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ON THE MAXIMUM LIKELIHOOD ESTIMATION
IN THE CASE OF DEPENDENT RANDOM VARIABLES

Wojciech PIECZYNSKI
Département Mathématiques et Systémes de Communication
Ecole Nationale Supérieure des Télécommunications de Bretagne
BP 832 - 29285 BREST CEDEX

Abstract

Our approach, based on a general theorem about asymptotic separation by
J. Geffroy, requires neither any regularity assumption of the likelihood function
nor any version of the law of large numbers for martingales. Furthermore, it is
shown that the rate of convergence of the estimator is exponential.

I - Introduction

Several authors have shown interest in the problem of the behaviour of the
lfl.l.c‘. In the case of dependent observation S. Silvey (1961) gave some
conditions under which the m.le. is asymptotically normal and weakly
consistent, but they do not seem to be readily applicable. Bars-Shalom (1972)
alflfq Bhat (1974) pointed out sufficient conditions for existency and asymptotical
:’h iciency. A form of the law of large numbers for martingales is the main tool of
thw approach. Asymptotic normality is studied with a form of the limit central
fumgg. Crowder (1975) uses a two term Taylor expansion of the likelihood
i The approach of this paper is quite different : it is based on Geffroy's
o tfkilntatlcm theorem. This theorem, recently improved by Moche (7), specifies,
= n;éatcase of dependent random variables, the cor_lstruction of a consistent
condit or whose exponential rate of convergence is ensured by some mild

ltions expressed in terms of conditional probabilities.

II' - Theoretical investigations.

X oo
We consider a statistical model (X,B,Pg) e @, with (X,B) = ® (Xn,Bn).
n=1
FOT ea.ch n21let uy be a positive ¢ finite measure on (Xp, Bn), Pe(M) the
Projection of Py on (X(n), B(M)= ® (Xj, Bj). PeM) is assumed to be
1<i<n
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defined by the conditional densities fo,x(n-1) relatively to pp. We will
Pg,x(n-1) = fg x(n-1) up the corresponding conditional probabilities,
conditionning is symbolic for n = 1 (i.e fo,x(0) = fg,1). (O, d) isa
compact space. For each & > O let us state:

f T = sup f (n-1)

9,x 20y MBI s Ok (1)

a =[ du,,
TRk W N Al @

a = sup

a
6,n,3% N (n-1)
x(n—1)e x(n 1) 6,x

.8 3)

We shall denote (Hj) the following property :

H) V6e® Ve>0 3I8>0 suchthat V n>1 agn,s St

Our second hypothesis will be :

For any ) # 0, there exists oo > O and (wp) a sequence of element
in [0,1] such that for every n > 1, x(n-1) ¢ X(n-1) one can defir
By (n-1) € By for which

P B lz2w_+a

Bl,x(n_l)[ x(n_l) X and

(H2) £ : ]
<w

92'x(ﬂ = 1)[ x(n =SR] n

Supposing the existence of the m.l.e., denoted ('én), we can state the followité
result :
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heorem :

Hy) and (Hz) imply the existence, for each 6 € ® ande >0,of k>0
¢ >0 such that

p?)[d(ﬁn, 6) 2e] <ce” kn 4)

foreachn € N*

Proof,

Let {0y be a density of P(Mg relatively to p(™) = pi; ®..®p. For each § >0
we shall denote

fe(n)la = sup fe(n) and, for 91 #* 92:
d(e',0)<d

(n),d (m) (n),d
E =SIfr > f }
0, 5>, 5
Let's show that (Hj) and (Hp) imply the following property :

Forevery @,#0; thereexists 8 >0, ¢ >0, kj > O such that :
@) (n),s -k n
PBTEB)B ]21—c € !
(H3) plox d2 :
foreachn e N*

(which is a sufficient condition of (4)).

Foreachn > 1, x(n-1), g ¢ ©, & > O let's put

*

f s 1
mM-1) Ta it
PR ax 0 5 0,5 i B ©6)

We obtain probability's densities - let us denote P*a,x(n-l),ﬁ the corresponding
Probabilities Using (H}) we can easily prove that for every B € Bp
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*»
P [B] -P {B] s 20
-1
0, x(n ).8 B,X(n ) d
and the above convergence is uniform relatively to n and x(®-1),
Let 01 # 07. (H2) and (7) allov us to affirm : %
There exist & >0, o> 0O and (wp) a sequence of elements in [O,1] such
foreveryn2 1, x(-1) € X(@-1) one can define B € By, for which \
* o
(n_l)[B]an+u P it [B]Swn+2
0 x and 6 X .

