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Ransomware remains an alarming threat in the 21 century. It has evolved from being a simple scare tactic into a complex malware
capable of evasion. Formerly, end-users were targeted via mass infection campaigns. Nevertheless, in recent years, the attackers have
focused on targeted attacks since the latter are profitable and can induce severe damage. A vast number of detection mechanisms have
been proposed in the literature. We provide a systematic review of ransomware countermeasures starting from its deployment on the
victim machine until the ransom payment via cryptocurrency. We define four stages of this malware attack: Delivery, Deployment,
Destruction, and Dealing. Then, we assign the corresponding countermeasures for each phase of the attack and cluster them by the

techniques used. Finally, we propose a roadmap for researchers to fill the gaps found in the literature in ransomware’s battle.

CCS Concepts: » Security and privacy — Malware and its mitigation;

Additional Key Words and Phrases: Ransomware, Malware, System Security

1 INTRODUCTION

Malware remains a recurring threat that affected people decades ago, and it still is in an exponential rise. The tradeoff
prevails in what researchers and security analysts try to protect and attackers that always find a way around. Everything
revolves around the pyramid of confidentiality, integrity, and availability (CIA). Monetary gain was an initial catalyst for
cyber attackers in addition to showing their expertise in the domain. Sixteen million USD are traced back to ransomware
payment via Bitcoin during a period of two years [73]. Some of the essential malware families are worms, virus, Trojan
horse, logic bombs, and ransomware. This paper focuses on ransomware, our main research study.

We will have an in-depth look at ransomware’s workflow. It includes the initial infection means, the current detection
mechanisms employed to protect the system from such prominent attacks and finally the measures taken by attackers
to bypass these solutions.

Ransomware activity has been in decline since 2018. Symantec reported a drop of 20% in their latest Internet Security
Threat Report published in February 2019 [111]. However, a shift of the target is noticed where attackers are turning
their focus from regular consumers to businesses. De facto, patches are provided to end-users, so ransomware will not
penetrate systems using exploit kits (EKs). EKs are "tools used by cybercriminals to perform drive-by-download attacks
" [38]. A drive-by download attack represents the unintended download of a computer software from the Internet. In
addition, extortion is much more fruitful when applied to businesses. Indeed, they have the required funds to pay a
ransom, and they have their reputation to maintain. According to the latest study completed by Malwarebytes, the
top industries affected by ransomware include but are not limited to consulting, education, manufacturing, retail, and

government [87].
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Besides, another propagation methodology revolves around a compelling concept, especially for Script kiddies or
unexperienced attackers, Ransomware As A Service (RaaS) [17]. It provides all the necessary tools for cybercriminals to
carry out their attacks without having prior knowledge of the end-to-end system nor the infrastructure of the victim’s
machine.

Funding is given to researchers to pursue their work on malware detection analysis to eradicate or decrease this
ransomware in the wild [101].

Few surveys exist in the literature that tackle Windows ransomware. Current white papers propose a detailed
ransomware anatomy based on the static and dynamic analysis performed [20, 22, 23]. Our survey provides a synthesis
of ransomware detection techniques developed by the research community since 2014. We follow the guidelines for
performing systematic literature reviews in software engineering described in [37]. We reviewed thoroughly papers
collected from the scientific research database, including but not limited to Google Scholar, ScienceDirect, IEEE Xplore.
The keywords used for this search are “ransomware, detection, countermeasure, analysis, Windows, Android”, and some
examples of ransomware samples like Locky, WannaCry. Besides databases, forums were also queried since they provide
the latest insight in security, such as Bleeping Computer. Linux based countermeasures are omitted from this survey.
We extract the methodology developed by authors in each paper and present its limitations if there are any. Common
techniques are clustered to present the available solutions developed in the literature for a specific attack phase. Tested
prototypes are specially taken into consideration since they give an accurate representation of the feasibility of the
solution. We delve into presenting the mapping between ransomware attack phases and countermeasures. We bring to
the table a classification of those elements based on ransomware’s workflow. To the best of our knowledge, this aspect
was not previously covered in research areas. This survey serves as an entry point to ransomware domain, including
its lifecycle and the actions undertaken to thwart it. Even though this survey focuses on Windows ransomware, we
address mobile-based ransomware, specifically on the Android operating system, and present our findings and the
shortcoming noticed in the literature.

The paper is structured as follows: Ransomware’s workflow and description are presented in Section 2. Ransomware
state of the art detection mechanisms are categorized in Section 3. Polymorphic ransomware is presented in Section 4.
Ransomware static and dynamic analysis are presented in Section 5. Mobile ransomware is discussed in Section 6.

Finally, the conclusion is drawn in Section 7.

2 CONTEXT

We present a detailed anatomy of ransomware in Section 2.1. We describe it as a malicious software capable of
damaging the files of the victims. Then, we give an overview of the different types of ransomware in the wild and
the encryption scheme used. We proceed by dividing ransomware attack into four stages based on the information
gathered from the literature review and our experiments carried out in the last five years. Ransomware timeline is
shown in Section ??, displaying the evolution of this malware from being a simple scare tactic into encrypting files
using robust cryptographic algorithms. This approach enables a distinct classification of ransomware countermeasures,

providing a potential roadmap for future research work (see Section 3).

2.1 Ransomware’s Workflow

Ransomware is a malicious software that holds the victims’ data hostage and proceeds with the release if the ransom
payment was made in time. Two types of ransomware can infect a computer nowadays: a locking or a crypto ransomware.

Locking ransomware does not alter your data but blocks a person’s access to his/her personal computer. Thus, potential
Manuscript submitted to ACM
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data retrieval is achievable, whereas crypto-ransomware encrypts specific files from your file system, making recovery
impossible if no appropriate patches were installed on the target computer before any infection [113].

Crypto-ransomware is also divided into subparts. It depends on the encryption type used (symmetric and/or
asymmetric encryption) and how it is performed. The encryption mechanism represents the malicious intent of
ransomware’s payload. In fact, an achievable exchange (key-money) between the attacker and the victim is only possible
if data are not retrievable by any other methods. Therefore, the stronger the encryption scheme, the less are the chances
to recover the locked files.

Outlining accurately any malware behavior and defining its characteristics require both static and dynamic analysis.
Even though samples belonging to the same ransomware family might slightly diverge, the overall steps performed
by any given sample are similar. Multiple variations of ransomware attacks have been presented in the literature;
they consist of 4, 5, or 6 phases [60, 73, 86, 123]. The majority of ransomware samples can be grouped as follows: a
multi-phased attack compromising 4 phases (Pi, where i is the number of the phase) named the 4 Ds: Delivery (P1),
Deployment (P2), Destruction (P3) and Dealing (P4). The attack is summarized in Fig. 1.

P1: Delivery

Infection vector: spam emails, self-
propagation, drive-by downloads

P2: Deployment
4

Environment Preparation
(Needed libraries, system calls)

P3: Destruction

{File System & Network Activity} + Encryption

P4: Dealing

Y

Ransom payment (BitCoin or any Cryptocurrency)

Fig. 1. Ransomware’s Workflow.

Delivery: Initially, ransomware searches for a vulnerability and relies on all the available mechanisms to penetrate
the target system. Zimba et al. present different means of ransomware infection (spam, web-server, server message
block, macro, backdoor, flash, zero-day vulnerability) [106, 110, 124].

Deployment: Once the malware infiltrates the system, it loads all the required libraries to perform its destructive
intent. Some of them might perform a kill switch domain check to verify if they are being monitored or not.

Destruction: Then, the querying of volumes on the target machine by alphabetical order begins. Different file
extensions are targeted: .xls, .jpg, .pdf. Some folders are omitted from the search, such as ProgramData and Windows [74].
After the search, ransomware tries to communicate with the command-and-control (C&C) to receive some information

(encryption keys). The encryption process begins using API calls to AES 256 or embedded AES encrypting algorithms.
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Formerly, attackers opted for symmetric encryption (standard AES). However, through reverse engineering, re-
searchers were able to provide decryption tools for the encrypted files [78, 107, 125]. Subsequently, attackers relied on
the combination of symmetric and asymmetric encryption for an invincible malware design. Each symmetric key is
generated locally on the targeted device and helps to encrypt a specific file or multiple documents (depending on the
implemented algorithm). Then, this symmetric key is encrypted with the attacker’s public key [105]. This scheme is
known as hybrid cryptography: a masterpiece for culprits.

Three types of crypto ransomware or classes exist [104, 120]: Class A represents the set of ransomware that performs
the encryption in-place; it opens the file, reads its content, performs encryption then closes the file with a possibility
of renaming it. Class B is a further extension where the file is moved to another directory before performing the
encryption and moved back once the task is accomplished. Class C opens the original file, then creates another one to
write the enciphered data. The original file is deleted.

The aim of removing the original files and Microsoft Shadow Volumes is to make data retrieval impossible. A new
entry is created on the Windows registry enabling the execution of ransomware every time the computer is restarted,
ensuring its persistence [6, 88].

Dealing;: Finally, the ransom note is displayed to the user providing him/her the steps required to retrieve the locked
files. Mostly, ransomware authors display the ransom note at the end of the infection phase since they do not want to
be detected/stopped during their destruction process.

Putting security on sounder footing, a thorough analysis grants insight into this malicious software and its potential
future targets. Since the early stages of the computer conception, the world had known numerous attacks.

A detailed table containing ransomware families and their characteristics regarding the encryption mechanisms
used, the infection process, and the infected platform type is presented in [22, 23, 110].

This overview presents two facts: ransomware attacks target specifically Windows since it is one of the most used
and ergonomic OS worldwide. However, a shift to IoT, SCADA, and Android devices is recently noticed [14, 15, 121, 126].

3 RANSOMWARE DETECTION MECHANISMS

The literature is abundant with different ransomware detection mechanisms. A broad spectrum of targeted systems in
the research area exists; however, our focus will be on our domain of expertise: Windows OS.

One of the main advantages of this systematic literature review is to draw a detailed anatomy of ransomware attacks
since their installation on the victims’ PCs until the payment is completed. It is followed by a description of the available
solutions developed by researchers to protect users’ data. We highlight the fact that this sequence of events is necessary
for administrators. Indeed, it provides an initial alert mechanism to warn the user of a potential threat. It is crucial since
early detection mechanisms such as signature-based can spare file losses. Thus, it protects the whole infrastructure
avoiding later on a pact with the devil [53] to retrieve the encrypted files.

The following sections represent the defense mechanism taxonomy clustered corresponding to each phase of
ransomware’s workflow, as presented in Fig. 1. We gather the existent solutions that cover a specific phase of the
intrusion and the methods deployed. The countermeasures corresponding to each phase presented in Fig. 2 are

thoroughly explained in the following sections.

3.1 P1: Delivery

Infection vectors are usually hard to trace since researchers execute malware in a Sandbox or bare metal environment.

One of the best defense mechanisms at the delivery stage is to raise awareness about ransomware cyber threats, for
Manuscript submitted to ACM



A Survey On Windows-Based Ransomware Taxonomy And Detection Mechanisms: Case Closed? 5

Ransomware Detection/Prevention Mechansims }

N

C Delivery: P1 ) CDeponment: P2) @estruction: P3

Dealing: P4

Access Control
Ll

List

Volume

"] Shadow Copy

System Honey-
pot

Moving Target
Defense

Monitoring API Network Analy- Bitcoin Pay-
| Awareness Ba . .

