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Numerical Study of Bi-axial Cross-flow
Turbine

Q. Clémençot, P.-L. Delafin and T. Maı̂tre

Abstract—A bi-axial cross-flow water turbine is nu-
merically simulated to evaluate its performance with a
view to carrying out experiments on a prototype. Two
axes of rotation and a chain-pulley system allow for an
innovative blade kinematics. Indeed, the angle of attack
of the blades is constant over a portion of their trajectory.
This is a sought-after characteristics but difficult to obtain
for conventional cross-flow turbines. 2D URANS k-ω SST
simulations are carried out. Experimental data from an
oscillating airfoil case are used to validate the numerical
simulation process. The impact of solidity for one-blade
turbine and the impact of the number of blades at iso-
solidity are studied. The unbalance performance between
the upstream and downstream parts of the turbine are also
investigated.

Index Terms—bi-axial turbine , CFD, cross-flow turbine,
marine renewable energy, OpenFOAM, overset mesh

I. INTRODUCTION

DARRIEUS turbines are named after their inven-
tor, Georges Darrieus, a French engineer who

patented them in 1931 [1]. This type of turbine has been
widely studied in recent decades [2]–[5]. Their main
particularity is to have an axis of rotation perpendic-
ular to the current. This allows the turbine to have a
rectangular swept area, making it particularly suitable
for use on rivers, for example. But this particularity
brings two obstacles to improving their performance:
a non-constant angle of attack and half a revolution
where blades travel in the wake of the upstream part
of the turbine.

Even at constant rotational speed and constant up-
stream fluid velocity, the angle of attack of the blades
(α) with respect to the relative speed of the fluid varies
over a revolution (fig. 1). In order to simplify, α is
classically calculated with the undisturbed upstream
velocity. Under this assumption, α is a function of the
blade angular position θ and λ = V/U∞, the ratio be-
tween the speed of the blades with respect to the fixed
reference frame V , and the fluid speed far upstream
U∞. The speed of a blade is given by the product of
the turbine rotational speed ω and the turbine radius
r: V = ω × r. Equation ( 1) gives an approximation of
the relation between these parameters.

α = arctan
sin θ

cos θ + λ
(1)

However, this equation that can be found in the
literature [6] is based on a very strong simplification
so that the predicted angle of attack can be quite
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Fig. 1. Scheme of a 3-blades Darrieus turbine and evolution of the
geometrical angle of attack.

different from the actual angle of attack. Firstly, the
main velocity component decreases when approaching
the turbine, leading to an angle of attack smaller than
the one calculated using equation (1). Secondly, to have
a better approximation of the angle of attack, it is
important to take into account the effects related to
the dynamics of the blade. Migliore [7] showed that
the flow curvature effects on a Darrieus turbine create
in particular a virtual incidence that shifts to the left the
lift curve of blade. Moreover, in the downstream part
of their trajectory, i.e. θ ∈ [180°, 360°], the blades evolve
in the wake created by their passage in the upstream
part, i.e. θ ∈ [0°, 180°]. The variation of angle of attack
in the upstream part may cause it to exceed the stall
angle, leading to eddies creation and their advection
in the wake of the blades. Therefore, the angle of
attack is hard to predict in the downstream part of
the trajectory and the power coefficient in this zone
is lower than in the upstream part. These difficulties
are not encountered by horizontal axis turbines (HAT),
so their performances is still higher than cross-flow
turbines [8]. In an attempt to overcome the limitations
of classic cross-flow turbines, several possibilities are
being explored. Passive or active variable pitch control
technologies, for example, have led to an increase in
efficiency. The blades are no longer fixed in the turbine
frame but have a degree of freedom in their angular
position. Delafin et al. [9] find an active pitching law al-
lowing a 40% increase in the power coefficient together
with a better balance in torque generation between
the upstream and downstream parts. Even more dis-
ruptive innovations, moving away from the Darrieus
turbines, are also envisaged in the world of cross-flow
turbines. In the early 1980s, McKinney [10] described



2

and experimentally tested a single oscillating wing
system with simultaneous hammering and pitching
motions, capable of extracting energy from the flow.
In this configuration, the blade see only unperturbed
upstream flow and never work in its own wake. Kinsey
[11] used CFD tools to improve the performance of this
turbine and achieve attractive efficiency.

