Rafika Boutalbi
email: rafika.boutalbi@gmail.com

Lazhar Labiod
email: lazhar.labiod@u-paris.fr

Mohamed Nadif
email: mohamed.nadif@u-paris.fr

TensorClus: A Python Library for Tensor (Co)-clustering

Keywords: Tensors, (Co)-clustering, Multiple Graphs, Tensor Decomposition

Tensor data analysis is the evolutionary step of data analysis to more than two dimensions. Dealing with tensor data is often based on tensor decomposition methods. The present paper focuses on unsupervised learning and provides a python package referred to as TensorClus including novel co-clustering algorithms of three-way data. All proposed algorithms are based on the latent block models and suitable to different types of data, sparse or not. They are successfully evaluated on challenges in text mining, recommender systems, and hyperspectral image clustering. TensorClus is an open-source Python package that allows easy interaction with other python packages such as NumPy and TensorFlow; it also offers an interface with some tensor decomposition packages namely Tensorly and TensorD on the one hand, and on the other, the co-clustering package Coclust. Finally, it provides CPU and GPU compatibility. The TensorClus library is available at https://pypi.org/project/TensorClus/ 1 .

Introduction

The amount of data collected in fields, as different as social networks, online shopping, or medicine has grown exponentially over the last decade. Nowadays, the extraction of knowledge from such data can be based on data organized in the form of tensors instead of matrices. A tensor is a multidimensional array, which is also known as the N -way and Nth-order tensor; a third-order tensor has three dimensions. The use of tensors in data analysis applications was pioneered by researchers in psychometrics and chemometrics [START_REF] Smilde | Multi-way analysis: applications in the chemical sciences[END_REF]. Two recent effective opensource Tensorly [START_REF] Kossaifi | Tensorly: Tensor learning in python[END_REF] and TensorD [START_REF] Hao | TensorD: A tensor decomposition library in tensorflow[END_REF] are available. They offer a state-of-theart tensor decomposition approach, including algorithms such as PARAFAC and Tucker decomposition.

Here, we are interested in three-way data that are present in many applications. In medical domain, for instance, we could have a tensor patients × images × f eatures, and the objective could be analyzing patient images based on extracted features. To deal with such data we focus on co-clustering that can be viewed as an extension of clustering [START_REF] Govaert | Co-clustering: models, algorithms and applications[END_REF] devoted to reorganizing a data matrix into homogeneous blocks. This objective has attracted many authors these two decades through different approaches based on information-theoretic [START_REF] Dhillon | Information-theoretic co-clustering[END_REF], spectral co-clustering [START_REF] Labiod | Co-clustering under nonnegative matrix trifactorization[END_REF][START_REF] Labiod | A unified framework for data visualization and coclustering[END_REF], matrix factorization [START_REF] Affeldt | Ensemble block co-clustering: A unified framework for text data[END_REF][START_REF] Nadif | Unsupervised and self-supervised deep learning approaches for biomedical text mining[END_REF], or probabilistic models [START_REF] Ailem | Model-based co-clustering for the effective handling of sparse data[END_REF][START_REF] Ailem | Sparse poisson latent block model for document clustering[END_REF][START_REF] Govaert | Mutual information, phi-squared and model-based co-clustering for contingency tables[END_REF][START_REF] Salah | Directional co-clustering[END_REF][START_REF] Bock | Co-clustering for object by variable data matrices[END_REF]. The recent Coclust package [START_REF] Role | Coclust: A python package for co-clustering[END_REF] provides the implementation of co-clustering algorithms designed to efficiently handle count data matrices [START_REF] Role | Coclust: A python package for co-clustering[END_REF]. However, despite the great interest in co-clustering techniques on the one hand and the tensor decomposition methods on the other, few works tackle co-clustering from tensor data. To date, we can cite [START_REF] Wu | General tensor spectral co-clustering for higher-order data[END_REF][START_REF] Feizi | Tensor biclustering[END_REF] based on tensor-based decomposition while aiming to extract co-clusters. In contrast with these methods that require parameters tuning, in our proposal, the co-clustering objective is derived from flexible tensor latent block models which present many advantages described in [START_REF] Boutalbi | Tensor latent block model for coclustering[END_REF] and illustrated in section 2.2. Previously, we proposed [START_REF] Boutalbi | Sparse tensor co-clustering as a tool for document categorization[END_REF][START_REF] Boutalbi | Tensor latent block model for coclustering[END_REF] Tensor Latent Block Model (TLBM) for the co-clustering of tensor data as illustrated in Figure 1. TLBM exploits the flexibility of the latent block model [START_REF] Govaert | Co-clustering: models, algorithms and applications[END_REF] and is able to consider any type of data i.e. continuous, binary, count tables. We also showed that the derived algorithms can be also used for the clustering of multiple graphs or multi-view clustering. The package TensorClus that we propose is the first free python package for tensor (co)-clustering and it is open-source.

