR, NIST

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Internet of things (IoT) devices become more and more widespread within our day-to-day life. From military grade to general purpose hardware, the need for strong security raises. The cryptosystems implemented on those devices must ensure both security and low power consumption overhead. In this context, the National Institute of Standards and Technology (NIST) started the competition for lightweight cryptography candidates for authenticated encryption (NIST, 2018). An authenticated encryption algorithm should ensure confidentiality and integrity of the communications.

The security of authenticated encryption schemes can be supported by several strategies. Various approaches have been considered by the lightweight cryptography competition candidates:

• cryptographic permutation with sponge or duplex construction [START_REF] Daemen | Xoodyak, a lightweight cryptographic scheme[END_REF][START_REF] Beierle | Schwaemm and esch: lightweight authenticated encryption and hashing using the sparkle permutation family[END_REF][START_REF] Daemen | Xoodyak, a lightweight cryptographic scheme[END_REF],

• block cipher combined with a mode (e.g. AES combined with Galois/Counter Mode) [START_REF] Iwata | Duel of the titans: the romulus and remus families of lightweight aead algorithms[END_REF][START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF],

• stream cipher paradigms [START_REF] Hell | Grain-128aead, round 3 tweak and motivation[END_REF].

When discussing about the security of a cryptographic algorithm, numerous tools allow the cryptographers to prove the security of a cipher. Unfortunately those tools do not consider the interac-tion of the computing unit with its physical environment. Physical attacks are a real threat, even for cryptographic algorithms proved secure mathematically. Physical attacks are divided in two families: Side-Channel Analysis (SCA) and the fault injection attacks.

Motivations

Many attacks exist on the different traditional cryptographic algorithms, for example on AES [START_REF] Brier | Correlation power analysis with a leakage model[END_REF][START_REF] Giraud | DFA on AES[END_REF]. Lightweight cryptography, much younger and used in embedded devices, has been far less studied. For example, attacks on stream ciphers [START_REF] Rechberger | Stream ciphers and side-channel analysis[END_REF] or sponge functions [START_REF] Samwel | DPA on hardware implementations of ascon and keyak[END_REF] are less common. That is why we chose to study SCA against new authenticated encryptions. The chosen algorithm is the cryptosystem Elephant [START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF]. More precisely, in this paper, the focus is about using Linear Feedback Shift Registers (LFSR), in a block cipher combined with a mode construction. Some attacks exist yet as in [START_REF] Rechberger | Stream ciphers and side-channel analysis[END_REF][START_REF] Joux | Galois LFSR, Embedded Devices and Side Channel Weaknesses[END_REF][START_REF] Burman | LFSR based stream ciphers are vulnerable to power attacks[END_REF][START_REF] Chakraborty | Fibonacci LFSR vs. galois LFSR: which is more vulnerable to power attacks? In SPACE[END_REF][START_REF] Kazmi | Algebraic side channel attack on trivium and grain ciphers[END_REF][START_REF] Jurecek | Sidechannel attack on the a5/1 stream cipher[END_REF], but the main difference is in model of the attacker. To the best our knowledge, there is no blind side channel attack on LFSR in the context of authenticated encryption. So in this paper, a blind side channel attack targeting the LFSR of the Elephant algorithm, is presented.

Contribution

In this paper, we present the first theoretical blind side channel attack targeting the LFSR of the Elephant algorithm. We exploit the usage of intermediate variables that are statistically dependent to the secret (here the secret LFSR initial state) and show that this structure could eventually threaten the security of a cryptosystem's regarding side-channel analysis.

Also the study of the influence of the choice of the LFSR is presented.

Organisation

The paper is organized as follows. In section 2 the context about blind side channel attack and the Elephant are introduced. The theoretical attack is explained in section 3. Details of implementation attack are described in section 4. The section 5 presents experimental results and discussion about LFSR design. Finally, a conclusion is drawn in 6.

Context

In this section, first Elephant description is presented, then the context of blind SCA is introduced.

Elephant

An authenticated encryption algorithm should ensure confidentiality and integrity. It takes as input different parameters: a plaintext, data associated to the plaintext, a secret key, and an initialisation vector also called a nonce. The nonce is public but must be different for each new plaintext. The algorithm ensures confidentiality of the plaintext and integrity of both the plaintext and the associated data.