Calls sis ment Tracking
| Data Backup L,| Windows Network Hon-

Events eypot

Signature . .
Files Monitor-
‘-~ Based Detec- ing
tion
Hardware
—| Performance
Counters

>~ Multiple Stage

'~ Keys Backup

Fig. 2. Ransomware Detection Mechanisms Summary.

example, by deleting a suspicious email immediately or filtering spam ones. These aspects corresponding to the initial
phase of ransomware attacks are developed in this part. Table 1 clusters the following studies in five sections. The
awareness part includes the best practices to be taken into consideration as a protection measure on a computer
(Section 3.1.1). It is portrayed by a safe web browsing, having an up-to-date system including the recent patches
and frequent backups [66, 70]. A proposition of an incidence response is portrayed in [63] that could involve using
software-defined networking [103]. Data backup is further explained in Section 3.1.2 that is complemented by an access
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control list measure in place to protect specific assets on the file system (Section 3.1.3). To enable a clear restoration point,
renaming the Volume Shadow copies executable in Windows is presented in Section 3.1.4. Finally, the signature-based

detection that helps to flag malicious software without their execution on any system is described in Section 3.1.5.

3.1.1 Awareness. Han et al. develop a proof of concept to check whether an individual’s requested website is SSL
certified or not [70]. Their prototype is added as an extension to a popular browser such as Google Chrome. Also, it
checks the downloaded files searching for common ransomware patterns. Moreover, to alert the user of a hidden threat,
a pop-up warning is displayed. Even though their proposed concept relies on raising awareness strategies to eradicate
ransomware’s danger; it is not an exhaustive solution. Similarly, Ganorkar et al. raise awareness of the plausible threat
encountered by ransomware attacks [66]. They show clearly that a communication is done between the server and the
PC of the victim to retrieve the encryption key.

Before infecting the machine, an attacker should be able to gain access to the latter, fulfilled by various attack vectors,
once tracked down, attacks numbers can be scaled down. Attackers are always seeking to find optimal ways to invade a
target system minimizing the chances of being detected and therefore stopped. Administrators should be aware of the
broad spectrum of possible penetration to protect the data’s confidentiality, integrity, and availability (CIA).

The authors in [64] implement a test scenario using Endian, a software-based firewall equipped with specific
functionalities (port blocking, IPs/IDS, content control, mail filtering). The testbed consists of sending emails attached
with malicious PDF files to 150 employees of a pharmaceutical company where 85% were tricked by this fake attack.
Infected PDFs enable the simulation of ransomware attacks without altering the file system of the victim. They state
that education remains a fundamental pillar to protect the assets of a company.

The most common attack vector is the spam email. Spam email is a form of social engineering method that lures the
victim to perform an action like opening an infected PDF, image, etc. Zimba analyzed various infection vectors such
as malicious emails, brute-force authentication credentials, and exploit kits [123]. He described ransomware’s attack
model that consists of an attacking agent (EK or a human) using specific assets (resources, open ports, addresses) to
perform the required actions (requests with an expected return) to attain its goals (ransomware payload execution). A
graph translated by a matrix represents these elements. The tested ransomware performed reconnaissance attacks,
checking for available backdoors. Attackers are constantly seeking malware-free intrusions since it requires no actions
from the end-user. Ransomware relies on this attack vector to penetrate a system and execute its payload. Besides using
an exploit kit based on the vulnerability fetched [63, 103], attackers use various techniques like drive-by downloads,
malvertising to penetrate the target system.

The authors in [100] carry out a comprehensive analysis (system and network-level) of distinct ransomware families
in a simulated environment. They state that multiple attack vectors exist, such as social engineering methods, outdated
systems, unpatched known vulnerabilities (service message block), nonexistent antivirus solutions on the target system,
and finally, the absence of regular backup.

To cope with all these potential threats, researchers should be aware of the likely system breaches representing an
attacker’s way into the system. Most of the research carried out in this phase represents an explanation of ransomware

threat rather than developing specific countermeasures or detecting it.

3.1.2  Data Backup. Castiglione and Pavlovic show that a better defense is provided when an economic incentive
is on the line. Consequently, strengthening the infrastructure ecosystem is essential to encumber the proliferation
of those crimes [56]. They address an important issue favoring a proper backup regularly: a cost-effective solution

to paying the ransom at a given time. Therefore, they suggest an encryption algorithm using a One-Time Pad with
Manuscript submitted to ACM
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deletions. Their solution is an effective one since encryption should frequently occur, whereas decryption is only taken
into consideration if an attack arises or the system is down. There must be a coordination between the servers to keep
the data synchronized and up to date, achieving a resilient distributed storage. Besides, it is immune to ransomware
targeted attacks on servers: even if a particular server is down, others will distribute the information among the rest of
the nodes having a balanced and resilient system.

Baykara et al. introduce the safe zone concept where all the critical files are moved to protect them [16]. Critical data
are zipped and stored in this safe zone, and the files are kept open in non-stop write mode to prevent any alteration by
ransomware. Besides, an integrity check is made to examine any changes that occur. Their approach is not tested using
ransomware. A noticeable drawback is the single point of failure. Crucial information is detained in a single zone; if
attacked, the user loses everything. In addition, their solution tackles only the availability and integrity of the data: if
the information gets exfiltrated, the confidentiality is compromised. Thus considerable loss will affect the end-user or

the company.

3.1.3  Access Control List. Kumari et al. propose a locking file mechanism to prevent any alteration of the data [79].
Their main idea relies on securing the memory location of confidential files. Their mechanism is divided into three
phases. Initially, an authentication with an input password is required. Then, the file extension is checked before storing
the data; if it is valid, the file is locked and hidden. Certainly, it presents a white list of possible file manipulation that
could be done by a user. However, their solution is not scalable: individuals need to gain access to their sensitive files
regularly. They have to accomplish the same procedure for all the important files done manually to register them in a
safe "database". Also, they need to authenticate each time they want to access the files. Moreover, their solution was not

tested using ransomware samples.

3.1.4  Microsoft Volume Shadow Copy. Weckstén et al. analyze multiple ransomware samples and conclude that they
rely on the tools available in the infected OS to carry out their attacks [119]. The proposed idea consists of renaming
the Volume Shadow copies (VSS) executable in Windows, so a given ransomware sample will not be able to access or
modify it. They run their experiments in a virtualized environment, and all files are retrieved. If the restoration point
schedule is correctly and frequently configured, malicious attacks can be defeated. As the authors state, it is a simple

solution for unfamiliar users; however, unsustainable.

3.1.5 Signature Based Detection (SBD). The static analysis enables a signature-based code classification. For example,
if a malicious piece of code is found within the executable, an antivirus will drop the complete package. Nevertheless,
this mechanism is not immune to code obfuscation. The behavioral analysis extends this part, where malevolent patterns
are examined. Dynamic analysis limitations are some stealth and anti-debugging techniques [97]. This part outlines
ransomware characteristics extracted mostly from static analysis. Signature-based detection belongs to the Delivery
phase since the payload (encryption) is not executed. The major drawback of signature-based detection is its inability
to detect zero-day attacks. The protection of any system is valid only after updating the signatures database with the
ones published of unseen malware.

Medhat et al. present a static-based framework having a multi-level alert system to detect ransomware [91]. Their
work relies on the concept of shared patterns/code among ransomware that represents static features. Four elements
are kept: cryptographic signatures, API functions, file keywords, and file extension. Their detection tool is based on
Yara rules [2]. A limitation of their work is the omission of obfuscated or packed samples representing a significant
number of ransomware samples in the wild.
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Subedi et al. utilize reverse engineering tools to provide distinct identifiers for various ransomware families [110]. For
a given ransomware, they extract assembly instruction level, libraries used, and functions called. The Association rule
mining is deployed for DLLs (Dynamic-Link Library) identification to construct a known signature (sequence of DLLs) of
the malicious software. Cosine similarity is used to measure the similarity between the frequency vector of the assembly
code of a benign and malevolent software [85]. Their implemented CRSTATIC tool can detect crypto-ransomware
without executing the sample, based on the features provided above.

The authors in [116] focus on distinguishing a benevolent application from ransomware established on discriminant
characteristics of the Portable Executable (PE) file. In the static analysis part, the PE file is disassembled and unpacked
to extract the metadata from the header fields. Accordingly, 60 static properties are identified to enable an accurate
classification (bytes on the last page, pages in file and relocations in the DOS header; size of optional header in
the file header and number of sections) and nine ransomware specific (presence of packer, DLLs used for network
communication, command for registry modification). Howbeit, if obfuscation was used, the authors performed a
dynamic analysis to extract the rest of the features. The sample is then executed in an isolated environment having the
sys-internal tools in place. An extended analysis revealed suspicious DLLs at run-time, the windows registry changes,
and the alteration of directories.

The work done in [95] performs a comparison between binaries checking for a similarity amongst the samples. To
this end, import hashing, fuzzy hashing, and YARA rules have been used. Even though each of these methods has its
limitation, 92% of similarity was achieved among the same families. Fuzzy hashing outperformed the rest of the fuzzing
algorithms based on time efficiency, memory, and hash/rule size. A continuation of their work is the analysis of the
polymorphic aspect of various samples acquired. It is done by performing ransomware clustering using the combination
of two fuzzy techniques: fuzzy hashing and FCM clustering method [96]. They are able to aggregate multiple samples
of the same family in different distinct clusters. The accuracy of the clustering varies between the families and the

number of clusters chosen.

Articles Type Approaches Tested | Detection/Protection/Prevention Mechanism
Static Dynamic | Solution

[70] Awareness - - X Web browser extension to alert users of potential threat

[66] Awareness v v v Best Practices Proposal: Disabling RDP, frequent backup

[103] Awareness v v v SDN usage to detect and alert the user of malicious intent

[63] Awareness - - X Proposition of incidence response hacks

[56] Data Backup - v X Providing a Dynamic Distributed Storage

[16] Data Backup v - X Data stored in a Safe Zone System

[79] ACL - - X Authentication + File Locking

[119] VSS - - v Renaming Windows VSS

[91] SBD v - v Yara rules to detect ransomware

[110] SBD v v v Ransomware signature extracted based on reverse engi-
neering tools

[116] SBD v v v Discriminant characteristics of the Portable Executable
extracted to flag ransomware

[95] SBD v - v Fuzzy hashing to compare binaries and detect ransomware

Table 1. Ransomware Detection Mechanisms Overview for the Delivery Phase P1.
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3.2 P2: Deployment

The following step in ransomware mitigation relies on monitoring the API calls. They show the interaction between
the malware and the computer of the victim. Many attackers rely on the services provided by Microsoft Cryptographic
API to complete their payload execution, such as random number generator, AES encryption. Writing a specific code is
prone to errors. Thus, attackers prefer to use built-in services to accomplish their tasks. Therefore, researchers analyzed
the API calls, including their patterns and frequency, to classify processes (Section 3.2.1). Monitoring carefully Windows
events helps to extract patterns to describe the habitual behavior of any user accurately compared to ransomware

(Section 3.2.2). These methods are summarized in Table 2.

3.2.1 API Calls. Chen et al. monitor the API calls made by ransomware to generate API calls flow graphs (CFG) [57].
It is a proactive solution that provides an early stage detection while a ransomware sample is still setting its environment.
They improve ransomware detection by analyzing the API call flow graph utilizing machine learning techniques. They
develop their API Monitor tool to gather the calls made during the experiments executed on a virtual machine. A
weighted directed graph represents the sequence of API calls. The weight corresponds to the frequencies of a specific
API 1, followed by API 2. The CFG is converted to a feature vector where its values are normalized and rescaled from
zero to one. Subsequently, feature selection is performed to retain certain features enabling a distinct separation between
malicious and benevolent software. The Simple Logistic (SL) algorithm outperforms the rest of the classifiers (decision
tree DT, random forest RF, support vector machine SVM).

