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Nonequilibrium symmetry-protected topological order:
emergence of semilocal Gibbs ensembles

Maurizio Fagotti,∗ Vanja Marić,∗ and Lenart Zadnik∗

Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France

We consider nonequilibrium time evolution in quantum spin chains after a global quench. Usually
a nonequilibium quantum many-body system locally relaxes to a (generalised) Gibbs ensemble
built from conserved operators with quasilocal densities. Here we exhibit explicit examples of
local Hamiltonians that possess conservation laws with densities that are not quasilocal but act as
such in the symmetry-restricted space where time evolution occurs. Because of them, the stationary
state emerging at infinite time can exhibit exceptional features. We focus on a specific example
with a spin-flip symmetry, which is the commonest global symmetry encountered in spin-1/2 chains.
Among the exceptional properties, we find that, at late times, the excess of entropy of a spin block
triggered by a local perturbation in the initial state grows logarithmically with the subsystem’s
length. We establish a connection with symmetry-protected topological order in equilibrium at zero
temperature and study the melting of the order induced either by a (symmetry-breaking) rotation
of the initial state or by an increase of the temperature.
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I. INTRODUCTION

There is no topological order in one-dimensional sys-
tems in equilibrium at zero temperature; the ground
states of gapped spin-chain Hamiltonians are all equiv-
alent to trivial product states [1]. When restricting to
systems with a given symmetry, however, it becomes pos-
sible to distinguish different phases. On the one hand
there are standard disordered and ordered Landau phases
characterised by symmetry breaking; on the other hand,
there can be nontrivial symmetry-protected topological
phases, in which the order is manifested in excitations,
such as the celebrated edge modes [2–7], or in exceptional
entanglement properties [8].

Focusing on symmetry-protected topological order,
perhaps the most prominent feature that is accessible in
the bulk of the system is the so-called string order [9–
11]. It refers to the existence of sequences of bounded
operators with arbitrarily large support (e.g., strings of
spins) whose expectation values remain nonzero in the
limit of infinite support. String order was shown not to
survive an increase in the temperature [12], and most re-
sults pertaining to its fate when the system is not kept
in equilibrium [12–20] seem to point at its melting.

This comes of no surprise for the physical community
that has been working on relaxation in nonequilibrium
systems. Specifically, there has been a lot of progress
in predicting the behaviour of local observables in inte-
grable and generic systems composed of a macroscopic
number of degrees of freedom [21–28]. It is now well
accepted that, in an isolated many-body system, local
relaxation occurs: finite regions of the full system relax
because the rest of the system acts as an effective bath for
them. At late times, local observables can be effectively
described by statistical ensembles incorporating conser-
vation laws with certain locality properties [29, 30], the
simplest example being a conserved operator with a local
density. In the end the effective stationary state can be
thought of as a thermal state of an effective Hamiltonian.
Since Ref. [12] ruled out string order at finite tempera-
ture, there is little if any hope to keep string order out
of equilibrium.

In this work we reconsider symmetry-protected topo-
logical order from the perspective of local relaxation after
a global quench in a quantum spin chain. We show that
string order does not always melt down and explain a
mechanism behind its persistence. We then study the
corresponding exotic nonequilibrium states emerging at
late times. Without aiming at mathematical rigour, we
provide an informal review of the meaning of locality in
a quantum spin chain and discuss how to expand the
conventional representation of local observables so as to
become consistent with the recent hints pointing at the
emergence of symmetry-protected topological order after
global quantum quenches [31].

The systems concerned possess hidden symmetries that
can not be associated with local conservation laws. In
infinite chains the corresponding conservation laws have

densities that are not part of the theory defined on the
local operators and their quasilocal completion. In quan-
tum field theories such densities would correspond to
twist fields with the exceptional property of satisfying
continuity equations. The existence of such conservation
laws invalidates descriptions of local relaxation in terms
of maximum-entropy statistical ensembles that only in-
volve quasilocal conserved operators. This is observed
both in generic and integrable systems. In the generic
case, the persistence of topological order impairs local re-
laxation to an effective thermal state [32], together with
related results such as the celebrated eigenstate thermali-
sation hypothesis [32–35]. In integrable systems, instead,
we experience what would seem to be the failure of the
generalised Gibbs ensemble [36], the latter not being able
to describe the infinite-time limit even when defined in
the refined version that includes every conserved operator
with quasilocal densities [29].
We overcome this problem by introducing two statis-

tical ensembles: the G-semilocal Gibbs ensemble and the
G-semilocal generalised Gibbs ensemble, which live in an
extension of the theory, characterised by the symmetry
G. While from a purely mathematical point of view they
could be considered as a special instance of a generalised
Gibbs ensemble built out of so-called pseudolocal conser-
vation laws [37], they stand out for their exotic physical
properties. In particular, they are able to capture string
order in the setting of quantum quench protocols, where
it is typically absent. Purely for the sake of simplicity,
we focus on the commonest symmetry in spin-1/2 chains
— the invariance under a spin flip (a Z2 symmetry). We
report analytical results for the simplest integrable model
we know to exhibit a Z2-semilocal generalised Gibbs en-
semble, the dual XY model, which, to the best of our
knowledge, has been introduced in Ref. [38]. In addi-
tion, we numerically demonstrate the emergence of a G-
semilocal Gibbs ensemble in nonintegrable deformations
of the model.
Within this framework we elaborate on the observa-

tions of Ref. [31] about the macroscopic everlasting ef-
fects of local perturbations connecting different Z2 sec-
tors in the dual XY model; we understand that effect as a
defining feature of semilocal ensembles and generalise the
analysis of Ref. [31] to reduced density matrices. Specifi-
cally, we take inspiration from Refs. [39, 40], on one side,
and Ref. [41], on the other, and investigate the late-time
effect of the perturbation on the Rényi entropies

Sα[A] =
1

1− α
log tr(ραA) (1.1)

of spin blocks A (ρA is the reduced density matrix of
A). We show that a localised perturbation connecting
different Z2 sectors results in a logarithmic correction to
the standard extensive behaviour:

Sα[A]
t→∞−−−→ aα|A|+ bα log |A|+O(|A|0) , (1.2)

where |A| is the subsystem’s length. In the examples
considered the prefactor bα of the logarithm is computed
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analytically. Strictly speaking, bα is neither quantised
nor universal, but it is nevertheless nonzero and depends
on only few system details.

Finally, we address the question of the instability of the
symmetry-protected topological phase from the construc-
tive point of view of the separation of time scales [42–
45]. Specifically, we consider two ways of breaking the
relevant symmetry: applying a weak symmetry-breaking
transformation to the initial state or heating it up to a
finite low temperature. As expected, string order melts
down, but it does so over a time scale that is much longer
than the times that can be reached, for example, in nu-
merical simulations based on tensor networks.

II. OVERVIEW AND RESULTS

We consider time evolution after a global quench in
an infinite spin-chain system that, in almost the entire
paper, is assumed to be translationally invariant. That
is to say, we investigate systems prepared in the ground
state or in a thermal state of a given pre-quench Hamilto-
nianH0 =

∑
ℓ h0,ℓ and then time-evolved with a different

post-quench Hamiltonian H =
∑

ℓ hℓ, e.g.,

|Ψ(t)⟩ = e−iHt |Ψ(0)⟩ ,
H0 |Ψ(0)⟩ = EGS |Ψ(0)⟩ ,

(2.1)

where EGS is the ground state energy of H0. We restrict
ourselves to local Hamiltonian densities h0,ℓ, hℓ (see dis-
cussion below). The focus is on systems that are invariant
under a global (sometimes called “on-site”) symmetry
characterised by some global unitary operator U, such
that UhℓU

† = hℓ and Uh0,ℓU
† = h0,ℓ.

We have three main goals:

1. Show how the picture of local relaxation to a Gibbs
or a generalised Gibbs ensemble consisting of con-
servation laws whose densities belong to the algebra
of local operators or its quasilocal completion can
fail in symmetric systems;

2. Uncover the reasons behind the failure and explic-
itly construct a family of statistical ensembles able
to capture the stationary values of local operators;

3. Identify signatures of the exotic nonequilibrium
phases related to such statistical ensembles.

We warn the reader that, in order to achieve our objec-
tives, we need to distinguish the notion of “local observ-
able” from that of “local operator”. The latter is for us
only a representation of the former, as will be clarified
later.

We now provide an informal overview and contextual-
isation of our results.

A. Local observables in spin chains

In quantum mechanics the concept of locality is con-
nected with the algebra of the operators representing the
observables. In practical terms, an observable is local if
it can be associated with a position in such a way that
its measurement does not affect the measurement of any
other sufficiently distant local observable. We wrote “suf-
ficiently distant” because in a spin chain local observables
are not point-like objects but have a range correspond-
ing to the size of the finite subsystem affected by their
measurement. Generically local observables are repre-
sented by local operators of the form OA ⊗ IĀ, where
OA has support in some finite connected subsystem A of
the lattice, Ā denoting its complement. The range of the
corresponding local observable is then |A|.

1. Quasilocality

Time evolution does not preserve the locality of an op-
erator: if the Hamiltonian is not exceptionally simple,
the Heisenberg representation of an operator that is lo-
cal at time t = 0 does not have a finite range at any
t ̸= 0. This problem can be resolved by weakening the
definition of locality so as to include also observables rep-
resented as limits of sequences of local operators ordered
by their range. For example

∑∞
n=1 e

−nσz
ℓ−nσ

z
ℓ+n is not

local but is quasilocal: it can be well approximated by
the truncated sums, and hence the limit is well defined.
For local Hamiltonians it is actually sufficient to restrict
ourselves to the strong form of quasilocality in which op-
erators have exponentially decaying tails. A careful for-
malisation of this intuitive idea eventually results in the
definitions of Refs. [30, 37, 46–48].

Time evolution with local Hamiltonians preserves
strong quasilocality [49, 50], but quantum mechanics is
still a non-relativistic theory: causality, usually expressed
as a commutation of quasilocal operators at space-like
distances, does not hold. Nonetheless a weaker form of
causality still applies: Lieb and Robinson proved that
the commutator of quasilocal operators becomes expo-
nentially small at space-like distances, providing a bound
that plays the role of the speed of light in relativistic sys-
tems [49].

2. Semilocality

Exponentially localised operators are usually regarded
as the quintessential representation of local observables
in spin chains. Still, there are systems with local ob-
servables that escape the boundaries of quasilocality.
Let us consider for example a quantum quench between
two Hamiltonians with local densities invariant under a
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j

Πz(j)

Oo(y)

−Oo(y)

Oo(x)

Oo(x)

(a)

j

Πz(j)

Oe(y)

Oe(y)

Oe(x)

Oe(x)

(b)

FIG. 1. Panel (a): odd operator Oo(x) (Oo(y)) with support
to the left (right) of the site j commutes (anticommutes) with
the string Πz(j). For simplicity we assume x ≪ j ≪ y. Panel
(b): even operator with support that does not include the site
j commutes with the string Πz(j). Restricting to the space
of even operators, the strings behave as local objects.

spin flip Pz:

hj = Pz[hj ] ≡ lim
n→∞

[ n∏
ℓ=−n

σz
ℓ

]
hj

[ n∏
ℓ′=−n

σz
ℓ′

]
,

h0,j = Pz[h0,j ] ,

(2.2)

where σz
ℓ denotes the operator acting like the Pauli z

matrix on site ℓ and like the identity elsewhere. Sup-
pose that the initial state is spin-flip symmetric. Thus,
the expectation value of any local observable Oo which
is odd under spin flip, i.e., Pz[Oo] = −Oo, vanishes.
The symmetry of the Hamiltonian moreover implies that
this property holds true at any time. The system is com-
pletely characterised by operatorsOe that are even under
spin flip, i.e., Pz[Oe] = Oe; without loss of information,
we can restrict the space of operators to the even ones.

Such a restriction has however a subtle by-product: in
the restricted space there are observables that are not
represented by local operators but that nevertheless be-
have as such. In this specific case the prototype of such
an observable is represented by an operator Πz(j) that
plays the role of a product of Pauli matrices σz extend-
ing from site j to infinity; see Section IVA for a proper
definition. As done in Ref. [31], we refer to Πz(j) as
semilocal to remember that its action is local only in the
restricted space of even operators — see Fig. 1 (see also
Refs. [51–55] regarding semilocality and related concepts
in field theories and lattice models). The above exam-
ple with a Z2 (spin-flip) symmetry will be our testing
ground, but the idea can be applied to other symmetries:
if every subsystem has a density matrix that is written
at any time in terms of a restricted set of local operators,

an alternative representation of local observ-
ables can be obtained by supplementing the re-
stricted set with operators that are not local
but behave as such. As in the Z2 case, they
are called “semilocal”.

Duality. We expect quite generally that, once ex-
tended to include also semilocal operators, the restricted

space becomes isomorphic to the original space of quasilo-
cal operators. In the Z2 case, this is manifested in the
existence of a duality transformation that preserves the
locality of the Hamiltonian and maps even semilocal op-
erators into local ones that are odd under a spin flip (see
Section IVA). Analogous duality transformations exist
also when the system exhibits other symmetries — see,
e.g., Refs. [56, 57].

3. Cluster decomposition

Thermal states and ground states of local Hamiltoni-
ans have clustering properties. That is to say, the ex-
pectation value of the product of two local operators far
away from each other factorises:

lim
y→∞

(⟨O1(x)O2(x+ y)⟩−⟨O1(x)⟩⟨O2(x+ y)⟩) = 0 .

(2.3)
Cluster decomposition is intimately connected with the
phenomenon of symmetry breaking in ordered phases:
generic nonsymmetric perturbations break the symmetry
of the ground state in such a way that the state always
ends up satisfying clustering [58]. If our system is sym-
metric, semilocal operators represent local observables as
well, therefore one requires that

a symmetric physical state satisfies clustering
also for semilocal operators.

This additional requirement allows to break completely
the barrier between semilocality and locality: there is no
physical property distinguishing semilocal operators from
local ones. In view of this, local, (strongly) quasilocal,
and semilocal operators can all represent local observ-
ables. Incidentally, we mention that this equivalence be-
comes natural when taking the continuum limit close to
a critical point, where all the aforementioned operators
become represented by local fields.
In the previous example of the Z2 symmetry, clustering

fixes the expectation value of the semilocal operators up
to an overall sign. Section IVB will show that the aux-
iliary sign is determined by how the symmetry is broken
in the dual representation.

4. Semilocal vs. symmetry-protected topological order

We are considering noncritical spin-chain Hamiltoni-
ans with discrete global symmetries. If, in equilibrium at
zero temperature, some of the symmetries remain unbro-
ken, the state can exhibit so-called symmetry-protected
topological order [59]. Because of the symmetry of the
Hamiltonian, we can find string operators OA that act
differently from the identity everywhere within a con-
nected region A and commute with the energy densities
hℓ with support inside A. The order is manifested in the
fact that there are operators of that kind with a nonzero
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expectation value in the limit |A| → ∞. This is usually
referred to as “string order” [56].

String order can be reinterpreted as the exis-
tence of an alternative representation of local
observables including semilocal operators with
a nonzero expectation value.

Indeed, it is always possible to reinterpret ⟨OA⟩ as the
correlation between two semilocal operators positioned
at the boundaries of A. Clustering of semilocal oper-
ators together with the nonvanishing value of ⟨OA⟩ in
the limit |A| → ∞ imply that the expectation values
of those semilocal operators are different from zero. In
analogy with the local order parameters characterising a
phase with a spontaneously broken symmetry, they are
referred to as semilocal order parameters.

The reader can understand this as an alternative way
of presenting the results of Refs. [56, 57], which re-
late symmetry-protected topological order to a stan-
dard Landau phase (with a broken symmetry) in a
dual representation. For example, in the Z2 case

limn→∞ ⟨
∏ℓ+n

j=ℓ−n σ
z
j ⟩ is the natural string-order param-

eter and we have
∏ℓ+n

j=ℓ−n σ
z
j = Πz(ℓ− n)Πz(ℓ+ n+ 1).

Since we have not carefully investigated the equiva-
lence between semilocal order and symmetry-protected
topological order, we will refrain from using the lat-
ter terminology when there is a risk that our claims
could not hold in full generality. We note however that
the basic property of symmetry-protected topological or-
der is satisfied: semilocal order is preserved if the ini-
tial state is perturbed without breaking the symmetry
associated with the order. For example, in the case
of a Z2-symmetric initial state |Ψ(0)⟩ the transformed
state eiW|Ψ(0)⟩ retains the symmetry for any spin-flip
invariant operator W with strongly quasilocal density.
The collection of such states obtained by all possible
symmetry-preserving perturbations forms a symmetry-
protected phase [1]. All these states are characterised by
a nonvanishing expectation value of a semilocal operator.

B. Conservation laws with semilocal densities

Most spin-flip invariant Hamiltonians with local den-
sities do not admit dynamics in which the expectation
values of semilocal operators remain nonzero also at late
times. This can be readily understood if, like in the Z2

case, there is a duality transformation mapping semilo-
cal operators into local ones that break the symmetry. In
the dual representation their expectation value remains
nonzero only if there are conserved charges that break
the symmetry of the dual Hamiltonian.

Conversely, for every symmetric Hamiltonian with at
least one local charge that doesn’t respect the symmetry,
there is a dual Hamiltonian with at least one conserva-
tion law with a semilocal density. In the specific case of
spin-flip symmetric Hamiltonians, the simplest examples

of systems of this kind have dual Hamiltonians that are
spin-flip invariant in all the directions, like the Hamilto-
nian of the Heisenberg model. In particular,

any local Hamiltonian with a spin-flip sym-
metry and a U(1) charge that breaks spin flip
is dual to a model with a semilocal charge.

The prototypical example of the latter has the following
Hamiltonian

H =
∑
ℓ∈Z

σx
ℓ−1(1− σz

ℓ )σ
x
ℓ+1 +Wℓ[{σz}] , (2.4)

whereWℓ can be any local operator written only in terms
of σz. To the best of our knowledge, for generic Wℓ the
model does not have conservation laws with quasilocal
densities. On the other hand, just using the algebra sat-
isfied by Πz(j), the reader can verify that H has the
following conservation law with a semilocal density:

Q =
∑
ℓ∈Z

Πz(ℓ) . (2.5)

Naively following Refs. [29, 30], we would exclude this
conservation law from the description of the long-time
behaviour of local operators after global quenches. In-
deed Πz(ℓ) cannot be written as a limit of a sequence of
local operators and does not even have a nonzero infinite-
temperature overlap with a local operator. While the
relevance of such charges could perhaps be understood
within the picture of thermalization based on the so-
called pseudolocality [37], an explicit example of a set-
ting in which they would crucially affect the relaxation
of local observables has, to our best knowledge, not yet
been considered. Herein we provide such examples, ex-
plicitly construct the emergent nonequilibrium statistical
ensembles, and interpret them.

1. Breakdown of maximum-entropy descriptions

After a quantum quench of a global parameter at zero
temperature, the local properties of the state approach
those of an effective stationary state. Typically, the latter
is completely characterised by conserved operators with
quasilocal densities [60], which carry information about
the initial state — see Section III B. The emerging state,
which is called Gibbs or generalised Gibbs ensemble, is
expected to resemble an equilibrium state at finite tem-
perature. We remind the reader that finite-temperature
states in one dimension do not generally exhibit topolog-
ical order; this was proven, in particular, for global on-
site symmetries [12]. Because of the similarity between
(generalised) Gibbs ensembles and thermal states, it is
reasonable to expect that, in such maximum-entropy de-
scriptions, the two-point functions of semilocal operators
approach zero at large distances.
Let us now re-examine global quenches in symmetric

systems in the light of our previous considerations about
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semilocality. If the state before the quench is not sym-
metric (i.e., its density matrix is not even), semilocal
operators do not represent local observables, exactly as
in global quenches without global symmetries. We ex-
pect, therefore, the emergence of a standard (generalised)
Gibbs ensemble; we will consider an explicit example in
Section III B 1.

The situation changes if the initial state exhibits
semilocal order. It is simple to show that

semilocal charges enable the possibility to keep
memory of semilocal order,

that is to say, they allow a symmetry-protected topo-
logical order phase to survive the long-time limit after a
quantum quench.

In the Z2 case, this can be readily proved considering
the fluctuations of a semilocal charge, let it be

∑
j∈Z q

sl
j ,

with a nonzero expectation value at the initial time. We
indeed have

lim
t→∞

1

|A|2
∑

j,n∈A

⟨Ψ(t)|qsl
j q

sl
n |Ψ(t)⟩≥⟨Ψ(0)|qsl|Ψ(0)⟩2

(2.6)
for every subsystem A, where we used the non-negativity
of fluctuations and ⟨Ψ(t)|qsl|Ψ(t)⟩ = ⟨Ψ(0)|qsl|Ψ(0)⟩. In
the limit of large |A| the left-hand side of Eq. (2.6) can
only be nonzero if the state at infinite time exhibits string
order, specifically, if limn→∞ ⟨qsl

j q
sl
j+n⟩ ̸= 0. Thus, a

nonzero initial expectation value ⟨Ψ(0)|qsl |Ψ(0)⟩ ̸= 0
implies survival of the string order in the limit of infi-
nite time. Being blind to a string order, a (generalised)
Gibbs ensemble constructed out of the model’s conserved
charges, whose densities are limits of sequences of local
operators (see Section III B for precise definitions), can
not describe such a limit. For an explicit example of
the breakdown of the maximum-entropy descriptions in
integrable and generic systems we refer the reader to Sec-
tion III C.