Elephant [START_REF] Beyne | Dumbo, Jumbo, and Delirium: Parallel Authenticated Encryption for the Lightweight Circus[END_REF][START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF] is a nonce-based authenticated encryption with associated data (AEAD) finalists to the NIST lightweight cryptography competition. It is an Encrypt-then-MAC construction that combines CTR-mode encryption with a variant of the protected counter sum [START_REF] Bernstein | How to Stretch Random Functions: The Security of Protected Counter Sums[END_REF][START_REF] Luykx | A MAC Mode for Lightweight Block Ciphers[END_REF].

It uses a cryptographic permutation masked with LFSRs in an Even-Mansour-like fashion [START_REF] Granger | Improved Masking for Tweakable Blockciphers with Applications to Authenticated Encryption[END_REF] in place of a blockcipher.

Let P be an n-bit cryptographic permutation, and ϕ an n-bit LFSR. Let the function mask : {0, 1} 128 × N × {0, 1, 2} → {0, 1} n be defined as follows: Let Split(X) be the function that splits the input X into n-bit blocks, where the last block is zero-padded. Let Trunc t (X) be the t left-most bits of X.

mask i,b K = (ϕ ⊕ id) b • ϕ i • P(K||0 n-128) (4) K || 0 * P mask 0,0 K ϕ N || A1 mask 1,0 K ϕ A2 P • • • • • mask -1,0 K • • • • • • A || 10 * P • • ϕ ⊕ id mask 0,1 K N || 0 * P • • • ϕ ⊕ id mask 1,1 K N || 0 * P • • ϕ ⊕ id mask -1,1 K N || 0 * P • • Trunc|M | M C M1 C1 M2 C2 • • • • • • C || 10 * P mask -1,2 K ϕ ⊕ id • P mask 1,2 K ϕ ⊕ id • P mask 0,2 K ϕ ⊕ id • • • • • • • P Trunct T • Figure
Encryption enc under Elephant gets as input a 128-bit key K, a 96-bit nonce N, associated data A ∈ {0, 1} * , and a plaintext M ∈ {0, 1} * . It outputs a ciphertext C as large as M, and a t-bit tag T . The description of enc is given in Algorithm 1 and is depicted on Figure 1.

Decryption dec gets as input a 128-bit key K, a 96-bit nonce N, associated data A ∈ {0, 1} * , a ciphertext C ∈ {0, 1} * , and t-bit tag T . It outputs a plaintext M as large as C if the tag T is correct, or the symbol ⊥ otherwise. The description of dec easily follows from that of enc.

Elephant comes in three flavours which differ on the n-bit cryptographic permutation P and the LFSR ϕ Dumbo :

(x 0 , • • • , x 19) → (x 1 , • • • , x 19 , x 0 ≪ 3 ⊕ x 3 ≪ 7 ⊕ x 13 ≫ 7) (1)
ϕ Jumbo : (x 0 , • • • , x 21) → (x 1 , • • • , x 21 , x 0 ≪ 1 ⊕ x 3 ≪ 7 ⊕ x 19 ≫ 7) (2) ϕ Delirium : (x 0 , • • • , x 24) → (x 1 , • • • , x 24 , x 0 ≪ 1 ⊕ x 2 ≪ 1 ⊕ x 13 ≪ 7) (3)
Algorithm 1 Elephant encryption algorithm enc

Input: (K, N, A, M) ∈ {0, 1} 128 × {0, 1} 96 × {0, 1} * × {0, 1} * Output: (C, T) ∈ {0, 1} |M| × {0, 1} t 1: M 1 , • • • , M ℓ M ← Split(M) 2: for i ← 1 to ℓ M do 3: C i ← M i ⊕ P(N||0 n-96 ⊕ mask i-1,1 K) ⊕ mask i-1,1 K 4: end for 5: C ← Trunc |M| (C 1 || • • • ||C ℓ M) 6: T ← 0 n 7: A 1 , • • • , A ℓ A ← Split(N||A||1) 8: C 1 , • • • ,C ℓ C ← Split(C||1) 9: T ← A 1 10: for i ← 2 to ℓ A do 11: T ← T ⊕ P(A i ⊕ mask i-1,0 K) ⊕ mask i-1,0 K 12: end for 13: for i ← 1 to ℓ C do 14: T ← T ⊕ P(C i ⊕ mask i-1,2 K) ⊕ mask i-1,2 K 15: end for 16: T ← P(T ⊕ mask 0,0 K) ⊕ mask 0,0 K 17: return (C, Trunc t (T))
ϕ used, as well as the tag size t.