TensorClus package

TensorClus is a Python library composed of five modules dedicated to each step of three-way data analysis, from data loading to the visualization of results. Figure 2 shows the structures of the library and the packages that interface with TensorClus, namely Tensorly, TensorD, and Coclust available in Python.

Next, we describe in details the five modules depicted in Figure 2.

Reader module

To load tensor data, we built a Reader module that interacts with NumPy and Pandas packages. The module allows the following three ways of data loading:

• Load data from a text file: The user should save the tensor in a text file where the three first columns represent the tensor indices of entries and the last column the value of each tensor entry. For this, we can use the read txt tensor function.

• Load data from datasets: The user can import tensor datasets. We illustrate this step with datasets having different characteristics (see Table 1). The true partitions are also available for all datasets; they will be used just to evaluate the algorithms in this package in terms of clustering. For loading a dataset, the user can use the function load dataset by specifying the dataset name.

• Create a NumPy array: The user can also create tensor data as an NDarray using the NumPy package and use it for tensor clustering. The detailed description of the integrated datasets is available in a public github repository2 .

Decomposition and clustering modules

There are four popular implemented tensor decomposition methods, namely Parafac, Non-negative Parafac, Tucker decomposition, and Non-negative Tucker decomposition [START_REF] Tucker | Some mathematical notes on three-mode factor analysis[END_REF][START_REF] Xu | Infinite tucker decomposition: Nonparametric bayesian models for multiway data analysis[END_REF]. Note that these methods are not devoted to clustering, however, they return factor matrices that can be used for clustering. The Notice that, both learning representations and clustering tasks are performed successively -not simultaneously-. In contrast with these techniques, in our proposal with TensorClus the clustering procedure is carried out directly on threeway data and therefore does not require any learning representations.

Co-clustering module

Before describing the functions available in this module, we briefly present some essential points. From TLBM, different derived co-clustering algorithms are implemented. TLBM considers a three-way tensor data

X = [x ij] ∈ R n×d×v
where n, d, and v are the dimensions; x ij is (v × 1) vector (Figure 3). To estimate the parameters of TLBM, we rely on variational EM, which optimizes the lower band of log-likelihood [START_REF] Boutalbi | Co-clustering from tensor data[END_REF][START_REF] Boutalbi | Sparse tensor co-clustering as a tool for document categorization[END_REF][START_REF] Boutalbi | Tensor latent block model for coclustering[END_REF]. The implemented algorithms take as input the tensor X and the number of row clusters g and columns clusters m. It alternates two steps E and M (Algorithm 1), until the objective function value change is small or there is no change. The Expectation (E) step consists in computing the posterior probabilities and Θ which depends on the chosen probability distribution. Finally, at convergence, the algorithms return the row and column partitions and the estimated parameters Ω.

Z (t) = (z ik) ∈ [0, 1] n×g with g k=1 z ik = 1 and W (t) ∈ [0, 1] d×m with m =1 w j = 1,
Algorithm 1: TLBM Input: X , g, m.

Initialization: Randomly generate (Z (0) , W (0)) and compute Ω (0) repeat E-Step: Compute the posterior probabilities Z (t) and W (t) M-Step: Update parameters Ω (t) until Convergence; return Z, W, Ω With TensorClus, binary, continuous, and count data can be analyzed from Bernoulli, Gaussian, and Poisson models respectively. The co-clustering module provides the three following functions: tensorCoclusteringBernoulli, tensorCoclustringGaussian, and tensorCoclusteringPoisson that have the following arguments:

• n clusters denotes the number of clusters.

• init row and init col are the initial partitions Z and W, respectively. This means that the partitions are not randomly generated.

• max iter denotes the number of iterations.

• fuzzy is a boolean value to choose if the final partition is hard or soft partition.

• gpu is a boolean value to select the type of execution, with or without GPU. This is achieved by specifying the index of slices and the selected algorithm.

Note that

Furthermore, a version dedicated for sparse three-way data referred to as TSPLBM is also proposed. The TSLBM algorithm tackles the clustering of multiple graphs. It is devoted to co-clustering of a three-way sparse data. Given

X = [x ij] ∈ R n×n×v
where n is the number of nodes, and v the number of graphs (slices). We can view the derived algorithm as an implicit consensus clustering for multiple graphs.

With the co-clustering module, sparseTensorCoclustering allows to apply sparse tensor co-clustering.

Visualization module

TensorClus also offers a module for data visualization to illustrate and analyze the results of co-clustering. Figure 5 shows the three visualizations proposed by the Visualization module.

• plot logLikelihood evolution plots the log-likelihood in function of iterations.

• plot parameter evolution provides the evolution of Θ at each iteration.

At the convergence, this allows to compare and interpret the obtained coclusters.

• plot slice reorganisation reorganizes each slice of a three-way data according the obtained co-clusters.

