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Abstract Dealing with relational learning generally relies on tools modeling relational data. An
undirected graph can represent these data with vertices depicting entities and edges describing the
relationships between the entities. These relationships can be well represented by multiple undirected
graphs over the same set of vertices with edges arising from different graphs catching heterogeneous
relations. The vertices of those networks are often structured in unknown clusters with varying prop-
erties of connectivity. These multiple graphs can be structured as a three-way tensor, where each
slice of tensor depicts a graph which is represented by a count data matrix. To extract relevant clus-
ters, we propose an appropriate model-based co-clustering capable of dealing with multiple graphs.
The proposed model can be seen as a suitable tensor extension of mixture models of graphs, while
the obtained co-clustering can be treated as a consensus clustering of nodes from multiple graphs.
Applications on real datasets show the interest of our contribution.

Keywords Three-way data · Multiple graphs · Co-clustering · Consensus

1 Introduction

Relational data are ubiquitous in various fields (web, biology, neurology, sociology, communication,
economics, etc.), and their accessibility has kept increasing in recent years. These data, as a whole,
form a network formalized by a graph, where each node is an entity, and each edge is a connection
between a pair of nodes; this graph can be directed or not. We find this situation in various scientific
publications; the relationships between documents can often be described as multiple graphs with
different types of links. In fact, several relationships, such as co-terms, co-authors, co-keywords, and
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co-references between documents can be used. The objective of this work is to address the clustering of
multiple graphs. This is a graph mining task of clustering vertices into several groups in the presence
of multiple types of proximity relations. We could hypothesize that the combination of different
information that arises from multiple graphs may improve the clustering results. For instance, two
documents which share a number of words and/or have one or more authors in common and/or quote
each other, are likely to deal with the same topic. Incorporating this additional information leads us
to consider a tensor representation of the data.

To deal with multiple graphs, various models and methods under different approaches are proposed
to analyze these networks. In (Banerjee et al., 2007; Tang et al., 2009), the authors proposed a multi-
way clustering framework for relational data, where different types of entities are simultaneously
clustered, based not only on their intrinsic attribute values, but also on the multiple relations between
the entities. Other works use a spectral decomposition-based approach relying on the combination
of adjacency matrices (Tang et al., 2009; Chen et al., 2017; Nie et al., 2017). In these works, the
clustering is not the main objective of the proposed approaches, nevertheless it can be deduced from
decomposition results.

On the other hand, one of the most used methods in this context is the Stochastic Block Model
(SBM) (Nowicki and Snijders, 2001) which is a probabilistic approach. SBM is commonly used for
network modeling and discovering the latent community structures from a graph. It provides a sta-
tistical approach able to model data matrix, symmetric or not, into homogeneous blocks. This leads
to consider SBM (Daudin et al., 2008) as a particular case of the Latent Block Model (LBM) pro-
posed by Govaert and Nadif (2003, 2005) and extended in (Shan and Banerjee, 2008; Govaert and
Nadif, 2013), which models any kind of data matrices not necessarily square or symmetric. In other
words, the clustering of the graph directed or not, is in fact, a particular case of co-clustering. In this
work, we consider graphs represented by adjacency matrices assimilated to contingency tables. Thus,
considering the previous example of document clustering, the relations between documents (co-terms,
co-authors, etc.) are count data and can be represented by particularly sparse contingency tables.
Many works in the literature show the interest of Poisson distribution for graph theory and clustering
of random graphs (Janson, 1987; Daudin et al., 2008).

To the best of our knowledge, this is the first attempt to formulate a model-based co-clustering for
sparse three-way data. To this end, we rely on the latent block model (Govaert and Nadif, 2013) for
its flexibility to consider any data matrices. Figure 1 presents a binary three-way dataset constructed
from multiple graphs, and the expected results in terms of co-clustering. The key contributions of this
work are:

v
v

v
v

Fig. 1: Goal of co-clustering of multiple graphs.