2. Semilocal (generalised) Gibbs ensemble

The charges responsible for the persistent order can be
accommodated in a minimal extension of the standard
theory with quasilocal operators, which must now in-
clude also semilocal operators. In such an extended space
we consider two maximum-entropy statistical ensembles:
the G-semilocal Gibbs ensemble and the G-semilocal gen-
eralised Gibbs ensemble, where G refers to the symme-
try exploited to enlarge the theory (e.g., the Z2 symme-
try) — see Section IVC. The former emerges in generic
systems, in which there is a finite number of local and
semilocal conservation laws; the latter incorporates in-
stead the richer structure of integrable systems, where
there are infinitely many charges. They are supposed
to capture the infinite-time limit as the corresponding
(generalised) Gibbs ensembles composed out of quasilo-
cal integrals of motion do in non-symmetric systems.

We posit an additional step: the semilocal ensemble
should be projected back onto a theory of local observ-
ables. Indeed, not all operators in the extended the-
ory can represent local observables (they do not satisfy
the causality principle sketched in Section IIA) and the
choice of which of them can is ambiguous: in the spin-
flip example (G = Z2), odd operators and even operators
with half-infinite strings do not commute at infinite dis-
tance but they both, separately, can supplement the even
quasilocal operators to represent local observables — see
Fig. 2.

Pz[σz
ℓ ] = σz

ℓ

even quasilocal

Pz[σx
ℓ ] = −σx

ℓ

odd quasilocal

Pz[Πz(ℓ)] = Πz(ℓ)

even semilocal

FIG. 2. Quasilocal theory (red line) and even semilocal theory
(blue dashed line). Each of them contains operators that are
able to represent local observables, provided that some of the
operators of the other theory are excluded (even semilocal
and odd quasilocal operators can not simultaneously represent
local observables — see Fig. 1).

That said, local observables are typically represented
by quasilocal operators (excluding therefore, in the spin-
flip case, operators with half-infinite strings). In such a
theory

persistent semilocal order manifests itself in
the fact that the projected ensemble does
not maximise the entropy constrained by the
quasilocal integrals of motion.

Note however that, in all the cases we envisage, there
is also an alternative representation of local observables
in which the projected ensemble is a maximum-entropy
state as in Ref. [61].
In conclusion, symmetric systems allow for multiple

representations of local observables and only a part of
them, which we will refer to as “canonical” theories, in-
clude the densities of all the operators that are conserved
in the extended space — see Section IVC3.

C. Signatures of semilocal order

The fact that the two-point function of semilocal op-
erators does not vanish in the limit of infinite distance
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is arguably the most evident signature of semilocal order
in nonequilibrium states (see Section VC for a study of
a semilocal order parameter in the dual XY model). In
this respect, we only add a remark:

the semilocal integrals of motion are semilocal
order parameters with the additional property
of being stationary.

In fact, this is only part of the story. That a symmet-
ric system can be described in alternative ways (e.g., by
a quasilocal vs. by a semilocal theory) can have strik-
ing consequences. In particular, perturbations that gen-
erally have insignificant effects can trigger macroscopic
changes. Two phenomena of this kind are described in
the following.

1. Excess of entropy

Ref. [31] has recently shown that, in a symmetric
quench, a localised perturbation to the initial state af-
fects the stationary values of local operators. Here we
make the next step, studying the effect of the perturba-
tion on the entanglement properties of large subsystems.
We parametrise the perturbation by an odd transforma-
tion Uℓ that connects different symmetry sectors and is
localised around some position ℓ (in our specific example
we will consider Uℓ = σx

ℓ ): |Ψ(0)⟩ → Uℓ |Ψ(0)⟩. The
reader can think of Uℓ as of the result of a projective
measurement of a local operator — see also Ref. [62].
Since the perturbation is local, it has a limited effect on
the initial state. In particular, it does not affect at all
the entanglement entropies of subsystems that enclose
the support of Uℓ completely.
After a global quench the entropies of spin blocks grow

in time until reaching an extensive value [63]. If there are
no semilocal charges, the effect of Uℓ approaches zero in
the limit of infinite time. On the other hand, semilo-
cal charges keep memory of the perturbation and even
the entanglement entropies of large subsystems remain
affected. We consider in particular the excess of entropy,
which was recently studied in states at zero temperature
in which a symmetry is spontaneously broken [40]. It
is defined as the increase in the entanglement entropies
produced by the local perturbation

∆Uℓ
SA(t) =S[trĀ(e

−iHtUℓ |Ψ(0)⟩ ⟨Ψ(0)|U†
ℓe

iHt)]

− S[trĀ(e−iHt |Ψ(0)⟩ ⟨Ψ(0)| eiHt)] ,

(2.7)

where S[ρ] can be any functional of the density matrix
ρ that measures the entanglement between A and the
rest. We will focus on the Rényi entropies S[ρ] = [1/(1−
α)] log tr(ρα). Remarkably,

∆Uℓ
SA(t) does not approach zero in the limit

of infinite time; it becomes proportional to the
logarithm of the subsystem’s length

∆Uℓ
SA(t) ∝ log |A| . (2.8)

In Section VB we compute the prefactor analytically in
systems that are dual to noninteracting spin models. De-
spite appearing universal when considering the dual XY
model, which is our favourite testing ground, we argue
that it is not. The prefactor depends indeed on non-
universal details that are accidentally irrelevant in that
model.
While the importance of the prefactor could be ques-

tioned, the logarithm growth of the excess of entropy is,
to the best of our understanding, a striking exceptional
property of systems with semilocal conservation laws.

2. Melting of the order

In generic systems after global quenches the energy is
the only information about the initial state that survives
the limit of infinite time; the stationary values of local
operators are then captured by effective Gibbs ensem-
bles. Since finite-temperature phase transitions in spin
chains described by local Hamiltonians are exceptional if
not forbidden [64], the norm is that the stationary expec-
tation values of local observables are smooth functions of
the initial state.
The stationary expectation values of local operators

are expected to be described by an effective Gibbs ensem-
ble even in the presence of semilocal conservation laws,
provided that the initial conditions are generic. Indeed,
semilocal charges are relevant only for symmetric initial
states; one could then argue that the systems we are con-
sidering require a fine-tuning and hence are physically
irrelevant.
This unremarkable picture is however a consequence of

a naive physical interpretation of asymptotic behaviour.
In reality the limit of infinite time is an effective de-
scription of times sufficiently larger than the relaxation
time [65]. The latter diverges in the limit in which the
symmetry in the initial state becomes exact but it is still
finite for an exactly symmetric initial state. This happens
because the limit of exact symmetry does not commute
with the limit of infinite time. Consequently, for any
given arbitrarily large time, the discrepancy between the
expectation value of local observable and its infinite time
limit becomes larger and larger the closer the system is
to the symmetric point (see, e.g., Fig. 5 in Section III C).
Such a slow relaxation can be understood only taking
into account the existence of semilocal charges at the
symmetric point.
In Section VC we consider two simple ways of breaking

the symmetry in the initial state: a global rotation and
an increase of the temperature. In both cases we find a

nontrivial scaling behaviour in the limit where
the time is large and comparable with the cor-
relation length of semilocal operators.

The latter, indeed, diverges in the limit of exact symme-
try (while being finite at the symmetric point): the limit
corresponds to recovering the symmetry without allowing
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semilocal operators to have a nonzero expectation value,
finally leading to the breakdown of cluster decomposi-
tion.

Organisation of the rest of the paper:

Section III: It reviews some established results on relax-
ation after global quenches in quantum spin chains.
Section IIIA presents the general picture in a de-
scriptive way, whereas Section III B goes into more
details about the late-time description. Two simple
examples supporting the validity of the picture are
exhibited. Section III C points out when the long-
time description of the relaxation based on quasilo-
cal conserved quantities fails, exhibiting also a sus-
pected counterexample in a generic system.

Section IV: It is the core of the paper, where the fail-
ure of the (generalised) Gibbs ensembles composed
of quasilocal integrals of motion is explained and
a theory able to overcome those problems is devel-
oped from scratch. Since the issue has deep roots
in the mathematical structure underlying the repre-
sentation of local observables in infinite spin chains,
the section is more abstract than the rest of the
paper. Section IVA describes a Kramers-Wannier
duality transformation introducing ingredients that
will be used in the following. Section IVB explains
how a state can have distinct representations in dif-
ferent theories of local observables. Section IVC
formalises the structure revealed in the previous
section and defines the semilocal statistical ensem-
bles able to capture the infinite time limit.

Section V: It describes some effects of persistent semilo-
cal order. Section VA shows that the notion of
subsystem changes across different theories of lo-
cal observables, culminating in a formula that ex-
presses a reduced density matrix in a theory in
terms of reduced density matrices of a different the-
ory. Section VB studies the excess of Rényi en-
tropy induced by a local perturbation. The asymp-
totic behaviour of the excess of entropy is computed
analytically in an exactly solvable model, exhibit-
ing an unusual log behaviour that is interpreted
as a consequence of semilocal order. Section VC
shows that, despite semilocal order being fragile
under symmetry-breaking perturbations, it leaves
clear marks in the time evolution of the expecta-
tion value of local operators.

Section VI: It collects additional comments and a list of
open problems.

III. LONG TIME LIMIT: STATE OF THE ART

This section presents some established results on
quench dynamics in translationally invariant systems de-
scribed by Hamiltonians with densities hℓ that are local.
As reviewed in Section III B, this means that each den-
sity hℓ acts non-trivially on a finite connected subsystem
Aℓ of the spin chain, while on the rest of the system Āℓ

it acts as an identity.
If the reader is familiar with relaxation in iso-

lated quantum many-body systems, they can skip Sec-
tion IIIA. If they are also familiar with the concept of
pseudolocality, they can also skip Section III B. We advise
however to read Section III C, as it shows when quasilo-
cal integrals of motion are not sufficient to describe the
long-time expectation values of local observables after
quantum quenches.

A. Background

Generally only a tiny part of the excited states of the
Hamiltonian gives a significant contribution to the expec-
tation values of local observables after a global quench.
Even if tiny with respect to the total Hilbert space, this
part is however still exponentially large with respect to
the volume of the system (this can be a-posteriori un-
derstood by observing that the entanglement entropy of
subsystems becomes extensive after global quenches [66]).
Consequently, studies of global quenches are challenging
both numerically and analytically.
Quantum quenches in translationally invariant many-

body systems have been intensively investigated in the
last two decades, leading to the following picture:

– In finite systems, consistently with the quantum
recurrence theorem [67], there is no relaxation. The
distributions of the expectation values over time,
however, are highly peaked at values that can be
described by the so-called diagonal ensemble [32].

– In the thermodynamic limit, if the initial state has
clustering properties and the Hamiltonian is local,
relaxation is the norm, and the expectation values
of local observables can be described by Gibbs or
generalised Gibbs ensembles (GGE) [25].

– Generally, the diagonal ensemble and the (gener-
alised) Gibbs ensemble are locally equivalent [28].
They belong to a family of stationary states with
the same local properties, the (generalised) Gibbs
ensemble being the state keeping the least amount
of information about the initial state. This equiva-
lence class is sometimes called macrostate [25].

– Eigenstate thermalisation hypothesis [32–35] and
its generalisation to integrable systems [68] point at
the fact that the aforementioned family of station-
ary states includes excited states, usually referred
to as representative states [69].
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The diagonal ensemble can be obtained by killing the
non-stationary part of the time-evolving density matrix
in a basis diagonalising the Hamiltonian (i.e., only the
(block)-diagonal part of the density matrix remains). In
practice this can only be done in sufficiently small sys-
tems. (Generalised) Gibbs ensembles and representative
states are more suitable for analytical investigations. In
integrable systems, in particular, they can be directly
used to compute expectation values. Generalised Gibbs
ensembles rely on the identification of the smallest set of
conserved operators characterising the stationary prop-
erties of local observables. Representative states instead
require the knowledge of the overlaps between the initial
state and a generic excited state.

Contrary to classical systems, every quantum system
has a number of conservation laws in involution equal
to its dimension (namely, the projectors on the eigen-
states). In the thermodynamic limit, however, relaxation
is a property of a restricted class of observables, therefore
that exponentially large (in volume) set of conservation
laws is redundant, like in turn is redundant the descrip-
tion in terms of the diagonal ensemble.

The first studies on local relaxation after global
quenches focused on non-interacting systems of fermions
and bosons [36]. In those cases the Wick’s theorem is
sufficient to conclude that the mode occupation numbers
provide a sufficiently large set of conserved operators.
Having in mind interacting models, the attention had
then moved to reinterpreting the known results in a way
that could be easily generalised in the presence of inter-
actions.

The importance of locality of the conservation laws [70]
was then pointed out. It sets a clear (in translation-
ally invariant systems) division between integrable and
generic systems. Such a locality principle was strongly
questioned after some discrepancies between theory and
numerics in the Heisenberg XXZ spin-1/2 chain were ob-
served. Using the so-called “quench action” method [27],
based on representative states, it was shown that the gen-
eralised Gibbs ensemble constructed with local charges in
the XXZ spin-1/2 chain was inadequate [71, 72]. These
problems have been finally resolved with the discovery
of new families of conservation laws [48, 73–75] which
had been previously overlooked. Their peculiarity is that
their densities are not strictly local but exhibit exponen-
tial tails. Locality, now including also the new kind of
operators, called pseudolocal [30], had resurrected. Some
technical discussions apart [76–78], the new picture was
positively received, and after the axiomatic definition of
generalised Gibbs ensemble put forward in Ref. [37] the
question of the relevance of conservation laws has been
practically archived.

B. Maximum-entropy descriptions

Conserved quantities constrain the dynamics of the
system and prevent the loss of information about the

initial state. An important question of the past decade
has been, which of these quantities enter in the ensemble
ρ∞ that describes local relaxation according to

lim
t→∞

⟨Ψ(t)|O |Ψ(t)⟩ = tr(ρ∞O), ∀O local. (3.1)

We remind the reader again that by “local” we mean
that O acts non-trivially only on a finite connected sub-
system A, while on its complement Ā it acts as an iden-
tity. We focus here on representations of ρ∞ through
maximum-entropy ensembles [61]. In our specific case
they are called Gibbs or generalised Gibbs, depending on
whether the system is generic or integrable.
The first assumption behind such a description is that,

at late times, the entanglement entropy

S[ρ] = −tr[ρ log ρ] (3.2)

of subsystems becomes an extensive quantity. One can
then look for a representation of ρ∞ in terms of a state
with an extensive entropy. Thermal ensembles are the
typical examples of such states. Imagine then to use a
thermal ensemble as a testing description of the station-
ary expectation values (cf. Ref. [79]). Specifically, we de-
fine it in such a way as to capture the energy of the state.
We wonder whether the presence of an additional con-
servation law K =

∑
j kj could change the expectation

value of local operators. Guided by statistical physics,
we use the Ansatz

ρ∞ =
eQ

tr(eQ)
(3.3)

where Q was originally assumed to be proportional to
H and now is questioned whether to include or not an
additional linear dependence on K. In the absence of K,
Q = −βH maximises the entropy under the constraint
given by the energy per site ⟨hj⟩ in the initial state. In
order to be relevant, the introduction of K should result
in

(i) a change in the expectation value of local operators;

(ii) an extensive reduction of the entropy.

While (i) is self-explanatory, (ii) is subtler and can be
seen as a condition allowing us to use the principle of
maximum entropy [61].
To be more quantitative, the effect of including K in

the ensemble can be interpreted as the result of a smooth
variationQ = −βH 7→ Q(λ) = −β(λ)H+λK that brings
the original ensemble into the new one. The variation of
the expectation value of a local operator O under a small
change of λ is

δ ⟨O⟩λ = ⟨δQ(λ),O⟩λ , (3.4)

where δQ(λ) = Q′(λ)δλ, and the right-hand side is
the Kubo-Mori inner product. In this specific case
([δQ,Q] = 0) the latter is reduced to the connected cor-
relation function ⟨A,B⟩ = ⟨AB⟩−⟨A⟩ ⟨B⟩; the subscript
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λ indicates that the expectation values should be taken
in the state ρ∞(λ).

Since the energy density is fixed by the initial state,
the variation should preserve it, hence

⟨δQ(λ),hj⟩λ = δλ ⟨−β′(λ)H+K,hj⟩λ = 0 . (3.5)

Condition (i) then requires the existence of a local oper-
ator O satisfying [80]

0 < ⟨K,O⟩λ <∞ . (3.6)

On the other hand, the variation of the entropy per
unit site is δs[ρ∞(λ)] = −⟨δQ(λ),qj(λ)⟩λ, where qj(λ)

is the density of Q(λ) [81]. Imposing the energy con-
straint (3.5) we then obtain

δs[ρ∞(λ)] = −1

2
δ(λ2) ⟨Q′(λ),q′

j(λ)⟩λ , (3.7)

which is non-positive along a path with increasing |λ|.
Explicitly it reads δs[ρ∞(λ)] = − 1

2δ(λ
2)[⟨K,kj⟩λ −

(β′(λ))2 ⟨H,hj⟩λ], where kj is the density of K. In order
to apply the maximum entropy principle, we need the en-
tropy to be a smooth function of the Lagrange multiplier
λ, which requires [82]

0 < ⟨K,kj⟩λ <∞ . (3.8)

This is usually referred to as “extensivity condition” and
represents (ii). The generalisation to systems with more
conservation laws is straightforward and results in the
same equations.

As a matter of fact, some of the works considering
pseudolocality of integrals of motion additionally as-
sume [30]:

(∗) the density kj can be obtained as a limit of a se-
quence of local operators.

From our simplified explanation, it might not be evident
where this extra condition comes from. Explaining it
goes beyond the mathematical rigour of this work; we
only mention that (∗) has a role in making sense to the
thermodynamic limit.

In a more formal work [37] dealing with the emergence
of maximum-entropy ensembles after global quenches the
condition (∗) is actually replaced with a weaker one,
namely, that ⟨kj ,O⟩ can be obtained as a limit of the
overlaps between O and an appropriate sequence of lo-
cal operators. Such a limit then defines a “pseudolo-
cal charge” associated with kj and this allows one to
build maximum entropy stationary states starting from
susceptibilities, avoiding altogether the problem of defin-
ing pseudolocal operators in the thermodynamic limit.
While the formal framework developed in Ref. [37] may
account also for the semilocal integrals of motion, to the
best of our knowledge no explicit example of a maxi-
mum entropy state incorporating integrals of motion that
would satisfy the weaker and violate the stronger version
of condition (∗) has yet been constructed.

Conditions (3.6), (3.8), and (∗) define what is known as
pseudolocality. Charges that satisfy them include trans-
lationally invariant sums Q =

∑
ℓ qℓ, where the density

has the form qℓ =
∑∞

r=1 qℓ(r) with {qℓ(r)} being a se-
quence of local operators that act on subsystems of in-
creasing size r and are exponentially suppressed in r, e.g.,
⟨Q,qℓ(r)⟩ ≤ Ce−r/ξ, for some C, ξ > 0 [30, 48].
In the following we consider two examples of

maximum-entropy descriptions in integrable exactly solv-
able models. Note that, since the systems are integrable,
the corresponding maximum-entropy ensembles will have
to incorporate the constraints of infinitely many pseu-
dolocal integrals of motion.

1. Example: XY model

To illustrate the validity of the generalised Gibbs en-
semble description we consider quench dynamics in the
XY model, whose time evolution is generated by the
Hamiltonian

H =
∑
ℓ∈Z

Jxσ
x
ℓσ

x
ℓ+1 + Jyσ

y
ℓσ

y
ℓ+1 . (3.9)

This is a very well known model [83]. We mention that
the ground state is noncritical for |Jx| ≠ |Jy|. The critical
line separates two ordered phases where spin flip symme-
try is broken (for Jx > Jy the spins acquire a nonzero x
component, whereas for Jy > Jx they acquire a nonzero
y component).
Let the system be prepared in the initial state

|Ψ(0)⟩ = | ⇒θ⟩ :=
⊗
ℓ∈Z

(
cos θ

2

sin θ
2

)
, (3.10)

which is the ground state of the Hamiltonian

H0 = −
∑
ℓ∈Z

cos
(
θ
2

)
σz

ℓ + sin
(
θ
2

)
σx

ℓ . (3.11)

For θ /∈ {0, π} the initial state breaks the Z2 symmetry
Pz of the post-quench Hamiltonian H (see Eq. (2.2)).
The latter can be conveniently rewritten in terms of Ma-
jorana fermions ax,yℓ = (Πj<ℓσ

z
j )σ

x,y
ℓ as [84]

H =
1

4

∑
ℓ,n∈Z

(
axℓ ayℓ

)
Hℓ,n

(
axn
ayn

)
, (3.12)

where Hℓ,n =
∫

dk
2π e

i(ℓ−n)kH(k) is the Fourier transform
of the 2× 2 matrix

H(k) = 2(Jx − Jy) sin k σx − 2(Jx + Jy) cos k σ
y.
(3.13)

On account of the Toeplitz structure of H, H(k) is also
referred to as the symbol of the Hamiltonian (see, e.g.,
Ref. [85]). The symbol generates the evolution of the
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two-point correlations of Majorana fermions according
to

Γt(k) = e−iH(k)tΓ(k)eiH(k)t, (3.14)

where Γ(k) is the symbol of the two-point correlation
matrix

Γℓ,n = δℓ,nI − ⟨
(
axℓ
ayℓ

)(
axn ayn

)
⟩ , (3.15)

in the initial state. For example, in the ferromagnetic
initial state (3.10) with θ = 0 one has Γℓ,n = δℓ,nσ

y and
Γ(k) = σy.