In a like manner, Maniath et al. rely on the sequence of API calls to flag ransomware behavior. They utilize a modified
version of the Cuckoo sandbox to extract those calls from the JSON report of 157 ransomware samples [88]. The
sequence of API calls is converted to a chain of integers (each integer refers to a specific system call). Missing inputs in
the dataset occur because each malware is programmed to operate distinctly. Thus, to handle those missing inputs (for
example, five sequence calls compared to 200), Os are appended to the record since they do not influence the record’s
value. By applying the LSTM algorithm (Long Sort-Term Memory), prominent results are achieved.

Takeuchi et al. also rely on the sequence of API calls to depict ransomware-like behavior [112]. Their contribution is
the representation of API calls by a vector where they quantified the sequence of those API calls (including the number
of g-grams in the execution logs). A mapping is performed using n-grams. For a software using 2 distinct API calls A=
a, b, the possible 2-gram would be (a, a), (a, b), (b, a) and (b, b) . The final vector is [0,1,1,0] since it does not include
(a, a) nor (b, b). A major drawback is that two distinct API call strings can have the same output vector. Therefore,
they solve this issue by adding the count of the performed calls. Since the number of API calls diverges exponentially
between applications, standardized vectors are calculated to have a balanced set. SVM is used to differentiate between
the created vectors belonging to ransomware or to a benign application.

Similarly, Vinayakumar et al. and Hampton et al. analyze ransomware activity considering API call patterns and
their frequency [69, 117]. Tests performed on the sequence of API calls show that ransomware identification is possible
through its frequency. Additionally, some system calls are made solely by ransomware (InternetOpen, CryptDeriveKey,
CryptGenKey) [69].

Al-Rimy et al. propose a 0-Day aware crypto-ransomware behavioral detection framework [9]. Their model is
divided into three submodules: preprocessing, features engineering, and detection. They do not rely only on API calls
collected during the preprocessing phase for early detection. They added a layer consisting of data-centric detection

(this method focuses on the data using entropy or similarity) and anomaly detection based on a deviation of normal
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behavior. However, no tests were performed to prove the validity nor the accuracy of their framework even though it
has promising characteristics.

Al Rimi et al. propose a combination of behavioral and anomaly-based mechanisms to achieve accurate ransomware
detection rate and maintain low false alarms [8]. Cuckoo sandbox is used for the experiments where all the samples are
executed for 5 seconds to collect the API calls information. Each API call is treated as a feature. Term Frequency-Inverse
Document Frequency (TF-IDF) is used to build a vector for the training and test phase. The vector contains the weight
(calculated by applying the TF-IDF formula) of each API. Mutual Information (MI) is adopted to extract significant
features. As for the anomaly-based estimator, only benign software is used to carry out the experiments. This estimator
flags a deviation compared to normal behavior. The fusion of both mechanisms shifted the detection results providing
better classification. In some cases, specific user actions (for example, a mouse click) trigger the execution of ransomware.
Therefore, the duration of 5 seconds is not adequate for API calls collection.

Al Rimy et al. overcome information limitation in the early phases of ransomware attack by using two novel
techniques incremental bagging (iBagging) and enhanced semi-random subspace selection (ESRS) [10]. iBagging
represents a progressive stage of the attacks rather than having it all at a specific time, while the ESRS builds various
subspaces maintaining the diversity in each one. Three main components constitute their mechanism: initially, the
subspace creation then features selection and, finally, the choice of the best combination of base classifiers. Their
database consists solely of API calls captured during the execution of each sample in a sandboxed environment. A
pre-encryption boundary vector represents the stage that occurs just before the attack takes place. For the data subsets,
N-gram, and Term Frequency-Inverse Document Frequency (TF-IDF) are employed to decrease the similarity between
two adjacent subsets. Taking into account only 10% of the APIs in the training set, they achieved higher detection rate
using iBagging with ESRS rather than using solely iBagging.

Palisse et al. have implemented a Cryptographic Service Provider [99]. It contains the required functions for the
end-to-end encryption process. This mechanism would help restore encrypted data. Adopting this method, a user can
protect himself from 50% of ransomware attacks. This solution takes place during the encryption phase, at the end of

ransomware’s infection process. The authors use bare-metal hosts during the experiments.

3.2.2  Windows Events. The initial stage of ransomware delivery is similar to reconnaissance for Advanced Persistent
Threats (APT) [24]. Both malware rely on social engineering techniques to perform the attackers’ required task (opening
an infected PDF). Ransomware gathers information about the environment (language used, IP addresses, installed
libraries) in order to carry out the attack. The malware planted on the machine proceeds with a sequence of specific
events that is explored by Homayoun et al. [72]. They gather the first 10 seconds of logs collected from any goodware
or malware downloaded on their virtual machines. Analyzed ransomware samples are from three different categories
Locky, Cerber, and Teslacrypt. The logs consist of data gathered from the ProcessMonitor application that has records,
including loaded dynamic linked libraries (D), file system activities (F), and registry activities (R). Thus, the authors
converted their data into a sequential dataset and applied the sequential pattern mining technique Mind the Gap:
Frequent Sequence Mining (MG-FSM). The best features from the maximum sequential pattern are selected: R, D, and
FD (file system to DLL).

Using random forests, authors achieve a clear distinction between the events accomplished by a goodware versus
ransomware (for example, ransomware applications conduct a more extensive range of Registry activities). Their
experiments are done on virtual machines. The main advantage of such solution is the early detection of an infected PC
without any prior encryption process. However, any change in the current analyzed sequence of events would modify
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the detection rates prone to increased false positive and negative rates.

Articles Type Approaches Tested | Detection/Protection Mechanism
Static Dynamic | Solution

[8, 10, 57, 88, 112, 117] API Calls - v v API Calls sequence &/or frequency fea-
tures used to detect ransomware via ap-
plying ML algorithms

[99] API Calls - v v Intercepting calls made to MS-CAPI

[72] Windows Events - v v Maximal frequent patterns extracted from
(registry, DLL, transition file to DLL)
events then ML applied to detect ran-
somware

Table 2. Ransomware Detection Mechanisms for the Deployment Phase P2.

3.3 P3: Destruction

The destruction phase is characterized by the encryption process that affects a significant number of user files. Initially,
researchers flag the malicious communication with the C&C of the attacker that represents a critical element of
ransomware attacks (Section 3.3.1 and Section 3.3.2). Then, the honeypot countermeasures are developed in Section 3.3.3
to detect ransomware that queries the file system to collect specific file extensions (.doc, .xls, .txt, .jpg). The moving
target defense technique that regularly changes file extensions omitting consequential file types from ransomware
search is presented in Section 3.3.4. Massive operations, including open, read, and write, portray the encryption phase.
Encrypted information will have higher entropy. The statistical tools adopted in the literature that distinguishes a
non-encrypted text from an encrypted one are discussed in Section 3.3.5. This step consumes resources; therefore, the
hardware events can depict the ongoing ransomware attack (Section 3.3.6). Some authors combine multiple indicators
of compromise to detect malicious behavior (Section 3.3.7). Finally, if no real-time solution can stop the encryption
process, the restoration of keys can save user files (Section 3.3.8). The methods presented in the destruction phase are

summarized in Table 3.

3.3.1 Network Traffic Analysis. Wang et al. propose a mechanism for remote desktop protocol tracing and tracking
down [118]. The authors resort to cyber deception technology to lure ransomware attacks. They create a deception
environment to log and analyze the actions completed by the attacker. It consists of a login with weak passwords and
known vulnerabilities enabled. The collected information relies on IP addresses, shared folder path, and clipboard
strings. An automated analysis is carried out to filter and obtain the required results. To accomplish this task, the
Markov model is trained to distinguish gibberish words from existing ones. Windows 7 virtual machines are used for
the experiments. The question remains if this traceability is enough to stop ransom attacks and if it is sufficient to
physically traceback the attacker.

The authors in [4] propose a novel detection mechanism of highly survivable ransomware. They target hybrid
ransomware since they represent the highest threat. They define the Highly Survivable Ransomware as ransomware
that infects users; ransomware writers can only reverse the encryption process and restore the data. Finally, freeing
one victim does not include freeing the rest of the targeted devices. The authors focus their detection mechanism
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on the public key received from the C&C to perform the encryption on the infected system. It targets the domain
generation algorithm to contact C&C candidates for key retrieval. They propose a mechanism able to detect DNS
requests generated by domain generation algorithms (DGA [109]). Markov chains are used to define the transitions
from one letter to another. A gibberish query is more likely to be generated by DGA. They added another layer of
protection by signing the applications. Their detection is completed before the encryption process, so all files are saved.

Tsen et al. find that ransomware share common communication patterns that enable an early detection [115]. Their
solution based on deep packet inspection is fed to a deep learning algorithm to distinguish between malicious and
benign traffic. The data consist of HTTP requests and raw payloads downloaded from malware-traffic-analysis.net.

Alhawi et al. perform also supervised learning on the network traffic downloaded from VirusTotal [114] using
Weka [12]. Different ransomware families like Cerber, CryptoWall, and Teslacrypt are included in the training phase.
The features selected for the learning algorithm are protocol type, addresses and ports (source and destination), the
number of packets exchanged, the total number of packets, time relative to the start of the conversation, and the
duration of the conversation flow. Surprisingly, feature selection did not influence the overall sensitivity and specificity
of the detection (for example, decision trees provided the same results with/without feature selection). Also, there
was no separation between the TCP and UDP protocols, which might lead to an unbalanced dataset. For instance,
Zerber ransomware 7bbb346484186447fb1d085¢6942b56b made up to 40 000 different UDP requests while TeslaCrypt
05330ftf36ad3e359be8bb2b33f09436 only 2 TCP requests [94]. Besides, an administrator should know whether this
detection occurs before or after the encryption process that was not discussed in the paper.

The authors in [65] develop a Compromise Detection System (CDS) also based on machine learning applied to
network traffic to detect new variants of ransomware. They perform an analysis of WannaCry ransomware once with
the network configuration enabled and the second without any connection. The malware contacts the C&C via TOR
(The Onion Router), which is complex to trace. Their CDS also refers to DGA algorithms to detect the DNS requests
generated by ransomware. In addition, their tool can interact with a firewall to block the source of compromise, thus
restraining the propagation to other systems on the network.

Almashhadani et al. presume that the majority of ransomware samples can be detected via network communication
with the C&C. Having analyzed 4 Locky samples, the authors conclude that the communication occurs before any
payload execution [13]. They analyze multiple features as potential discriminating characteristics of malicious traffic,
including RST, POST, GET, and DNS requests. They are able to extract 18 detectable features divided into two subsets
behavioral (number of HTTP-POSTs, DNS-NE, and MDN, DNS-NE, MDN, MNBNS ) and non-behavioral parameters
(dns-ipv6, dns-ipv4, dns-time, dns-resp-ttl). However, another classification is taken into consideration for the training
algorithm, whether it is packet level (MDN, DNS-NE, dns-ipv6, dns-ipv4) or flow level (number of HTTP-POSTs,
DNS-NE, and MDN).