Dumbo uses the 160-bit permutation Spongentπ[160] [START_REF] Bogdanov | Spongent: a Lightweight Hash Function[END_REF], the LFSR ϕ Dumbo given by equation 1 and illustrated on Figure 2, and has tag size t = 64 bits.

Jumbo uses the 176-bit permutation Spongentπ[176] [START_REF] Bogdanov | Spongent: a Lightweight Hash Function[END_REF], the LFSR ϕ Jumbo given by equation 2 and illustrated on Figure 3, and has tag size t = 64 bits.

Delirium uses the 200-bit permutation Keccakf [200] [START_REF] Bertoni | The Keccak Reference[END_REF]NIST, 2015), the LFSR ϕ Delirium given by equation 3 and illustrated on Figure 4, and has tag size t = 128 bits.

The three n-bit LFSRs used for the variants of Elephant are the GF(2)-linear maps given at the bytelevel by the equations (1), (2) and (3).

Blind side channel analysis

Even if an algorithm has been proven to be mathematically secure, its implementation can open the gate to the so-called physical attacks. (SCA) are a subcategory of physical attacks. They exploit the fact that some physical values of a device depend on intermediate values of the computation. This is the so-called leakage of information of the circuit. It could be used to retrieve secrets, as a secret key.

Different kind of leakage can be exploited as times [START_REF] Handschuh | A timing attack on rc5[END_REF], power consumption or electromagnetic radiations [START_REF] Standaert | Introduction to side-channel attacks[END_REF]. In this paper, the leakage is power consumption. At each instant, the measurement of the intensity of the electric current reflects the activity of the circuit. The power consumption of a device is the sum of the power consumptions of each of its logic gates. An attacker therefore has the possibility of distinguishing a transition from 0 to 1 from a transition from 1 to 0.

A SCA is often leaded with a divide-and-conquer approach. Namely, the secret is divided into small pieces that are analysed independently. Different kind of analysis exist.

The Simple Power Analysis (SPA) [START_REF] Mangard | A simple power-analysis (spa) attack on implementations of the aes key expansion[END_REF] are called simple because they determine directly, from an observation of the power consumption, during a normal execution of an algorithm, information on the calculation performed or the data manipulated.

The family of Correlation Power Analysis (CPA) [START_REF] Kocher | Differential power analysis[END_REF][START_REF] Brier | Correlation power analysis with a leakage model[END_REF][START_REF] Gierlichs | Mutual information analysis[END_REF]) uses a mathematical model for the leakage. A confrontation between measurement and model is performed. More precisely, a statistic tool called distinguisher gives score to the different targets.

Template attacks are statistical categorizations [START_REF] Chari | Template attacks[END_REF]. No mathematical model is required.

The blind side channel analysis family is new improvement in SCA [START_REF] Joux | Galois LFSR, Embedded Devices and Side Channel Weaknesses[END_REF][START_REF] Burman | LFSR based stream ciphers are vulnerable to power attacks[END_REF][START_REF] Chakraborty | Fibonacci LFSR vs. galois LFSR: which is more vulnerable to power attacks? In SPACE[END_REF][START_REF] Linge | Using the joint distributions of a cryptographic function in side channel analysis[END_REF][START_REF] Bouder | A Multi-round Side Channel Attack on AES Using Belief Propagation[END_REF][START_REF] Clavier | Improved blind sidechannel analysis by exploitation of joint distributions of leakages[END_REF]. The main idea is to not use the data as plaintext or ciphertext. Only the leakage is used. The power consumption leakage is very correlated to the Hamming Weight (HW) of the data. So in blind SCA, a strong assumption is make. The attacker can retrieve HW with the leakage. More precisely, the power consumption can be seen as a noisy HW. In this paper, the considered adversary model is that: the HW of bytes can be obtained by an attacker. This model is made feasible by the fact that the attacker can average power traces.