– We first establish the links between Poisson Latent Block Model (PLBM) and Poisson Stochastic
Block Model (PSBM). Then we show the interest of considering PLBM rather than PSBM.

– We propose a Sparse PLBM (SPLBM), a suitable probabilistic model for clustering of multiple
graphs. Then we derive an EM-type learning algorithm.
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– Finally, using the ensemble method, we prove that the proposed algorithm, which can be viewed
as an implicit consensus clustering for multiple graphs, is more effective than explicit clustering
obtained by traditional consensus clustering methods.

The remainder of this paper is organized as follows. In Section 2, we present related work and
show the strong points of our approach. Section 3 reviews Poisson LBM, shows the limits of traditional
PSBM and describes Sparse PLBM (SPLBM). Section 4 discusses the extension of SPLBM to consider
multiple graphs. In Section 5, we present a variational Expectation-Maximization algorithm. Section 6
is devoted to evaluating our approach. Finally, section 7 concludes the paper and gives some directions
for future research.

2 Related Work

Although SBM is popular in social networks analysis, dealing with the count data and due to the
degree of heterogeneity, the traditional SBM fail to detect relevant clusters of edges to adress commu-
nity detection problem (Qiao et al., 2017). Thereby, several authors have developed a degree-corrected
SBM. In (Karrer and Newman, 2011), using a Poisson SBM, they introduced a parameter θi control-
ling the degree of expected degrees of vertices i. They consider that each xij with i 6= j is distributed
according to Poisson(θiθjδk`), where δk` is the expected value of the adjacency matrix for the vertices
i and j lying in block (k, `) while xii is distributed according to Poisson(1

2θ
2
i δkk). Doing so and under

some constraints on the θi’s, they proposed the DC-SBM (Degree-Corrected SBM) clustering algo-
rithm (DC-SBM1) from an undirected graph on n vertices, possibly including self-edges. Furthermore,
they established the equivalence between the maximization of the log-likelihood and the maximization
of mutual information used as an objective function for clustering bipartite graphs (Dhillon et al.,
2003). It is important to emphasize that the model proposed in (Karrer and Newman, 2011) is similar
to that proposed by (Nadif and Govaert, 2005), where the authors also showed this connection with the
maximization of mutual information; they proposed the Croinfo algorithm as illustrated in Figure 2.
In fact, the objective function maximized by DC-SBM, which can also be used for the co-clustering of an
undirected graph, is associated with a constrained Poisson LBM commonly used in the co-clustering
context; see e.g.; (Ailem et al., 2017a,b). To sum up, considering DC-SBM which implies that the data

are generated according to a Poisson LBM with P(xij , xi.x.jγk`) where P(xij ;λ) = e−λλxij

xij !
, the pro-

portions of the classes of the nodes are assumed to be equal. In addition, although both algorithms
DC-SBM or Croinfo are different, the objective is the same, and the clustering considered is based on
an approach similar to that of the traditional hard clustering algorithms; for more detail, the reader
can refer to recent works (Govaert and Nadif, 2013, 2018).

In our contribution, we structured graphs as three-way data where the clustering is the principal
objective. We propose an extension of LBM to tackle the co-clustering of multiple undirected/directed
graphs where each cell of the diagonal is not necessarily equal to an even number as convention-
ally considered in community detection. To do this, we adopt an EM-type approach to refer to the
Expectation-Maximization algorithm (Dempster et al., 1977; McLachlan and Peel, 2000)) and not
Classification EM (Celeux and Govaert, 1992). Furthermore, we will show that this purpose can be
viewed as an implicit consensus clustering from Multiple Graphs.

1 In the paper, to distinguish between a model and its derived algorithm we use typewriter font for an algorithm,
thereby DC-SBM is the model and DC-SBM its derived algorithm.
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PSBM
DC-SBM/Croinfo

Fig. 2: Political blogs dataset: Clustering with PSBM and DC-SBM/Croinfo.