Cusack et al. monitor network traffic searching for communication patterns between the victim and the C&C [59].
Their module consists of two building blocks the stream processing and then the classifier. They can reduce important
features from 28 to 8 that is sufficient for a proper classification (inflow and outflow number of bytes, length, outflow to
inflow packet ratio). Their settings are not tested in a real-world scenario.

The authors in [55] develop a Software-Defined Networking (SDN) based on common ransomware patterns as an
effective ransomware countermeasure. Even though detecting those signals might come behindhand; however, they can
save other users from being infected by the same executable. They analyze the two corresponding families CryptoWall
and Locky. Although they both communicate via HTTP requests, some specific characteristics define each malware.

Their detection mechanism is solely based on the size of the data in the three POST messages. Then, for each family,
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the centroid and the limit distance (distance square) are established. For an unknown triple, the distance to the centroid
is calculated, and if it is below the limit distance set up previously, ransomware communication is encountered. The
benign traffic is downloaded from maccdc.org. Tests are performed on Cuckoo guest with Microsoft Windows 7 to
validate the proposed methodology.

Akbanov et al. resort also to SDN as a means of detection and mitigation of ransomware attacks based on OpenFlow [5].
From their static analysis using Petstudio, both worm and encrypting components of WannaCry samples use DLLs.
The worm component gets the information about the network environment, while the encrypting one utilizing
Windows Cryptographic API is used keys generation. The authors are able to find that WannaCry tries to connect to
an unregistered domain name via performing dynamic analysis. If it receives an answer, it stops its execution, else
the encryption process begins. A simple string search can extract two hardcoded IP addresses found in the samples.
Besides having an initial list of blacklisted IP addresses, the OpenFlow switch of the SDN-based mechanism redirects
the traffic generated by any machine connected to the network. The controller parses and extracts IP addresses from
packets received to compare them to the existent DB (port numbers and IP addresses) or updates it with a new entry if
malicious communication is detected. In the end, the corresponding traffic is blocked, and propagation opportunities
eliminated. Three Windows 7 VMs are used for the experiments where one is infected. Their mechanism can detect
the traffic incoming from the infected one and blocks it, which makes their approach successful. However, they block
only the worm component rather than stopping an active infection on the PC. Another point worth mentioning as a

limitation is DB poisoning with real/fake IP addresses.

3.3.2  Network Honeypot. Cabaj et al. use a honeypot technique in addition to an automatic runtime system to
analyze and detect ransomware through the network activity [54]. Their approach is built on virtual machines to
download and test ransomware samples on Windows XP. They reveal that CryptoWall uses domain names rather than
IP addresses. Multiple actions are carried out by the sample, such as getting the IP address of the victim’s machine
and contacting the hardcoded servers. Therefore, by blocking the DNS requests made by CryptoWall, the authors are
able to enumerate all the contacted servers. The parties maintained encrypted communication. All the proxies hosting

malicious scripts are identified.

3.3.3  File System Honeypot. Monitoring file system activity, apart from system calls, is crucial for an overall detection
mechanism. In fact, if an attacker learns different patterns or sequences of the system calls made to bypass security
measures deployed on the system, an early detection of the malware is improbable.

Proceeding with possible detection techniques, Moussaileb et al. introduce a graph-based mechanism to detect
malicious threads in the system [93]. Their approach relies on decoy folders where they flag any abnormality if
a particular process passes through more than three different decoy folders. It is unlikely that a normal process
passes through the Recycle Bin and Prog Data. This approach is reinforced by adding other features such as the total
number of explored paths and the traversal’s duration, which is fed to a supervised learning algorithm to perform an
accurate classification. Nevertheless, their approach would be limited if ransomware uses multithreading techniques
simultaneously for traversing the file system on the one hand and encrypting the files on the other hand.

Akin to previous research area, Lee and Hong introduce a novel mechanism to make efficient decoy files [81]. Two
search methods are extracted from malware’s source codes. The first one consists of performing a search looking for
specific file extension hence .pptx, .docx, .txt. Then, it saves the location of these files, encrypting them one by one at
the end of this process. The second method is encrypting a file as soon as it is found. Since the search is performed

in order or reverse order of Windows-1252 (character encoding of the Latin alphabet), consequently, decoy files are
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created using the first or the last character in Windows-1252. Preferably, they should be located in the parent folder
rather than in sub-folders due to ransom traversal patterns. The size and attributes of decoy folders can be updated to
meet the new requirements of ransomware in the wild and flag them as soon as possible.

Lee and Hong’s work is complemented by Moore and Al Kossairi et al. investigations [62, 92]. Moore’s work relies on
a honeypot folder that a File Server Resource Manager (FSRM) monitors, followed by changes analysis of the Windows
Event Logs. A tiered response to detection is developed based on the number of modified files. FSRM is a tool that
prevents an already executing malware from infecting the entire file server. The EventSentry makes a warning if an
attempt of modification is made to a specific object. The threshold is defined based on a regular observation of users’
behavior. Any abnormality noticed is a deviation of double or three times the normal activity. A practical method
certainly, however, it can be bypassed if the malware would not attempt to access these areas.

Whereas Al Kossairi et al. monitor decoy folders by Watching File System Event Handler watcher applicable only
on Windows OS. Decoy folders properties have been identified (variability, differentiability from benign ones). Low
(contains random data) and High (contains fake data) Interaction Decoy files are used for the proof of concept. They are
monitored by Watching File System Event Handler watcher. The decoy folders are positioned at the beginning of each
directory to be first intercepted by ransomware. These files contain misleading information about credentials or even IP
addresses. They provide an efficient detection mechanism. However, it is dependent on Find First File & Find Next File
functions used in Windows OS to get the files or search directories. In addition, if an attacker used a reversed search,

the victim would be alerted at the end of the encryption process leaving only the decoy files intact.

3.3.4 Moving Target Defense (MTD). Lee et al. come up with a mechanism based on MTD applied to file extension
to prevent losses on the victim system, most importantly, without a performance overhead [84]. MTD increases the
complexity of the attack surface. They randomly change 7 file extensions (.docx, .hwp, .pdf, .pptx, .txt, .xlsx, and.zip) over
one iteration to protect them. They randomly generate a four-digit file extension using the Cryptographically Secure
Pseudo-Random Number Generator (CSPRNG), then if it was not previously used, it replaces the existing extension in
the registry. The experiments realized are on VMware with Windows 7 installed. The overall modification of 1000 files
(extension + registry) does not exceed 3.6 seconds. However, two limitations are found in this work, a non-ergonomic
work environment, as the authors stated in addition to the encryption of a specific directory regardless of the file
extension. Not to mention, each file type is associated with its corresponding magic number (pdf: 25 50 44 46 2D, ppt:
DO CF 11 E0 A1 B1 1A E1, 7-zip: 37 7A BC AF 27 1C) consequently if ransomware scans just the first couple of bytes of
any file, it will get its format and encrypt it if it belongs to the whitelist of files [67].

3.3.5 Files Monitoring (Encryption, I/O requests). Kharazz et al. present a dynamic based approach to detect ran-
somware by identifying any tampering of users files in a created artificial environment [76]. Their solution is built on
top of Cuckoo Sandbox using Windows XP as an OS, where each sample runs for 20 minutes. Generating a different
artificial user environment for each run is essential since the malware will not be able to fingerprint the user-generated
content and will be more likely to attack the system. The generated documents should be indistinguishable from normal
ones, including valid content (headers, file archives, passwords, meaningful content), randomly generated directories
with a set of sub-folders, and finally, different time attributes. Monitoring of the file system activity is performed by
converting all the calls to a sequence of I/O requests and returning the file’s entropy in demand. Also, they identify the
common patterns for accessing the files and performing the encryption based on write and delete requests. Three main
classes of attacks are identified: whether the attacker overwrites the original data by the encrypted one, creates a new

encrypted file, and unlinks or deletes the original one. If more than five created files have higher entropy than the read
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file option, then ransomware is detected. Furthermore, they can detect zero-day ransomware (SilentCrypt) since their
mechanism is based on behavioral analysis. A limitation of their work is new ransomware variants that could shuffle
the data content having a slightly modified entropy; thus, it will evade detection.

Palisse et al. create two contributions in their work Data-Aware Defense (DaD) [98]. Unlike previous test environments
based on virtualization techniques, the authors build their platform to perform the analysis using Clonezilla and Viper.
At each run, a clean image of Windows 7 or 10 is loaded, and samples run for 15 minutes. This automatic analysis enables
a larger scope of malware investigation, removing the possibility of potential evasion techniques used by malware in a
virtual machine. Furthermore, they relied on the chi-square goodness-of-fit test (X2) to distinguish between encrypted
(aka random data) and non-encrypted files on the system. They developed a kernel driver that captures the I/O requests
and calculates the X? of the file being used. If the median of the last 50 operations exceeds a predefined threshold,
an alert is raised, and the thread is stopped. Another advantage is the slight overhead that does not exceed 12 us per
operation. At most, 70 MB of data was lost. Besides Shannon entropy and X2, Mbol et al. rely on Kullback-Liebler
divergence to detect randomness of data, in their case, ransomware encryption [89]. They focus solely on JPEG files.
They show that it is impossible to compare an encrypted versus a non-encrypted file based on Shannon entropy since
the output is practically the same (7.99 versus 7.96). Although it seems to be a prominent solution, the only file type
taken into consideration was JPEG. It represents less than 1% of the entirely possible infected file types [102]. Therefore,
an extensive work should be done to compare at least some of the important file types before and after the encryption
process.

Lee et al. propose an extension of the detection system that covers the files in the cloud [82]. Their technique
identifies the encrypted files on the cloud before synchronizing the system and losing the actual file. They utilize the
collision test estimate, the Markov test estimate, and the compression test estimate to measure the uniformity of a
specific file. They calculate these statistical values of 6 different file types (system file, document, image, source code file,
executable and compressed files) before and after the encryption process. Machine learning is used to derive the entropy
reference value. The decision tree is selected as the most suitable classifier to distinguish between an encrypted and a
non-encrypted file. These files thus will not be synchronized to the backup system. However, their solution does not
tackle the core of the subject: ransomware attack will not be stopped; they relatively propose a clean system recovery.
In addition, the use of machine learning for statistical tests is skeptical since the values will fluctuate around specific
numbers that are theoretically known. Thus, a dynamic change will not be seen in these cases that require the usage of
an adaptation algorithm. Furthermore, no real-time tests are made to prove the accuracy of their end-to-end process.

Agrawal et al. opt for sequence learning module specifically LSTM (Long Short-Term Memory) to detect ran-
somware [3]. They incorporate attention to learn ransomware sequence known as ARI (Attended Recent Inputs).
Ransomware has a significant repetition of small local patterns: the encryption process. They introduce recent input
attention within a larger cell. Their dataset consists of 12,500 sequences of ransomware and benign executables for
Windows OS. Their proposed algorithm ARI-LSTM outperforms normal LSTM.

3.3.6 Hardware Performance Counters (HPC). Alam et al. present RAPPPER a two-step mechanism based on un-
supervised learning to flag malicious activity. RAPPPER relies on Artificial Neural Network and Fast Fourier Trans-
formation [11]. The hardware events selected for the study are instruction, cache-references, cache-misses, branches,
and branch-misses. An observation of the hardware performance counter is done so that the tool learns the normal
behavior of the system that will be fed to the learning algorithm for further inspection. As a final step, Fast Fourier
Transformation (FFT) is applied to understand the repeatability of data over time. The experiments are carried out in a
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Linux Sandbox environment, and a precise threshold is set to differentiate between malicious ransomware behavior
and benign ones. RAPPER can flag ransomware 4 seconds from its launch. No similar approach is proposed for the

Windows OS; therefore, it is kept as an idea for defending victims from potential attacks.