Under some very mild assumptions on the dispersion
relation which are practically always satisfied (for exam-
ple, the dispersion relation should not be flat), at large
time the symbol of the correlation matrix relaxes to its

time-averaged value Γ(k) = limT→∞
1
T

∫ T

0
dtΓt(k). In

our specific case we find

Γ(k) =
(cos2θ+1)cos2k−2cosθ cosk+ Jx−Jy

Jx+Jy
sin2θ sin2k

2 cosθ cos2k−(cos2θ+1) cosk

(
0

−i(Jx+Jy) cosk
(Jx+Jy) cosk+i(Jx−Jy) sink

i(Jx+Jy) cosk
(Jx+Jy) cosk−i(Jx−Jy) sink

0

)
. (3.16)

In a non-interacting model, Ref. [86] established
that (3.16) is actually equivalent to a symbol of the two-
point correlation matrix in a generalised Gibbs ensem-
ble, i.e., Γ(k) ≡ ΓGGE(k). Under some assumptions it
was later proven [87, 88] that, if the Hamiltonian gener-
ating the time evolution is translationally invariant, and
if the initial state has clustering properties, the asymp-
totic state of the system is Gaussian, whence higher-
order correlations can be accessed using Wick’s theo-
rem. These conditions are satisfied by Hamiltonian (3.9)
and our state (3.10). The time-averaged correlation ma-
trix (3.16) thus determines not only the two-point cor-
relations of Majorana fermions at late times (e.g. ⟨σz

ℓ ⟩,
shown in Fig. 3), but also higher-order correlations, as
demonstrated in Fig. 4, which shows the relaxation of
⟨σx

ℓ ⟩ (a string of Majorana fermions).

2. Example: Dual XY model

We now consider a global quench from the same initial
state | ⇒θ⟩ in the model described by the Hamiltonian

H =
∑
ℓ∈Z

σx
ℓ−1(JxI− Jyσz

ℓ )σ
x
ℓ+1. (3.17)

To the best of our knowledge, this model has not been
studied much. We mention that the ground state is non-
critical for |Jx| ≠ |Jy|. As shown in Appendix C, for
|Jy| < |Jx| the ground state is in a Landau phase where
both spin flip symmetries over odd and even sites are
broken, for |Jy| > |Jx|, instead, it is in a nontrivial
Z2 × Z2 protected topological phase (see, e.g., Ref. [89]
for Jx = 0).
Hamiltonian (3.17) can be mapped into the one of the

quantum XY model, given in Eq. (3.9), by means of
a Kramers-Wannier duality transformation, which will
be described in detail in Section IVA. After the dual-
ity transformation the Hamiltonian (3.17) is therefore

FIG. 3. Relaxation of ⟨σz
ℓ ⟩ towards ⟨σz

ℓ ⟩GGE ≈ 0.466 (0.717)
(dashed lines) in the XY model, computed from Eq. (3.16).
The dots represent the results of the iTEBD simulation, while
the solid curve is the exact time evolution using Eq. (3.14).
Parameters in Eqs. (3.9) and (3.10) are Jx = 1, Jy = 2,
and θ = 0.9 (0.3). The iTEBD evolution uses a second order
Trotter scheme with two-site quantum gates, time step δt =
0.01, Schmidt values cutoff 10−6 and maximal allowed bond
dimension Mmax = 800.

quadratic in terms of Majorana fermions: the time evo-
lution of the n-point correlation functions is determined
only by the n-point correlation functions at the initial
time. As reviewed in the previous section, the asymptotic
state is Gaussian and thus determined by the 2-point
correlation functions. The generalised Gibbs ensemble
can thus easily be determined from the initial correla-
tion matrix consisting of the initial expectation values of
all local operators mapped by the duality transformation
into operators that are quadratic in Majorana fermions.
This allows one to obtain the stationary values of local
operators with minimal effort. Since however we are con-
sidering this model as a representative of a larger class
of systems for which this procedure would not apply, we
describe also an alternative approach.
Specifically, one could infer that this is an integrable
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FIG. 4. Relaxation of ⟨σx
ℓ ⟩ towards ⟨σx

ℓ ⟩GGE ≈ 0 (dashed
lines) in the XY model. Parameters are the same as in Fig. 3.

model from the fact that a boost operator B exists and
takes the standard form

B =
∑
ℓ∈Z

ℓhℓ, (3.18)

where hℓ = σx
ℓ−1(JxI − Jyσz

ℓ )σ
x
ℓ+1. That is to say, we

can construct a tower of conserved operators Qn in the
following manner:

Qn+1 = i[B,Qn], Q1 = H. (3.19)

We are then in a position to either guess the correspond-
ing Lax operator (which, in this model, was obtained in
Ref. [90]) and exploit the integrable structure to com-
pute the GGE expectation values [91], or to construct a
truncated generalised Gibbs ensemble [92] using the most
local charges. For generic θ all these methods converge
to the same values.

Relaxation of local observables in the dual XY model
is shown in Figs. 5 and 6. For θ /∈ {0, π} all local observ-
ables eventually relax to their respective GGE predic-
tions. Note, however, that for some local observables the
time scale on which relaxation happens tends to increase
when θ decreases — see Fig. 5.

C. Failure of the quasilocal (generalised) Gibbs
ensemble in symmetric systems

The Hamiltonians of the XY and the dual XY model
have a Z2 symmetry: Pz[H] = 0. If also the initial state
is even under Pz (e.g., | ⇒θ⟩⟨ ⇒θ| for θ ∈ {0, π}), the
entire system is symmetric. Hence, only the even conser-
vation laws are expected to contribute to the stationary
behaviour of the local observables.

Using the even-parity local charges in each model re-
produces the generalised Gibbs ensembles described in
the previous examples. As demonstrated in Fig. 7, the
GGE description is correct in the XY model for θ = 0. In
contrast, in the dual XY model the prediction for the ex-
pectation value of σz

ℓ is zero, while its time evolution ap-
proaches a finite value ⟨σz

ℓ ⟩∞ ≈ 0.5625 — see Fig. 8 [93].

FIG. 5. Numerical (iTEBD) time evolution of ⟨σz
ℓ ⟩ and

GGE predictions (⟨σz
ℓ ⟩GGE ≈ 0.038, 0.0012, and 0.000078 for

θ = 0.9, 0.3, and 0.15, respectively) in the dual XY model.
Relaxation towards the GGE prediction is slower for smaller
θ. Parameters of the Hamiltonian (3.17) are Jx = 1, Jy = 2.
The iTEBD uses second order Trotter scheme with four-site
quantum gates, δt = 0.01, Schmidt values cutoff 10−6, and
maximum bond dimension Mmax = 1000. The data converge
up to times t ∼ 4.5 (see Appendix A).

FIG. 6. Relaxation of σx
ℓ−1σ

x
ℓ+1 towards the GGE prediction

(⟨σx
ℓ−1σ

x
ℓ+1⟩GGE

≈ 0.022808 (0.005646) for θ = 0.3 (0.15), re-
spectively) in the dual XY model. Parameters are the same
as in Fig. 5, except for the maximal bond dimension: here,
Mmax = 1000 (θ = 0.3), Mmax = 600 (θ = 0.15).

The generalised Gibbs ensemble using the even local
charges of the dual XY model thus fails to capture the
asymptotic behaviour of σz

ℓ . Normally this would be in-
dicative of having overlooked some pseudolocal integrals
of motion. As will be explained in Section IV, the discrep-
ancy is due to conserved quantities that do not satisfy the
strong form of the operator pseudolocality conditions em-
bodied in Eqs. (3.6), (3.8), and (∗).

Finally, as a concrete example of a generic system, we
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FIG. 7. Relaxation of ⟨σz
ℓ ⟩ and ⟨σz

ℓσ
z
ℓ+1⟩ towards the re-

spective GGE predictions (dashed lines) in the XY model.
Parameters are Jx = 1, Jy = 2, and θ = 0. The colored solid
lines correspond to exact calculation using Eq. (3.14), while
the dots represent the iTEBD results. The inset shows the
1/

√
t decay of oscillations (the differences between the local

maxima of oscillations and the GGE predictions are plotted
versus 1/

√
t). The iTEBD uses second order Trotter scheme

with a two-site update rule, δt = 0.01, Schmidt values cutoff
10−5, and maximal bond dimension Mmax = 400.
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FIG. 8. Numerical evolution of σz
ℓ (points) and the GGE

prediction ⟨σz
ℓ ⟩GGE = 0 (blue line) in the dual XY model, for

θ = 0, Jx = 1 and Jy = 2 (1/2). The time evolution relaxes

towards the value ⟨σz
ℓ ⟩ ≈ 0.5625. The iTEBD parameters are

the same as in Fig. 5.

consider Hamiltonian (2.4) with

Wℓ[{σz}] = w1σ
z
ℓ +

∞∑
n=1

w2,nσ
z
ℓσ

z
ℓ+n (3.20)

and initial state

|Ψ(0)⟩ = ei
φ
2

∑
ℓ σ

x
ℓσ

x
ℓ+1 |⇑⟩ , (3.21)

FIG. 9. Numerical evolution of σz
ℓ in the generic model given

by Eqs. (2.4) and (3.20). Parameters are w2,2 = 1, and w1 =
0.6. The iTEBD parameters are the same as in Fig. 5, except
for the maximum bond dimension Mmax (here various bond
dimensions are used, yielding comparable results).

where |⇑⟩ means that all spins are up. To the best of
our knowledge, there is no (pseudo)local operator com-
muting with this Hamiltonian. The expectation value
of the energy density reads ⟨hℓ⟩t = 1 + (w1 + w2,1 −
1) cos2 φ+ (

∑∞
n=2 w2,n) cos

4 φ. We now provide numeri-
cal evidence that the state does not thermalise by com-
paring the time evolution of ⟨σz

ℓ ⟩ starting from two
initial states with the same energy. To that aim, we
choose the Hamiltonian’s parameters in such a way that
0 < (1 − w1 − w2,1)/(

∑∞
n=2 w2,n) < 1, so that the en-

ergy is the same for initial states with either cos2 φ = 0
or cos2 φ = (1 − w1 − w2,1)/(

∑∞
n=2 w2,n). Fig. 9 shows

quite clearly that the infinite-time limit of ⟨σz
ℓ ⟩ depends

on the initial state (at the same energy), in contrast with
the eigenstate thermalisation hypothesis and the conjec-
ture of local thermalisation.

IV. BEYOND QUASILOCAL (GENERALISED)
GIBBS ENSEMBLES

We aim at obtaining a canonical description of the
macrostate describing the infinite-time limit after sym-
metric quenches in systems such as the dual XY model
in which the quasilocal (generalised) Gibbs ensemble, i.e.,
the one incorporating only the conservation laws that sat-
isfy the operator pseudolocality conditions (3.6), (3.8),
and (∗), fails — see Fig. 8. Since the limit of infinite
time makes sense only in the thermodynamic limit, we
make an effort to consider infinite chains directly.
Bearing in mind the duality correspondence high-

lighted in Refs. [56, 57] between symmetry-protected
topological phases and Landau phases, we start this sec-
tion describing a duality transformation. The most im-
portant property that we want to stress since the begin-
ning is that duality transformations can be used to map
algebras of operators representing local observables into
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one another. This will prove essential in unveiling the
importance of semilocal integrals of motion on the relax-
ation of local observables.

A. Kramers-Wannier duality map

Let us denote by Aql the (C⋆) algebra of quasilocal
operators in an infinite spin-1/2 chain. This algebra in-
cludes local operators and limits of their sequences that
converge in the operator norm. It is generated by the
local spin operators, which act like Pauli matrices on site
j and like the identity elsewhere; we will denote them
either by σα

j or by τα
j .

We consider a duality transformation DZ2 that differs
from the standard Kramers-Wannier duality map, re-
sponsible for the self-duality of the transverse-field Ising
model, just in an additional rotation:

τx
j = σx

j−1σ
x
j , τ z

jτ
z
j+1 = σz

j . (4.1)

In order to define it properly in the infinite chain, we
exploit the same trick as Refs. [94], which needed to de-
fine a Jordan-Wigner transformation directly in infinite
systems.

In particular, we define Tα
σ,s, where α ∈ {x, z}, s = ±,

and σ ↔ τ , as the Hermitian operators satisfying

[Tα
σ,s]

2 = I, Tα
σ,sOTα

σ,s = lim
n→∞

[ n∏
ℓ=0

σα
sℓ

]
O
[ n∏
ℓ=0

σα
sℓ

]
(4.2)

for all quasilocal operators O ∈ Aql, extended then by
linearity as Tα

σ,s(O1 + O2T
α
σ,s)T

α
σ,s = Tα

σ,sO1T
α
σ,s +

(Tα
σ,sO2T

α
σ,s)T

α
σ,s for O1,O2 ∈ Aql (the role of such an

extension will be discussed in Section IVC). We also de-
fine the auxiliary operators

Πz
σ,+(j) = Tz

σ,+ ·


σz

jσ
z
j+1 · · ·σz

−1 j < 0

I j = 0

σz
0σ

z
1 · · ·σz

j−1 j > 0

(4.3)

and

Πx
τ,−(j) = Tx

τ,− ·


τx
j+1τ

x
j+2 · · · τx

0 j < 0

I j = 0

τx
1τ

x
2 · · · τx

j j > 0 .

(4.4)

These operators act like a spin flip on the right or left of
site j included and like the identity elsewhere. The ro-
tated Kramers-Wannier duality map is then an algebra
homomorphism mapping the algebra of operators gen-
erated by {τ ,Tx

τ,−} to the one generated by {σ,Tz
σ,+},

both algebras being extensions of Aql. It reads

Πx
τ,−(j) =σx

j ,

τ y
j =σx

j−1σ
y
jΠ

z
σ,+(j + 1) ,

τ z
j =Πz

σ,+(j) .

(4.5)

We stress that, while Tz
σ,± resembles a string of σz

j with j

extending up to ±∞, the sequence {
∏n

ℓ=0 σ
z
±ℓ} does not

converge in the operator norm as n→∞. This is why we
could not avoid extending the algebra of the quasilocal
operators.
The duality transformation (4.5) mixes the local space

with some inaccessible degrees of freedom and only a sub-
set of the operators remain local under the mapping —
see Table I. In the table we also consider parities under

D LEz LOz SzEz SzOz

LEx •
LOx •
SxEx •
SxOx •

TABLE I. The duality transformationD. L stands for “local”,
Sα for “semilocal” with a string along the axis α, Eα and Oα

for “even” and “odd”, respectively, with respect to spin flip
along the axis α. The transformation preserves only even
locality and odd semilocality.

spin flips. Specifically, even (odd) quasilocal operators
obey Pα

ν [O] = O (Pα
ν [O] = −O), where (α, ν) corre-

sponds to either (x, τ) or (z, σ) — cf. Eq. (2.2)

Pα
ν [O]= lim

n→∞
Πα

ν,sν(−n)Π
α
ν,sν(n)OΠα

ν,sν(−n)Π
α
ν,sν(n) ,

(4.6)

and sσ(τ) = +(−). The transformations Pα
ν can be ex-

tended by linearity to operators O1 +O2T
α
ν,sν .

Finally, we report the inverse transformation D−1
Z2

,
which maps the algebra of observables generated by
{σ,Tz

σ,+} to the one generated by {τ ,Tx
τ,−}:

σx
j =Πx

τ,−(j) ,

σy
j =Πx

τ,−(j − 1)τ y
jτ

z
j+1 ,

Πz
σ,+(j) =τ z

j .

(4.7)

B. Semilocality and hidden symmetry breaking

When presenting the duality transformation DZ2
we

were forced to consider an extended algebra of operators.
Not all operators of the extended algebra can however
be associated with local observables. A theory [95] of
local observables, indeed, requires some basic notion of
locality:

(a) the theory is generated by operators that, in the
limit of infinite distance, commute with one another

lim
|x−y|→∞

[O1(x),O2(y)] = 0 ; (4.8)

(b) the state has clustering properties for the aforemen-
tioned operators

⟨O1(x)O2(y)⟩
|x−y|→∞−−−−−−→ ⟨O1(x)⟩ ⟨O2(y)⟩ . (4.9)
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After an inspection of Eq. (4.5), we realise that condi-
tion (a) forces us to exclude either operators with strings
or operators that are odd under spin flip (that is, under
Px
τ or Pz

σ). In either of the cases the remaining opera-
tors can represent local observables. This can be under-
stood by noting that a state can not simultaneously have
clustering properties, i.e., condition (b), and a nonzero
expectation value of two operators that anticommute at
an infinite distance:

⟨O1(x)⟩⟨O2(y)⟩
|x−y|→∞←−−−−−−⟨O1(x)O2(y)⟩=

=−⟨O2(y)O1(x)⟩
|x−y|→∞−−−−−−→−⟨O1(x)⟩⟨O2(y)⟩ . (4.10)

Duality transformations such as DZ2
help identify the-

ories in which local observables are not necessarily rep-
resented by local operators. When that happens the cor-
responding operators are called “semilocal”, in order to
be distinguished from the more common local objects
representing the local observables. In the following we
will refer to the theory built around the notion of only
quasilocal operators as “quasilocal theory”, in contrast
to “semilocal theories”, which incorporates also semilo-
cal operators. Specifically, in the Z2 case we identify two
theories of local observables:

– Quasilocal Theory: It describes quasilocal opera-
tors;

– Even Z2-Semilocal Theory: It describes even
quasilocal operators and operators with even
quasilocal “heads” and half-infinite “tails” (see
(4.27) for an example).

Semilocal operators represent information that was
lost in the thermodynamic limit, e.g., anything related
to the boundaries of the system. This becomes evident
when considering their expectation values. For example,
let us take the equilibrium state

ρ(σ)(β) =
e−βH(σ)

Zβ
, (4.11)

where H(σ) = −
∑

ℓ σ
z
ℓ + δhσ

x
ℓσ

x
ℓ+1, the upper index re-

ferring to the representation of spins through σα
ℓ . Here

δh is an arbitrarily small coupling constant introduced
just to avoid some degeneracy-related pathology of clas-
sical Hamiltonians (see, e.g., Ref. [94] and Section 6.2.7
of Ref. [46]). Being even, i.e., Pz

σ[ρ
(σ)(β)] = ρ(σ)(β), this

state can be interpreted both as a part of the quasilo-
cal theory and of the even Z2-semilocal one, the latter
incorporating the operators generated by the even local
ones and the semilocal Tz

σ,+. Indeed, the Hamiltonian

H(σ) through which the state is defined belongs to both
theories — see Fig. 2. Since it is gapped with a nonde-
generate ground state, one would be tempted to say that
the limits β → ±∞ of Eq. (4.11) are given by the states
|⇑⟩ and |⇓⟩, respectively (in the limit δh→ 0); one would
also conclude that they are one-site shift invariant. Such

a conclusion is correct within the quasilocal theory, in
which we have

lim
β→∞

tr[ρ(β)O] = ⟨⇑|O |⇑⟩σ , ∀O ∈ A
(σ)
ql . (4.12)

We added the subscript σ in |⇑⟩σ to stress that the state
can be represented by all spins up when considering op-

erators in A
(σ)
ql .