The turbine presented here is considered to partially
overcome the non-constant angle of attack issue of
cross-flow turbines by adopting two axes of rotation
and a chain-pulley system (fig. 2). This design allows a
perpendicular translation of the blades with respect to
the upstream velocity on two portions of the trajectory.
Naccache [12], [13] performed a 3D Unsteady-RANS
study on a single-blade turbine of this kind and ob-
tained a promising power coefficient: Cp = 0.4. The aim
of this study is to better understand the influence of
both solidity and number of blades on the performance
of the turbine.

II. TURBINE AND FLOW CHARACTERISTICS

A. General description
As represented in fig. 2, the blades are arranged at

regular intervals along two chains, themselves con-
nected to pulleys of the same radius r. The pulleys
are placed so as to form two rotation axes orthogonal
to the upstream flow velocity. Parameter h designates
the distance between the axes. The total turbine height
is therefore d = h + 2r and the distance travelled
by the blades during one revolution is l = 2h + 2πr.
Considering b the blade span, the projected area of the
turbine is a rectangle of area S = b × (h + 2r). All
turbines simulated in this study have an aspect ratio
h/r = 4. The dimensions of the turbine are summarized
in Table I.

One-blade, two-blade and three-blade turbines are
simulated. Three different chord lengths are used:
c/r = 0.8, c/r = 0.4 and c/r = 0.266. This makes it
possible, in particular, to study the influence of the
number of blades with a constant solidity (σ = N×c/l).

TABLE I
SUMMARY OF TURBINE DIMENSIONS

parameter definition dimension

h distance between the
axes of the pulleys

40cm

r pulleys radius 10cm
b blade span 1m (2D)

c blade chord
8cm
8/2=4cm
8/3=2.66cm

In order to get closer to the experimental test con-
ditions, the simulations are not carried out at iso-
Reynolds. The kinematic viscosity of the fluid is that of
water, i.e. ν = 10−6m2.s−1. Taking the relative velocity
of the fluid during the upstream vertical translation,
W = U∞ ×

√
1 + λ2, as the reference velocity, the

Reynold number varies between Re = 8.43 × 104

(the shortest chord length and the lowest λ) and
Re = 4.07 × 105 (the longest chord length and the
highest λ).
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Fig. 2. Scheme of a 3-blades bi-axial turbine

B. Blade kinematics
The blades are NACA 0012 symmetrical profiles.

There are two kinematic connection points (A and B)
between a blade and the chain (fig. 3). These points
are located at xA/c = 1/8 and xB/c = 7/8 of the
leading edge respectively. The kinematic link at point
A, close to the leading edge, is a pivot of axis (A, ~ez).
The kinematic link at point B is closer to the trailing
edge. It allows z-axis rotation and translation along the
chord line. Points A and B will pass through the same
points in space during a turbine revolution. During
one revolution, a blade will thus successively have an
upstream translation movement directed downwards,
a rotation around the lower pulley (semicircle), a
downstream translation directed upwards and finally
a rotation around the upper pulley (semicircle). The
blades are therefore either in translation, in rotation
or in a more complex transition movement between
these two states (fig. 3). The transition takes place when
the attachment points A and B are not on the same
rectilinear or circular portion. This transition avoids a
theoretical discontinuity in the blade rotational speed.
Indeed, with a rigid attachment at a single point, the
blade rotation speed would be a step function of time
passing instantaneously from 0 to ω. And according to
the mechanics of non-deformable solids, this infinite
angular acceleration would imply an infinite torque.
In practice, the blade would be subject to a strong
mechanical stress 4 times per revolution. A two-point
fixing solution seems more interesting for the durabil-
ity of the turbine.