3.3.7  Multiple Stage/ 10C (indicators of compromise). Chew et al. propose a behavioral-based approach to detect
ransomware to thwart its malicious intent [58]. Their work is based on multiple malware characteristics that represent
indicators of compromise. These indicators are based on monitoring file changes by checking the added extensions
to the encrypted files. Besides, an increased file entropy indicates possible encrypted data. Decoy files and Access
Control List (ACL) Authentication help flagging ransomware if decoys are altered or unauthorized modification, deletion
of a specific folder is noticed. Five seconds interval is maintained to increment the counter of the comprised action
performed by ransomware. The authors use SigCheck to check whether the file format has also been encrypted or not
to resolve the high entropy problem of zip files and DLLs. Notwithstanding, ransomware authors are currently sparing
the encryption of file headers, so the false positive rate will increase. Windows 8.1 running on Virtual Box is used for
the experiments. Results are satisfactory for all ransomware families except Petya that triggered a Bluescreen of Death
and encrypted the Master Boot Record.

Kharraz et al. studied 15 different ransomware families released from 2006 until 2014 [77]. They state that initial
attacks were not sophisticated since they used scare tactics rather than encrypting the file system having irreversible
actions. Experiments are performed in a controlled environment using Cuckoo sandbox. Their analysis is divided
into three parts. For the file system activity, the authors developed a minifilter driver to capture the I/O request to
perform the analysis afterward. It is deployed in the kernel mode to avoid being altered by ransomware. Then, they
look into the encryption mechanism, searching for standard Windows API calls and libraries used to encrypt a file on
the disk (CryptoAPI). The deletion mechanism is also taken into account since 35% of the samples did not perform any
encryption mechanism. Some samples altered the master boot record (MBR) and made persistent screen locks. The
authors employ multiple mitigation strategies. They consisted of monitoring API calls, the file system activity (creation,
deletion, or encryption of files), and finally using decoy resources that should not have been altered normally by a user.
All these elements propose an additional level of defense against crypto attacks.

Similarly, Scaif et al. develop a detection mechanism based on a set of behavior indicators [104]. Their solution
relies on monitoring changes to the magic numbers (it corresponds to the type of the data stored) of the files, hash
similarity measurements taken before and after a modification process, and Shannon entropy, which increases with
encrypted information. As for secondary indicators, they checked the numbers of actions taken to read/write/delete
files. They opt for the union of these indicators to achieve improved results than using each indicator separately. Cuckoo
sandbox is also used for the experiments. In the worst-case scenario, 30 files are encrypted before an alarm is raised,
and the process is stopped. In the median case, only 0.2% of the files are lost. Continella et al. present ShieldFS, a file
system minifilter driver, that protects users from ransomware attacks [25]. The authors analyze I/O request packets for
benign software and ransomware to set an initial detection threshold that indicates an ongoing attack. They check
if both software interact with the file system in a like manner or not by taking into consideration the process level
activity as well as the system activity. The approach is based on portraying the habits of normal users, including the
entropy of write operations, the frequency of read, write, and folder-listing operations, dispersion of per-file writes, the
fraction of files renamed, and the file-type usage statistics. Moreover, they scan the memory of processes looking for
cryptographic primitives. Random forest is applied to the features presented above gathered during intervals. These
intervals are defined as the fraction of files accessed by the monitored process. Furthermore, ShieldFS proposes a
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remediation aspect that shadows the original file if a malicious behavior is suspected. A drawback of ShieldFS is the
difficulty in distinguishing JPEG files from encrypted files relying solely on entropy, as discussed in [89]. Besides, if
ransomware equally distributes the tasks on different processes using multithreading techniques, some files will be lost
before detecting the malware.

In a like manner, Mehnaz et al. combine multiple modules to detect crypto ransomware at early stages [41]. Those
modules consist of monitoring changes occurring in the decoy files and monitoring the IRPs and fast I/O requests. File
changes are checked as well including the similarity, the entropy, the file type and size change to identify a malicious
process. The authors rely on CryptoAPI function hooking to retrieve the keys, restoring thus the encrypted files. A
minimal overhead is noticed by the system (up to 5% or few milliseconds), so it does not impact the overall performance.
Ransomware authors can bypass this solution if they add a spyware on the system to monitor user’s daily activity thus
omitting decoy elements from the encryption process.

The authors in [108] presented new variants of ransomware attacks that can go unnoticed. For instance, writing the
encrypted data in an SQL database, then deleting all the files. Multithreading attacks for reading, writing, and removing
files to maintain a low variation between the entropy of the data read and written. A set of features is added to block
such attacks (file attributes, path diversity, rate of creation, modification, size, and mime change). They perform their

experiments on real machines that detect ransomware without losing more than 20 files.

3.3.8 Keys Backup. Lee et al. present a prevention mechanism based on the encryption keys used to restore the data
after the encryption process [83]. They assume that ransomware authors rely on the Microsoft CNG library to import or
generate encryption tools. They develop their ransomware and test the effectiveness of their solution. They are indeed
able to retrieve the keys on a Windows 7 machine. However, if the malicious software has a built-in cryptographic
function or uses Microsoft CryptoAP], no keys are backed up.

Kolodenker et al. propose PayBreak, a reactive solution that saves the information related to the symmetric keys
generated to decrypt the files locked after the infection process [78]. Their proactive solution relies on a key escrow that
stores the encryption keys securely, where only the user has exclusive access. Windows 7 is the target machine running
on Cuckoo SandBox. Paybreaks consists of three major components. The crypto function hooking in CryptEncrypt to
export the symmetric keys via CryptExport used or created by Microsoft’s Crypto APIs, then the control is returned to
the application. Further hooks are required to get additional attributes such as the initialization vector and cipher mode.
As for Crypto++ , the memory of each executable is scanned for function signatures, and if a match is found, a hook is
placed. Then, the key vault is used to store the symmetric encryption in an append-only file protected by a private key
created by the user using the same hybrid cryptosystem as ransomware. Finally, the file recovery is achieved by testing
multiple decryption schemes at different offsets since the encrypted file contains metadata of ransomware. Twelve out
of twenty families are successfully defeated. The rest of the samples could be identified by hooking to various statically

linked libraries used during the encryption process.

3.4 P4: Dealing

The final stage in a ransomware attack consists of an exchange between the attacker and the victim. It is the most
critical phase of the intrusion. Indeed, the cyber attacker displays a ransom note indicating the steps he/she has to
follow for the payment to receive the decryption keys. State-of-the-art papers delve into extracting and clustering the
addresses of ransomware found in the blockchain. The goal is to monitor the bitcoin flow, visualize the transactions,
and provide an estimate of the infected people. The methods presented in the dealing phase are summarized in Table 4.
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Articles Type Approaches Tested | Detection/Protection Mechanism
Static Dynamic | Solution

[4] Network Analysis - v v DNS requests generated by DGA detection
via Markov chains

[12, 13,59, 115] | Network Analysis - v v Flagging suspicious communication via ma-
chine learning

[55] Network Analysis - v v SDN mechanism capable of flagging mali-
cious POST requests

[54, 75] Network Honeypot - v X Proposition of using Network Honeypot

[93] System Honeypot - v v ML applied to file system traversal features
to detect ransomware

[81] System Honeypot v v X Novel mechanism to make efficient decoy
files

[62, 92] System Honeypot - v XV Detection via monitoring honeypot folders

[84] MTD - v v MTD applied to file extension to prevent the
encryption process

[76] Files Monitoring - v v Monitoring I/O requests and files’ Shannon
entropy for ransomware detection

[98] Files Monitoring - v v Chi-squared test to check encrypted files

[89] Files Monitoring - v v Kullback-Liebler divergence to locate JPEG
encrypted files

[82] Files Monitoring - v v Ransomware detection (in the backup sys-
tem) by applying ML on file format and en-
tropy

[11] HPC - v v ANN applied on cache events to flag ran-
somware

[58] Multiple IOC - v v Monitoring file changes and entropy, manip-
ulation of decoy files to detect ransomware

[25] Multiple IOC - v v ML applied to the entropy of write oper-
ations, the frequency of read, write, and
folder-listing operations, dispersion of per-
file writes, the fraction of files renamed, and
the file-type usage statistics + files recovery

[77] Multiple IOC - v v Monitoring I/O request and changes in the
MFT to detect ransomware

[104, 108] Multiple IOC - v Vv File attributes, modification, features used
to flag ransomware

[78, 83] Keys Backup - v v Hooking to Microsoft cryptographic func-
tion to restore the keys and decrypt the files

Table 3. Ransomware Detection Mechanisms for the Destruction Phase P3.
3.4.1 Bitcoin Tracking. Spagnuolo et al. developed Bitlodine, a framework that helps to track the irreversible

transactions publically available on the blockchain [51]. Correlating the information extracted from the blockchain

and its metadata allows an accurate description of the cryptocurrency flow between two addresses. Bitlodine scheme

relies on parsing the blocks and transactions found in the .bitcoin folder and exporting them into a database. Then, a

cluster of addresses is based on the multi-input transactions (assuming multiple input addresses belong to the same

wallet) and change (the "unspent” output of a transaction will be delivered back to the user). A set of scrapers crawl
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the web, collecting information associated with the bitcoin addresses like usernames, physical coins, scammers, and
shareholders. Finally, the transaction and user graphs are generated corresponding to the assembled information above.
The classifier labels each cluster to its corresponding potential owner. Spagnuolo et al. investigate CryptoLocker using
Bitlodine. The tool they developed can gather CryptoLocker 1467 addresses belonging to 12 clusters. This step is carried
out by analyzing flows of 0.5, 2, or 10 BTC, the ransom demanded by the attackers. Two key elements are presented
in Bitlodine. It is possible to track and identify ransomware based on the ransom amount, and multiple clusters can
represent the same family. Different ransomware families can be studied based on these characteristics. Additionally,
new unidentified clustered can be analyzed to check the possibility of classifying them as ransomware.

Kuzuno and Karma propose as well an analytical process environment for bitcoin [80]. It is divided into four steps.
Initially, their mechanism has to find the bitcoin address (target is already known or search for example via the amount
spent and the date). Then, the indexer collects and stores each transaction ID and Block ID in the authors’ private
database. Next, the visualizer displays the relation between the collected addresses (transactions made). Finally, the
clustering process associates a known address with another that might belong to the same wallet operator. Applying
this process to Cryptolocker’s case, two addresses quickly stood out, since they received 2.0 BTC from many other
addresses.

Similarly, Huang et al. trace financial transactions related to ransomware [73]. The authors collect the seed addresses
(ransom addresses) from real victims or by executing a ransomware sample. For the real victims, the authors check
public forums such as Bleeping Computer. Once they find the screenshots of ransom notes, they perform image and
or text analysis. As for the experiments carried out to by synthetic victims (authors executing ransomware), they are
executed for 20 min on four independent platforms VmRay, VMware-based sandbox, Cuckoo, and Windows XP on a
bare-metal machine. To be able to collect more ransom addresses, clustering and micropayments methods are used.
Clustering by co-spending helps to expend the range of "malicious addresses" if two wallet addresses are used as the
input to the same transaction. Augmenting clustering with micropayments consists of paying 0.001 bitcoins to the
ransom address and observe bitcoins flow. To cover the limitations of those two methods (for example, micropayment
did not result in subsequent bitcoin movement), the authors incorporate the timing of payments.