Instead, in the even Z2-semilocal theory semilocal op-
erators, such as Πz

σ,+(ℓ), do not satisfy Eq. (4.12): they
are affected by what is not in the bulk of the system. We
denote this uncertainty by |⇑ •⟩σ,sl and |⇓ •⟩σ,sl, where •
represents our ignorance of what is not in the bulk. Since
we are already in the thermodynamic limit, this indepen-
dent degree of freedom risks to appear very abstract. In
order to partially overcome this problem, it is convenient
to map semilocal operators into local ones through a du-
ality transformation. In our specific case this is achieved
by D−1

Z2
. As in Section IVA, we denote the transformed

spins by τα
ℓ ; the reader can think of the τ representation

as of a shortcut for operators that could be semilocal in
the σ representation (the system has not changed). We
then have — see Eq. (4.7) —

ρ(τ)(β) =
e−βH(τ)

Zβ
, (4.13)

with H(τ) = −
∑

ℓ τ
z
ℓτ

z
ℓ+1 + δhτx

ℓ , which is even under
Px
τ . The limits β → ±∞ now exhibit a completely differ-

ent phenomenology that uncovers the role of •. Specifi-
cally, cluster decomposition requires spin-flip symmetry
Px
τ to be spontaneously broken [58, 96] and, for δh→ 0,

we find

lim
β→∞

tr[ρ(β)O]=

{
⟨⇑|O |⇑⟩τ
⟨⇓|O |⇓⟩τ

∀O∈A(τ)
ql . (4.14)

(Note that, in the limit β → −∞, the state breaks also
one-site shift invariance and becomes Néel or anti-Néel.)
Semilocal operators, which have vanishing expectation
value at any finite temperature (they are odd under Px

τ

while the state is even), acquire a nonzero expectation
value at zero temperature due to spontaneous hidden
symmetry breaking.
We are now in a position to quantify •. We show, in

particular, that the ambiguity hidden behind • is just
a global sign. To that aim, let us consider a triplet of

semilocal operators O(nj)(xj) (j ∈ {1, 2, 3}) representing
local observables at arbitrarily large distances |x2 − x1|,
|x3 − x2| and |x3 − x1|. Using clustering we have

⟨O(n2)(x2)⟩ = s(n2)(x2)

× lim
|xj−xk|→∞

√
⟨O(n2)(x2)O

(n3)(x3)⟩⟨O(n1)(x1)O
(n2)(x2)⟩

⟨O(n1)(x1)O(n3)(x3)⟩
,

(4.15)



16

which tells us that we can determine the expectation

value of O(n2)(x2) up to a sign s(n2)(x2) from the ex-

pectation values of local operators (O(nj)(xj)O
(nk)(xk)

are indeed local).
Let us now consider whatever semilocal oper-

ator O(n)(x) with |x − x2| → ∞. Using
again clustering we immediately obtain s(n)(x) =

s(n2)(x2)sgn(⟨O(n)(x)O(n2)(x2)⟩), and hence a single
global sign s(n2)(x2) fixes the expectation value of ev-
ery semilocal operator. We can choose, for example,
s(n2)(x2) to be the sign of the expectation value of the
fundamental semilocal operator Tz

σ,+ [97]. We can then
indicate the state in the Z2-semilocal theory by

|⇑; sgn[⟨Tz
σ,+⟩]⟩σ,sl or |⇓; sgn[⟨Tz

σ,+⟩]⟩σ,sl . (4.16)

Note that the symmetry breaking states |⇑,±⟩σ,sl
and |⇓,±⟩σ,sl in the semilocal theory are stable under
symmetry-breaking perturbations, which can now also be
semilocal. This is the hidden symmetry breaking studied
in Refs. [56, 98, 99]. It is hidden because no local oper-
ator can distinguish between |⇑,+⟩σ,sl and |⇑,−⟩σ,sl (or
|⇓,+⟩σ,sl and |⇓,−⟩σ,sl).
More generally, a pure state that can be written as

|Ψ0⟩(σ) = V(1) |⇑; s⟩σ,sl or |Ψ0⟩(σ) = V(1) |⇓; s⟩σ,sl ,
i∂τV(τ) = W(τ)V(τ), V(0) = I ,

(4.17)
where s is the sign ambiguity and W(τ) an extensive
translationally invariant Hermitian operator with a Pz

σ-
invariant local density [100] can be described by the even
Z2-semilocal theory.

C. Semilocal (generalised) Gibbs ensembles

In equilibrium at zero temperature the interplay be-
tween the symmetries of the (ground) state and of the
Hamiltonian is sufficient to discriminate the symmetry-
protected topological phases [1]. After a global quench
that is not sufficient anymore: conserved operators con-
strain the dynamics as well as the Hamiltonian, therefore
it is reasonable to expect that also their group of sym-
metry becomes important.
We have already reviewed that not every conservation

law affects the late-time behaviour of local operators. In
generic systems it was shown that the discriminating cri-
terion is pseudolocality, which, in view of condition (∗) in
Section III B, is related to the fact that the operators we
are interested in form the algebra of quasilocal operators
Aql. In the presence of a symmetry of the system (i.e.,
initial state and Hamiltonian), such as the Z2 symmetry
taken as an example in this paper, only a subset of op-
erators is relevant: by symmetry the rest of them have
zero expectation values. In the Z2 case, the relevant op-
erators form the subalgebra A+

ql ⊂ Aql of the quasilocal
operators that are even under spin flip. We remark that

the full algebra Aql can be obtained as an extension of
the even subalgebra, generated by multiplying the latter
by a single element, which can be whatever invertible lo-
cal odd operator. Specifically, denoting the latter by O,
one has

Aql = A+
ql ⊕ (A+

qlO) . (4.18)

Because of the symmetry, however, this is not the only
extension giving rise to an algebra of operators that rep-
resent local observables. We have indeed shown that also
the semilocal operator Tz

+ represents a local observable
(which can be shifted by means of local operators to be-
come Πz

+(ℓ), for any ℓ — Eq. (4.3)), therefore we can

use it to extend A+
ql into another algebra associated with

local observables, say

A+
Z2-sl

= A+
ql ⊕ (A+

qlT
z
+) . (4.19)

This provides a means to specify the notion of a “semilo-
cal theory”, informally introduced in the previous sec-
tion, in a more abstract way: semilocal theories are asso-
ciated with different extensions of the symmetric subal-
gebra of quasilocal operators through operators that are
not local but still represent local observables. For exam-
ple, a semilocal theory built around the algebra A+

Z2-sl
is a mathematical framework within which we can de-
scribe relaxation of observables that are represented by
operators in the latter algebra.
We are now in a position to revisit the requisite of

pseudolocality (i.e. Eqs. (3.6), (3.8)) for the relevance of
a conservation law in the framework of semilocal theories.
To that aim, let us call Ti, with i = 1, . . . n, the operators
that, in a given semilocal theory, are added to the sym-
metric subalgebra A+

ql to form a representation of local
observables. Such an algebra is supposed to be closed
both under time evolution and under shifts of lattice
sites. Without loss of generality we can assume that Ti

commute with every local operator in the symmetric sub-
algebra A+

ql as long as the latter’s support is far enough
from position 0. A conservation law is then relevant if

its density around position 0 reads q
(0)
0 +

∑n
i=1 q

(i)
0 Ti,

with q
(i)
0 ∈ A+

ql being even (strongly) quasilocal oper-
ators. We will refer to it as a “semilocal conservation
law”, to distinguish it from the more common local con-
servation laws.
If there are several semilocal theories, it could not be

obvious which theories include all the relevant conserva-
tion laws. One then has to extend the entire algebra of
quasilocal operators by adding all the semilocal opera-
tors that generate the various semilocal theories. In the
Z2 case this corresponds to considering the algebra

AZ2-sl = Aql ⊕ (AqlT
z
+) , (4.20)

which we have already encountered when we defined the
rotated Kramers-Wannier transformation (4.5).
We conjecture that in the theory built around such an

extended algebra of observables there exists a maximum-
entropy representation of the macrostate emerging at in-
finite time after the global quench. To set it apart from
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the more common examples of generalised Gibbs ensem-
bles, constituting only quasilocal conservation laws, we
will refer to it as G-semilocal (generalised) Gibbs ensem-
ble, where G is the symmetry used to extend the algebra
(e.g., G = Z2 in most cases considered here). Extending
the algebra allows us to recover a simple description of
the late-time stationary values.

There is however an inconvenience: in the extended
theory there are operators that do not represent local
observables. In fact, except for the operators in the sub-
algebra that is common to all theories, there is no unam-
biguous way to associate local observables to operators.
For example, in the Z2 case, both Aql and A+

Z2-sl
, which

are subalgebras of AZ2-sl, are generated by operators rep-
resenting local observables, but the operators do not co-
incide. While the even local operators form a common
subset A+

ql of both algebras (see Fig. 10) and thus enter
the description of the local observables in both theories,
it is less clear how to choose between the even semilocal
or odd local operators (A+

qlT
z
+ or A+

qlσ
x
0 , respectively).

We will expand on this in Section IVC3. Before that,
we provide an explicit example of a model with semilocal
conservation laws.

quasilocal ·Tz
+

even

odd

Aql

A+
Z2-sl

AZ2-sl

A+
ql A+

qlT
z
+

A+
qlσ

x
0 (A+

qlσ
x
0)T

z
+

FIG. 10. Representation of local observables in a Z2-
symmetric system. Quasilocal operators (left column, red
line) can be extended to semilocal ones through multiplica-
tion by Tz

+. The full semilocal theory is built around the
notion of a semilocal algebra (black frame). The elements of
the latter can be projected either onto the quasilocal algebra
(red frame), consequently giving rise to a quasilocal theory,
or onto the even semilocal algebra (blue dashed frame), yield-
ing an even semilocal theory. Within both theories one can
describe the relaxation of local observables.

1. Example: Dual XY model revisited

Contrary to the transverse-field Ising model, the quan-
tum XY model

H(τ) =
∑
ℓ∈Z

Jxτ
x
ℓ τ

x
ℓ+1 + Jyτ

y
ℓτ

y
ℓ+1 (4.21)

is not self-dual under the Kramers-Wannier transforma-
tion. The duality transformation (4.5) maps its Hamil-
tonian into the one of the dual XY model

H(σ) =
∑
ℓ∈Z

σx
ℓ−1(JxI− Jyσz

ℓ )σ
x
ℓ+1 . (4.22)

We denote the corresponding local Hamiltonian densities

by h
(τ)
ℓ = Jxτ

x
ℓ τ

x
ℓ+1+Jyτ

y
ℓτ

y
ℓ+1, and h

(σ)
ℓ = σx

ℓ−1(JxI−
Jyσ

z
ℓ )σ

x
ℓ+1, respectively.

Under the duality transformation DZ2
, the spin-flip

symmetry Px
τ [h

(τ)
ℓ ] = h

(τ)
ℓ , for any ℓ, becomes the fol-

lowing invariance of the dual XY model’s local densities:

lim
n→∞

[σx
−nσ

x
n]h

(σ)
ℓ [σx

−nσ
x
n] = h

(σ)
ℓ , ∀ℓ. (4.23)

While this invariance holds trivially for (quasi)local den-
sities, the same is not true for the semilocal operators.
Considering, for example, half-infinite strings Πz

σ,+(ℓ),
we have

lim
n→∞

[σx
−nσ

x
n]Π

z
σ,+(ℓ)[σ

x
−nσ

x
n] = −Π

z
σ,+(ℓ), (4.24)

i.e., Πz
σ,+(ℓ) are odd under the operation that is dual

to Px
τ . Indeed, recall that DZ2

maps all operators that
are odd under Px

τ into semilocal operators, as described
in Table I. With this in mind, let us now consider the
charges of the XY model and its dual counterpart.

The quantum XY model is non-abelian integrable [85].
That is to say, the Hamiltonian commutes with infinitely
many pseudolocal operators, not necessarily commut-
ing with one another. Its translationally invariant local
charges are

Q(n,±;τ) =
∑
ℓ∈Z

q
(n,±;τ)
ℓ , (4.25)

where the local densities (including the Hamiltonian’s

one h
(τ)
ℓ ≡ q

(2,+;τ)
ℓ ) read (see, e.g., [101])
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q
(2,+;τ)
ℓ =Jxτ

x
ℓ τ

x
ℓ+1 + Jyτ

y
ℓτ

y
ℓ+1 , q

(3,+;τ)
ℓ = (Jxτ

x
ℓ τ

x
ℓ+2 + Jyτ

y
ℓτ

y
ℓ+2)τ

z
ℓ+1 − (Jx + Jy)τ

z
ℓ+1 ,

q
(n,+;τ)
ℓ =(Jxτ

x
ℓ τ

x
ℓ+n−1 + Jyτ

y
ℓτ

y
ℓ+n−1)

n−2∏
j=1

τ z
ℓ+j + (Jxτ

y
ℓτ

y
ℓ+n−3 + Jyτ

x
ℓ τ

x
ℓ+n−3)

n−4∏
j=1

τ z
ℓ+j , for n > 3 ,

q
(n,−;τ)
ℓ =(τx

ℓ τ
y
ℓ+n−1−τ

y
ℓτ

x
ℓ+n−1)

n−2∏
j=1

τ z
ℓ+j , for n ≥ 2 .

(4.26)

For the product we use the standard convention with∏ℓ−1
j=ℓ τ

α
j = I. The upper indices n and ± denote, re-

spectively, the number of sites the charge’s local density
acts upon and the charge’s parity under spatial reflec-

tion. Note that the reflection-odd charges Q(n,−;τ) do
not depend on the coupling constants Jx and Jy.

Besides the abelian charges with densities (4.26) the
XY model possesses also local charges of a staggered

form
∑

ℓ(−1)ℓwℓ that do not commute withQ(n,±;τ) [85].
Since the expectation value of any staggered operator is
zero in a translationally invariant state, these additional
nonabelian charges are irrelevant for our discussion and
we will therefore not report their explicit form here.

Consider now the densities (4.26) after the duality
transformation. According to Table I the local densi-

ties {q(2n,+;τ)
ℓ ,q

(2n+1,−;τ)
ℓ }n∈N remain local even in the

σ representation, since they are even under Px
τ . Instead

{q(2n+1,+;τ)
ℓ ,q

(2n,−;τ)
ℓ }n∈N are odd under Px

τ and are
mapped into operators with half-infinite strings. Hence,

the set {Q(2n+1,+;τ),Q(2n,−;τ)}n∈N is mapped into a set
of semilocal charges in the dual XY model. For example,

the density of the charge Q(3,+;τ) becomes

q
(3,+;σ)
ℓ =[σx

ℓ−1(Jxσ
x
ℓσ

x
ℓ+1+Jyσ

y
ℓσ

y
ℓ+1)σ

x
ℓ+2−(Jx+Jy)I]

×Πz
σ,+(ℓ+ 1) . (4.27)

In the symmetric quench we considered in Section III C
this is a special charge: it is the only one with a nonzero
expectation value in the state |⇑⟩σ. This is because its

density is the only one among q
(n,±;σ)
ℓ containing a term

that consists solely of σz
j matrices.

While conservation laws such as (4.27) violate the
stronger condition of pseudolocality of operators (i.e.,
Eqs. (3.6), (3.8), and (∗)), showing that they in fact fall
under the weaker definition used in Ref. [37] would re-
quire a level of mathematical rigour that goes beyond
the present work.

2. Example: generic model revisited

Let us reconsider the generic model of Section III C
— cf. Eqs (2.4) and (3.20) — which is described by the

Hamiltonian

H =
∑
ℓ∈Z

σx
ℓ−1(1− σz

ℓ )σ
x
ℓ+1 + w1σ

z
ℓ +

∞∑
n=1

w2,nσ
z
ℓσ

z
ℓ+n .

(4.28)
As anticipated in Section II B, this Hamiltonian has a
semilocal conservation law, namely

Q =
∑
ℓ∈Z

Πz(ℓ) . (4.29)

The expectation value of this semilocal charge is defined
through clustering (i.e., using Eq. (2.3)), which yields

⟨Πz(j)⟩2t = cos2 φ for its density. The latter provides
a positive lower bound for the string order parameter
limn→∞ ⟨

∏n
j=−n σ

z
n⟩ at infinite time through Eq. (2.6).

According to Ref. [12], a thermal state can not exhibit
string order, therefore we can immediately conclude that,
for cosφ ̸= 0, the state at infinite time is not thermal.
This is consistent with the behaviour shown in Fig. 9.

3. Canonical and non-canonical descriptions

A priori we do not see any reason to choose one theory
of local observables over the other. If however we imagine
the theoretical system as an idealisation of an experiment
and the experimental apparatus as something that goes
beyond the system under investigation, a theory could be
somehow selected by how the apparatus was designed.
For example, in the Z2 case, if the experimental appa-
ratus is able to preserve spin-flip symmetry with high
accuracy, the even Z2 semilocal theory could become a
better framework where to study the effect of noise (even
under spin flip) or other blind spots of the experiment.
The question then becomes, how the G-semilocal (gener-
alised) Gibbs ensemble is represented within the chosen
theory. To answer it, the ensemble should be “projected”
in the following sense: in the series expansion of the en-
semble, only the terms belonging to the subalgebra asso-
ciated with the theory onto which we project should be
kept. Formally this would correspond to applying pro-
jectors onto the subalgebra term-by-term in the operator
series expansion of the ensemble. It is important to keep
in mind, however, that such projectors can not be ap-
plied to the full ensemble, since the latter does not really
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belong to an operator algebra. There are now two possi-
bilities:

1. the charges making up the G-semilocal (gener-
alised) Gibbs ensemble belong to the subalgebra
and are thus not affected by the projection. The
ensemble coincides with the maximum-entropy en-
semble in the theory and we call such theories
“canonical”;

2. the G-semilocal (generalised) Gibbs ensemble in-
cludes also conserved operators outside the the-
ory and the associated subalgebra onto which we
project; the theory is termed “non-canonical”.

For example, a Z2-semilocal (generalised) Gibbs en-
semble ρ

Z2-sl constructed from an even local charge Q+
ql

and an even semilocal charge Q+
Z2-sl

can be written as

ρZ2-sl ∝ e
−Q+

ql−Q+
Z2-sl . (4.30)

It coincides with its projection onto the theory associ-
ated with the algebra A+

Z2-sl
, since the latter contains the

ensemble’s constituting charges. In the quasilocal the-
ory associated with Aql it instead takes a different form.
Specifically, only the first term in

ρ
Z2-sl∝e

−Q+
qlcoshQ+

Z2-sl
−e−Q+

ql sinhQ+
Z2-sl

(4.31)

survives the projection onto the quasilocal theory (the
second one consists of odd powers of Q

Z2-sl and thus con-
tains strings which do not belong to Aql). The projected

ensemble e−Q+
ql coshQ+

Z2-sl
does not maximize the von

Neumann entropy (3.2) constrained by the charges satis-
fying the pseudolocality conditions (3.6), (3.8), and (∗),
on the level of operators, making the theory non-
canonical [102].

Returning to the problem of defining and classifying
nonequilibrium phases after global quenches, the way lo-
cal observables are represented in a canonical theory con-
stitutes a fundamental distinction, which goes much be-
yond the differences associated with the multiplicity and
the symmetries of the conservation laws. It was observed
in Ref. [68] that the generalised eigenstate thermalisa-
tion hypothesis (gETH), according to which all eigen-
states with the same local integrals of motion are locally
equivalent, could be sufficient to prove that a maximum-
entropy ensemble description is possible (the criticism
raised in Ref. [103] is resolved once pseudolocal integrals
of motion are taken into account). In non-canonical the-
ories we claim that gETH fails. As a matter of fact,
the following much weaker assumption fails: in the limit
of infinite time the only information retained from the
initial state is encoded in the conserved operators satis-
fying the conditions for pseudolocality of operators, i.e.,
Eqs. (3.6), (3.8), and (∗).
We have already shown an example of the breakdown

of such a key property in the previous section, when we
tried to describe the infinite-time limit after a symmetric

quench in the dual XY model through the maximum-
entropy ensemble of a non-canonical theory, which in
the specific case was the generalised Gibbs ensemble con-
stituting only charges satisfying the stronger (operator-
level) definition of pseudolocality. That ensemble was
unable to describe even a local observable such as σz

ℓ —
Fig. 8. As expected, instead, the stationary values are
described by the Z2-semilocal generalised Gibbs ensem-
ble (4.30). In that specific case, the relaxation to the Z2-
semilocal GGE is a trivial consequence of the established
result that noninteracting systems relax to generalised
Gibbs ensembles. More generally, if a duality transfor-
mation between a canonical theory and the quasilocal
theory is known, proving relaxation to the (generalised)
Gibbs ensemble in the canonical theory becomes equiva-
lent to proving relaxation of non-symmetric states in the
standard quasilocal one.

Non-symmetric states. So far we have assumed
that the entire system (initial state and Hamiltonian)
is symmetric. On the other hand, we defined the semilo-
cal charges in an extended algebra, which includes also
non-symmetric operators. It is then natural to wonder
whether a semilocal charge could make sense also with
non-symmetric initial states. To that aim, we consider

again the state |Ψ⟩(σ) = | ⇒θ⟩σ and θ /∈ {0, π}. As dis-
cussed in Section IVB, we must be careful about the
interpretation of |Ψ⟩ when we extend the theory so as to
include also semilocal operators. It is again convenient
to map even semilocality into odd locality. Appendix D1
proves

|Ψ⟩(τ) = |βθ⟩τ :=

∑
s e

− βθ
2 E(s) |s⟩τ∑

s e
−βθE(s)

, (4.32)

where βθ = − log tan(θ/2), s = (. . . , s−1, s0, s1, . . .), with
sj ∈ {−1, 1} denoting the eigenvalues of the spin operator
τ z
j , and E(s) is the energy of the classical Ising model

E(s) = −
∑

j sjsj+1.

One can show that |β⟩τ has clustering properties for
any finite β, i.e., for θ /∈ {0, π} (see Appendix D2). Im-
portantly, despite the tilted state not being symmetric,
the corresponding state in the dual representation, i.e.,
|βθ⟩τ , is even under Px

τ . More generally we can under-
stand this by interpreting |Ψ⟩ as the ground state of a
symmetric Hamiltonian in which the symmetry is spon-
taneously broken at zero temperature in the σ representa-
tion (a simple Hamiltonian with this symmetry-breaking
ground state is known [104]: the quantum XY model
in a transverse field, with density hℓ = Jxσ

x
ℓσ

x
ℓ+1 +

Jyσ
y
ℓσ

y
ℓ+1 − 2

√
JxJyσ

z
ℓ , with Jy/Jx = cos2 θ). It turns

out that the symmetry in the dual Hamiltonian remains
unbroken and the ground state is symmetric. This im-
plies that even semilocal operators have zero expectation
values in the original system, and hence the expecta-
tion values of all semilocal charges vanish in |Ψ⟩. On
the one hand, this justifies taking into account semilo-
cal charges also with non-symmetric initial states; on the
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other hands, it shows their irrelevance (as the correspond-
ing integrals of motion vanish).