3 Poisson Latent and Stochastic Block Models

Given an n× d data matrix X = (xij , i ∈ I = {1, . . . , n}; j ∈ J = {1, . . . , d}), it is assumed that there
exists a partition on I and a partition on J . A pair of partitions (Z,W) will represent a partition of
I × J into g ×m blocks. The partition Z for rows can be represented by a label vector (z1, . . . , zn)
where zi ∈ {1, . . . , g} or a binary matrix in {0, 1}g satisfying

∑g
k=1 zik = 1. In the same manner the

partition W for columns can be represented by a label vector (w1, . . . , wd) where wj ∈ {1, . . . ,m} or
a binary matrix in {0, 1}m satisfying

∑m
`=1 wj` = 1.

3.1 Poisson Latent Block Model (PLBM)

Denoting Z and W the sets of possible labels Z for I and W for J , the marginal density function
f(X; Ω) of the Poisson Latent Block Model (PLBM) (Govaert and Nadif, 2018) can be written

f(X,Ω) =
∑

(z,w)∈Z×W

∏
i,k

πzikk
∏
j,`

ρ
wj`
`

∏
i,j,k

P(xij ;xi.x.jγk`)
zikwj` (1)

where Ω = (π,ρ,γ), with π = (π1, . . . , πg) and ρ = (ρ1, . . . , ρm) where (πk = P (zik = 1), k =
1, . . . , g), (ρ` = P (wj` = 1), ` = 1, . . . ,m) are the mixing proportions of row and column clusters
respectively, and γ = (γk`; k = 1, . . . g, ` = 1, . . . ,m). For this model, the complete data are taken to
be the vector (X,Z,W) where unobservable Z and W lead to the labels, the resulting complete data
log-likelihood can be written as follows:

LC(Z,W,Ω) = log f(X,Z,W; Ω)

=
∑
i,k

zik log πk +
∑
j,`

wj` log ρ` +
∑
i,j,k,`

zikwj` logP(xij ;xi.x.jγk`).

To estimate Ω, we consider the EM algorithm (Dempster et al., 1977). However, the E-step using
the log-likelihood of (1) directly is intractable due to the dependence structure among the rows and
columns. Govaert and Nadif (2005) suggest a variational approximation in relying on the interpretation
of EM due to Neal and Hinton (1998). This leads to consider the following criterion

LC(Z̃,W̃,Ω) +H(Z̃) +H(W̃) (2)

where LC(Z̃,W̃,Ω) is the fuzzy complete-data log-likelihood. H(Z̃) = −
∑
i,k z̃ik log z̃ik with P (zik =

1|X) = z̃ik, and H(W̃) = −
∑
j,` w̃j` log w̃j` with P (wj` = 1|X) = w̃j` are the entropies.
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3.2 Poisson Stochastic Block Model

As we mentioned earlier, Poisson SBM, even DC-SBM, are particular cases of Poisson LBM insofar
as the latter can model matrices, symmetric or not, oriented or non-oriented graphs, numbers of row
clusters and columns clusters not necessarily equal (g 6= m) and finally with proportions of clusters
equal or not. Therefore the transition from LBM to SBM is easy to show. Thereby, for undirected
graph, the maximization of (2) leads to maximizing

LC(Z̃,Ω) + 2H(Z̃)

which is proportional to∑
i,k

z̃ik log πk +
1

2

∑
i6=j,k 6=`

z̃ikw̃j` logP(xij ;xi.x.jγk`) +
1

2

∑
i,k

z̃ik logP(xii;xi.xi.γkk)−
∑
i,k

z̃ik log z̃ik.

The main differences between them are a) considering the Poisson SBM, the last term, which concerns
the diagonal of X, is skipped and it does not take into account the degree of nodes, unlike LBM which
considers the diagonal elements. b) with Poisson LBM, xij |zikwj` = 1 ∼ P(xi.x.jγk`), while with
SBM xij |zikwj` = 1 ∼ P(γk`). Notice that γk` depends only on the block k` and not on the margins.
Thereby, starting from PLBM, next we will see how to take into account the sparsity often present in
the graphs.