Harlev et al. focus on predicting if a previously unidentified cluster belongs to one of the following pre-deinAned
categories: exchange, gambling, ransomware, etc [71]. To accomplish this step, the authors apply machine learning
algorithms (k-nearest neighbors, random forests, decision tree, extra trees) on the bitcoin dataset provided by Chainalysis,
a bitcoin analysis company [1]. Significant features are extracted and kept (timestamp of the transaction, the amount of
BTC received/sent, total BTC amount sent to a given cluster, equivalent USD amount at the point in time). In a like
manner, Akcora et al. detect new ransomware addresses using topological data analysis (TDA) and machine learning [7].
TDA helps to extract hidden patterns fundamental elements to distinguish ransomware transaction in the blockchain
(income, number of addresses, and unique addresses, neighbors).

The model can predict new ransomware families with 27.53 false positives for each true positive.

4 POLYMORPHIC RANSOMWARE

Numerous techniques exist to create a polymorphic version of an existent code. The authors in [100] cited NOPs
operation and code obfuscation, multi-staged attack, polymorphic blending, conversion to metamorphic code, and
sandbox evasion. By using these techniques, the future polymorphic and metamorphic ransomware can become

untraceable and undetectable.
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Articles Type Approaches Tested | Tracking Mechanism
Static Dynamic | Solution
[51] Bitcoin Payment Tracking - v v Clustering and visualizing bitcoin addresses

and flows based on the multi-input transac-
tions and change heuristics

[80] Bitcoin Payment Tracking - v v Ransom addresses traced, then bitcoin flow
visualized; lastly, addresses are clustered.

[73] Bitcoin Payment Tracking - v v Ransom addresses traced via clustering by co-
spending augmented with micropayments

[71] Bitcoin Payment Tracking - v v Categorize yet-unidentified clusters via su-
pervised ML

[7] Bitcoin Payment Tracking - v v Extract features related to ransomware Bit-

coin to detect new addresses associated with
known ransomware families or new ones.

Table 4. Ransomware Detection Mechanisms for the Dealing Phase P4.

Genc et al. delved into analyzing current solutions’ weaknesses and projected themselves in the future for an
anticipation of potential ransomware attacks [67]. Indeed, the authors presented seven evasion techniques based on the
most robust countermeasure employed in the cyberwar against ransomware. For key creation that bypasses the use
pseudo-random number generator, they can be created directly from the file itself using Convergent Encryption, and
memory dump will retrieve only the key being used at this specific momentum. Another counter-counter measure of file
identification is skipping the first 5120 bytes of any given document, thus preventing the alteration of the magic bytes
and the triggering of the alert. To evade statistical tools used to calculate the entropy or any other characteristics of the
files, a simple permutation of the bytes will leave the score intact. Nevertheless, using reverse engineering techniques
applied to the binary, researchers can obtain the permutation algorithm used.

Sechel assessed the effectiveness of AVs in ransomware’s pandemic to disclose the code obfuscation [105]. He
mentioned that advanced stealthiness techniques are rarely applied during the different phases of infection since the
user will eventually know that his system was under attack. To perform evasion techniques, ransomware authors relied
on packers and cryptor (compressing and encrypting the executables). The overall detection rate by VirusTotal for
11 different crypto-ransomware is 83.72%. Then, he obfuscated his source code using Themida that enables several
protection features (memory guard, resource encryption, monitor blockers, exiting silently when debugger detected).
The initial detection rate was 32.58%, jumped to 44.95% the following day due to an update of the VirusTotal database.
Cuckoo sandbox was able to correctly identify four samples as ransomware, while the rest were malicious software
based on network communication and code injection. There is no doubt that these techniques can hinder detection
and/or classification by various AVs.

Ransomware attacks are evolving, and their authors find multiple ways to bypass some of the current detection
mechanisms. Nonetheless, the goal of this malware is limited to altering the availability and integrity of the data.
Researchers must be aware of the next pandemic that is just around the corner: Doxware. Indeed, every pillar of the
CIA is attacked: even though local data recovery is possible, it will be exposed on the World Wide Web. In other words,

once sensitive data is disclosed and proliferated, there is no turning back at this point: the damage can not be undone.
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5 RANSOMWARE ANALYSIS
5.1 Ransomware Static & Dynamic Analysis

Quantitative analysis represents a major pillar in the research community. Indeed, it highlights the divergence between
the data collected from ransomware versus benign applications behavior. This distinction is found in the system as well
as in the network level.

The delivery phase presents the best practices and the recommendations that need to be taken into consideration to
protect the files from ransomware attacks. No ransomware detection mechanisms are developed besides ransomware sig-
natures. Therefore, the quantitative analysis concerns specially the second and the third phase of the attack (deployment
and destruction) and partially the signature based detection in the first one.

This section presents the features proposed by the research community to detect ransomware based on static and

dynamic analysis that covers to some extent the quantitative analysis.

PART I: Static Analysis

(1) Malware triage examines automatically unknown samples to decide if they should be dispatched to humans for
further analysis or directly classifying the executable as malware. Triaging unknown binaries is accomplished
using fuzzy hashing, import hashing and YARA rules [95]. Cryptographic hashing solely is not convenient in
malware forensics. In fact, if a single binary digit is changed, the output hash is not identical to the original
file even though they share most of the code. Therefore, Fuzzy hashing technique solves the aforementioned
problem. Fuzzy hashing identifies the similarity between 2 chosen files by dividing each one of them into multiple
blocks, calculating the hash for each block separately. The final hash represents the concatenation of all the
produced hashes. It offers a degree of similarity rather than a binary classification.

Import Address Table (IAT) of a Portable Executable (PE) file contains function pointers to get the addresses
of functions when the DLLs are loaded. Import hashing detects the similarity between two files based on the
library/API names and their specific order in the executable file. It determines a binary similarity.

Finally, Yara rules provides a rule-based approach based on the strings found within a file. It supports OSs like
Windows, Linux, and Mac OS.

If the hash of the unknown sample is similar to previously known malware, it is dumped into the malware

database. Else, further analysis is required to identify the sample as ransomware.

@

~

Reverse engineering is performed on three levels: assembly instruction level, libraries used in PE file structure
level, and function calls used in the libraries. To this end, objdump is used to extract the assembly code in the
Intel syntax.

(3) If the file is packed, the packer should be identified and the appropriate unpacker should be used if possible.
(4) Ransomware is identified as follows:

A is used to generate the vector representation of each ran-

o The frequency distribution of the instructions
somware.
The authors in [110] develop a tool to extract code segments which contain all DLLs required to execute the
PE file.
Cosine similarity applied to the normalized frequency of the x instruction in 2. The x instructions are: add,

mov, cmp, imul, datal6, or, test, xor, movzx, and. Association rule mining is used to detect ransomware pattern.
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For example, whenever X is true, Y is true as well.

Multiple DLLs are used by ransomware.

— ADVAPI32: CryptReleaseContext, CryptAcquireContextA, CryptGenRandom, CryptEncrypt, CryptGetKey-
Param, CryptAcquireContextW, CryptDestroyKey, CryptImportKey

— CRYPT32: CryptQueryObject, CertFreeCertificateContext, CertFindCertificateInStore, CryptMsgGetParam,
CryptDecodeObjectEx

Some of the created association rules to detect ransomware families are:

- [COMCTL32.DLL,SHELL32.DLL,USER32.DLL] —> [KERNEL32.DLL]

- [MPR.DLL, ADVAPI32.DLL, SHELL32.DLL, USER32.DLL] —> |KERNEL32.DLL]

If any unknown binary file matches 60 percent of these rule sets, it is categorized as ransomware with an

accuracy of 70 percent.

e Another possible ransomware signature is based on the properties of the PE files [116].

Machine learning (DT, RF and Naive Bayes) is applied on 60 static properties of the PE files common to all

malware and 9 ransomware specif properties.

The common malware properties include bytes on last page of file, pages in file, relocations, number of section

headers and section bodies in the file, symbols in the header, size of optional header, specific characteristics

about the file, location of the entry point for the application, etc.

The ransomware ones are presence of packer, identity of type of packer, checking and creating mutex for

isolation, entropy of file, text and data sections, presence of common strings, DLL used for network connections

and communication, command used to modify the registry, store information from the client, get access to file

from given path.

e To sum up, ransomware can be spotted as shown in [91] based on the static features that include:

- Keywords like “your files are encrypted”, “payment”, “to decrypt your files”, etc.

— API functions and extensions: to search directories, rename files such as FindFirstFile or FindNextFile.

— Cryptography signatures: Rijandel AES algorithm signature, the use of CryptEncrypt and CryptDecrypt
from the Microsoft cryptography APL

PART II: Dynamic/Real Time Analysis

There is no doubt that static analysis spares file losses if ransomware executable is identified. However, this is not
the case in most ransomware attacks. In fact, victims are unaware of the presence of a malicious software on their PCs
or unintentionally click on a malicious URL. Therefore, real time analysis comes in hand as it recognizes and stops

ransomware execution limiting the damage if the user has not the executable file.

Ransomware behavioral signature can also be extracted from API calls considering the sequence and frequency of

the corresponding calls.

(1) API calls of running applications are extracted using API Monitor or a modified version of Cuckoo [57, 88].
Then, the sequences of APIs (API4 —APIp) is extracted and converted in to a feature vector containing the
frequency of each sequence. Data is normalized having each numeric value in the range [0,1]. The obtained
vector represents the input of the training set of the machine learning algorithms. Some authors describe the
technique used, for example converting a sequence of API calls into a vector. However, the specific API calls

Manuscript submitted to ACM



A Survey On Windows-Based Ransomware Taxonomy And Detection Mechanisms: Case Closed? 23

used in the collection process are not mentioned. Table 5 shows the main API calls related to ransomware. Up to

131 API calls can be used for distinguishing between benign applications and ransomware [117].

Ransomware specific API calls API calls used in ransomware at higher
call frequency
InternetOpen CryptAcquireContext
CryptDeriveKey CloseHandle
CryptDecodeObject FindNextFile
CryptGenKey SetFilePointer
CryptImportPublicKeyInfo GetFileSize
GetUserName SetFileAttributes
NdrClientCall2
Socket
NdrClientCall2

Table 5. Ransomware related API calls [69].

(2) In addition to the captured API calls, registry and DLL events as well as file system to DLL transitions can indicate

the presence of ransomware within the first 10 seconds of its execution.

Registry Events File system Events DLL Events
RegQueryKey QueryNamelnformationFile LoadImage
RegOpenKey ReadFile

RegQueryValue CreateFile

RegCloseKey QueryBasicInformationFile

RegCreateKey CloseFile

RegDeleteKey QuerySizelnformationVolume

RegLoadKey WriteFile

RegQueryMultipleValueKey SetRenamelnformationFile
Table 6. Activities captured by Process Monitor [72].

PART III: From Deployment to Destruction

(1) Ransomware can be detected via monitoring the DNS requests made by applications generated by DGAs [4].
Each gibberish DNS request is flagged via building Markov chains for the required languages (English, Persian).

(2) Machine learning applied on the network traffic generated from goodware and ransomware samples is
efficient to flag malicious communication. The retained features from the network traffic are presented in Table 7.

(3) System honeypots flag any abnormality found in processes file traversal. Generally, ransomware accesses
various directories to establish a proper environment for the encryption.
Therefore, decoy files can be placed in those folders, and if they are accessed in a short period, a potential threat is
discovered. The list of decoy folders used to detect ransomware activity in [93] is the following: C:\$Recycle.Bin,
C:\Python, C:\PerfLogs, C:\Prog_data, C:\Prog_files.