As a matter of fact, the naive approach of interpreting
half-infinite strings as infinite products of Pauli matri-
ces gives, in this case, the correct result: since | ⇒θ⟩ is a
product state, for θ /∈ {0, π} one has | ⟨ ⇒θ|σ

z
j | ⇒θ⟩ | < 1

for all j, so the strings are exponentially suppressed.
The two approaches give the same result because the
sequence of the expectation values of {O0Π

n
ℓ=0σ

z
ℓ} con-

verges (to zero) as n → ∞ for any operator O0 quasilo-
calised around 0. This actually allows one to go even
further and conclude that also the expectation values of
odd semilocal operators vanish.

4. Remark

We conclude with a clarification. So far we have pre-
sented (3.17) as a Hamiltonian with a Z2 symmetry, but,
in fact, it exhibits a Z2 × Z2 symmetry. Indeed, the en-
ergy density is also even under

Pz
e [hj ] = lim

n→∞

[ n∏
ℓ=−n

σz
2ℓ

]
hj

[ n∏
ℓ=−n

σz
2ℓ

]
. (4.33)

The same comment applies to the symmetric initial state
studied in the example of Section III C, namely, |⇑⟩. The
extended algebra is now obtained by supplementing the
local operators that are even under both spin flips by two
(commuting) semilocal operators Tz

2,0 and Tz
2,1, which

play the role of products of Pauli matrices σz over even
or odd sites, respectively, extending from site 0 or 1 to
infinity (see Appendix B for a proper definition).

Let A+•
ql , A•+

ql , A±±
ql , A++

ql be the subalgebras of
quasilocal operators even under Pz

e , Pz
o := Pz

e ◦ Pz,
Pz(= Pz

e ◦ Pz
o ), both Pz and Pz

e , respectively (A±±
ql was

previously denoted by A+
ql, since only the symmetry Pz

was relevant). We identify five subalgebras generated by
operators representing local observables:

Aql: this is the standard algebra of quasilocal operators,
given by A±±

ql ⊕(A
±±
ql O), with O an invertible local

odd operator;

A+•
Z2-sl

: this is the Z2-semilocal algebra even under spin

flip on even sites, and it is given by A+•
ql ⊕

(A+•
ql T

z
2,0);

A•+
Z2-sl

: this is the Z2-semilocal algebra even under spin

flip on odd sites, and it is given by A•+
ql ⊕(A

•+
ql T

z
2,1);

A±±
Z2-sl

: this is the Z2-semilocal algebra even under spin

flip, and it is given by A±±
ql ⊕ (A±±

ql Tz
2,0T

z
2,1);

A++
Z2×Z2-sl

: this is the Z2×Z2-semilocal algebra even both
under spin flip on odd sites and under spin flip on
even sites, and it is given by A++

ql ⊕ (A++
ql Tz

2,0) ⊕
(A++

ql Tz
2,1)⊕ (A++

ql Tz
2,0T

z
2,1).

It turns out that the Z2 × Z2-semilocal generalised
Gibbs ensemble emerging after a quench from |⇑⟩ belongs
to the intersection of A±±

Z2-sl
and A++

Z2×Z2-sl
[105]. The lat-

ter two algebras represent therefore canonical theories.
On the other hand, Aql, A

+•
Z2-sl

, and A•+
Z2-sl

are associated
with non-canonical theories. There, the stationary state
capturing the infinite time expectation values is not a
maximum-entropy statistical ensemble. Once projected
onto the quasilocal theory (in the sense described in Sec-
tion IVC3), the Z2×Z2-semilocal generalised Gibbs en-
semble has the form coshQ+

Z2-sl
, specific to the initial

state considered, i.e., |⇑⟩. Since it is even both under Pz
e

and Pz
o , the Z2 × Z2-semilocal generalised Gibbs ensem-

ble belongs to the intersection of the theories associated
with the algebras Aql, A

+•
Z2-sl

, and A•+
Z2-sl

: the three theo-
ries share the same projected ensemble. This makes the
algebraic structure associated with the Z2 × Z2 symme-
try of the dual XY model redundant, and the reader can
now understand why we have completely overlooked this
larger symmetry group when describing the model and
its conservation laws.

The remaining question is: can we realise that the state
does not locally relax to the maximum-entropy state
without comparing the predictions from the maximum-
entropy state? This is the subject of the next two sec-
tions.

V. SIGNATURES OF SEMILOCAL ORDER

A way to assess whether a theory is canonical or not
is by perturbing the initial state with an operator that
represents a local observable but does not belong to the
common subalgebra. Specifically, we consider a unitary
transformation with finite support connecting different
symmetry sectors, such as σx

r in the spin-flip case [31].
Such perturbations are semilocal in the eyes of charges
belonging to a different theory, which will therefore be
affected in a nonlocal way. If the quasilocal theory is not
canonical, we find it reasonable to expect signatures of
such a nonlocality in the entanglement of subsystems.

Being the first investigation of this kind in nonequilib-
rium symmetry-protected topological order phases, we
focus on the entanglement entropies of connected blocks
of spins A, which in the rest of the paper will be identified
with the following set of sites

A ≡ {1, . . . , ℓ} . (5.1)

To that aim, we need to construct reduced density ma-
trices of finite subsystems. Reduced density matrices de-
scribe the expectation values of local observables repre-
sented by local operators with support in the subsys-
tem. In a spin-1/2 chain they can be expanded in an
orthogonal basis of Hermitian matrices OA (tr[OAO

′
A] =

δOA,O′
A
tr[IA]) representing local operators OA with sup-
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port in the subsystem A

ρA(Ψ) =
1

tr[IA]
∑
OA

⟨Ψ|OA|Ψ⟩OA , (5.2)

where OA is the operator that acts like OA in the sub-
system and like the identity elsewhere. Reduced density
matrices are therefore embedded in Aql: investigating re-
duced density matrices implicitly selects the quasilocal
theory of local observables. The Rényi entanglement en-
tropies are then defined as

Sα(ℓ,Ψ) ≡ 1

1− α
log tr[ραA(Ψ)] , (5.3)

which include the von Neumann entropy “S1”, also
known as entanglement entropy, as the limit α → 1+

(this limit makes sense because the support of the distri-
bution of eigenvalues of the density matrix is bounded,
and hence the Rènyi entropies with α = 2, 3, . . . charac-
terise the distribution completely [106]).

A. Reduced density matrices across different
theories of local observables

In a symmetric system ρA(Ψ) is embedded in the sub-
algebra common to all the theories of local observables,
which in the Z2 case is A+

ql (the sum in Eq. (5.2) can be
restricted to matrices associated with operators that are
even under spin flip). Thus, ρA(Ψ) is also represented in
the other theories of local observables, although, there,
its interpretation as a subsystem’s reduced density ma-
trix breaks down. The simplest way to understand the
representation of a reduced density matrix in a semilo-
cal theory is by mapping semilocal operators into local
operators through a duality transformation. This is dis-
cussed below, where we specify the action of the duality
transformation on the reduced density matrices and show
how to estimate the entanglement entropy in the semilo-
cal theory using the dual reduced density matrices.

1. Restricted duality transformation

We remind the reader that, when restricted to the even
quasilocal subalgebra, the duality transformation defined
in Eq. (4.5) maps local operators into local operators
(see Table I). This allows us to use the rotated Kramer-
Wannier duality transformation also in finite subsystems.
For a subsystem Ã of ℓ+ 1 sites

Ã = {1, . . . , ℓ+ 1} , (5.4)

we define D−1
Z2

(ℓ) as follows

I⊗(j−1) ⊗ σz ⊗ I⊗(ℓ+1−j) 7→I⊗(j−1) ⊗ (τz)⊗2 ⊗ I⊗(ℓ−j)

I⊗(j′−1) ⊗ (σx)⊗2 ⊗ I⊗(ℓ−j′) 7→I⊗j′ ⊗ τx ⊗ I⊗(ℓ−j′) ,
(5.5)

where j = 1, . . . ℓ and j′ = 1, . . . ℓ− 1. Note that we have
given up the bold notation because σα are not spin op-
erators in an infinite system but Pauli matrices spanning
the local 2-dimensional Hilbert space.
Since the matrices on the left hand side of Eq. (5.5)

generate all matrices representing even operators with
support in A — (5.1) (acting therefore as the identity
on site ℓ+ 1), it is convenient to consider an alternative
representation of Sα(ℓ,Ψ) (cf. Eq. (5.3)):

Sα(ℓ,Ψ) =
log tr[(ρA(Ψ)⊗ I

2 )
α]

1− α
− log 2 . (5.6)

Remark. Similarly to D−1
Z2

, also D−1
Z2

(ℓ) is an algebra
homomorphism, although it is defined only in a subspace
of the full matrix algebra associated with the subsystem.
Specifically, let us introduce the following:

A
(σ)
A : the full matrix algebra generated by the tensor

products of Pauli matrices ⊗j∈Aσ
αj

j , with αj =
0, x, y, z, in the subsystem consisting of the sites

j ∈ A (and analogously for A
(τ)

Ã
);

A
+(σ)
A : the restriction of A

(σ)
A to matrices commuting

with
⊗

j∈A σ
z
j , which we refer to as even;

A
+(τ)

Ã
: the restriction of A

(τ)

Ã
to matrices commuting with⊗

j∈Ã τ
x
j , which we refer to as even;

AB ⊗ IC : (with B ∩ C = ∅) the matrix subalgebra of
AB∪C consisting of the matrices in AB extended
with the identity in C, to act on sites j ∈ B ∪ C.

We recognise D−1
Z2

(ℓ), defined in Eq. (5.5), as the trace-
preserving isomorphism that acts like (4.1) in a restricted

space of matrices with support on Ã:

D−1
Z2

(ℓ) : A
+(σ)
A ⊗ Iℓ+1 → Ã

+(τ)

Ã
⊂ A

+(τ)

Ã
. (5.7)

Here the image Ã
+(τ)

Ã
, which is a subalgebra of A

+(τ)

Ã
, is

isomorphic to A
+(σ)
A despite consisting also of operators

whose range extends up to ℓ+ 1.
Since we are considering a mapping that spoils the no-

tion of a spatial subsystem, it is convenient to consider
a generalisation of reduced density matrices which, in-
stead of describing the expectation values of operators
with support in a given region, describes the expectation
values of operators that are represented by matrices be-
longing to a given algebra. Specifically, we introduce the
following notation

P̂A(Ψ) =
1

tr[IA]
∑
O∈A

⟨Ψ|O|Ψ⟩O , (5.8)

where IA is the identity in A and the sum is over
an orthogonal basis of Hermitian matrices, such that
tr[OO′] = δOO′tr[IA] (we have always in mind operators
written as tensor products of Pauli matrices).
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If the reduced density matrix ρA(Ψ) — (5.2) of the
subsystem is even, the matrix ρA(Ψ)⊗ I

2 , which appears

in Eq. (5.6), belongs to A
+(σ)
A ⊗ Iℓ+1,

ρA(Ψ)⊗ I
2
= P̂

A
+(σ)
A ⊗Iℓ+1

(Ψ) , (5.9)

and hence it is in the domain of D−1
Z2

(ℓ).

Since this mapping preserves the trace, D−1
Z2

(ℓ) does
not affect the value of functionals of ρA(Ψ) such as the
Rényi entropies (5.6). In light of Eq. (5.7), D−1

Z2
(ℓ) maps

ρ
(σ)
A (Ψ) ⊗ I

2 into the projection of ρ
(τ)
A (Ψ) on the subal-

gebra Ã
+(τ)

Ã

D−1
Z2

(ℓ) : ρ
(σ)
A (Ψ)⊗ I

2
7→ ρ

(τ)

Ã
(Ψ)
∣∣
Ã

+(τ)

Ã

. (5.10)

We will see in a moment how to carry out this projection.

2. Dual reduced density matrices

By construction, the operators O(σ) that have sup-
port in A and are represented by matrices O(σ) ⊗ I
in the domain of D−1

Z2
(ℓ) are mapped by the rotated

Kramers-Wannier duality transformation (4.5) into op-

erators Õ that have support in Ã and are represented by
Õ = D−1

Z2
(ℓ)[O(σ) ⊗ I]. The following equality holds for

them:

⟨Ψ|O|Ψ⟩(σ) = ⟨Ψ|Õ|Ψ⟩(τ) . (5.11)

Thus, the (extended) reduced density matrix ρ
(σ)
A (Ψ)⊗ I

2
is mapped into

ρ
(σ)
A (Ψ)⊗ I

2
7→ 2−ℓ−1

∑
O∈A

+(σ)
A

Õ=D−1
Z2

(ℓ)[O⊗I]

⟨Ψ| Õ |Ψ⟩(τ) Õ , (5.12)

which can be compactly written as

P̂
A

+(σ)
A ⊗Iℓ+1

7→ P̂
Ã

+(τ)

Ã

. (5.13)

While the right-hand side of Eq. (5.12) resembles

ρ
(τ)

Ã
(Ψ) := P̂

A
(τ)

Ã

= 2−ℓ−1
∑

Õ∈A
(τ)

Ã

⟨Ψ| Õ |Ψ⟩(τ) Õ , (5.14)

the sum in Eq. (5.12) does not cover the full matrix al-

gebra of the subsystem (Ã
+(τ)

Ã
is strictly contained in

A
(τ)

Ã
). In order to obtain Eq. (5.12) from ρ

(τ)

Ã
(Ψ) we

must therefore project out all the operators that are not
in the image of D−1

Z2
(ℓ). This can be done by identifying

the symmetries characterising Ã
+(τ)

Ã
:

1. Only operators even under spin flip Px
τ are repre-

sented in Ã
+(τ)

Ã
;

2. Operators Õ that are represented on the right hand
side of (5.12) commute both with τ z

1 and τ z
ℓ+1 —

see Eq. (5.5).

These Z2 symmetries can be enforced by averaging over
the corresponding (Hermitian) flip matrices Pi as follows

P̂
Ã

+(τ)

Ã

(Ψ)= ρ̄
(τ)

Ã
(Ψ):=

1∑
j1,2,3=0

P
j3
3 P

j2
2 P

j1
1 ρ

(τ)

Ã
(Ψ)P

j1
1 P

j2
2 P

j3
3

8 ,

P1 = (τx)⊗(ℓ+1), P2 = τz ⊗ I⊗ℓ, P3 = I⊗ℓ ⊗ τz
(5.15)

(see Fig. 11 for a graphical representation).

I⊗ I
τz ⊗ τz

I⊗ I
σz ⊗ I

τx ⊗ I
τy ⊗ I

τx ⊗ τx

τy ⊗ τy

τz ⊗ τx

τz ⊗ τy

τz ⊗ I
I⊗ τz

τx ⊗ τy

τy ⊗ τx

τx ⊗ τz

τy ⊗ τz

I⊗ τx

I⊗ τy

A
+(σ)
A ⊗ I

A
(τ)

ÃÃ
+(τ)

Ã

D−1
Z2

(ℓ)

FIG. 11. A graphical representation of the mapping (5.12)
when the subsystem A consists of a single site. Operators
P1,2,3 are colored and underlined. They anticommute with the
operators in the correspondingly colored circles: their effect
is to remove the undesired terms in the density matrix (5.14).

To sum up, we have started with enlarging the subsys-
tem by one site ρA(Ψ)→ ρA(Ψ)⊗ I

2 ; this has allowed us
to apply the duality transformation (5.5), which alters
the meaning of spatial interval. We have then found a
representation of ρA(Ψ)⊗ I

2 in terms of reduced density
matrices in the semilocal theory with the new notion of

spatial subsystem. The final object, ρ̄
(τ)

Ã
(Ψ) is an average

of density matrices selecting the part that is symmetric
under three spin-flip transformations. Finally, the entan-

glement entropies can be expressed in terms of ρ̄
(τ)

Ã
(Ψ)

by applying Eq. (5.6):

Sα(ℓ,Ψ) =
log tr[(ρ̄

(τ)

Ã
(Ψ))α]

1− α
− log 2 , (5.16)
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where log 2 cancels the effect of the spurious double de-
generacy introduced when the subsystem was enlarged.

Bounds on the entropies of the dual RDMs.
We show here that, up to O(1) corrections, the aver-

aged density matrix ρ̄
(τ)

Ã
(Ψ) can be replaced by ρ

(τ)

Ã
(Ψ)

in (5.16). Since no special property of the density ma-
trix and of the Z2 symmetry we average over is required,
we consider a generic density matrix ρ (Hermitian posi-
tive semidefinite operator of trace one) and the symmetry
generated by a Hermitian involution P ; Eq. (5.15) is just
a subsequent application of such an average.

We define the symmetric density matrix

ρ̄ =
ρ+ PρP

2
, (5.17)

and we call S̄α its Rényi entropies (Sα indicates instead
the entropies of ρ).
Since ρ̄ can be interpreted as the sum of two den-

sity matrices weighted with the probability distribution
{1/2, 1/2}, general properties of the von Neumann en-
tropy (see Ref. [107]) imply

S1 ≤ S̄1 ≤ S1 + log 2 (5.18)

For instance, the lower bound follows directly from the
concavity of the von Neumann entropy. We obtain an
analogous result for the Rényi entropies, which satisfy

Sα ≤ S̄α ≤ Sα +
α log 2

α− 1
; (5.19)

see Appendix E 1. Returning to Eq. (5.16), these bounds
imply

Sα(ℓ,Ψ) = S(τ)
α (ℓ+ 1,Ψ) +O(ℓ0) , (5.20)

where we have defined the entropy of the subsystem Ã in
the dual representation

S(τ)
α (ℓ+ 1,Ψ) =

log tr[(ρ
(τ)

Ã
(Ψ))α]

1− α
. (5.21)

B. Excess of entropy

The protocol. We consider a system invariant un-
der Pz and compare two quench protocols:

(I) nonequilibrium time evolution of a translationally
invariant state |Ψ(t)⟩ = e−iHt |Ψ(0)⟩;

(II) nonequilibrium time evolution of the same state as
in (I) perturbed by a local(ised) unitary operator
|Ψr(t)⟩ = e−iHtσx

r |Ψ(0)⟩.

The question is: do the Rényi entropies of subsystems
discriminate between the two protocols in the limit of

infinite time? Inspired by Refs. [39, 40], we define the
excess of entropy as

∆rSα(ℓ, t) = Sα(ℓ,Ψr(t))− Sα(ℓ,Ψ(t)) , (5.22)

where the subsystem of length ℓ is associated with the
sites {1, . . . , ℓ}, that is to say, the reduced density matrix
to be investigated reads

ρA(Ψ) =
1

2ℓ

∑
{α}ℓ

αj=0,x,y,z

⟨Ψ|
ℓ∏

j=1

σ
αj

j |Ψ⟩
ℓ⊗

j=1

σαj . (5.23)

Here Ψ can be either Ψr(t) or Ψ(t).
In Section IVC we have discussed the limit of infi-

nite time in the quench protocol (I), showing that, in
the quasilocal theory, the state locally relaxes to a pro-
jected Z2-semilocal generalised Gibbs ensemble. In order
to compute the excess of entropy, we should also take
the limit of infinite time in the protocol (II), which goes
however beyond our assumption of translational invari-
ance. Although a theory to describe the infinite-time
limit in inhomogeneous systems with semilocal charges
is still missing, this problem can be solved in the dual
representation, where the spin flip is mapped into a
topological excitation resulting in a domain-wall initial
state [31]. Specifically, if the initial state is |⇑⟩σ, it fol-
lows from the first equation of (4.7) that after flipping the
r-th spin the state in the dual representation becomes
|· · · ↓r−1↓r↑r+1↑r+2 · · ·⟩τ (or |· · · ↑r−1↑r↓r+1↓r+2 · · ·⟩τ ,
depending on how the symmetry is broken). The problem
then moves to identifying the stationary state describing
the limit of infinite time after a quench from a domain-
wall state in a canonical theory, which is a much more
studied situation [108–113]. The drawback is that we
need to express the observable under investigation in the
dual representation; for the Rényi entropies this corre-
sponds to using Eq. (5.16).

The main effect of the presence of semilocal charges
(namely, odd charges in the dual representation) is that
the stationary states emerging in the protocols (I) and
(II) are macroscopically different [114]. As far as we
can see, however, the two macrostates have generally the
same entropy per unit length, therefore the excess of en-
tropy is expected to be subextensive. In the examples
that we consider, the excess of entropy still grows with
ℓ, therefore we can also replace Eq. (5.16) by Eq. (5.20)
without affecting the asymptotic behaviour. This im-
portant simplification allows us to express the excess of
entropy in the dual representation as

lim
t→∞

∆rSα(ℓ, t) = S(τ)
α (ℓ,ρ

(τ)
NESS)− S

(τ)
α (ℓ,ρ(τ)

∞ ) +O(1) ,
(5.24)

where

ρ
(τ)
NESS = lim

B→∞
lim
t→∞

trB [e
−iH(τ)t(|⇓⇑⟩⟨⇓⇑|)τeiH

(τ)t]

ρ(τ)
∞ = lim

B→∞
lim
t→∞

trB [e
−iH(τ)t(|⇑⟩⟨⇑|)τeiH

(τ)t] .

(5.25)
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In order to gain some intuition about the behaviour
of the excess of entropy, we follow the suggestion of

Ref. [31] and consider the simplified case in which H(τ)

commutes with Sz (and hence |⇑⟩τ is an eigenstate). We
also assume that |⇑⟩τ could be interpreted as the vac-
uum of stable excitations, whose number is linear in Sz

(this characterises a class of integrable systems). In this

situation the nonequilibrium stationary state ρ
(τ)
NESS can

be interpreted as a Fermi sea or split Fermi seas [115],
which can be described by a conformal field theory (see
also Ref. [116]). Since in a conformal field theory the
Rényi entropies have a logarithmic dependence on the
subsystem’s length [117], we can expect the excess of
entropy to grow logarithmically in ℓ. Although not
a-priori evident (but somehow consistent with the ob-
servations of Ref. [31]), the log behaviour survives a
symmetry-preserving local unitary transformation of the
initial state, which transforms this protocol into a gen-
uine global quench. This will be derived in the next sec-
tion, in which we will investigate systems that are dual
to Z2-symmetric generalised XY models [118].