3.3 PLBM for sparse data: Sparse PLBM (SPLBM)

Recently, in (Ailem et al., 2017b), the authors proposed a generative mixture model for co-clustering
document-term matrices referred to as SPLBM. With this model, they assume that for each diagonal
block kk the values xij ∼ Poisson(λij) where

λij = xi.x.j
∑
k

[zikwjk]γkk or xij |zikwjk = 1 ∼ P(xi.x.jγkk)

and for each block k` with k 6= `, xij ∼ Poisson(λij) where the parameter λij takes the following
form:

λij = xi.x.j
∑
k, 6̀=k

[zikwj`]γ or xij |zikwj` = 1 ∼ P(xi.x.jγ).

Assuming ∀` 6= k, γk` = γ leads to suppose that all blocks outside the diagonal share the same
parameter. SPLBM has been designed from the ground up to deal with data sparsity problems. As
a consequence, in addition to seeking homogeneous blocks, it also filters out homogeneous but noisy
ones due to the sparsity of the data. The pdf of SPLBM can be written as follows:

f(X,Ω) =
∑

(z,w)∈Z×W

∏
i,k

πzikk
∏
j,k

ρ
wjk
k

∏
i,j,k

(P(xij ;λkk))zikwjk
∏

i,j,k,` 6=k

(P(xij ;λ))zikwj` .

Assuming that the complete data are (X,Z,W), the complete data log-likelihood LC(Z,W,Ω) takes
the following form :

log

∏
i,k

πzikk
∏
j,`

ρ
wjk
k

∏
i,j,k

(
e−xi.x.jγkk(xi.x.jγkk)xij

xij !

)zikwjk ∏
i,j,k,` 6=k

(
e−xi.x.jγ(xi.x.jγ)xij

xij !

)zikwj` .
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(a) (b) (c)

Fig. 3: (a): Original data - (b): co-clustering according PLBM - (c): co-clustering according SPLBM.

To estimate the parameters Ω, Z and W. To this end, a variationnel EM has been proposed (Ailem

et al., 2017b) to maximize (2) where LC(Z̃,W̃,Ω) is the new fuzzy complete-data log-likelihood.
Note that although SPLBM is a co-clustering model, we can derive a graph clustering algorithm

from an adjacency matrix (symmetric or not). Thereby, when we are dealing with undirected graphs;
strating with the same initialization of z and w (z(0) = w(0)), we obtain the same row and column
clusters, that is essential for the undirected graph clustering problem.

3.4 PSBM, PLBM and SPLBM for graphs

Although PLBM can deal with sparse matrices, SPLBM can be more suitable for sparse matrices
(Figure 3). It is designed to seek a diagonal block structure and capture the most reliable associations
between the rows and columns object clusters. SPLBM assumes that each diagonal block (or co-
cluster) is generated according to the Poisson distribution with some specific parameters, and each
non-diagonal co-cluster representing noise data is generated according to Poisson distribution with
identical parameters. In Figure 4 we report the graphical models of Poisson models discussed in the
paper.

xij

zi

π

λk`

PSBM

xij

zi

θiθjδk`

DC-PSBM/CroInfo

xij

zi

π

wj

ρ

xi.x.jγk`

PLBM

xij

zi

π

wj

ρ

xi.x.jγkk

xi.x.jγ

SPLBM

Fig. 4: Graphical models: zi is the label of row i, wj is the label of column j.

To clarify expectations and the impact of this parameterization, on the political blogs dataset2,
we applied the clustering algorithms derived from SBM, PLBM, and SPLBM, using 30 random ini-

2 https://dl.acm.org/citation.cfm?id=1134277
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tializations and measured the clustering accuracy. Figure 5 shows the interest of SPLBM, which takes
into account the sparsity often present in a graph network.

The properties of this parameterization prompt us to adopt it for co-clustering with multiple
graphs, as illustrated in Figure 1. Next, to avoid confusion between all the rows and columns that are
identical in our case, we still keep the notations using the zik’s and wj`’s.