The first theoretical result on SCA on LFSRs are [START_REF] Joux | Galois LFSR, Embedded Devices and Side Channel Weaknesses[END_REF] where the authors leverage the dependence between the leakage and the unique feedback bit of a Galois LFSR. The case of Fibonacci LFSRs where a single new value is computed at each iteration is studied in [START_REF] Burman | LFSR based stream ciphers are vulnerable to power attacks[END_REF]. Finally, both kind of LFSRs are theoretically and practically compared in [START_REF] Chakraborty | Fibonacci LFSR vs. galois LFSR: which is more vulnerable to power attacks? In SPACE[END_REF].

3 Theoretical attack

Goal

LFSRs are used in different lightweight cryptography candidates, and its initial state often depends on both the key and the nonce. As the nonce needs to be changed for each encryption, attacks on such schemes are limited to the decryption algorithm. In the case of Elephant, the LFSR only depends on the secret key, Consequently, our attack can be applied in an encryption scenario.

The goal of the presented attack is to retrieve the LFSR secret initial state. One has to remark three important points.

• Retrieving the initial state of the LFSR which is equal to mask 0,0 K is equivalent to retrieving the secret key. Indeed, the initial state is just the result of the known permutation P applied to the key.

• As the retroaction polynomial is publicly known, it is possible to shift the LFSR backwards: an attacker who knows 20 consecutive bytes of the secret stream is able to recover the initial state.

• The smaller the LFSR is, the more the attack is able to succeed. As a consequence, the Dumbo 2 instance is the most vulnerable instance: the focus is on Dumbo in the following of this paper.

Leakage in the LFSR

In this attack, it is assumed that the Hamming Weight of all bytes of the LFSR can be obtained by an attacker.

Let x be a byte, so x can take 256 values in [[0, 255]]. With the HW of x, the attacker reduces the list of possible values, as shown in Table 1. Since the LFSR generates a single new byte at each iteration, let x 0 , • • • , x 19 be the content of the Dumbo LFSR initialised with mask 0,0 K , and extend the notation for j ≥ 20, by letting x j be the new byte generated at iteration j -20. In other words, the attacker has the following relation (L1).

L1 x j+20 = (x j ≪ 3) ⊕ (x j+3 ≪ 7) ⊕ (x j+13 ≫ 7).
The first idea is to use the knowledge of the following Hamming weights:

HW (x j+20), HW (x j) = HW (x j ≪ 3), HW (x j+3) and HW (x j+13).

Moreover, one has to remark that: HW (x j) = HW (x j ≪ 3) .

(5)

So with the two equations (L1) and (5) the attacker has:

HW (x j+20) =              HW (x j) HW (x j) + 1 HW (x j) -1 HW (x j) + 2 HW (x j) -2 (6)
Looking more precisely at equation (L1), it can be seen that the difference HW (x j+20) -HW (x j) depends on only four bits. Letting x j [i] denote the i-th least significant bit of byte x j , these four bits are {x j+3 [0]; x j+13 [7]; x j [4]; x j [5]}. Table 2 gives the value of observed difference HW (x j+20) -HW (x j) depending on the values of these four bits. In the worst case, there are only 6 possibilities left, out of 16.

(x j+3 [0], x j+13 [7]) = HW x j+20 -HW (x j) (0, 0) (0, 1) (1, 0) (1, 1) (x j [4], x j [5]) = (0, 0) 0 +1 +1 +2 (1, 0) 0 +1 -1 0 (0, 1) 0 -1 +1 0 (1, 1) 0 -1 -1 -2 Table 2: Values of HW x j+20 -HW x j according to {x j+3 [0]; x j+13 [7]; x j [4]; x j [5]} .

Link between the different masks

The value mask i,1 K can be expressed in terms of mask * ,0 K as in (7).

mask i,1 K = (ϕ ⊕ id) mask i,0 K = ϕ mask i,0 K ⊕ mask i,0 K = mask i+1,0 K ⊕ mask i,0 K . (7)
Likewise, for mask i,2 K , equation (8) holds.

mask i,2 K = (ϕ ⊕ id) 2 mask i,0 K = (ϕ 2 ⊕ id) mask i,0 K = ϕ 2 mask i,0 K ⊕ mask i,0 K = mask i+2,0 K ⊕ mask i,0 K (8)
As in the case of mask i,0 K , let y j denote either the byte j of mask 0,1 K when 0 ≤ j ≤ 19, or the new byte obtained after j -20 iterations of the LFSR initialised with mask 0,1 K . Likewise, let z j denote either the byte j of mask 0,2 K when 0 ≤ j ≤ 19, or the new byte obtained after j -20 iterations of the LFSR initialised with mask 0,2 K . Equation (7) then translates to equation (9).