1. Example: Dual generalised XY model

In this section we work out the excess of entropy in a
generalisation of the dual XY model that preserves the
noninteracting structure and the existence of a family of
semilocal conservation laws. We do not focus only on
the dual XY model because, as will be clear later, the
dual XY model is rather special and one could read the
outcome of the investigation as an indication of a uni-
versality that instead is not present. In its most general
form the Hamiltonian reads

H =
∑

α∈{x,y}

∞∑
n=1

J (n)
α

∑
j∈Z

h
(α,n)
j , (5.26)

where the coupling constants J
(n)
α are assumed to ap-

proach zero in the limit n → ∞ exponentially fast in

n. The operators h
(α,n)
j are Hermitian and local, with

support including j and extending over n+ 1 sites; their
explicit form in the σ representation is not essential for
the discussion but we report it for the sake of complete-
ness:

h
(x,1)
j =σx

j−1σ
x
j+1 = τx

j τ
x
j+1

h
(y,1)
j =− σx

j−1σ
z
jσ

x
j+1 = τ y

jτ
y
j+1

h
(α,n)
j =σx

j−1σ
α
j


∏n+1

2 −α

l=1 σz
j+2(l−1)+ασ

α
j+n−1 n odd∏n

2−1

l=1 σz
j+2(l−1)+ασ

3−α
j+n−1 n even

σx
j+n = τα

j

n−1∏
l=1

τ z
l

{
τα
j+n n odd

τ 3−α
j+n n even

n > 1 ,

(5.27)

where α ∈ {x ≡ 1, y ≡ 2} and we abused the notation by using the letter or the number depending on what is
convenient in each case.

The dual XY model corresponds to J
(n)
α = δn1Jα. More

generally, the model with Hamiltonian (5.26) is the dual
of a generalised XY model (introduced by Suzuki in
Ref. [118]) with Px

τ [H] = H and Pz
τ [H] = H. In the

explicit examples, we will only consider the effect of hav-

ing also J
(2)
α and J

(4)
α different from zero (besides J

(1)
α ).

However, since it is not convenient to write the explicit
dependence on the coupling constants, we will still treat
the dual generalised XY model in (almost) full generality.

When written in the τ representation, the Hamiltonian
has the form (3.12) with ax,yℓ = (Πj<ℓτ

z
j )τ

x,y
ℓ . As done

in Section III B 1, it is convenient to express the matri-
ces Hℓ,n characterising the Hamiltonian in terms of the

symbol H(p) as Hℓ,n =
∫

dk
2π e

i(ℓ−n)pH(p), where

H†(p) = H(p) = −HT (−p) . (5.28)

The symbol of H — (5.26) — has the additional property
of being a smooth matrix-valued function of p satisfying

H(p+ π) = σzH(p)σz . (5.29)

Under close scrutiny, we realise that this condition rep-
resents evenness under Px

τ , which is required in order for
the Hamiltonian density to remain (strongly) quasilocal
also in the σ representation. For the sake of simplicity,
we are going to restrict ourselves to reflection symmetric

systems (J
(2n)
x = J

(2n)
y ), whose symbol has the additional

property

(J (2n)
x = J (2n)

y ∀n) ⇒ tr[H(p)] = 0 . (5.30)

Incidentally, the dispersion relation of the quasiparti-
cle excitations, which can be identified with the positive
eigenvalues of the symbol, can be written as

ε(p) =

√
tr[H(p)2]

2
(5.31)

As mentioned in Section III B 1, the symbol of the
Hamiltonian generates the time evolution of the sym-
bol of the correlation matrix (3.14) and of the opera-
tors (in the Heisenberg representation) with a quadratic
fermionic representation.
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2. Free-fermion techniques for the entropies

Since H is noninteracting in the dual representation, if

the initial state |Ψ(0)⟩(τ) is Gaussian, Wick’s theorem im-
plies that every expectation value can be written in terms
of the correlation matrix Γt=0 capturing the expectation
values of quadratic operators. As long as the subsystem
is connected, this statement holds true even if both the
operators and the correlation matrix are restricted to the

subsystem. As a result, the density matrices ρ
(τ)

Ã
(Ψ(t))

and ρ
(τ)

Ã
(Ψr(t)) are Gaussian at any time, that is to say

ρ
(τ)

Ã
(Ψ) ∝ exp

(1
4

ℓ+1∑
m,n=1

a⃗TmWm,n(Ψ)⃗an

)
(5.32)

with a⃗m =
(
axm aym

)T
, ax,ym being the Majorana

(Jordan-Wigner) fermions defined in Ã = {1, . . . , ℓ+ 1}:

ax,ym = (τz)⊗(m−1) ⊗ τx,y ⊗ I(ℓ+1−m) . (5.33)

The Gaussian structure is very useful also to compute
the Rényi entropies, which can be expressed in terms of
the correlation matrix as [119, 120]

S(τ)
α (ℓ+1;Ψ) =

log det
[(

I+ΓÃ

2

)α
+
(

I−ΓÃ

2

)α]
2(1− α)

, (5.34)

where ΓÃ is the correlation matrix of |Ψ⟩ restricted to Ã.
Therefore, using the approximation (5.24), as ℓ→∞, the
unbounded part of the excess of entropy can be expressed

in terms of the correlation matrices of ρ
(τ)
NESS and ρ

(τ)
∞ .

They are reported in the following, together with the
correlation matrix of the initial state, Γ0(p), to which
they are related.

Correlation matrix of |Ψ(0)⟩(τ). In the numerical
investigations we have focussed on the initial state |⇑⟩τ ,
which is one of the two representations of |⇑⟩σ with the
hidden symmetry broken — see Section IVB. Its corre-
lations matrix has the symbol Γ0(p) = σy.

Correlation matrix of ρ
(τ)
∞ . We have already re-

viewed how to obtain the correlation matrix of ρ
(τ)
∞ after

a global quench — see Section III B 1. In our specific
case with reflection symmetry (and one-site shift invari-

ance), the symbol of the correlation matrix of ρ
(τ)
∞ can

be written as

Γ∞(p) =
tr[Γ0(p)H(p)]H(p)

2ε2(p)
, (5.35)

where we used that the only matrix commuting withH(p)
different from the identity (which is excluded because the
initial state is reflection symmetric and hence tr[Γ0(p)] =
0 — see also (5.30)) is proportional to H(p). From Γ∞(p)
we can then obtain ΓÃ;∞ by Fourier transforming Γ∞(p)

and restricting the indices to the subsystem Ã.

Correlation matrix of ρ
(τ)
NESS. We can not apply

the same technique for the correlation matrix of ρ
(τ)
NESS:

the time evolved domain wall |Ψr(t)⟩(τ) is not transla-
tionally invariant, so the symbol is not even defined. This
problem can be exactly solved by redefining the symbol
so as to incorporate the inhomogeneities of the Gaussian
state [108]. As generally expected in bipartitioning proto-

cols in integrable systems, however, |Ψr(t)⟩(τ) locally re-
laxes along rays at fixed ζ = (x−r)/t [108, 121]. It is then
easier (and asymptotically correct in the limit t → ∞)
to associate a translationally invariant macrostate with
each ray. Being translationally invariant, the macrostate
is characterised by a symbol as defined before. Finally, a
generalised hydrodynamic equation provides the connec-
tion between the macrostates at different rays [122, 123],
and one can easily extract the symbol associated with the
ray ζ = 0, which corresponds to the infinite time limit

that we indicated with ρ
(τ)
NESS. Specifically, Appendix E 2

shows

ΓNESS(p) = −sgn[v(p)]
tr[Γ0(p)H(p)]I

2ε(p)
, (5.36)

where v(p) = ε′(p) is the velocity of the quasiparticle
excitations.

We now have all the ingredients to work out Eq. (5.24)
and to obtain analytical asymptotic results for large ℓ.
In the next paragraph we show how, for α = 2, 3, . . ., one
can also obtain exact numerical results.

Exact numerical evaluation of the entropies. In
order to evaluate the Rényi entropies exactly, we use
Eq. (5.16), which is written in terms of the averaged den-

sity matrix ρ̄
(τ)

Ã
(Ψ) — (5.15). The method is explained

in details in Appendix E 4 and is based on the realisa-
tion that each term of the sum in Eq. (5.15) is Gaussian.
The Rényi entropies are expressed as traces of powers of

ρ̄
(τ)

Ã
(Ψ), which are linear combinations of Gaussians. The

trace of a product of Gaussians can be expressed as the
square root of a determinant of a 2(ℓ+1)× 2(ℓ+1) ma-
trix [124, 125] and can therefore be computed efficiently.
There is only a subtlety related to the sign ambiguity of
the square root. For a product of two Gaussians (which
appears in the expression for the second Rényi entropy)
the sign problem is resolved by using the property that
the trace of a product of two positive semidefinite Her-
mitian operators is non-negative [126]. For higher-order
Rényi entropies the sign is fixed in a less straightforward
way, as discussed in Ref. [124].

3. Results

Both with and without the local spin flip in the initial
state, the quench is global and the Rényi entropies grow
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FIG. 12. Time evolution of the excess of the second Rényi
entropy, generated in the XY model (3.9) and in the dual XY
model (3.17). For large times the excess in the XY model
reaches a zero value, while in the dual XY model its asymp-
totic value is nonzero. It is in agreement with the result ob-
tained via the method used also in Fig. 13 (here the latter
results are presented as dashed lines). The spin flip occurs in
the middle of the subsystem A (r = 5, |A| = 10).

FIG. 13. Exact results for the excess of the second Rényi en-
tropy after the quench, for different values of model’s param-
eters. The excess grows logarithmically with the subsystem
size (the x-axis is in log scale). The analytical results for the
coefficients bα (i.e., the slopes), given by Eq. (5.39), are in
agreement with the numerical data and indicated in the plot.

linearly in time until they saturate to an extensive value.
In noninteracting models this was established in Refs. [66,
108, 127]; it was later generalised to interacting integrable
models in Refs. [128–130]. Less is known in regards to
the subleading behaviour.

For the quench from the initial state |⇑⟩τ we find

lim
t→∞

S(τ)
α (ℓ+ 1;Ψ(t)) = aαℓ+O(1) , (5.37)

with positive constants aα, whose values can be deter-
mined analytically using the integral representation for
the entropies [119] and the Szegő-Widom theorem [131,
132]. Their values are reported in Appendix E 3.

For the quench from the domain-wall state (the dual
representation of the state σx

r |⇑⟩σ) we instead find a sub-
leading term that is logarithmic in ℓ:

lim
t→∞

S(τ)
α (ℓ; Ψr(t)) = aαℓ+ bα log ℓ+O(1), (5.38)

with positive constants bα. This result is obtained using
the asymptotic formula for the determinant of a block
Toeplitz matrix with piecewise-continuous symbols, con-
jectured and checked numerically in Refs. [133, 134]. The
values of bα are related to the discontinuities of the sym-
bol (5.36), which coincide with the zeroes of the velocity
v(p) of the quasiparticle excitations. For instance, for
α = 2 we have

b2 =
2

π2

∑
p∈(−π,π]: v(p)=0

Arg2
(
1 + i

tr[Γ(p; 0)H(p)]
2ε(p)

)
,

(5.39)
where Arg denotes (the principal value of) the argument,
and the sum is over the zeroes of v(p). For general α the
expression can be found in Appendix E 3.

In the symmetric generalised XY model there are al-
ways zeroes of v(p) at the momenta p = −π/2, 0, π/2, π,
and additional ones can appear depending on the cou-

pling constants J
(n)
α . In the special case of the XY model

these four zeros are the only ones and we find

b(XY)
α =

1

6

(
1 +

1

α

)
. (5.40)

For more general coupling constants J
(n)
α this expression

is only a lower bound, i.e., bα ≥ b(XY)
α .

From Eqs. (5.38) and (5.39) it follows that the ex-
cess (5.22) of Rényi entropies grows logarithmically
with ℓ:

lim
t→∞

∆rSα(ℓ, t) = bα log ℓ+O(1) . (5.41)

This prediction is compared against exact numerical data
for α = 2: Fig. 12 shows the time evolution of ∆rSα(ℓ, t),
while in Fig. 13 its dependence on ℓ is presented.

Finally, the von Neumann entropy is obtained by tak-
ing the limit α → 1+; in the dual XY model it is given

by b
(XY)
1 = 1/3.

In the next section we conclude our preliminary
study of the signatures of semilocal order after global
quenches by showing that the order melts down over
large time scales even when the initial state is not
symmetric.
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C. Melting of the order

Just as a continuous phase transition is characterised
by the behaviour of the system when the critical point
is approached, so is the symmetry protected topological
order when the symmetry is only approximate. We are
familiar with an example of this: in Fig. 5 we showed
that, after a quench from the tilted state | ⇒θ⟩, the time
scale on which local observables relax towards the pre-
dictions of the (generalised) Gibbs ensemble grows as θ
approaches 0. In the limit θ → 0 the relaxation time
diverges: the canonical form of a quasilocal ensemble,
valid for any finite θ, yields a wrong prediction when
θ = 0. At the symmetric point, instead, the correct pre-
diction is given by the Z2-semilocal ensemble, and the
corresponding relaxation time is again finite. This im-
plies that the limits t → ∞ and θ → 0 do not commute
(note that the existence of noncommuting limits is one
of the hallmarks of spontaneous symmetry breaking [58]
as well as of prethermalisation/prerelaxation behaviours
after global quenches [42–45]).

Signatures of semilocal order thus exist also in states
that weakly break the symmetry with which the order
is associated. In particular, we envisage the existence
of a scaling limit with t → ∞ and θ → 0, in which lo-
cal observables exhibit some form of prerelaxation. This
scaling limit is discussed in Section VC1.

Symmetric initial states exhibiting semilocal order can
be regarded as ground states of prequench Hamiltonians
H0 (see Section IVB). Since string order does not survive
nonzero temperatures [12], the prerelaxation behaviour
mentioned above is expected also for sufficiently low, but
nonzero temperatures. We will see in Section VC2 that
the melting of the order arising at small nonzero temper-
atures has essentially the same origin as the prerelaxation
occurring for small symmetry-breaking unitary perturba-
tions of the initial state.

1. Slow relaxation after weak symmetry breaking

Being interested in the time scales on which semilocal
order disappears after a weak symmetry breaking, we
consider an initial state prepared close to the symmetric
point, i.e., | ⇒θ⟩ for small θ > 0.

Since ⟨ ⇒θ|σ
y
ℓ | ⇒θ⟩ = 0 and ⟨ ⇒θ|σ

x
ℓ | ⇒θ⟩ = sin θ → 0

as θ → 0, the local operators to consider in order to ex-
plore the melting of the order consist solely of products of
σz. This includes, in particular, the strings

∏n−1
ℓ=0 σz

j+ℓ,
which, when evaluated in a particular state, can be re-
garded as truncations of a semilocal order parameter, cor-
responding to the limit n→∞. They satisfy

⟨ ⇒θ|
n−1∏
ℓ=0

σz
j+ℓ| ⇒θ⟩ = cosn θ . (5.42)

The inverse duality transformation (4.7) maps operators
composed solely of σz

j into operators consisting of an
even number of τ z

j . Specifically, the strings appearing
in Eq. (5.42) are mapped into τ z

jτ
z
j+n, which are the 4-

fermion operators −axj a
y
ja

x
j+na

y
j+n. To describe the ex-

pectation values of such operators we introduce an effec-
tive density matrix ρeff that is only asked to capture the
expectation value of 4-fermion operators O:

⟨ ⇒θ|O
(σ)(t)| ⇒θ⟩ = tr[ρeff(t)O] , (5.43)

where O(σ)(t) = eiH
(σ)tOe−iH(σ)t is the time evolution

of O in the Heisenberg picture, and H(σ) is the dual XY
model’s Hamiltonian, given in Eq. (3.17).

For each t we can expand O(σ)(t) in the operator basis

{eα} as O(σ)(t) =
∑

α(tr[O(t)eα]/trI) eα, where eα can
be chosen, for example, to be strings of Pauli matrices of
various lengths. The time evolution preserves the num-

ber of fermions, so the expansion of O(σ)(t) retains only
the basis elements eα corresponding to 4-fermion opera-
tors. Moreover, since in Eq. (5.43) we project onto the
tilted initial state, we can keep only the basis elements
for which ⟨ ⇒θ|eα| ⇒θ⟩ ≠ 0. The latter again correspond
to strings of σz

j , whence we obtain

⟨ ⇒θ|O
(σ)(t)| ⇒θ⟩ =

∑
j∈Z

∑
n≥1

⟨ ⇒θ|
n−1∏
ℓ=0

σz
j+ℓ| ⇒θ⟩

×
tr[O(τ)(t)τ z

jτ
z
j+n]

trI
.

(5.44)

The effective density matrix for small θ is thus [135]

ρeff(t) ∼ e−iH(τ)t
[ 1

trI

∑
j∈Z

∑
n≥1

e−nθ2/2τ z
jτ

z
j+n

]
eiH

(τ)t ,

(5.45)

where we used Eq. (5.42) with its right-hand side rewrit-

ten, for small θ, as cosn θ = e−nθ2/2[1 +O(θ4)].
The right-hand side of Eq. (5.45) is in τ representa-

tion: H(τ) corresponds to an XY Hamiltonian (3.9), so
the standard free-fermionic techniques apply for calcula-
tion of the expectation values — see Appendix F. For
example, the truncated string order parameter Zn =
⟨
∏n−1

ℓ=0 σz
j+ℓ⟩, which, in the fermionic language, corre-

sponds to −⟨ax1a
y
1a

x
n+1a

y
n+1⟩, can be efficiently computed

by invoking Wick’s theorem: the full expression derived
in the scaling limit t → ∞, θ → 0, at fixed finite
0 < θ2t <∞ for any n ≥ 1 is reported in Appendix F. It
can be simplified in the limit n→∞, where it becomes



28

Z∞=
1

2

∫
d2k

(2π)2
(e−|v(k1)−v(k2)| θ

2t
2 +e−|v(k1)+v(k2)| θ

2t
2 )

(Jx+Jy)
4 cos2 k1 cos

2 k2
[J2

x+J
2
y+2JxJy cos(2k1)][J2

x+J
2
y+2JxJy cos(2k2)]

. (5.46)

FIG. 14. Magnetisation ⟨σz
ℓ ⟩ versus θ2t; the data (iTEBD)

are consistent with the scaling prediction derived in Ap-
pendix F. In the limit θ → 0 the scaling prediction yields
⟨σz

ℓ ⟩ ≈ 0.5626, which is also the GGE prediction for the ex-
pectation value of ⟨σz

ℓσ
z
ℓ+1⟩ in the XY model prepared in the

initial state |⇑⟩ — see Fig. 7. The magnetisation in the GGE
with the standard pseudolocal charges of the dual XY model
is instead zero. The inset is in logarithmic scale.

From this expression one can read off the time scale ξ on
which the order melts: ξ ∼ θ−2. In fact this time scale is
inherent to the behaviour of the effective density matrix
ρeff (see Appendix F) and is therefore exhibited also by
the time evolution of Zn for finite n. Fig. 14 corroborates
it numerically for n = 1, i.e., in the case of Z1 = ⟨σz

ℓ ⟩.

We warn the reader that setting θ2t = 0 in Eq. (5.46)
does not correspond to the expectation value of the string
order parameter at the initial time, it is rather the start-
ing value from which the prerelaxation behaviour ensues.
This is because the derivation is based on asymptotics for
large t > 0 and small θ > 0. Despite this, setting θ2t = 0
in Eq. (5.46) correctly reproduces the large time value of
the string order parameter for θ = 0.

2. Melting at low finite temperatures

The simplest example of a finite-temperature initial
state reads

ρ(0) =
eβ

∑
ℓ σ

z
ℓ

tr[eβ
∑

ℓ σ
z
ℓ ]
. (5.47)

In the limit β → ∞ this thermal state reproduces the
symmetric state with semilocal order, as considered in
Section IVB. For any finite β ρ(0) contains only terms
composed of products of σz

j . Hence, focusing again only
on 4-fermion operators, the only relevant operator with
a nonzero expectation value is again axℓ a

y
ℓa

x
ℓ+na

y
ℓ+n, i.e.,

a fermionic representation of a string of Pauli matrices
σz

j . This time its expectation value reads

−⟨axℓ a
y
ℓa

x
ℓ+na

y
ℓ+n⟩ = tanhn β . (5.48)

For large β and small θ, this is equivalent to setting the
rotation angle in the tilted initial state | ⇒θ⟩ to be

θβ ≈ 2e−β . (5.49)

Having established a connection with the tilted initial
state, we can retrace the steps in the previous section and
observe that the nontrivial scaling limit is now t → ∞,
β →∞, at fixed finite 4e−2βt. The time scale ξ on which
the order melts at a low, but finite temperature, after
the system has been prepared in the state ρ(0), is thus
ξ ∼ θ−2

β = (eβ/2)2.
Finally, we observe a similarity with the findings of

Ref. [44], in which an analogous scaling behaviour was
observed at low temperature in a phase in which a sym-
metry is spontaneously broken at zero temperature. The
reader can understand this connection as a manifestation
of the duality between the quasilocal theory and the even
Z2-semilocal theory, the latter being characterised by a
spontaneous symmetry breaking at zero temperature —
cf. (4.7).