Fig. 5: Political blogs dataset: Comparison of PSBM, PLBM, and SPLBM in terms of accuracy.

The presented models PSBM, PLBM, and SPLBM deal with adjacency matrices (2D data matrix)
to tackle the problem of graph clustering. In the sequel, we deal with multiple graphs organised as
3D data matrix; each matrix depicts a graph.

4 SPLBM with multiple graphs

4.1 Three-way tensor characteristics

A tensor is a multidimensional array, which is also known as the N -way, Nth-order tensor. A tensor
can be viewed as an element product of N vector spaces (Kolda and Bader, 2009). This notion of
tensors should not be confused with tensors in physics and mathematics fields such as stress and strain
tensors (Frankel, 2012).

A three-way tensor or third-order tensor has three dimensions and then has three indices, as shown
in Figure 6. A first-order tensor is a vector, a second-order tensor is a matrix, and tensors of order
three or higher are called higher-order tensors.

v

d

n

b
=
1.
..v

j = 1...d

i
=

1.
..
n

Fig. 6: Third-way tensor data representation.
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The notation used here is very close to that introduced by (Kiers, 2000) for third-order tensor.
Notice that scalars are represented by lowercase letters e.g. x, and vectors are expressed by a bold
lowercase letter e.g. x. The matrices are denoted by bold capital letters e.g. X. And finally, tensors
are indicated by bold capital Euler letters e.g. X . The ith element of vector x is denoted as xi, the
element (i, j) of a matrix is expressed by xij , and xbij represents the element (i, j, b) of a tensor.

(a) Horizontal slices. (b) Lateral slices. (c) Frontal slices.

Fig. 7: Slices representations of the three-way tensor.

The order of tensor is referred to as the number of dimensions, also called ways or modes. One-
mode tensor is a vector, second-order tensor is a matrix, and third-order tensor is a cuboid. In the case
of matrix X, a row and column can be denoted by xi: and x:j , respectively. In the case of three-way
tensor xij:, xi:b, and x:jb represents the vector of the three different modes respectively. As we focus
on frontal slices, the tensor can be represented by {Xb, b = 1 . . . , v} (Figure 7(c)). For convenience,
in the following, we will denote the tensor entry xij: by xij = (x1ij , . . . , x

b
ij , . . . , x

v
ij) (Figure 8); then

xbi. =
∑
j x

b
ij and xb.j =

∑
i x
b
ij . In this sequel, we aim to extract homogeneous sub-tensors from

three-way data.

xij

v
n

n

v

Fig. 8: The three-way tensor structure.

4.2 Definition of the proposed model

We extend SPLBM to Three-way tensor data leading to Tensor SPLBM (or TSPLBM). The proposed
model seeks not only to discover homogeneous tube co-clusters (a three dimensional co-clusters) but
also discover important blocks and ignore noisy ones. Thereby, TSPLBM allows to discover a diagonal
co-clusters structure, which are tubes (through all slices) from the three-way tensor. It makes it
more useful for sparse tensor with high sparsity close to 90%, as shown in the experiments. TSPLM
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provides a better partitioning than the classical co-clustering algorithm applied on each slice of tensor
separately or a consensus clustering used on these independent results.

Our proposal Tensor SPLBM considers 3D data matrix X = [xij ] ∈ Rn×n×v where n is the
number of nodes, and v the number of graphs (slices). Figure 1 presents a tensor data with v graphs.
Assuming the independence per graph, the conditional Poisson pdf is given by

n∏
i,j=1

(
g∏
k=1

{
v∏
b=1

P(xbij ;x
b
i.x

b
.jγ

b
k`)}zikwjk

g∏
k, 6̀=k

{
v∏
b=1

P(xbij ;x
b
i.x

b
.jγ

b)}zikwj`
)
.

As X is symmetric per slice b, when i = j we have zik = wjk and for k = 1, . . . , g we have πk = ρk.

Then to optimize the lower bound of log-likelihood criterion noted FC(Z̃,Ω) leads to optimize the
following criterion (Eq. 3) (Appendix A for more details).