y j = x j ⊕ x j+1 (9)
Likewise, the equation 8 translates to (10).

z j = x j ⊕ x j+2 . (10
)
The evolutions of the LFSR are analogous to (L1):

y j+20 = (y j ≪ 3) ⊕ (y j+3 ≪ 7) ⊕ (y j+13 ≫ 7). (11
)
z j+20 = (z j ≪ 3) ⊕ (z j+3 ≪ 7) ⊕ (z j+13 ≫ 7). (12
)
The attacker can thus exploit two attack vectors: on the one hand, equations (L1), (11), and (12) coming from iterating the LFSR, and on the other hand, equations (9) and (10) coming from the different masks used for domain separation.

Attack strategy

The whole search space corresponding to the initial state of the LFSR is represented as a rooted tree. The nodes at depth j correspond to the all possible values for the bytes x 0 to x j of the LFSR. The tested candidates are denoted by

(x ′ 0 , • • • , x ′ 19).
The nodes in the graph of the search space are labelled as follows:

• the nodes at depth j correspond to the all possible values of (

x ′ 0 , • • • , x ′ j); • the children of node (x ′ 0 , • • • , x ′ j), are the nodes la- belled: (x ′ 0 , • • • , x ′ j , x ′ j+1
) for all values of x ′ j+1 . In practice, to reduce the number of nodes, only the nodes having the correct Hamming weights are considered. In other words, it suffices to consider nodes with HW (x ′ j) = HW (x j). An example of such

x 0 = 03 . . .

x 0 = 03 x 1 = 2F x 0 = 03 x 1 = 1F
. . .

x 0 = 03 x 1 = F8 x 0 = 03 x 1 = 2F x 2 = 17 x 0 = 03 x 1 = 2F x 2 = 0F
. . .

x 0 = 03 x 1 = 2F x 2 = F0 x 0 = 03 x 1 = 1F x 2 = F0
. . .

x 0 = 03 x 1 = 1F x 2 = 17 x 0 = 03 x 1 = 1F x 2 = 0F
. . .

x 0 = 03 x 1 = F8 x 2 = 0F x 0 = 03 x 1 = F8 x 2 = 17
. . . tree is given on Figure 5.

x 0 = 03 x 1 = F8 x 2 = F0 HW (x2) = 4 HW (x1) = 5 HW (x0) = 2
A backtracking algorithm is used. The tree is traversed in a depth-first manner. For each step, the attacker tests whether the current candidate (x ′ 0 , • • • , x ′ j) satisfies the different conditions given by the observed Hamming weights. This test is given by algorithm 2. return false

Algorithm 2 isvalid(x ′ 0 , • • • , x ′ j) Input: Byte-wise partial candidate (x ′ 0 , • • • , x ′ j) of length 1 ≤ j + 1 ≤ 20 Assumes isvalid(x ′ 0 , • • • , x ′ j-1) is true. Output: true if candidate (x ′ 0 , • • • , x ′ j) is
3: end if 4: if HW (x ′ j ⊕ x ′ j-1) ̸ = HW (y j-1) then 5: return false 6: end if 7: if HW (x ′ j ⊕ x ′ j-2) ̸ = HW (z j-2) then 8:
return false 9: end if

Hamming weights of the feedbacks

10: if |HW (x ′ j ≪ 3) -HW (x j+20)| > 2 then 11: return false 12: end if 13: if |HW (x ′ j-3 ≪ 3 ⊕ x ′ j ≪ 7) -HW (x j+17)| > 1 then 14: return false 15: end if 16: if HW (x ′ j-13 ≪ 3 ⊕ x ′ j-10 ≪ 7 ⊕ x ′ j ≫ 7) ̸ = HW (x j+7) then 17:
return false 18: end if 19: return true If the test succeeds, the algorithm goes down to the next layer to test the values of the byte x ′ j+1 . If it reaches the bottom of the tree, then a good candidate has been found, and can be saved. The algorithm then iterates upon the next untested node.