VI. DISCUSSION

We have shown that symmetry-protected topological
phases of matter can emerge also at infinite times after
quenches of global Hamiltonian parameters in isolated
many-body quantum systems. We have traced this phe-
nomenon back to the existence of conserved operators
(semilocal charges) that do not belong to the natural the-
ory in which local observables are represented by local op-
erators and their quasilocal completion. From that per-
spective, the topological character of the system is mani-
fest: different theories of local observables are associated
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with different concepts of locality for the operators; be-
ing outside the quasilocal theory, semilocal charges can
keep memory of information that is not contained in the
bulk of the system.

We aimed at reconciling the observation that semilo-
cal charges affect the stationary values of local operators
with the established belief that the those values are solely
determined by the local conserved quantities. This has
led us to consider statistical ensembles sensitive to string
(semilocal) order, which we called semilocal (generalised)
Gibbs ensembles, in order to distinguish them from the
usual (generalised) Gibbs ensembles that have been con-
sidered in the literature so far, and which consist of only
quasilocal conserved operators.

Finally, we have reported signatures of semilocal order
in the entropies of subsystems and in the time evolution
of systems that are not exactly symmetric. In particular,
we have found that a perturbation with a finite support
affects the entanglement entropies of subsystems with an
exceptional leading correction scaling as the logarithm of
the subsystem’s length.

Semilocal charges act as pseudolocal ones in a re-
stricted space. We have nevertheless opted for keeping a
distinction in the name itself for essentially two reasons:

– Contrary to the conventional pseudolocal conser-
vation laws, the expectation value of a semilocal
charge is only partially accessible even knowing the
expectation value of every local operator. For ex-
ample, we have seen in Section IVB that in the
Z2 case the expectation value of a semilocal charge
can be determined only up to an overall sign that
depends on how the hidden symmetry is broken.

– The expectation values of pseudolocal charges that
we are used to encounter from previous works in the
literature can be zero by symmetry; the expectation
value of a semilocal charge is zero in the absence of
symmetry.

Open problems

– The description we have proposed relies on trans-
lational invariance. If we break it, the state can
be globally non-symmetric still exhibiting the lo-
cal symmetries characterising semilocal order, in
the sense that the two-point functions of semilocal
operators could approach nonzero values at inter-
mediate distances. In addition, since the expec-
tation values of semilocal charges are also affected
by local inhomogeneities, the latter could look rel-
evant despite the Lieb-Robinson bounds ruling out
their importance at space-like distances. A the-
ory that could capture time evolution of inhomoge-
neous states goes beyond the purposes of this work
and will be addressed in separate investigations.

– We define the G-semilocal (generalised) Gibbs en-
semble in an extended theory that includes opera-

tors that do not represent local observables. Hav-
ing realised the existence of an ambiguity in what
should be called “local observable” in the extended
theory, we propose to “project” the ensemble back
onto a theory of local observables. Taking into ac-
count that similar situations seem to occur in quan-
tum field theories, where fields that are semilocal
with respect to each other are part of the theory, we
wonder whether such a projection is really required.
Perhaps a more rigorous treatment along the lines
of the algebraic formulation of local quantum the-
ories [46, 136] could clarify this issue. Incidentally,
we wonder whether the finding of Ref. [137] could
be connected with the picture presented here.

– We show that, in the presence of semilocal order,
the excess of entropy triggered by a local pertur-
bation of the initial state develops a logarithmic
dependence on the subsystem’s length. We ex-
pect that even the entanglement properties of the
symmetric translationally invariant system (with-
out any perturbation) should exhibit exceptional
properties, but, at the moment, this is still an open
question.

– Macroscopic effects triggered by a local pertur-
bation had been observed before in the case
of symmetry-breaking perturbations of ground
states [138, 139], and excited states in a jammed
sector [62, 140]. Whether they are just a different
facet of the same phenomenon as described herein,
and characterized by the logarithmic scaling of the
excess entropy, remains unclear.

– Despite our description applying to more general
situations, the explicit examples that we consider
are not interacting. This choice has a twofold
motivation: on the one hand, we aim at pro-
viding the cleanest examples exhibiting the ex-
otic phenomenology of semilocal order after global
quenches; on the other hand, interactions could in-
troduce complications that need clues from simpler
models in order to be solved. Whether the interplay
between interactions and semilocality could enable
additional phenomena is an open problem.

– We discuss semilocal order both in generic and in
integrable systems. Extending the theory to non-
abelian integrable structures remains an intriguing
development, in which semilocal dynamical sym-
metries could play an important role [141].
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Appendix A: Convergence of the iTEBD data

Here we estimate the times t up to which the results
of the iTEBD time evolution in Fig. 5 are virtually in-
distinguishable from those of the exact calculation. By
“virtually indistinguishable” we mean, that the differ-
ence between the numerically computed and the exact
expectation value ⟨σz

ℓ ⟩ at any particular time should be
smaller than some accuracy, which we choose to be 0.01
in Fig. 5.

We compare the data from calculations with maximum
bond dimensions that are increasing exponentially up to
the largest one, Mmax = 1000 (bond dimension is ex-
pected to increase exponentially with t). The results of
the calculation with Mmax = 1000 are assumed to match
the exact time evolution longer than those at smaller
Mmax, which is why we take them as a reference. Fig. 15
shows the differences ⟨σz

ℓ ⟩1000−⟨σ
z
ℓ ⟩Mmax

, where the sub-
script denotes the maximum bond dimension in the cal-
culation. From the times at which these differences be-
come virtually discernible (i.e., larger than 0.01), we es-
timate that the calculations with Mmax = 1000 can be
trusted up to times t ∼ 4.5.

○○ ○○ ○○ ○○

FIG. 15. Differences between the results of the calculation
with Mmax = 1000 and smaller maximum bond dimensions.
Red circles denote when the differences become noticeable:
the corresponding times grow linearly.

Appendix B: Z2 × Z2 duality

We report here what could be considered as a dou-
ble application of the rotated Kramers-Wannier duality
transformation. We denote it by DZ2×Z2

and it is an alge-
bra homomorphism mapping the algebra of observables
generated by {τ ,Tx

τ ;−2,0,T
x
τ ;−2,1} into the one generated

by {σ,Tz
σ;2,0,T

z
σ;2,1}. Here again σα

j and τα
j act like

Pauli matrices on site j and like the identity elsewhere.
The additional operators Tα

σ;2s,y are instead defined by
the following conditions

[Tα
σ;2s,y]

2 = I , Tα
σ;2s,1T

α
σ;2s,0 = Tα

σ;2s,0T
α
σ;2s,1 = Tα

σ;s ,

Tα
σ;2s,yOTα

σ;2s,y = lim
n→∞

[ n∏
ℓ=0

σα
s(2ℓ+y)

]
O
[ n∏
ℓ=0

σα
s(2ℓ+y)

]
(B1)

for all local operators O, extended then by linearity as
in the case of DZ2 , in such a way that O1 +O2T

α
σ;2s,0 +

O3T
α
σ;2s,1 +O4T

α
σ;s is transformed by the adjoint action

of Tα
σ;2s,y into an analogous operator in which the local

operators Oj are replaced by Tα
σ;2s,yOjT

α
σ;2s,y. Explic-

itly, the duality transformation DZ2×Z2
reads

Πx
τ,−2(j) =σx

j ,

τ y
j =σx

j−2σ
y
jΠ

z
σ,+2(j + 2) ,

τ z
j =Πz

σ,+2(j) ,

(B2)

where Πx
τ,−2(j) and Πz

σ,+2(j) are defined as Πα
σ,s(j) in

the sublattice of sites with the same parity of j. This
is obtained using Tα

σ;2s,j mod 2 instead of Tα
σ;s. In the

bulk the transformation can be expressed in the more
standard form

τx
j = σx

j−2σ
x
j τ z

jτ
z
j+2 = σz

j , (B3)

which corresponds to two independent rotated Kramers-
Wannier duality transformations on the sublattices con-
sisting of the sites labelled by numbers with the same
parity.
Finally, the inverse duality D−1

Z2×Z2
reads

σx
j =Πx

τ,−2(j) ,

σy
j =Πx

τ,−2(j − 2)τ y
jτ

z
j+2 ,

Πz
σ,+2(j) =τ z

j .

(B4)

Appendix C: Zero-temperature phases of the dual
XY model

Since the (rotated) Kramers-Wannier transformation
maps the Hamiltonian (3.17) of the dual XY model into
the Hamiltonian (3.9) of the XY model, we can immedi-
ately infer that the model is noncritical for |Jx| ≠ |Jy|
and critical for |Jx| = |Jy|.
For |Jy| < |Jx| it should thus be possible to connect

smoothly the ground state(s) of the model to the one(s)
at the classical point Jy = 0

H(Jx, 0) = Jx
∑
ℓ

σx
ℓ−1σ

x
ℓ+1 , (C1)

above which there is a finite energy gap to the first ex-
cited state(s) in the thermodynamic limit. It is easy to
see that this smooth connection selects a ground state of
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the classical point exhibiting magnetic order with trans-
lational invariance under a shift by one or several sites
in the bulk, the simplest being the ferromagnetic ground
state ⊗j |←⟩j for Jx < 0 (and the one related by the

spin flip symmetry). A symmetry breaking field [58] can
then select a ground state with a particular pattern of
the magnetic order and we are in the standard Landau
phase. Specifically and just for the sake of an example,
the symmetry breaking states of H(Jx, 0) with clustering
properties are mapped into the analogues with Jy ̸= 0
(and |Jy| < |Jx|) by the transformation e−iW, where W
is a dual generalised XY model — Section VB1 and Ap-
pendix E 2 — characterised by the symbol

W (p) = −1

2
arctan

2Jy tan p

Jx + Jy + (Jx − Jy) tan2 p
σz . (C2)

Concerning the dual XY model with |Jy| > |Jx|, there
exists a mapping into an operator, with strongly quasilo-
cal densities, that commutes with

H(0, Jy) = −Jy
∑
ℓ

σx
ℓ−1σ

z
ℓσ

x
ℓ+1 (C3)

and shares the same ground state of H(0, Jy). As dis-
cussed in Ref. [89], the latter Hamiltonian has the
ground state in a nontrivial Z2 × Z2 protected topologi-
cal phase, which therefore describes the entire parameter
space |Jy| > |Jx|.

Finally, we mention that, besides (hidden) symmetry
breaking, there could be other ambiguities in the zero
temperature limit. For example, for Jy > 0, imposing
periodic boundary conditions on a chain with an odd
number of sites frustrates the system, with consequences
on the properties of the state that survive the thermody-
namic limit [142–144].

Appendix D: Tilted initial state

This section discusses the mapping of the tilted initial
state into the τ representation (see Eq. (4.32)), the decay
of correlations in the state, and its clustering properties.

1. Dual representation

The mapping of the tilted initial state (3.10) is perhaps
most conveniently performed on a finite lattice of size L.
To this end we report the finite-system inverse duality
transformation

σx
j =Πx

τ,−(j) ,

σy
j =


τx
1τ

z
2 j = 1

Πx
τ,−(j − 1)τ y

jτ
z
j+1 1 < j < L

−τ z
L j = L ,

σz
j =

{
τ z
jτ

z
j+1 1 ≤ j < L

Πx
ττ

z
1τ

z
L j = L ,

(D1)

where

Πx
τ,−(j) = −τ

y
1

j∏
ℓ=2

τx
ℓ , Πx

τ =

L∏
ℓ=1

τx
ℓ . (D2)

The state

| ⇒θ⟩σ ≡
L⊗

j=1

(
cos θ

2

sin θ
2

)
, (D3)

is an eigenstate of all η
(σ)
j (θ) = cos θσz

j + sin θσx
j for

j = 1, . . . L, with eigenvalue 1. Applying the inverse
duality transformation on a finite system (D1), we have

η
(τ)
j (θ)=

{
cos θτ z

jτ
z
j+1+sin θΠx

τ,−(j) 1≤j<L
cos θΠx

ττ
z
1τ

z
L−i sin θΠ

x
ττ

z
1 j=L .

(D4)

In the basis of all τ z
j (their eigenvalues being denoted

by sj ∈ {−1, 1}) the tilted state reads

| ⇒θ⟩σ =
∑

s∈{−1,1}×L

c(s) |s⟩τ . (D5)

Applying the operator (D4) we now obtain relations

c(−s1, . . .−sj , sj+1, . . . sL)

c(s)
=

{
1−sjsj+1 cos θ

is1 sin θ 1≤j<L
s1sLe

−iθsL j=L ,

(D6)

which are solved by

c(s) =
1√
Z
ei

π
4 (s1−sL)+i θ

2 sLe−
β
2 E(s) . (D7)

Here E(s) = −
∑L−1

j=1 sjsj+1, β = − log tan(θ/2), and

Z =
∑

s∈{−1,1}×L

e−βE(s) . (D8)

We recognize that the squared absolute value |c(s)|2
yields the canonical ensemble probability distribution
for the one-dimensional classical Ising model with free
boundary conditions: β plays the role of an effective in-
verse temperature, while Z is the corresponding partition
function. In this regard a nonzero angle θ corresponds to
a nonzero temperature.
Finally, the partition function (D8) can be evaluated

using the transfer matrix formalism (see, e.g., Ref. [145]).
We define transfer matrix

T =
1 + σx

2
+

1− σx

2
cos θ (D9)

with elements Ts,s′ = (1/2)eβss
′
sin θ, s, s′ ∈ {−1, 1}, and

use it to rewrite the partition function:

Z =

(
2

sin θ

)L−1 ∑
s1,sL∈{−1,1}

[
TL−1

]
s1,sL

. (D10)

The powers of the transfer matrix are readily obtained,
i.e., Tn = (1 + σx)/2 + [(1− σx)/2] cosn θ, whence

Z = 2

(
2

sin θ

)L−1

. (D11)



32

2. Decay of correlations

Let us now consider the decay of correlations and clus-
tering properties in the tilted state. The transfer ma-
trix (D9) enables an efficient method for calculation of
local operators that act in the bulk of the spin chain, i.e.,
far from the boundaries, which will eventually be sent to
infinity as the thermodynamic limit is taken. The ex-
pectation value of a local operator O acting on the sites

j, . . . j + r − 1, where r ≥ 1 is its range, reads

⟨O⟩ = 1

Z

∑
s,s′

⟨s|O |s′⟩ e
β
2 [E(s)+E(s′)]. (D12)

We have used s1 = s′1 and sL = s′L to cancel the phases
coming from the coefficients (D7). This is possible since
spins in positions 1 and L are not affected by the action
of O:

⟨s|O |s′⟩ =
j−1∏
ℓ=1

δsℓ,s′ℓ

L∏
m=j+r

δsm,s′m

× ⟨sj , . . . sj+r−1|O |s′j , . . . s′j+r−1⟩ .

(D13)

In fact, this formula allows us to simplify Eq. (D12) even
further. Defining a 2× 2 matrix with elements

Osj−1,sj+r
=

(
sin θ

2

)r+1 ∑
sj ,...sj+r−1,s

′
j ,...s

′
j+r−1

⟨sj , . . . sj+r−1|O |s′j , . . . s′j+r−1⟩

× exp

{
β

[
sj−1(sj + s′j) + sj+r(sj+r−1 + s′j+r−1) +

j+r−2∑
ℓ=j

(sℓsℓ+1 + s′ℓs
′
ℓ+1)

]}
,

(D14)

we can rewrite the expectation value of O as

⟨O⟩ = 1

2

∑
s1,sL

[
T j−2OTL−j−r

]
s1,sL

. (D15)

Assuming θ /∈ {0, π}, the thermodynamic limit sup-
presses the powers of cos θ, originating in the second term
of Eq. (D9). We finally obtain

⟨O⟩= 1

2

∑
s1,sL

[
1 + σx

2
O
1 + σx

2

]
s1,sL

=
1

2

(
1 1

)
O

(
1

1

)
.

(D16)

Consider now two operators O1 and O2, acting on re-
gions that are separated for d sites. Using the same ar-
gument as above, the thermodynamic limit now yields

⟨O1O2⟩ =

[
1

2

(
1 1

)
O1

(
1

1

)][
1

2

(
1 1

)
O2

(
1

1

)]
+O(cosd θ) ,

(D17)

implying

⟨O1O2⟩ − ⟨O1⟩ ⟨O1⟩ = O(cosd θ) (D18)

for the connected 2-point correlation function. The ex-
ponential decay of the correlations between any distant
local operators in the τ -representation signifies cluster-
ing properties of the tilted state | ⇒θ⟩σ for even local and
even semilocal operators in the σ-representation.

Note that, for diagonal local operators O (which are
written solely in terms of {τ z

j}), Eq. (D12) becomes

⟨O⟩ =
∑

s ⟨s|O|s⟩ eβE(s)∑
s e

βE(s)
, (D19)

i.e., a thermal expectation value. In the infinite system
such operators include, for example, Πz

σ,+(j) (the lat-
ter is mapped into τ z

j by the inverse duality transfor-
mation (B4)). Eq. (D18) can then simply be seen as a
consequence of the absence of finite-temperature phase
transitions in the one-dimensional classical Ising model.

Appendix E: Excess of entropy

1. Bounds on Rényi entropies

Here we prove Eq. (5.19) by showing

2−αtr(ρα) ≤ tr(ρ̄α) ≤ tr(ρα). (E1)

Taking the logarithm and multiplying the inequalities by
1/(1− α) yields Eq. (5.19).
We prove both inequalities in Eq. (E1) using the in-

equality of Ault [146, 147], which says that, given arbi-
trary n× n complex matrices A1, A2, . . . , Am, one has

tr
(B +B†

2

)
≤ 1

m
tr
( m∑

j=1

(AjA
†
j)

m
2

)
(E2)
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for B = A1A2 · · ·Am.
To show the upper bound in (E1) we write

trρ̄α = tr
(ρρ̄α−1 + h.c.

2

)
, (E3)

which follows from the definition (5.17) of ρ̄, using the
cyclic property of the trace and the invariance of ρ̄ under
the Hermitian involution P . The inequality of Ault for
A1 = ρ, A2 = A3 = . . . = Aα = ρ̄ then yields

trρ̄α ≤ 1

α
[tr(ρα) + (α− 1)tr(ρ̄α)] . (E4)

Rearranging the terms proves the second inequality in
Eq. (E1).

To prove the lower bound in Eq. (E1) we introduce
projectors P± = (I ± P )/2 and write

ρ̄ = P+ρP+ + P−ρP−. (E5)

Note that the operators P+ρP+ and P−ρP− are Hermi-
tian and positive semidefinite. Since P+P− = 0 it follows

ρ̄α = (P+ρP+)
α
+ (P−ρP−)

α
. (E6)

Since tr [(ρPs)
α
] = tr [(PsρPs)

α
], we then see

0 ≤ tr [(ρPs)
α
] ≤ trρ̄α, s = ±1 . (E7)

On the other hand using P+ + P− = I we have

trρα =
∑

s1,...α=±1

tr (Ps1ρPs2ρ . . . Psαρ) , (E8)

which can be rewritten, using the cyclic property of the
trace, as

trρα=
∑

s1,...α=±1

tr

[(√
ρPs1
√
ρ
)
· · ·
(√
ρPsα
√
ρ
)
+h.c.

2

]
.

(E9)

Here,
√
ρ denotes the square root of the positive semidef-

inite operator ρ. Applying the inequality of Ault with
Aj =

√
ρPsj
√
ρ for j = 1, . . . α now yields

trρα ≤
∑

s1,...α=±1

1

α

α∑
j=1

tr
[(
ρPsj

)α]
. (E10)

Finally, using (E7) we obtain

trρα ≤ 2αtrρ̄α, (E11)

which proves the lower bound in Eq. (E1).

2. Correlation matrix after the quench

The purpose of this section is to derive Eq. (5.36). At
time t the correlation matrix symbols for the initial states
|⇑⟩τ and |⇓⟩τ read, respectively,

Γ(p) = ±e−iH(p)tσyeiH(p)t, (E12)

where H(p) = f0(p)I + f1(p)σ
x + f2(p)σ

y + f3(p)σ
z is

the symbol of the Hamiltonian. For the generalised XY
model functions fj(p), j ∈ {0, 1, 2, 3}, read

f0(p)=2

∞∑
k=1

(J (2k)
x −J (2k)

y ) sin(2kp) ,

f1(p)=2

∞∑
k=0

(J (2k+1)
x −J (2k+1)

y ) sin [(2k+1)p] ,

f2(p)=−2
∞∑
k=0

(J (2k+1)
x +J (2k+1)

y ) cos [(2k + 1)p] ,

f3(p)=−2
∞∑
k=1

(J (2k)
x +J (2k)

y ) sin(2kp) .