C. Hydraulic power coefficient
The instantaneous power transmitted by the fluid to

the blade is equal to the product of the mechanical
action tensor by the kinematic tensor expressed at the
same point. When writing this relation at point A
comes equation ( 2).

P (t) =
−→
F f→b(t).

−→
V A∈b/R0

(t) +
−→
MA,f→b(t).

−→ω b/R0
(t)

(2)
In equation ( 2), P is the power received by the

blade in W .
−→
F f→b is the force exerted by the fluid

on the blade in N .
−→
V A∈b/R0

is the velocity of point A
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Fig. 3. Point A and B of kinematic connections between the blade and
the chain and their dimensionless distance from the leading edge (a).
Examples of three kinematic states of the blade: a pure translation
(b), a pure rotation around the lower pulley axis (c) and a composite
kinematics of translation and rotation (d).

belonging to the blade with respect to the fixed frame
of reference in m.s−1.

−→
MA,f→b is the moment exerted

by the fluid on the blade calculated at point A in N.m.
Finally, −→ω b/R0

is the rotation speed of the blade with
respect to the fixed reference frame in rad.s−1.

To lighten the notations, the value taken by a time
function φ at time t will be noted φ(t) = φ. Its temporal
average will be noted φ. The instantaneous power
coefficient received by the blade i is equal to the ratio
between the captured power and the kinetic power of
the fluid passing through the projected surface in the
absence of the turbine, as in equation ( 3).

Cp,i =
Pi

1
2ρU

3
∞db

(3)

In the case of a multi-blade turbine, the total instan-
taneous power coefficient is given by the sum of the
contributions of the blades, as in equation ( 4).

Cp,tot =
∑
i

Cp,i (4)

III. NUMERICAL SIMULATION

A. Simulation setting
The flow is modelled by the incompressible 2D

Unsteady Reynolds Averaged Navier–Stokes equations
(URANS). Discretization and resolution are done by
the finite volume solver OpenFOAM v2012. The Shear
Stress Transport (SST) k − ω turbulence model is used
to close the system of equations. This model uses a
blending function to switch from k − ω turbulence
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Fig. 4. Simulation domain.

modeling for regions close to a wall to k− ε modeling
for the rest of the simulation domain [14]. This model
is widely used in research and in industry [15]. It
allows in particular a good prediction of the flow in
the presence of an adverse pressure gradient. One of
its limitations is that it assumes a totally turbulent
boundary layer, contrary to a transition model of type
k − kl − ω for example.

B. Domain & mesh

The rectangular simulation domain extends over a
length of 55d and a height of 60d (fig. 4). Symmetry
plane boundary conditions are applied on the upper
and lower borders. At the entry of the domain, a
uniform velocity is imposed U∞ = 1m.s−1 with a
turbulent intensity I = 8%. A zero-gradient condition
is imposed for the pressure. At the exit of the domain,
a uniform pressure is imposed.

The motion of the blades in the simulation domain
is made possible by the use of an overset mesh. Two
types of meshes are used. A first fixed background
mesh extends over the entire simulation domain and
at the boundaries of which boundary conditions are
imposed. Each blade is surrounded by an overset mesh
which is superimposed on the background mesh and
follows the blade motion (fig. 4). Both types of meshes
exchange information by interpolation. The cells at
the border of the overset calculate the values of their
field by interpolation with the closest background cells
(fig. 5). Some background mesh cells that are under an
overset mesh are disabled. A background cell adjacent
to a disabled cell calculates the value of its fields by
interpolation with the overset mesh. The inverse dis-
tance method is used for interpolation. The behaviour
of this type of mesh is summarized for a 1D case in
fig. 6. This meshing method is more flexible to use than
an Arbitrary Mesh Interface (AMI) since it allows to
impose any trajectory. It is also well adapted to multi-
blade cases as it is possible to manage overset mesh
trajectories independently of each other. Finally, this
approach is potentially less costly in computing time
and more robust than a dynamic remeshing.
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Fig. 5. Overset mesh with interpolated border cells in green.