If, at some point, the Hamming weights conditions do not hold for the current (partial) candidate, then no node in the sub-tree rooted at that node can lead to a good candidate. Thus, it can be pruned from the whole tree, saving the cost of searching it. Finally, the algorithm ends when the whole tree has been searched. A pseudocode of the attack is given by algorithm 3.

To improve the efficiency of algorithm 3, the attacker can overlook some of the first iterations of the LFSR, and start the attack at a time they deem more satisfying. Indeed, the complexity of the attack de-Algorithm 3 Attack Input: Observed Hamming weights HW (x 0), • • • , HW (x 19), HW (y 0), • • • , HW (y 18), and HW (z 0), • • • , HW (z 17). For the sake of clarity, they are seen as global variables. Output: S set of keys compatible with the observed Hamming weights 1:

(x ′ 0 , • • • , x ′ 19) ← (0, • • • , 0) 2: ℓ ← 0 3: S ← {} 4: while true do 5: if j < 19 and isvalid(x ′ 0 , • • • , x ′ j) then 6: j ← j + 1 7: x ′ j ← 0 8: else 9: if j = 19 and isvalid(x ′ 0 , • • • , x ′ j) then 10: S ← S ∪ {(x ′ 0 , • • • , x ′ j)} 11: end if 12:
while j ≥ 0 and x ′ j = FF do 13:

j ← j -1 14:
end while 15:

if j ≥ 0 then 16:

x ′ j ← x ′ j + 1 17: else 18: break 19: end if 20:
end if 21: end while 22: return S pend on the number of nodes visited in the tree. Looking only at the first four layers, that number, denoted by N 4 , can be expressed using binomial coefficients as a function of (HW (x 0), HW (x 1), HW (x 2), HW (x 3)):

N 4 = 8 HW (x 0) 8 HW (x 1) 8 HW (x 2) 8 HW (x 3)
.

The idea is then to look at the quadruplet at the next iteration, namely (HW (x 1), HW (x 2), HW (x 3), HW (x 4)), and so on, until the number of nodes in the first four layers of the tree is sufficiently small. One has to remark that the number 4 is arbitrary here, and the attacker can choose whatever value they might prefer.

The question is now, what bound on N 4 does the attacker choose? We have chosen to fix a threshold at N 4 ≤ 1, 756, 160. With this, about 25% of the all quadruplets are kept. Luckily, the probability to find such a quadruplet in the LFSR rapidly increases to one when iterating, because of the good statistical properties of LFSRs.

Results and discussion

Elephant attack

We have simulated the attack on N runs = 560 randomly generated Dumbo keys. For each, the number N nodes of nodes effectively traversed in the tree has been counted. This number roughly corresponds to the time complexity of the attack. Among those nodes, we have specifically counted the number N keys of nodes on the last layer; i.e. nodes that correspond to plausible guesses that remain to be brute forced to finish the attack.

Unfortunately, only just above half (53.57%) of the runs have ended after two days, and about a quarter has been still running after a week. On average, for the runs that finished after two days, the number of nodes traversed is N nodes = 2 41.82 , and the number of remaining keys is N keys = 2 36.59 .

Impact of the generation of masks

The natural question is about what could be done to mitigate this attack. Outside of using generic countermeasures, like e.g. boolean masking, there seem to be two possibilities for improvement. Indeed, the attacker gains information from two sources:

• from equations (7) and (8) used to derive the masks for domain separation;

• from the LFSR state update equation (L1).

Thus either the mask derivation, or the LFSR can be changed, or both. This section studies the former case.

We ran two experiments, similar to that in section 5.1 except that the attacker does not gain information on every Hamming weights. In the first experiment, they only know the values of the HW (x j), and the HW (y j) for sufficiently j. In other words, compared to the experiment in section 5.1, they lost the knowledge of the HW (z j). Likewise, in the second experiment, they only know the values of the HW (x j) for sufficiently j. Unfortunately, in both cases, none of the N runs = 120 runs done has terminated after a week.

From these experiments, it seems that the knowledge of the HW (x j), HW (y j), and HW (z j) contributed heavily on the success of the attack. It would then seem a good idea to tweak the cryptographic mode of operation by finding another way of generating masks for domain separation.