(4) Renaming file extensions presented in the following tuples (Original File Extension, Changed File Extension):
(.docx, .juev), (hwp, .plaz), (.pdf, .ohiz), (pptx, .nhru), (.txt, .umbc), (.xlsx, .qooi), (.zip, .imko) serve as an MTD
technique in [84] protects users files without performance degradation.
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Arti

cles [12] [13] [59]

protocol used Flow-level: inflow number of bytes
address A, B number of HTTP-POSTs  outflow number of bytes
port A, B number of DNS-NE inflow standard deviation of packet lengths

Features used packets A —B,B —A number of MDN outflow standard deviation of packet lengths

bytes A —B,B —A Packet-level: inflow mean burst length
MDN outflow minimal interarrival time
DNS-NE outflow to inflow packet ratio
MNBNS
dns-ipv4/ipve

©)

Table 7. Features used in the ML process.

Monitoring file changes (entropy).

Statistical tools including Shannon (SE), cross (CE), relative entropy (RE), the chi-squared test (¥?), and finally,
the Kolmogorov-Smirnov test (KS) are applied on the following file extensions: doc, jpg, pdf, mp3, xls.

1000 samples of each file extension are collected. Then, with a 128 bits key, an AES encryption is performed
on 256 bytes of each file. Table 8 represents the average values calculated based on the file type, before the
encryption (ex, SE) and after the encryption process (E_SE) where E denotes the encrypted file type.

Files

SE E_SE CE E_CE RE E_RE (X?) E (¥?) [KS E_KS

doc
ijpg
pdf
mp3
xls

1.616 5.615 8.858 8.463 0.858 0.463 129.184 | 7.085 0.676 0.121
4.546 7.095 8.580 8.189 0.580 0.189 29.739 1.175 0.627 0.055
5.051 7.158 8.528 8.176 0.528 0.176 17.458 1.030 0.469 0.053
4.425 7.052 8.580 8.195 0.580 0.195 39.806 1.504 0.521 0.047
1.602 5.623 8.859 8.461 0.859 0.461 130.165 | 7.059 0.681 0.120

(6)

(7

~

Manusc

Table 8. Average values of statistical tools applied on the first 256 bytes of 1000 files and their encrypted counterpart.

An extended analysis of the statistical tools is presented in [47] carried out by Pont et al.. They discuss why
current statistical approaches fail to detect ransomware since the frequency of false positives is very high.
Multiple Indicators of Compromise. The combination of the previous detection mechanisms provides a
stronger protection against ransomware attacks. Indeed, if one indicator is bypassed by the malware, the
remaining ones still flag an anomalous behavior.

e Monitoring file extensions changes.

e Monitoring file entropy.

e Monitoring canary files.

e Monitoring the frequency of read, write, and folder-listing operations.

Finally, securing the encryption keys generated by ransomware using Microsoft’s Crypto APIs is used for data

restoration. The keys escrow will not stop the attack, however, will recover the encrypted data.

5.2 Ransomware Future Perspectives Overview

Future challenges and research propositions are presented in this section to offer an exhaustive countermeasure
in the ransomware battle. A thorough analysis of the existing work in the literature helped to highlight the

actual gaps and to provide a better roadmap for various phases of the ransomware attack presented below.
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o Identify the root causes of ransomware attacks.

o Elaborate more on dealing with obfuscated or packed malware instead of omitting them from the analysis like
in [91, 116] or classifying them directly as malicious software [45]. Further information about code obfuscation
and evasion techniques are discussed in Section 4.

e Provide a benchmark dataset to validate or not future developed solutions.

e Provide a refined multiclass classification of ransomware samples to enhance actual binary classification
(trustworthy application versus ransomware).

o Extract specific ransomware patterns to be compared to other types of malware to highlight the divergence or
the similarity. This clusterization facilitates applying an active response to each type of attack, containing the
threat shortly after the intrusion.

e Propose an evaluation of the resources consumed during the real-time analysis (overhead) and the performance
impacts on the system.

e Re-design decoys generation of the deception-based techniques to improve the protection of the data of users,
as mentioned in [31].

e Check whether the creation of a realistic environment (saved credentials, browser history, and realistic decoy
files including images and documents [25]) is sufficient to trigger ransomware attacks.

e Provide an automated tool to populate an online shared repository containing the list of the blacklisted IP
addresses of the C&C servers to prevent ransomware spreading.

o Evaluate the impact of different encryption schemes on the randomness of data since Shannon’s entropy is
not efficient in differentiating between an image, a zipped file, or an encrypted one raising the false-positive
rates and the Chi-squared test can be bypassed by bytes permutation, as shown in [67].

Summary

Ransomware evolved over the last decade. The encryption mechanism adopted by the attackers shifted from

including the symmetric keys in the malicious software to fetching them from the C&C. The current anti-

ransomware ecosystem follows the rules of cat-and-mouse. Therefore, one size fits all solution to stop ransomware
does not exist. New malware and ransomware emerge continually making the developed countermeasures
inadequate to detect those new properties. One specific applied countermeasure whether it is located on the
system or network level is not sufficient to prevent any file loss. Some files will be eventually encrypted before
an alert has risen, or the proposed solutions have some limitations that could be easily bypassed. Even though
ransomware has been studied thoroughly, we can not assert that this research area is “complete”. Researchers
must combine different aspects of ransomware behavior to build a safe countermeasure. However, several key
elements can be elaborated to provide a proper ransomware countermeasure. The delivery phase is responsible
for subsequent file losses. Therefore, the attack vectors graphs will help to identify the vulnerability points found
in the systems. By automating the process, the latest patches can be applied as an incident response handling
technique. New statistical tools or learning algorithms can be developed to detect the randomness aspect of
the data caused by encryption. Besides, recent ransomware authors encrypt the files maintaining the same
entropy before and after the encryption process. Thus, the frequency of the read and write operations would
come in handy since the data distribution is invariant in the case of an unaltered entropy. The combination
of those multi-layer techniques will generate an important overhead on the system. Analyzing the correlation
between the countermeasures and their impact on the system will help administrators to tailor ransomware

countermeasure based on their needs. Lastly, collaborative effort like the RAMSES project [48] and others will
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provide a positive initiative for ransomware tracking and detection, thus, reducing the massive spread of the

attacks.

6 MOBILE RANSOMWARE

Mobile ransomware presents a major concern for end-users since they rely on their devices to accomplish their daily
tasks. Currently, a mobile device is equivalent to a database containing massive sensitive information, including
contacts, emails, pictures, passwords, and credit cards. Therefore, it is essential to tackle mobile ransomware defense
mechanisms found in the literature. We divided them based on the mechanisms used to detect ransomware (Section6.1
and Section 6.2). The proposed solutions are developed on the Android OS. Finally, we present the shortcomings of

mobile ransomware in Section 6.3.

6.1 API Calls

Maiorca et al. statically analyze the Dalvik bytecode to extract API packages found. Using API packages reduces the
number of features needed for classification [39]. APIs contained in the invoke-type instructions are checked to see if
they belong to system packages. The occurrences of each system API package in the Android app are counted. They
serve as an input vector for the random forest learning algorithm. The mobile ransomware samples are gathered from
HelDroid (public database) and VirusTotal (private database since ransomware samples are not publicly available).
R-PackDroid can be reliably used to discriminate between applications (benign, malware, and ransomware) based solely
on the system APIs. However, since static analysis is used, it is not immune to dynamically loaded libraries or encrypted
classes found in the executables. Besides, the authors did not mention the type of ransomware considered during the
experiments (scareware, crypto or locking ransomware).

Similarly, Abdullah et al. collect system calls for each executed Android application [18]. VirusTotal is used to
download malicious applications. The testing dataset of benign applications is downloaded from Google Play Store. A
vector containing a set of features represents each application. Existing features are represented by the integer "1" in
the vector whereas missing ones by "0". Fifty-two system calls are selected for the training phase (getpid, chmod, read,
bind, gettimeofday, etc.). Random forest, J48, and Naive Bayes are used as classification algorithms. They successfully

detect ransomware instances.

6.2 Multiple I0OC (indicators of compromise)

DNA-Droid developed in [32] includes static and dynamic analysis needed for the detection module. The prototype
is based on a combination of three components. Text classification is used for extracting extortion strings to detect
ransomware. Based on the strings and sentences extracted, the APK content is categorized by topic (encrypt 20%, lock
40%, money 20%, porn 5%, and threat 15%). The image classification module detects logos used by the attackers to lure
the victim into paying the ransom. The logos consist of well-known brands or agencies (Google, IKEA, Department
of Justice). The API calls and permissions module extracts the list of permissions from the AndroidManifest.xml, and
by decompiling the APK, it obtains API methods used in the app. Deep Auto Encoder is used to provide the score of
the app’s maliciousness: a value between 0 (benign) and 1(malicious). Then if an application is marked as malicious,
a dynamic analysis is performed to validate or reject the previous decision. It is based on the sequence of API calls
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collected during the execution of the application. Multiple sequence alignment is used to distinguish between various
ransomware families based on the collected APIs. Ransomware samples are collected from R-PackDroid, HellDroid,
and Contagio. The benign dataset is composed of goodware samples downloaded from the Google Play store. The
authors successfully detect ransomware, especially in the second round (dynamic analysis) during the first five minutes.
Nonetheless, the number of lost/encrypted files is not mentioned.

Andronio et al. focus on analyzing Android APK files for classifying samples as scareware, locking, or crypto
ransomware [14]. Natural language processing (NLP) supervised classifier is used to detect threatening sentences.
The dataset consists of the strings extracted from disassembling ransomware binaries. Then, FlowDroid, a static taint
analysis, is used to detect unsolicited file-encryption operations (reading external storage and encrypting functions).
Attackers can lock the mobile by calling the lockNow() function with administrator privileges. Another method consists
of creating an Immortal Activity or dialog, disabling the home, back, and close functionality. By inspecting the source
code of an executable, this information can be flagged. Threatening text should be found as well as a locking and/or
an encrypting activity to detect ransomware. A diverse set of datasets is used during the experiments. They include
AndRadar, AndroTotal, MalGenome, and VirusTotal datasets. The language barrier is a limitation as described by the
authors since they search for threatening text in English. Another limitation is the evasion mechanism that does not
detect the dynamically loaded libraries required to carry out the attacks.

Ferrante et al. present mobile ransomware detection mechanisms based on the combination of static (code inspection
without running the malware) and dynamic approach (analyzing the behavior of the malware) [29]. They state that
there is limited work in the literature addressing mobile ransomware. The authors extract pairs (2-grams) of opcodes
found in trusted and malicious applications. They perform a feature selection to reduce the number of pairs from 1012
to 50 2-grams. Then, supervised machine learning (J48, Naive Bayes, and Logistic Regression) is applied to the 2-grams
reduced feature vector to classify malicious/trusted applications. To propose a runtime detection, Ferrante et al. use
a lightweight method to monitor memory, CPU and network usage, and statistics on system calls. A sliding window
is adopted to define the scope of ransomware/trusted application in the runtime behavior. Benign applications are
downloaded from Google Play Store, whereas ransomware is taken from a free database HelDroid. The combination of
both static and dynamic analysis provides full coverage against Android ransomware. However, their set of malicious
applications is not limited to crypto-ransomware but contains also locking ransomware and ransomware using scare

tactics.