Fig. 6. 1D representation of the superimposition of an overset
mesh (top) with the background mesh (bottom). The blue cells are
calculated conventionally, the yellow cells are interpolated and the
red cells are deactivated. The arrows represent the exchange of
information by interpolation.

C. Verification

1) Space discretization convergence: The mesh conver-
gence study was carried out for a classical non-overset
mesh on a fixed blade at Re = 7 × 105. The cells
density according to the chord and according to the
direction normal to the blade surface were multiplied
until reaching a plateau on the value of the quantities
of interest, namely the lift and drag coefficients. The
retained mesh size divides the blade into 364 cells. The
thickness of the cells attached to the profile ensures a
y+ ∼ 2 in their centre. Thus, at least one cell of the
mesh is located in the viscous sublayer (fig. 7).

The background mesh is composed of 136×103 cells
and each overset mesh of 28 × 103 cells. The total
number of cells for each simulation is summarised in
Table II. The smallest cells in the background mesh are
located in the area where the blades are moving. The
ratio between the size of the background mesh cells
in this area and the size of the cells at the overset
boundary is ∆xbackground/∆xoverset = 1.58. The closer
this ratio is to 1, the more accurate the interpolation
between the meshes is. Thus, the mesh size ratio em-
ployed allows a correct interpolation while limiting the
number of cells in the background mesh.

The simulations are run sequentially. Indeed, the
implementation of solvers with overset meshes in
OpenFOAM is relatively recent. The parallelization of
this type of simulation was observed in this study to
bring little or no time savings, at least on the cluster
configuration used.

TABLE II
MESHES SIZE

Type of tur-
bine

Cells in back-
ground mesh

Cells in over-
set meshes

Total

one-blade 136× 103 28× 103 164×103

two-blade 136× 103 56× 103 192×103

three-blade 136× 103 84× 103 220×103

Number of cells for turbine simulations with different number
of blades and their distribution between background and overset
meshes

10 1 100 101 102 103
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102
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CFD
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u + = 1
k × ln(y + ) + C

Fig. 7. Velocity profile scaled on the top surface of a blade at 0.3c
from the leading edge at an angle of attack α=15°and a Re = 7×105

(blue dots correspond to u+ values at the cell centroid).

2) Time step convergence: To ensure that convergence
in time step is achieved, the average power coefficient
during the 12th blade revolution is calculated on a one-
blade turbine case with c/r = 0.8 and λ = 4 with
different time steps. The results are presented in Table
III. For the rest of the study, the time step is chosen so
as to have 1200 time steps per revolution.

To evaluate the cycle-to-cycle convergence of the
simulations, the evolution of the average power coeffi-
cient over each cycle is considered. After 25 turbine
revolutions, a variation of less than 1% is obtained
for most of the simulations, with the exception of
some low efficiency cases. The worst convergence is
3% variation in Cp between the last two cycles.

TABLE III
AVERAGE POWER COEFFICIENT Cp

Time steps per cycle Cp Variation with a time
step twice as small

600 0.268 -
1200 0.298 9.7%
2400 0.303 1.7%

Average Cp during the 12th blade revolution of a one-blade
turbine with c/r = 0.8 and λ = 4.

D. Validation

The validation of the numerical simulation results
cannot be done by direct comparison with experimen-
tal results of the bi-axial turbine as it has not yet been
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experimentally tested. Therefore, we choose to validate
the simulations by comparison with a more classical
case of a pitching airfoil. In this configuration a NACA
0012 airfoil oscillates with respect to an axis located at
c/4 from its leading edge. The angle of attack during
its sinusoidal oscillation is given by equation ( 5).