Studies on different LFSRs

This section is dedicated to the study of the influence of the choice of the LFSR. To keep the spirit of the original Elephant, only Fibonacci-like LFSRs, at the byte level, are considered. More specifically, LF-SRs considered are: LFSRs where a single new byte is computed from a combination of three bytes using byte-wise shifts and rotations. As usual, the associated feedback polynomial must be primitive to ensure only maximum-length sequences can be generated. Among all possible candidates, different behaviours can be triggered.

In this paper, the type of an LFSR is defined as the sequence of number of bits unknown to the attaquer at each depth in the tree where a new feedback occurs.

Looking at equation (L1), it can be seen that:

HW (x j+20) -HW (x j ≪ 3) ≤ 2
since there are only 2 bits that are modified by:

x j+3 ≪ 7 ⊕ x j+13 ≫ 7.
Thus, if other feedback function are used, with more bits involved, it can be expected to have an impact on the attack. Later in the attack, when at depth 3 in the tree, the same idea can be applied to check whether: HW (x j+17) -HW (x j-3 ≪ 3 ⊕ x j ≪ 7) ≤ 1 since now only the single bit x ≫ 7 is unknown. In conclusion, the type of the Dumbo LFSR is [2, 1].

LFSR with different types can be a first criterion when testing our attack.

A second criterion can be: how far apart the feedback bytes are. Indeed, the tighter they are, the faster the attacker can use equation (L1) at its full potential. In the case of Dumbo, the feedback bytes are at indices 0, 3, and 13. We call 13 the depth, this is simply the highest index of the feedbacks.

We chose LFSR based on these two criteria. Types is defined from [2, 1] to [8,8]. For types [2, 1], and [5, *], we looked at all the possible LFSRs in order to study the influence of their depth.

The state update function of the different LFSR tested are given by equations (L2) to (L21). Their type and depth are given at the second, respectively third, column of Table 3

. L2 x j+20 ← x j ≪ 3 ⊕ x j+1 ≪ 7 ⊕ x j+11 ≫ 7 L3 x j+20 ← x j ≪ 3 ⊕ x j+14 ≫ 3 ⊕ x j+17 ≫ 7 L4 x j+20 ← x j ≪ 1 ⊕ x j+3 ≫ 3 ⊕ x j+13 ≫ 7 L5 x j+20 ← x j ≪ 1 ⊕ x j+9 ≫ 3 ⊕ x j+15 ≫ 7 L6 x j+20 ← x j ≪ 3 ⊕ x j+9 ≪ 4 ⊕ x j+19 ≫ 7 L7 x j+20 ← x j ≪ 3 ⊕ x j+1 ≪ 5 ⊕ x j+3 ≫ 6 L8 x j+20 ← x j ≪ 1 ⊕ x j+4 ≫ 3 ⊕ x j+19 ≫ 5 L9 x j+20 ← x j ≪ 1 ⊕ x j+7 ≫ 3 ⊕ x j+18 ≫ 5 L10 x j+20 ← x j ≪ 1 ⊕ x j+3 ≫ 3 ⊕ x j+9 ≫ 5 L11 x j+20 ← x j ≪ 3 ⊕ x j+1 ≫ 7 ⊕ x j+17 ≪ 4 L12 x j+20 ← x j ≪ 3 ⊕ x j+5 ≫ 7 ⊕ x j+19 ≫ 3 L13 x j+20 ← x j ≪ 1 ⊕ x j+5 ≪ 7 ⊕ x j+16 ≪ 3 L14 x j+20 ← x j ≪ 1 ⊕ x j+1 ≫ 7 ⊕ x j+9 ≫ 3 L15 x j+20 ← x j ≪ 1 ⊕ x j+13 ≪ 5 ⊕ x j+19 ≪ 3 L16 x j+20 ← x j ≪ 3 ⊕ x j+14 ≫ 7 ⊕ x j+17 ≫ 3 L17 x j+20 ← x j ≪ 3 ⊕ x j+4 ≪ 1 ⊕ x j+5 ≫ 6 L18 x j+20 ← x j ≪ 1 ⊕ x j+3 ≫ 1 ⊕ x j+9 ≪ 1 L19 x j+20 ← x j ≪ 1 ⊕ x j+4 ≫ 1 ⊕ x j+5 ≪ 1 L20 x j+20 ← x j ≪ 3 ⊕ x j+1 ≫ 1 ⊕ x j+8 ≪ 7 L21 x j+20 ← x j ≪ 3 ⊕ x j+3 ≪ 5 ⊕ x j+4 ≪ 5
We ran the same experiment as in section 5.1 for every considered LFSR with N tests = 120. For each LFSR, we noted the proportion of runs finished after two days of computations, the average number of nodes effectively traversed in the tree, and average number of remaining keys. Results are summarized in Table 3.