1

2
FC(Z̃,Ω) =

1

2
LC(Z̃,Ω) +H(Z̃) (3)

where H(Z̃) = −
∑
i,k z̃ik log z̃ik is the entropy, and LC(Z̃,Ω) is the fuzzy complete log-likelihood

function expressed by:

LC(Z̃,Ω) = 2
∑
i,k

z̃ik log πk +
∑
i,j,k

z̃ikz̃jk

v∑
b=1

logP(xbij ;x
b
i.x

b
.jγ

b
kk) +

∑
i,j,k,` 6=k

z̃ikz̃j`

v∑
b=1

logP(xbij ;x
b
i.x

b
.jγ

b).

After some algebraic calculations, we can simplify the criterion (up a constant) that takes the
following form (for more details, please see Appendix B)

∑
i,k

z̃ik log πk +
1

2

∑
b

(∑
k

[
xbkk log(

γbkk
γb

)− xbk.xb.k(γbkk − γb)
]

+Nb(log(γb)−N2
b γ

b)

)
+H(Z̃). (4)

where xbk. =
∑
i z̃ikx

b
i. =

∑
j z̃jkx

b
.j = xb.k, xbkk =

∑
i,j z̃ikz̃jkx

b
ij , and Nb =

∑
i,j x

b
ij ,

5 Variational Inference

To estimate the parameters of the model, we rely on the Variational EM algorithm (Govaert and
Nadif, 2005), and we extend it to multiple graphs. In the sequel, the proposed algorithm is referred
to as TSPLBM.

E-step. It consists in computing, for all i, j, k the posterior probabilities z̃ik and w̃jk given the
estimated parameters Ω. As

∑
k z̃ik =

∑
k z̃jk = 1, using the corresponding Lagrangians, up to terms

which are not function of z̃ik, leads to

log z̃
(t+1)
ik ∝ log πk +

1

2

∑
j,k

z̃
(t)
jk

v∑
b=1

Pijbkk +
∑

j 6=i,k 6=`

z̃
(t)
j`

v∑
b=1

Pijbk`

 , (5)

where Pijbkk = logP(xbij ;x
b
i.x

b
.jγ

b
kk) and with k 6= `, Pijbk` = logP(xbij ;x

b
i.x

b
.jγ

b). The update of z̃
(t+1)
ik

is described in Appendix C, and z̃
(t)
ik represents the value of z̃ik in the previous iteration (t).
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M-step. Given the previously computed posterior probabilities Z̃, the M-step consists in updating,
∀k, the parameters πk, γbkk and γb. The estimated parameters are defined as follows. First, taking

into account the constraints
∑
k πk = 1, it is easy to show that πk =

∑
i z̃ik
n . Secondly, it is easy to

obtain for all b, k

γbkk =

∑
i,j z̃ikz̃jkx

b
ij∑

i z̃ikx
b
i.

∑
j z̃jkx

b
.j

=
xbkk

[xbk.]
2

and,

γb =
Nb −

∑
i,j,k z̃ikz̃jkx

b
ij

N2
b −

∑
k

∑
i z̃ikx

b
i.

∑
j z̃jkx

b
.j

=
Nb −

∑
k x

b
kk

N2
b −

∑
k[xbk.]

2
. (6)

The TSPLBM algorithm (Algorithm 1) for multiple graphs (MG), alternates the two previously described
steps Expectation-Maximization. At the convergence, a hard co-clustering is deduced from z̃ik’s using
the maximum a posteriori principle.

Algorithm 1: TSPLBM

Input: X , g.

Initialization: Z(0) randomly and compute Ω(0), t = 0

repeat

E-Step: Compute z̃
(t+1)
ik

z̃
(t+1)
ik ∝ πk exp

(
1
2

∑
j z̃

(t)
jk

∑v
b=1 x

b
ij log(

γbkk
γb

)
)

M-Step: Update Ω(t+1) = (π
(t+1)
k , (γbkk)(t+1), (γb)(t+1)) given by

πk =
∑
i z̃

(t+1)
ik

n , γbkk =
xbkk

[xbk.]
2 , and γb =

Nb−
∑
k x

b
kk

N2
b−

∑
k[x

b
k.]