6.3 Discussion

Ransomware affects mobile devices too. Being a different type of operating system, we investigated the current state
of the art in mobile ransomware to check if there are any similarities in the methodology used for ransomware detection.
Most of the countermeasures proposed in the literature, including R-PackDroid, HELDROID, and DNA-Droid, analyze
different ransomware types (scareware, crypto and locking ransomware) and are not limited to crypto-ransomware.
Therefore, we do not have an exact percentage of mobile crypto-ransomware in the wild. HELDROID relies on taint
analysis to detect encryption activity in Android devices using FlowDroid. Many techniques have been proposed to
this end, especially monitoring/tracking user activity or sensitive information like Scandroid, TaintDroid [28, 30] and
others [50, 73, 122]. However, current literature is not abundant with mobile ransomware journals or papers, as stated
in [32, 39]. Even in the latest survey released in 2020 about ransomware in Windows and Android platforms, only

six papers were mentioned related to mobile ransomware [21]. More general malware-oriented papers are reviewed.
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Articles | Type Approaches Tested Detection/Protection Mechanism
Static Dynamic | Solution
[39] API Calls v X v Random forest applied to the occurrences of system API

packages in the Android apps to classify the executables
as ransomware, malware, or trusted.

[18] API Calls X v v Random forest, J48, and Naive Bayes are applied to fifty-
two collected system calls to detect ransomware samples.
[32] Multiple IOC | v v v Applying ML on static (threatening texts, logos and API

methods found in the APK) and dynamic features (se-
quence of API calls) to detect Android ransomware.

[14] Multiple IOC | v/ v v Applying NLP to extract threatening texts and tracking en-
crypting functions and locking heuristics to detect Android
ransomware.

[29] Multiple IOC | v v v Applying ML on op-codes (static approach) and memory,

CPU and network usage, and statistics on system calls
(dynamic approach) for ransomware detection

Table 9. Mobile Ransomware Detection Mechanisms.

Most surveys classify mobile ransomware detection based on static, dynamic, or hybrid analysis [18, 29, 43, 61]. Model
checking is also used to detect Android ransomware [42]. There is still no extensive coverage of mobile ransomware,
as stated in Kaspersky’s report released in 2016 and 2017. The most dangerous mobile ransomware examples (Fusob
or Small) did not encrypt users’ files but blocked access to the device. Besides, Kaspersky Lab experts do not believe
that crypto-ransomware for mobile will undergo any noticeable development in the future due to the security features
implemented recently into the Android OS, which limits the ability of third-party apps to get unlimited access to users’
files [35, 36]. Therefore, we decided to focus solely on Windows ransomware in the current survey. We will propose
another classification scheme for Android ransomware once the literature will be abundant with the proposed solutions.
7 CONCLUSION

To date, ransomware attacks are still spreading across the globe with a shifted target from end-users to businesses. The
current literature is abundant with a variety of reliable solutions to flag ransomware’s malicious behavior since its
early stages, from the infection vectors to the installation process to the payload delivery and, finally, the tracking of
cybercriminals. The combination of regular backup and an up-to-date antivirus is essential to avoid any file loss. To
breakdown the suggested solutions, an attacker’s effort should be equally distributed across all the stages from the
infection until the ransom payment, which is not a trivial task. Detecting zero-day ransomware is possible since they
have a predefined taxonomy and payload (encryption process). However, any alteration of the deployed mechanisms
will be an extremely challenging task since we are exposing an unseen behavior. There will always be the first entity
down (the first victim), but the following attacks can be prevented since we are capable of managing the incident
response by acquiring useful information. Monetary and data loss are catalysts for conducting further research to tackle
some limitations of current detection mechanisms and propose future perspectives to compete in this arms race against
ransomware. To conclude, ransomware remains a dangerous threat that should be addressed soundly with continuous

research.
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A APPENDIX

This appendix gives an extended information about previously carried out experiments in the Deployment and in the
Destruction phase (Tables 11 and 12) and the signature based detection in the Delivery phase (Table 10). Each table
presents the tools used in a specific paper, if the execution on a bare metal (BM) or virtual machine (VM) platform, the

number of samples and families.

Articles | Type Tools Tested on | Number | Families
BM VM | of Samples
Process monitor

[119] VSS Regshot - v - CryptoWall, TeslaCrypt, CTBLocker, Locky
[91] SBD Yara rules - v 792 45 families!

objdump
[110] SBD pe-parser - v 450 11 families 2

OllyDbg
[116] SBD WinDbg - v - CryptoLocker, Locky, WannaCry

Hashing
[95] SBD Yara rules - v 200 WannaCry/WannaCryptor, Locky, Cerber, Cryp-

toWall

1 Badrabbit, Bitman, Blocker, BTCWARE, Crusis, Crykal, Crypmodadv, Crysis, Cryptodef, Fantom, FileCoder, GandCrab,
Gimemo, Globeimposter, Gpcode, Hades, HDDCrypt, HiddenTears, HKNATA, Ishtar, Jigsaw, Karo, Lechiffre, Locky,
Magniber, Matrix, MISCHA, Mole, Petya, Philadelephia, PUBG, Rack, RansomKD, Rapid, Samsam, Satan, Scatter, Striked,
Tesla, Thanatos, Wannacry, Xorist, Zcrypt, Zenis, Zyklon.

2 Locky, CryptoWall, FileCryptor, TeslaCrypt, Crypt, CryptoLocker, Cerber, CTB-Locker, Petya, Satana, WannaCry.

Table 10. Ransomware Detection Mechanisms Extended Overview for the Delivery Phase P1.

Articles Type Tools Tested on | Number | Families
BM VM | of Samples

[57] API calls | API monitor, Weka - v 83 CryptoWall, Kollah, Trojan-Ransom, Tes-
laCrypt

[88] API calls Cuckoo - v 157 not mentioned

[112] API calls Cuckoo - v 276 WannaCry, Cerber, Petya, CryptoLocker

[69] API calls Process Monitor - v 14 14 families!

[117] API calls | Cuckoo, TensorFlow - v 755 Cerber, CryptoLocker, CryptoWall, Maktub,
Ransomware, Sage, Torrentlocker

[8] API calls Cuckoo - v 38152 Cerber, TeslaCrypt, CryptoWall, Petya,
WannaCry

[10] API calls Cuckoo - v 8152 Cerber, TeslaCrypt, CryptoWall, Petya,
WannaCry

[99] API calls CSp v - 39 Gpcode, CryptoLocker, CryptoWall, CTB-
Locker, TorrentLocker, TeslaCrypt, Cryp-
Vault, Locky, Petya

[72] WE Process Monitor - v 1624 Cerber, TeslaCrypt, Locky

1 CTB-Locker, Cerber, CrypMIC, CryptFile2, CryptoMix, CryptoShield, Globelmposter, Gryphon, JAFF, Mole, Revenge,
TeslaCrypt, WannaCry, NemucodAES

Table 11. Ransomware Detection Mechanisms Extended Overview for the Deployment Phase P2.
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Articles Type Tools Tested on | Number | Families
BM VM | of Samples
[4] Network Analysis - - - 20+ 20 families |
[12] Network Analysis Weka - - 210 Cerber, Cryptolocker, Cryptowall, CTB-

Locker, Locky, Padcrypt, Paycrypt, Tor-
rentLocker, Teslacrypt

[13] Network Analysis Weka - - 4 Locky

[59] Network Analysis RaftLib - - - Cerber

[115] Network Analysis | TensorFlow | - - 155 23 families including CryptoWall, Tes-
laCrypt, CryptXXX, Locky, CrypMIC, Cer-
ber

[93] System Honeypot | Scikit-Learn | - 770 TeslaCrypt, Xorist, Cerber, Bitman, Desha-
cop, Zerber, Locky, Yakes, Gpcode

[62] System Honeypot - ? 7 50 Reveton, Cryptolocker, CryptoWall,
Kovter, Filecoder, Winlock

[84] MTD - - v 143 Tesla, Cerber, Locky, WannaCry, Ze-
roLocker, SatanLocker

[76] Files Monitoring - - v 2121 12 families 2

[98] Files Monitoring - v - 798 15 families 3

[89] Files Monitoring - - - - Not tested using ransomware

[82] Files Monitoring - - - - Not tested using ransomware

[58] Multiple IOC Cacls, ACL - v 4 WannaCry, TeslaCrypt, Cerber, Petya

[25] Multiple IOC - v - 688 CryptoWall, TeslaCrypt, Critroni, Cryp-

toDefense, Crowti, Locky, CryptoLocker,
TorrentLocker, DirtyDecrypt, PayCrypt,
Troldesh, ZeroLocker

[77] Multiple IOC - - v 1359 15 families
[104] Multiple IOC - - v 492 14 families >
[108] Multiple IOC - - v 3 Authors developed ransomware
[78] Keys Backup - - v 107 20 families ©
[83] Keys Backup - - v - Authors developed ransomware

1 Cryptolocker (v2,v3), Cryptowall (v2,v3), CoinVault, CryptoGraphic Locker, CryptoDefense (v2), CryptorBit, Torrent-
Locker, ACCDFISA, BuyUnlockCode, CryptoFortress, PClock2, Critroni, ComputerCrime&IntellectualPropertySection,
Harasom.

2 Cryptolocker, CryptoWall, CTB-Locker, CrypVault, CoinVault, Filecoder, TeslaCrypt, Tox, VirLock, Reveton, Tobfy,
Urausy.

3 TeslaCrypt, Xorist, Cerber, Bitman, Deshacop, Zerber, Locky, Yakes, Gpcode, Gamarue, Shifu, Fsysna, Shade, Dalexis,
Usteal

4 Reveton, Cryptolocker, CryptoWall, Tobfy, Seftad, Winlock, Loktrom, Calelk, Urausy, Krotten, BlueScreen, Kovter,
Filecoder, GPcode, Weelsof.

> CryptoDefense, CryptoFortress, CryptoLocker, CryptoTorLocker2015, CryptoWall, CTB-Locker, Filecoder, GPcode,
MBL, PoshCoder, Ransom-FUE2, TeslaCrypt, Virlock, Xorist.

6 Almalocker, Cerber, Chimera, CryptoFortress, CryptoLocker, CryptoWall, CrypWall, GPcode, Locky, SamSam, Thor,
Tox, DXXD, MarsJokes, PokemonGo, Troldesh, VirLock, Androm, Razy, TeslaCrypt.

" Not mentioned if BM or VM.

Table 12. Ransomware Detection Mechanisms Extended Overview for the Destruction Phase P3.
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The discrepancy in ransomware samples throughout the literature is due in part to inactive ransomware families

after an epsilon time of their release. An increase of inactive samples is noticed through the experiments carried out by

researchers. In the best case scenario, 76.8% of samples are inactive ([68]). On average, 82.67% of binaries are inactive.

The

reasons for inactivity of a given ransomware executable can be one of the following:

e The C&C or the external IP address/domain name is down.
o Inadequate work environment (missing DLLs, unmatched Windows version).
e Ransomware suspects being monitored/analyzed (VM or debugging tools).

o The footprint of the test environment is already registered in the attacker’s server.

The most important aspect in ransomware proposed countermeasures is the data loss (encrypted files) that occur in the

system. However, among the 28 studied papers in the Deployment and Destruction phase, only 8 papers presented the

recovery percentage by deploying their solution [25, 58, 78, 84, 98, 99, 104, 108]. Therefore, the accuracy is not included

in the presented comparison tables (that exceeds 95% in most of the cases).
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