From these experiments, it seems that the depth has a much more relevant impact than the type. Yet, this seems to be quite tailored to our particular attack. Changing the generation of the different masks is generally more impactful, since it can cut down in three the amount of information given to the attacker.

Conclusion

In this paper, a theoretical blind side channel attack targeting the LFSR of the Elephant algorithm has been presented. Elephant is a good target. First, Elephant is a finalist to the (NIST) competition for lightweight cryptography candidates for authenticated encryption. Moreover, Elephant is an interesting target because the internal LFSR only depends on the secret key. In other words, in the use-case of Elephant, retrieving the encryption key is equivalent to retrieving the initial state of the LFSR.

Our attack is based on the fact that an attacker can retrieve the Hamming weights of the different bytes in the LFSR. The Elephant design, where there exist relations between the different internal states of the LFSR, is an added vulnerability to our attack. In half the cases, the key is retrieved in less than two days. Different tweaking options have been considered. Going from the most impactful to the least, they are: changing the mask derivation for domain separation; modifying the LFSR, looking at the importance of depth and type.

Future works may include the inclusion of noise in the simulations, or even better performing the attack on an actual implementation.

 Figure 1: Elephant associated data authentication (top), plaintext encryption (middle), and ciphertext authentication (bottom).

Figure 4 :

 4 Figure 4: 200-bit LFSR ϕ Delirium .

Figure 5 :

 5 Figure 5: Example of the tree representation of the LFSR initial state for the Hamming weights given at the bottom. Only the first three layers of the subtree rooted at x ′ 0 = 03 are shown.

 compatible with the observations, false otherwise # Hamming weights of the xors 1: if HW (x ′ j) ̸ = HW (x j) then 2:

Table 1 :

 1 Number of possible values for an Hamming weight.

	HW (x) 0 1	2	3	4	5	6	7 8
	#x	1 8 28 56 70 56 28 8 1

Table 3 :

 3 Type, depth, proportion of runs finished after two days of computations, average number of nodes traversed, and number of remaining keys for Dumbo (L1), and LF-SRs (L2) to (L21).

	LFSR type depth finished N nodes	N keys
	(L1)	[2, 1]	13	53.57%	2 41.82	2 36.59
	(L2)	[2, 1]	11	82.5%	2 41.23	2 36.39
	(L3)	[5, 1]	17	0.83%	2 42.89	2 34.68
	(L4)	[5, 1]	13	94.17%	2 39.68	2 33.68
	(L5)	[5, 1]	15	28.33%	2 42.13	2 35.25
	(L6)	[5, 1]	19	11.67%	2 42.38	2 36.77
	(L7)	[5, 2]	3	100.0%	2 30.93	2 24.93
	(L8)	[5, 3]	19	0.83%	2 43.99	2 37.59
	(L9)	[5, 3]	18	0.0%	-	-
	(L10)	[5, 3]	9	95.83%	2 40.32	2 34.0
	(L11)	[5, 4]	17	0.83%	2 43.58	2 35.6
	(L12)	[5, 5]	19	0.0%	-	-
	(L13)	[5, 5]	16	0.0%	-	-
	(L14)	[5, 5]	9	82.5%	2 41.43	2 34.95
	(L15)	[5, 5]	19	0.0%	-	-
	(L16)	[5, 5]	17	0.0%	-	-
	(L17)	[8, 2]	5	100.0%	2 35.53	2 29.17
	(L18)	[8, 7]	9	78.75%	2 41.56	2 34.79
	(L19)	[8, 7]	5	100.0%	2 35.41	2 29.42
	(L20)	[8, 8]	8	79.17%	2 41.59	2 35.78
	(L21)	[8, 8]	4	100.0%	2 34.76	2 29.29

Acknowledgments

This research is part of the chair CyberCNI.fr with support of the FEDER development fund of the Brittany region.