α(t) = α0 + ∆αsin(ωt) (5)

This time varying angle of attack is a common
feature with the bi-axial turbine. It is a case that has
been studied both experimentally by Lee [16] and
numerically in particular by Gharali [17] and Delafin
[18]. The overset mesh method was used in the present
study with very similar characteristics to the turbine
simulations and a slightly smaller background mesh.
The overset mesh in this study and those in the bi-axial
turbine simulations have the same O-grid topology. In
both cases, the blade is discretized into 364 elements
and the thickness of the first cell on the airfoil is
defined in order to have y+max ∼ 1. The numerical
parameters are the same as in the turbine simulations
(turbulence model, numerical schemes). A comparison
of the instantaneous lift and drag coefficients obtained
is shown in fig. 8. In the present study, the lift coeffi-
cient (CL) is well predicted from 0◦ to 20◦ during the
upstroke phase. The peak of CL is predicted with a
similar accuracy to the other simulations. In general,
the simulation results presented in fig. 8 do not cap-
ture accurately the CL in the downstroke phase and
our results tend to underestimate a little more CL in
this phase. Regarding the drag coefficient (CD), the
present study gives results similar to the experiment
close to the peak of CD. Away from the peak, the
present study predicts CD with a similar accuracy to
the other simulations (none of them being perfect).
The simulations of Delafin [18] as well as those of
the present study use a standard k-ω SST turbulence
model. It assumes a fully turbulent boundary layer
which is not the case in the experiment due to the
low Reynolds number. This may explain some of the
discrepancies between the experimental data and the
simulation results (like the hysteresis at low AoA). The
simulations of Gharali [17] use a k-ω SST model with a
low-Reynolds number correction which accommodates
the transitional regime and therefore may explain the
slight hysteresis observed at low AoA.

The results presented show that the numerical set-
up used in our study gives a similar level of accuracy
to other published simulation results. The relatively
poor agreement with the experimental data observed
in the downstroke phase indicates that the turbine
simulations at low tip speed ratios will have to be an-
alyzed carefully in the semicircular motions. However,
this validation process gives confidence in the results
obtained in the linear regions and everywhere at high
tip speed ratio, when angles of attack are below the
stall angle.
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Fig. 8. Aerodynamic force coefficients comparison for
α(t)=10°+15°sin(ωt) with k = ωc/2U∞ = 0.1 and Re = 1.35× 105.
The continuous line corresponds to the increasing Angle of Attack
(AoA) and the dashed line corresponds to the decreasing AoA.

IV. RESULTS

A. Effect of solidity and blade number on performance

For each turbine configuration, a mean power co-
efficient curve as a function of the λ is plotted. This
bell-shaped curve gives the optimum λ (λopt) for each
configuration. A prototype of turbine equipped with a
pulley speed control system would allow the turbine
to always operate at this λopt. Conversely, if the turbine
is designed with a constant drive speed, the hydraulic
efficiencies achieved as a function of the upstream fluid
speed can be deduced from a curve of mean Cp versus
λ.

A first set of simulations of single-blade turbines
with different chord sizes allows to study the influence
of the solidity parameter on the performances (fig. 9).
The dashed lines correspond to the values obtained in
the penultimate cycle, the solid lines correspond to the
values of the last cycle. The fact that both continuous
and dashed lines are almost perfectly superimposed
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Fig. 9. Mean Cp as a function of λ for one-blade turbines with
different solidity values.

indicates that the convergence in number of turbine
cycles is reached. It can be seen that λopt decreases
as the solidity increases. This is an expected result as
this phenomenon occurs for other types of turbine with
horizontal or vertical axes [19], [20]. It also appears that
σ = 0.028 leads to a higher peak of Cp than the two
other cases. A maximum efficiency Cp = 0.47 is then
achieved with a single-blade turbine. It is noted that a
lower solidity will give a lower maximum Cp but the
performance curve as a function of λ will be flatter.
These solidity-induced effects on turbine performance
curve have been observed in the case of the Darrieus
turbine by Paraschivoiu [19].

A second simulation set is launched to study the
effect of the number of blades at iso-solidity (σ = 0.056)
on the efficiency (fig. 10). The 2- and 3-blade cases give
very close and even perfectly similar power coefficients
for λ ≥ 4. Again, this is an expected result that can be
found for example in the case of Darrieus turbines [20].
The difference observed at lower λ could be linked to
Reynolds effects. On the other hand, the performance
obtained with an 8cm chord does not coincide with
the other two configurations. The difference could be
explained by the effect of the c/r ratio on the dynamics
of the flow in the turns. Indeed, in the turns the blade
sees a curved flow. This induces a greater camber
and virtual incidence as the c/r ratio is greater. With
c = 8cm, this ratio c/r = 0.8 is a rather extreme case
and rarely encountered in the literature.