Comparison of tensor co-clustering and tensor decomposition

This package allows to evaluate different algorithms dedicated to three-way data in terms of clustering. To reach this objective, we rely on datasets where a partition of one dimension is available, this is the case of the used three-way datasets. We propose to use external measurements such as accuracy (ACC), Normalized Mutual Information (NMI) [START_REF] Strehl | Cluster ensembles-a knowledge reuse framework for combining multiple partitions[END_REF], Adjusted Rand Index (ARI) [START_REF] Liu | Properties of the hubertarabie adjusted rand index[END_REF].

These last two are less sensitive to heavily imbalanced clusters. These measures are equal to 1 if the resulting clustering is identical to the true one.

Applied on DBLP1, we compared the sparse tensor co-clustering algorithm TSPLBM with Parafac and Tucker decomposition combined with clustering algorithms. We use different ranks (10, 50, and 100) for tensor decomposition. We performed 30 runs with random initializations. Then we computed ACC, NMI, ARI, and computing time by averaging all runs. All experiments were performed using a PC with the following characteristics: Intel® Core 9e gen,a RAM(64 Gb), and GPU NVIDIA® GeForce® GTX 1650 Max-Q. Figure 4 shows the performances of TSPLBM and the two algorithms Parafac and Tucker decomposition (with different ranks) followed with the four clustering algorithms.

The experiments were performed using CPU version. It should be emphasized that TSPLBM gives better results, in terms of NMI than tensor-based decomposition algorithms combined with clustering. Tucker decomposition with a rank equal to In terms of time execution, TSPLBM is equivalent to Parafac combined with each clustering algorithm using a rank number equal to 50 and better than using the rank number equal to 100. Figure 5 shows the pictures obtained by the visualization module. We observe the log-likelihood increase at each iteration, and the algorithm converges at the 15th iteration (the plot on the left). In the middle figure, we observe the density evolution of co-clusters (densities of 3 diagonal co-clusters and one common density on outside of these co-clusters) given by plot parameter evolution. Finally, the figure on the right represents the slice reorganization based on the obtained co-clustering. We note that the three coclusters with higher parameter values in the previous plot, are the three diagonal co-clusters; for details see [START_REF] Boutalbi | Tensor latent block model for coclustering[END_REF].

TensorClus offers CPU and GPU compatibility. The CPU version uses the classical matrix operations from NumPy package. And for GPU, we rely to CuPy package wich is a NumPy-compatible array library accelerated by CUDA [START_REF] Okuta | Cupy: A numpycompatible library for nvidia gpu calculations[END_REF].

We compared the CPU and GPU versions of TSPLBM to evaluate computing time with both versions. In Figure 6 are reported the obtained results of CPU and GPU versions in performing 10 runs for each version. We observe that TensorClus shows a slight performance using GPU implementation. These performances can be improved using a more powerful GPU. The experimentation's source code is available in a public github repository of TensorClus. For future work, we intend to extend the library by introducing tri-clustering methods and targeting further improvements in performance using GPU computations.

Conclusion

Figure 1 :

 1 Figure 1: Objective of Tensor Co-clustering.

Figure 2 :

 2 Figure 2: TensorClus library structure.

 decomposition with clustering function is dedicated for this task. It has an argument algorithm for choosing which clustering algorithm among a list of suitable algorithms for the clustering of continuous data: Kmeans++, Spherical Kmeans, Spectral clustering (SC), and the EM algorithm derived from Gaussian Mixture Model (GMM) available in the Scikit-Learn package.

Figure 3 :

 3 Figure 3: Three-way Data structure

 and Maximization (M) step consists in updating model parameters Ω(t) . The parameter Ω is formed by proportions of row clusters π = (π 1 , . . . , π g), proportions of column clusters ρ = (ρ 1 , . . . , ρ m),

 TensorClus interfaces with Coclust. Therefore the user can also consider carrying out a co-clustering by slice. Coclust has been designed to complete and easily interface with popular machine learning libraires such as scikitlearn. Using the sliceMatrixCoclustering function of the co-clustering module, the user can perform different co-clustering algorithms with Coclust.

Figure 4 :

 4 Figure 4: Comparison results using DBLP1 dataset.

Figure 5 :

 5 Figure 5: Tensor co-clustering results analysis for DBLP1 dataset.

Figure 6 :

 6 Figure 6: Comparison results of CPU and GPU version of TSPLBM on the three datasets.

TensorClus

 is a Python library for three-way co-clustering. It is convenient and straightforward by proposing a panel of the tensor (co)-clustering methods, under a permissive license. It is simple and provides several tools for data loading and visualization. The library offers some illustrative examples to compare TensorClus with tensor-decomposition approaches combined to popular clustering methods. Thereby, the proposed implementation allows to easily interface with other python packages such as Numpy, Tensorly, TensorD and Coclust.

Table 1 :

 1 Characteristics of datasets.

	Datasets	Type	#Slices #Node #Cluster
	DBLP1	Text	4	1995	3
	DBLP2	Text	4	2223	3
	PubMed-Diabets-4K	Text	4	4354	3
	Nus-Wide-8	Text+Images	6	2738	8
	Amazon-Products-10 Text+Images	7	9897	10

https://github.com/boutalbi/TensorClus/blob/master/data_ description.md