(E13)

Focusing on the reflection symmetric system, for which

J
(2k)
x = J

(2k)
y for all k, we have simplification f0(p) =

0. For t → ∞, due to dephasing, the symbol can be
effectively replaced by its time average, equal to

Γ(p) = ±f2(p)
ε2(p)

H(p) . (E14)

This yields Eq. (5.35).
In order to derive Eq. (5.36) it is now useful to deter-

mine from Eq. (E14) the so-called “root density” ϱ(p),
which encodes the distribution of the occupied momenta
in a particular state. It can be shown (see Ref. [108])
that for translationally invariant and reflection symmet-
ric free-fermionic models the symbol Γ(p) of the correla-
tion matrix is related to the root density ϱ(p) as follows:

V (p)Γ(p)V †(p) =

4πϱo(p)I+(4πϱe(p)−1)σy+4πψR(p)σ
z−4πψI(p)σ

x .

(E15)

Here, ϱo(p) and ϱe(p) are, respectively, the odd and the
even part of the root density, ψ(p) = ψR(p) + iψI(p) is
a field related to the off-diagonal elements of the density
matrix (this field can be neglected in the limit t → ∞),
while V (p) is a unitary transformation related to Bogoli-
ubov rotation. The action of the latter on the symbol of
the Hamiltonian reads

V (p)H(p)V (p)† = ε(p)σy . (E16)

In the limit t→∞ we thus simply have

Γ(p) = 4πϱo(p)I+ (4πϱe(p)− 1)
H(p)
ε(p)

, (E17)

so, comparing with Eq. (E14), we find

4πϱ(p)− 1 = ±f2(p)
ε(p)

, (E18)

where ϱ(p) = ϱe(p), since the state is reflection symmet-
ric.
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When the initial state is a domain wall
|· · · ↓↓↓r↑↑↑ · · ·⟩τ the system reaches stationarity
along rays ζ = x/t, where x is the distance from the
junction of the two domains [108, 121]. Along a given
ray, in the limit of infinite time, one can describe the
observables by an effective space-time dependent root
density ϱx,t(p) (or the correlation matrix symbol Γx,t(p))
through Eq. (E17), which holds asymptotically along
the ray. Specifically, the late-time dynamics is described
by the hydrodynamic equation [108, 122, 123]

∂tϱx,t(p) + v(p)∂xϱx,t(p) = 0 , (E19)

where v(p) = ε′(p) is the velocity of the excitations.
In this simple case (in which the velocity is state-
independent) the solution can be written as ϱx,t(p) =
F (x − v(p)t; p). At x > maxp v(p)t (x < minp v(p)t),
the information about the junction has not yet arrived,
therefore the problem is equivalent to replacing the initial
state by |⇑⟩τ (|⇓⟩τ ); this provides the boundary condi-
tions that fix the function F (x − v(p)t; p). Specifically,
we obtain

4πϱx,t(p)− 1 = sgn[x− v(p)t]f2(p)
ε(p)

. (E20)

Since we are interested in the limit of infinite time for a
finite subsystem at a given position, we can send t→∞
in Eq. (E20), whence

4π lim
t→∞

ϱx,t(p)− 1 = −sgn[v(p)]f2(p)
ε(p)

. (E21)

Finally, using Eq. (E17) we now find the correlation ma-
trix symbol for the subsystem A to be

Γζ=0(p) = −sgn[v(p)]
f2(p)

ε(p)
I. (E22)

3. Asymptotic results for Rényi entropies

This section reports the computation of the prefactors
aα and bα of the leading and subleading contributions to
the entropy (5.38). The Rényi entropy can be expressed
as an integral [119]

S(τ)
α (ℓ,Ψ)= lim

ε→0+

1

2πi

∮
Cε

Fα(z)
d

dz
log det [zI − Γ] dz ,

(E23)
where

Fα(z) =
1

2(1− α)
log

[(
1 + z

2

)α

+

(
1− z
2

)α]
,

(E24)
and the integration curve Cε encloses the interval [−1, 1]
on the real axis, at a distance ε from it. The informa-
tion about the state |Ψ(t)⟩ is encoded in the correlation
matrix Γ.

We note that zI−Γ is a block Toeplitz matrix. In gen-
eral, a block Toeplitz matrix Tℓ(M) with a 2× 2 matrix
symbolM(p) is defined by the elements

[Tℓ(M)]2j+m,2l+n =

∫ π

−π

M(p)eip(j−l) dp

2π
(E25)

for 0 ≤ j, l ≤ ℓ − 1, 0 ≤ m,n ≤ 1. For a piecewise
continuous symbol, such that detM(p) is nonzero, has a
zero winding number, and jump discontinuities at points
pr for r = 1, 2, . . . , R, we use the asymptotic formula for
large ℓ:

log detTℓ(M)

=

∫ π

−π

log detM(p)
dp

2π
+ log(ℓ)

R∑
r=1

Br +O(1).
(E26)

Without discontinuities, the second term is not present.
The leading term grows linearly with ℓ and its value
comes from the Szegő-Widom theorem [131, 132]. It has
been conjectured and checked numerically in Refs. [133,
134] that with discontinuities there is a subdominant
term that grows logarithmically with ℓ. Denoting by µ±

r,j

for j = 1, 2 the eigenvalues of the limits limp→p±
r
M(p),

the conjecture states that the logarithmic coefficients Br
are given by

Br =
1

4π2

2∑
j=1

(
log

µ−
r,j

µ+
r,j

)2

. (E27)

Note that the formula generalizes straightforwardly to a
symbol of arbitrary size.
The asymptotic results for the Rényi entropies are ob-

tained by using the asymptotic formula (E26) to com-
pute the determinant of the Toeplitz matrix zI − Γ
in Eq. (E23). The latter is associated to the symbol
M(p) = zI − Γ(p), where Γ(p) is the symbol of the cor-
relation matrix, given in Eq. (5.35) for a quench from a
state with all spins up, and in Eq. (5.36) for a quench
from a domain-wall state. In this way we find that the
leading term both in Eq. (5.37), as well as in Eq. (5.38),
is given by

aα=
1

1−α

∫ π

−π

dp

2π
log

[1+ f2(p)
ε(p)

2

]α
+

[
1− f2(p)

ε(p)

2

]α ,

(E28)

where f2(p) = tr[σyH(p)] is reported in Eq. (E13) for the
generalised XY model.
The discontinuities p1, p2, . . . , pR ∈ (−π, π] of the sym-

bol (5.36) are the zeroes of the velocity, i.e., points for
which v(pr) = 0. By the asymptotic formula (E26), the
logarithmic coefficient in Eq. (5.38) can be computed as

bα = lim
ε→0+

R∑
r=1

1

2πi

∮
Cε

Fα(z)
d

dz
logBr(z)dz , (E29)
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where

Br(z) =
1

2π2

log

[
z − f2(pr)

ε(pr)

z + f2(pr)
ε(pr)

]2

. (E30)

To evaluate the integral we use partial integration,

bα = − lim
ε→0+

R∑
r=1

1

2πi

∮
Cε

[
d

dz
Fα(z)

]
Br(z)dz , (E31)

and deform the contour around the poles of

d

dz
Fα(z) =

α

2(1− α)
(1 + z)α−1 − (1− z)α−1

(1 + z)α + (1− z)α
, (E32)

which are given by

zj = i tan

[
(2j − 1)π

2α

]
, j = 1, 2, . . . , α, j ̸= α+ 1

2
.

(E33)
As z → zj , we have

d

dz
Fα(z) =

1

2(1− α)(z − zj)
(1 +O(z − zj)) , (E34)

whence we obtain

bα = − 1

4π2(α− 1)

×
R∑

r=1

∑
j=1,2,...,α

j ̸=α+1
2

log

[
i tan

(
(2j−1)π

2α

)
− f2(p)

ε(p)

i tan
(

(2j−1)π
2α

)
+ f2(p)

ε(p)

]2

.

(E35)

Since the term inside the logarithm is just a phase fac-
tor, the squared logarithm is real and negative. Because
of the negative overall prefactor, every term in the sum
yields a positive contribution to bα. For instance, for
α = 2 this expression simplifies to Eq. (5.39).

The velocity of excitations is given by

v(p) =

∑3
j=1 fj(p)f

′
j(p)

ε(p)
. (E36)

For the XY chain the velocity has four zeroes, given by
p1 = −π/2, p2 = 0, p3 = π/2, p4 = π. Since f2(p) = 0
for p ∈ {p1, p3}, these two points do not contribute in
Eq. (E35). As a matter of fact, since f2(p) = 0, there
is no discontinuity in the symbol at these points. For
p ∈ {p2, p4} we have f2(p)/ε(p) ∈ {−1, 1}, so the contri-
bution of these two points is the same. From Eq. (E35)
we now find the logarithmic coefficient (5.40). A general
model under consideration can, in addition to the afore-
mentioned four zeroes of the velocity, contain also other
zeros. Therefore, in general, the logarithmic coefficient

for the XY chain is only a lower bound, i.e., bα ≥ b(XY)
α .

4. Exact Procedure

In this section we show how to compute exactly the
second Rényi entropy in systems that can be mapped to
free fermions, starting from Eq. (5.15). Let us denote

shortly ρτ ≡ ρ(τ)Ã
(Ψ) and ρ̄ ≡ ρ̄(τ)

Ã
(Ψ).

The density matrix ρτ can be expressed as a Gaus-
sian in terms of Majorana fermions (5.33), following the
standard techniques [120, 124, 148] based on Wick’s the-
orem [149]. Specifically, defining the 2(ℓ + 1) × 2(ℓ + 1)
correlation matrix with elements

Γ2j+α,2l+β = δj,lδα,β − ⟨Ψ(t)|aαj a
β
l |Ψ(t)⟩ ,

0 ≤ j, l ≤ ℓ, 1 ≤ α, β ≤ 2
(E37)

(with the usual identification x ≡ 1, y ≡ 2), and the
matrix function

W (Γ) = log[(I + Γ)(I − Γ)−1] , (E38)

we have

ρτ =
1

Z(Γ)
exp

(
a⃗TW (Γ)⃗a

4

)
, (E39)

where a⃗ = (ax1 , a
y
1, a

x
2 , a

y
2, . . . , a

y
ℓ+1) is a vector of Ma-

jorana fermions defined in Ã = {1, . . . , ℓ + 1} (see
Eq. (5.33)). The normalization is given by the function

Z(Γ) =
[
det

(
I − Γ

2

)]− 1
2

(E40)

and can be computed from Eq. (E45) that will be re-
ported in the following.
The effects of the transformations Pi on the Gaussian

in Eq. (5.15) are completely determined by their effects
on the two-point products of Majorana fermions, i.e., by
Pia

x,y
j ax,yl Pi. We thus find

PiρτPi =
1

Z(Fi(Γ))
exp

(
a⃗TW (Fi(Γ))⃗a

4

)
, (E41)

where we define functions Fi by their action on the ma-
trix elements of the correlation matrix:

Γj,l
F1−→ (−1)δj,1+δj,2+δl,1+δl,2Γj,l , (E42)

Γj,l
F2−→ (−1)δj,2ℓ+1+δj,2ℓ+2+δl,2ℓ+1+δl,2ℓ+2Γj,l , (E43)

Γj,l
F3−→ (−1)⌊

j
2 ⌋+⌊ l

2 ⌋Γj,l . (E44)

For products of transformations, such as in PiPjρτPjPi,
one has to consider compositions of the form Fi ◦ Fj .
By Eq. (E41) we see that the density matrix in

Eq. (5.15) is expressed as a sum of Gaussians. The Rényi
entropies can thus be computed by exploring the formula
for the trace of a product of Gaussians, given by [125]

tr

(
e

a⃗TW1a⃗
4 · · · e

a⃗TWna⃗
4

)
=±
√
det(I+eW1 · · · eWn) , (E45)
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for antisymmetric matricesW1, . . . ,Wn, which are always
Hermitian in our problem. The formula in Eq. (E45) has
a sign ambiguity that can be resolved when computing
the second Rényi entropy. Indeed, in the expression for
the latter a product of two Gaussians appears and the
trace of a product of two positive semidefinite Hermitian
operators is non-negative [126]. The normalization func-
tion (E40) is obtained from the formula in Eq. (E45) by
taking n = 1.

Now, from the invariance Pj ρ̄Pj = ρ̄ for j = 1, 2, 3
(which follows from Eq. (5.15)) we obtain simplification

tr
[
ρ̄2
]
= tr

[
ρτ ρ̄
]
. (E46)

Using Eq. (5.15) again, we can write this as a sum of
eight non-negative terms

tr
[
ρ̄2
]
=

1

23

1∑
j1,2,3=0

tr
[
ρτ(P

j3
3 P j2

2 P j1
1 ρτP

j1
1 P j2

2 P j3
3 )
]
.

(E47)

Each of the eight terms can be evaluated using Eq. (E41)
and formula (E45) for the trace of a product of Gaussians.
Using the identity

det
(
I + eW (Γ1)eW (Γ2)

)
det
(
I + eW (Γ1)

)
det
(
I + eW (Γ2)

) = det

(
I + Γ1Γ2

2

)
,

(E48)
and Eq. (5.16) we then obtain the second Rényi entropy,

S2(ℓ,Ψ) = 2 log 2− log

[
G
(
Γ,Γ

)
+

3∑
i=1

G(Γ,Fi (Γ))

+
∑

1≤i<j≤3

G(Γ,Fi ◦ Fj(Γ)) + G(Γ,F1 ◦ F2 ◦ F3(Γ))

]
,

(E49)

where

G(Γ1,Γ2) :=

√
det

(
I + Γ1Γ2

2

)
. (E50)

Appendix F: Melting of the order and scaling limits

This section provides details on the calculation of ex-
pectation values of local observables (e.g., strings of σz

j )
in a time-evolved weakly tilted state | ⇒θ⟩. The first part
of the section discusses the effective density matrix given
in Eq. (5.45), from which expectation values of semilocal
order parameters can be calculated; the latter are dis-
cussed in the second part.

1. Effective density matrix

In the fermionic representation we have

e−iH(τ)tτ z
je

iH(τ)t=
1

2

∑
j1,j2

∫ π

−π

d2k

(2π)2
ei[k1(j1−j)+k2(j−j2)]

× a⃗Tj1 ·
[
e−iH(k1)tσyeiH(k2)t

]
·a⃗j2 ,

(F1)

where a⃗j =
(
axj ayj

)T
and H(k) is the symbol of the

Hamiltonian, defined in Eq. (3.13). Using this represen-
tation in the expression (5.45) for the effective density
matrix, performing the sums over j and n, and chang-
ing the integration variables as k1 → k2 − k1, k2 → k2,
k3 → k3, k4 → k3 − k4, we obtain

ρeff(t)∼
1

4trI

∑
j1,2,3,4

∫
d3k

(2π)3
ei[(j4−j1)k1+(j1−j2)k2+(j3−j4)k3]

e
θ2

2 +ik1−1

× a⃗Tj1 ·[e
−iH(k2−k1)tσyeiH(k2)t]·a⃗j2

× a⃗Tj3 ·[e
−iH(k3)tσyeiH(k3−k1)t]·a⃗j4 ,

(F2)

for the effective density matrix.
Being interested in the expectation value of local op-

erators at large times after a weak symmetry breaking,
we will assume that t and θ are the only large and small
parameter, respectively, in Eq. (F2). We can assume this
because local operator O in tr[ρeff(t)O] is characterised
by indices j1, j2, j3, and j4, confined to some finite inter-
val. In order to obtain the asymptotic behaviour of the
integral in Eq. (F2) one now has to consider the pole in
k1. The first step consists of deforming the integration
path in k1 into a piecewise linear curve with lines parallel
to the axes, in such a way that the horizontal lines give
exponentially decaying contributions.
We start from the relation

e−iH(k2−k1)t =
∑

s1=±1

Ps1(k2 − k1)e−iε(k2−k1)s1t, (F3)

where Ps(k) are the projectors on the eigenstates of H(k)
with eigenvalues ±ε(k):

Ps(k) =
1

2

(
I + s

H(k)
ε(k)

)
. (F4)

Denoting the real and imaginary part of k1 by kR1 , k
I
1

respectively, assuming the imaginary part kI1 to be small,
and expanding in it, we obtain

e−iH(k2−k1)t∼
∑
s1

Ps1(k2−k1)e−iε(k2−kR
1 )s1t−kI

1v(k2−kR
1 )s1t,

eiH(k3−k1)t∼
∑
s2

Ps2(k3−k1)eiε(k3−kR
1 )s2t+kI

1v(k3−kR
1 )s2t.

(F5)
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(a)

kR
1

kI
1

−π π

i θ
2

2

(b)

kR
1

kI
1

−π π

i θ
2

2

FIG. 16. The integration path over the interval [−π, π] on the
real axis is deformed depending on the sign of v(k3 − kR

1 )s2 −
v(k2 − kR

1 )s1, to make the exponent in (F6) negative on the
horizontal lines. Panel (a): A contour that is deformed with-
out crossing the pole. Panel (b): A contour that is deformed
crossing the pole.

where v(k) := ε′(k). The expressions in each line of
Eq. (F5) are multiplied in Eq. (F2). In particular, the
real parts of each exponential in Eq. (F5) together yield
a factor

ek
I
1[v(k3−kR

1 )s2−v(k2−kR
1 )s1]t. (F6)

Assuming θ2t to be fixed, we deform the integration path
in k1 so that θ2 ≪ |kI1| ≪ 1 and we choose the sign
of kI1 so that the factor multiplying t in Eq. (F6) is al-
ways negative and the horizontal lines in the contour are
exponentially suppressed (the choice of the integration
contour thus depends also on s1, s2). The contours that
we work with are therefore determined by the sign of
v(k3−kR1 )s2−v(k2−kR1 )s1, and are presented in Fig. 16.
The pole is at kR1 = 0 and there are two possible place-

ments of the obtained contour with respect to the pole,
depending on the exponent in eq. (F6):

1. For v(k3)s2 − v(k2)s1 > 0 we have kI1 < 0 on the
deformed contour when kR1 = 0. In this case we do
not have a pole contribution — see Fig. 16(a).

2. For v(k3)s2 − v(k2)s1 < 0 we have kI1 > 0 on the
deformed contour when kR1 = 0. In such a case

the contour has to be extended across the pole —
see Fig. 16(b). In order for the integral along the
extended contour to reproduce the correct result,
the pole contribution has to be subtracted.

In the first case the integral is exponentially suppressed
along the entire contour and it yields zero. In the second
case only the subtracted pole contribution remains of the
integral. This can be described simply by including the
factor θH(v(k2)s1 − v(k3)s2) in the integral, where θH is
the Heaviside step function. Assuming θ2(θ2t) → 0, we
then include into Eq. (F2) the pole contribution

e−iH(k2−i θ2

2 )t=
∑

s1=±1

Ps1(k2)e
−iH(k2)s1t−v(k2)

θ2

2 s1t

× (1 +O(θ2)) ,
(F7)

and an analogous one for exp[iH(k3 − iθ2/2)t], to get

ρeff(t)∼
1

4 trI

∑
j1,j2,
j3,j4

∫
dk2dk3
(2π)3

∑
s1,s2=±1

ei[(j1−j2)k2+(j3−j4)k3]

× e− θ2

2 t(v(k2)s1−v(k3)s2)θH(v(k2)s1 − v(k3)s2)
× a⃗Tj1 · [Ps1(k2)Γt(k2)] · a⃗j2
× a⃗Tj3 · [Ps2(k3)Γt(k3)] · a⃗j4 .

(F8)

Here we denoted Γt(k) = e−iH(k)tσyeiH(k)t. In the limit
t→∞ we can replace the latter by its time average

Γ̄(k) = −2(Jx + Jy) cos k

ε2(k)
H(k) , (F9)

ending up with

ρeff(t)∼
1

trI

∫
d2k

(2π)2
(Jx+Jy)

2 cos k1 cos k2
ε(k1)ε(k2)

×
∑
s=±1

se−|v(k1)−sv(k2)| θ
2t
2

×
∑
j1,j2

ei(j1−j2)k1 a⃗Tj1 · Psgn[v(k1)−sv(k2)](k1) · a⃗j2

×
∑
j3,j4

ei(j3−j4)k2 a⃗Tj3 · Psgn[sv(k1)−v(k2)](k2) · a⃗j4 .

(F10)

For sufficiently large θ2t this generically decays as
1/(θ2t).

2. Semilocal order parameter

Having obtained the effective reduced density matrix,
we are now ready to investigate the expectation values of
the string

∏n−1
ℓ=0 σz

j+ℓ, which corresponds to a product of
four Majorana fermions. For n = 1 this is the simplest
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local operator sensitive to the semilocal order [31], while
in the limit n → ∞ it can be regarded as a string-order
parameter.

Let us then consider Zn = ⟨
∏n−1

ℓ=0 σz
j+ℓ⟩ =

−⟨ax1a
y
1a

x
n+1a

y
n+1⟩. This can be computed from

Eq. (F10) using Wick’s theorem:

Zn=

∫
d2k

(2π)2
2(Jx+Jy)

2 cos k1 cos k2
ε(k1)ε(k2)

∑
s,s′=±1

se−|v(k1)−sv(k2)| θ
2t
2 sin2

[
n
k1 + s′k2

2

]
×
(
−s′ + 4s

(Jx + Jy)
2 cos k1 cos k2 + s′(Jx − Jy)2 sin k1 sin k2

ε(k1)ε(k2)

)
.

(F11)

This expression simplifies in the limit n → ∞ (bear in mind that this limit has been taken after the limit of large
time and small angle at fixed θ2t), in which we obtain Eq. (5.46).
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The frustration of being odd: how boundary conditions
can destroy local order, New Journal of Physics 22,
083024 (2020).
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[149] M. Gaudin, Une démonstration simplifiée du théorème
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