B. Influence of the number of blades on the instantaneous
power coefficient

In this section, the evolution of the instantaneous
power coefficient during a blade revolution is studied.
To this purpose, a position parameter, noted ”s” and
varying from 0 to 1, is introduced (fig. 11). It allows
to locate the blade along its trajectory. By convention,
s = 0 when the link-point A close to the leading edge
starts its downward vertical translation.

The instantaneous power coefficient of a single-blade
turbine with chord c/r = 0.4 and λ=5, corresponding
to the maximum Cp, is shown in fig. 12. At t/T = 0,

2 3 4 5 6
= V/U

0.0

0.1

0.2

0.3

0.4

C p

1-blade, c=8cm
2-blade, c=4cm
3-blade, c=2.66cm

Fig. 10. Mean Cp as a function of λ for iso-solidity σ=0.056 turbine
with different numbers of blades.
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           s=0
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         s=h/l
(x,y)=(-r,-h)

s=0.5
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Fig. 11. Position parameter s for different blade positions and
associated coordinates of point A.

0.0 0.2 0.4 0.6 0.8 1.0
t/T

0.25

0.00

0.25

0.50

0.75

1.00

C p

Fig. 12. Instantaneous Cp for the one-blade turbine with c/r = 0.4
and λ = 5. Red areas correspond to the translation motion. Blue
areas correspond to the rotation motion.

the blade position parameter is s = 0. The downstream
translation is the part of the trajectory where the blade
receives the most power from the flow. During a part
of the lower turn, the Cp becomes momentarily neg-
ative before becoming positive and gradually increas-
ing again during the upward downstream translation.
However, the power captured during the downstream
translation remains significantly lower than the power
captured during the upstream translation. This is due
to the decrease in the flow velocity of the fluid as a
result of wake effects (fig. 13).

Due to the large variation of the instantaneous Cp
during a cycle, two turbine configurations with the
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Fig. 13. Evolution of the mean streamwise velocity for the one-blade
turbine with c/r = 0.4 and λ = 5.

0.0 0.2 0.4 0.6 0.8 1.0
t/T

0.5

0.0

0.5

C p

total
blade 1
blade 2

Fig. 14. Instantaneous Cp for 2-blade turbine with c/r = 0.4 and
λ = 4.

same mean Cp can hide quite different behaviours. For
example, fig. 14 shows the instantaneous Cp of a two-
blade turbine with c/r = 0.4 and λ = 4. At t/T = 0, the
position parameter of blade 1 is s1 = 0, and the position
parameter of blade 2 is s2 = 0.5. Therefore, both blades
will be in translation or rotation simultaneously. So the
variation of the total Cp is more important than the
variation of Cp received by each blade.

The instantaneous Cp of a case with the same overall
efficiency but with a chord such that c/r = 0.266
and in a 3-blade configuration is plotted in fig. 15. At
t/T = 0, the position parameter of blade 1 is s1 = 0,
it is s2 = 1/3 for blade 2 and s3 = 2/3 for blade 3.
This time, the phase shift between the blades results
in an instantaneous Cp that is always positive and
varies much less around its mean value. The instan-
taneous Cp of a single blade in both 2- and 3-blade
configurations (fig. 14 and fig. 15, respectively) follows
the same behavior. Most of the energy is harnessed in
the upstream part of the turbine and the downstream
translation only generates a slightly positive Cp.