This property implies the existence of a sequence (Dp) (Dp € B(1) for evers
such that :

(n) i = o'.ln
Pel[Dn] 2l-e 0
( n)* -on
e B[D il $@ (10)

where P(“)gz'a is the probability defined on B() by the family P*g,x0i
and o = 1/8 2. For the demonstration see [5] or [7]. (The sequence (D)t
be constructed from the sets Bx(n-1)).
Let 01 # 62 . We can choose, in accordance with (H;), 8 >0 such thatlt
every ne N*:

sl
0,8z .9

[+
0, (11)

a

Furthermore, we can suppose that this § >0 also verifies (10). Let us consid”
Pe(") ® - measures defined on (X(n), B(n)) by the densities fg(™): 8 (defined?
the beginning of the proof) and Qg(M): 8 - measures defined on (x(n), B(n})b'!
the conditional densities fg x(n-1),§. Knowing that the density of Po(")'
(respectively Qg(ﬂ):s) is:
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sup Hf (l—1)(xi)

d(,0)(8i=16 X

n
. su f : X
respectively : iI=I1d(e', (?)(5 0 x(:—1)( |)
We can state :
(n) 8 (n), &
9 ‘Qe

Now, (3), (6) and (11) imply :

g1
<a f* <e 2 f*
(n-1) 8,..n,8 (n-1) -

92. % .8 2 »X : o rk A

This last inequality involves :
c"1

@,8  —-n (@)*

Qe <e 2 P(n)
2 92. )

Finally, (14), (12) and (10) allow us to write :

(n)| _ln =gl __1
[D]Se ot b

n),d
Now, the very definition of E(9 g & (see (5)) implies :

(n) 8
)[ 2] (n)ﬁ[ O ajap D] (“"S[D“]
2

(12)

(13)

(14)

15)

(16)



84

$0, (9), (15) and (16) imply

%

n (n)98 R
P(6 )[EB : }21-2': 2
1 1 2

so (Hy) is verified. Let us show that (Hz3) is a sufficient condition of (4).
Let® € ©, &> 0. Writing D={6" '« ©/d(6,0') > £} we shall denote, forev
0'e D,dg9 a & >0 associated with (6, 8') by (H3). The set of open ball
[B(8', 3p,6)10'e D is a cover of D which is compact - let [ B(8;, 8i)] 1< i
8 = 8g,9;) be a finite subcover. Denoting cj, ki the numbers associated with
(8,61) by (H3) we can write :

'8 -
P(n)[ @) i} S

V1<i<N

v
—
I
o
(4]

] Ee. 0. i (11

1

Statingc=cy +...+cN and k= inf k; , (17) implies :

1<i<N
1: (n), 8. 4
() E ]2 1-ce” |
9 dia it (
(o)
Now, [B(8j, 8j)] 1<i<N being a cover of D, the very definition of sets Ee ]
implies :
(n), 8
) Eq 0. ‘e {d(e »0)<e} (19
1Si<N
(18) and (19) yield :
(n)

[d(en, 8) <e]>1-ce k0

which ends the proof.
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emark

Hypothesis (Hp) denotes a kind of continuity of the conditional

babilities with regard to the parameter. If the set of parameters ® i._s ﬁni_tc‘, this
hypothesis becomes useless and the demonstration is highly simplified :
ypothesis (Hp) alone implies the following property (Hs) (to compare with

(H3)) :
For every 6102 there exist ¢; > 0, k1 > 0 such that

-k.n

(n)[ (n) (n)] 1

P >f >1-c e

& e 0,8y

foreachn e N*

which implies (4).

III - Application to gaussian processes.

Let (Xn)p > 1 be a real gaussian process with 8 = E [Xp], 0 being in a

compact set ©. For each x(1) = (xy,.....,xp-1) the conditional probabilities are
normal with mean

m = d
o n k
0, x(n D k

and variance 62, independent from 6 and x(- 1) dp, is defined by :

We can state :

Proposition .

If there exist o1, 2, B1, B2 strictly positive numbers such that :
%<ld,|<B, a,<|o,<B,

then (Hy) and (Hy) are verified.
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Demonstration :

(1), (2), (3) imply :

a9.n,8=

SO :

p

1
a < 8
6.n,3s W

We have :

- B ﬂ{“ dn(ezhel)]ﬂ{“l(ez"el)}
el,x(“ - 1)[ (o= 1)] 20, 2,

d (6_-6 6. -0
P l[B l]zp{__‘L(;_l)}sF[_ “1( 2 1)}
0 .x(n =1 40 =) o, 232

2

o
So (H1) holds with W, =F[-t], o =F[t]-F[-t], :=-§i}~—(02—01)
2
which ends the proof.

We can apply the above property to an AR process : let (Up) be 2 gaussie
white noise, Xn =a; Xp-1 +.....+ ak Xp-k + Up and Y = Xy, + 6, 0 being®
be estimated. dp = 1 - (aj +....+ ak) is independent from n : if dp # 0

and 0 < a2 < Var (Up) < B2, (Hj) and (Hp) hold.
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