C. Different flow regimes

In this section, we are interested in the influence of
λ on the nature of the flow around the blades and
therefore the performance of the turbine. The instan-
taneous Cp of a single-blade turbine with c/r = 0.4 is
plotted for different values of λ in fig. 16. The curves
are similar at λ = 4 and λ = 5. The case λ = 3 shows
a more chaotic evolution, corresponding to a much
lower mean Cp. This phenomenon can be explained by
a change in the nature of the flow around the blade.
The pressure on the blade surface and the vorticity

0.0 0.2 0.4 0.6 0.8 1.0
t/T

0.4

0.2

0.0

0.2

0.4

0.6

C p

total
blade 1
blade 2
blade 3

Fig. 15. Instantaneous Cp for 3-blade turbine with c/r = 0.266 and
λ = 4.

0.0 0.2 0.4 0.6 0.8 1.0
t/T

0.0

0.5

1.0

C p

= 3
= 4
= 5

Fig. 16. Instantaneous Cp for one-blade turbine with c/r = 0.4.

field near the blade at different times in the cycle are
represented in fig. 17 and fig. 18 for λ = 3 and λ = 4,
respectively. The areas of overpressure on the blade
are shown in red, the areas of depression in blue. The
black arrows correspond to the forces transmitted by
the blade to the chain at points A and B. If the arrows
representing the forces are not visible it is because they
are so small that they are hidden by the points of
application of these forces (red point for A and blue
point for B). This is notably the case for λ = 3 and
s = 0.4. The scales of pressures and forces are the
same in fig. 17 and fig. 18. At λ = 4, the angle of attack
between the relative speed of the fluid and the blade is
inferior to the stall angle during most of its trajectory.
On the other hand, the blade stalls over most of its
trajectory at λ = 3, which produces eddies that disturb
the flow and decrease the performance.

During the lower turn, power coefficients for λ = 4
and λ = 5 vary similarly (fig. 16). In the two cases the
flow is nearly attached (not shown here for λ = 5).
The greater negative peak for λ = 5 could come from
a greater friction due to a higher blade velocity. During
the upper turn, the Cp variations for λ = 4 and λ = 5
are no longer similar. This could come from the flow
detachment at λ = 4 (fig. 18), which is not present for
λ = 5 (not shown here). In the last case, the negative
peak is higher than for the lower turn probably because
the relative velocity is higher.
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s = 0

s = h/l

s =(h+0.5πr)/l 

s = 0.5

s = 0.5+h/l

s = (2h+1.5πr)/l 

Fig. 17. Pressure distribution over the blade surface plus vectors of
the force exerted by the blade on the chain (left) and vorticity field
(right) for a one-blade turbine with c/r = 0.4 and λ = 3. The scales
of force vectors and pressure are the same as in fig. 18.

s = 0

s = h/l

s =(h+0.5πr)/l 

s = 0.5

s = 0.5+h/l

s = (2h+1.5πr)/l 

Fig. 18. Pressure distribution over the blade surface plus vectors of
the force exerted by the blade on the chain (left) and vorticity field
(right) for a one-blade turbine with c/r = 0.4 and λ = 4. The scales
of force vectors and pressure are the same as in fig. 17.
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V. CONCLUSION

The bi-axial turbine concept seems to be able to
achieve interesting efficiencies. 2D overset mesh sim-
ulations of one-blade, two-blade and three-blade tur-
bines with different chord lengths have been per-
formed using the OpenFOAM solver. This allowed
to highlight recurrent behaviour that can be found
with other types of turbines, notably the Darrieus
turbines. For example, it appears that, all other things
being equal, increasing the solidity causes a decrease
in the optimal λ. On the other hand, turbines with
different blade numbers but the same solidity will have
very similar power coefficient versus λ curves. This
behaviour is observed for c/r ≤ 0.4 but it ceases to
be true when the c/r ratio becomes too high (here
c/r = 0.8), perhaps due to the effects of virtual camber
in turns.

Finally, the observation of the instantaneous power
coefficient over a revolution cycle shows a difference
in behaviour between two-blade turbines and three-
blade turbines. Indeed, with the same solidity and the
same average efficiency, the arrangement of the blades
gives a momentary negative global coefficient for the
two-blade turbines, whereas it always remains positive
and is less fluctuating for a three-blade turbine.
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