2

until the objective function value change is small or there is no change;

return Z, Ω

6 Experiments

In our experiments, we aim to discuss three important questions about (i) The importance of con-
sidering multiple graphs simultaneously on clustering results through TSPLBM and comparison with
baselines considering one graph each time. (ii) The second point shows how the proposed model can
help with the interpretation of the obtained results. (iii) And finally, we made a parallel between the
proposed approach and clustering ensemble, and we compare implicit consensus obtained by TSPLBM

and the explicit consensus achieved by the clustering ensemble method.

6.1 Datasets and evaluation

We use four datasets with a different number of graphs (slices) and clusters. Table 1 shows the
characteristics of datasets in terms of the type of instances (image or image+text), the number of
graphs/slices (#Graphs), the number of instances (#Nodes), and the number of clusters (#Clusters).
Hereafter, we give in detail, the description of each dataset..
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Table 1: Characteristics of datasets.

Datasets Type #Graphs #Nodes #Clusters

DBLP1 Text 3 2223 3
DBLP3 Text 3 12550 10

Nus-Wide-8 Text+Images 6 2738 8
Amazon-products-10 Text+Images 7 9897 10

DBLP1 and DBLP3: The two datasets DBLP1 and DBLP3 are document datasets constructed from
the global DBLP3 dataset. The clusters are represented by journals/conferences where the papers
are published. We selected three journals ((and conferences) for DBLP1, namely Discrete Applied
Mathematics, IEEE software, and SIGIR. For DBLP3, we selected ten journals (and conferences),
which are ICC, IJCAI’, SIGMOD, Discrete Applied Mathematics, Electr. Notes Theor. Comput. Sci.,
DAC, GECCO, ICIP, ICCV, and Journal of Systems and Software. We constructed three graphs.
Co-terms Title, and Co-terms Abstract, are adjacency matrices representing the co-terms between
documents on the title and abstract, respectively. The Co-terms T matrix is computed using BB>,
where B is a binarized documents-terms matrix, then ∀i, Tii > 0. We also have Co-authors graph
denoting the number of joint authors for two documents.

Nus-Wide-8 dataset: It is a part of the Nus-Wide images dataset4 extracted using Flickr API.
This dataset is composed of eight topics, namely Animals, Persons, Plants, Snow, Street, Temple,
Town, and Wedding. We constructed six graphs — the Co-tags graph, which is an adjacency matrix
of common tags between images. As described in the previous paragraph for Co-terms matrix, we
used a binary matrix images-tagsM to compute Co-tags matrix H byMM>. Other graphs are also
created based on extracted features from images. The followed process to build graph similarity based
on six extracted features form images including 64-D Color Histogram (CH), 144-D Color Correlogram
(CORR), 73-D Edge direction histogram (EDH), 128-D Wavelet texture (WT), 225-D block-wise color
moments (CW55). The computed similarity matrices are converted to adjacency matrices by putting
one if the similarity is higher than ninety-seven percent quantile and zero otherwise.

Amazon-products-10 dataset: It is a part of the Amazon-products dataset5, composed of prod-
uct images. We consider ten product categories, namely Beauty, Digital music, Home and kitchen,
Office products, Cell phones, Sports and outdoors, Health and personal care, Clothing-Shoes-Jewelry,
Patio-garden, and Baby. We constructed seven graphs. The three first one Similarity LBP, Similarity
Haralick and Similarity Gabor are constructed based on Low Rank Representation (LRR) method
(Liu et al., 2013a) for three different features namely 256-D Local Binary Patterns (LBP), 216-D Har-
alick features (Haralick et al., 1973) (considering distances d = 1 . . . 9, orientations θ = [0°, 45°, 90°,
135°]) and 192-D Gabor features (Chengjun Liu and Wechsler, 2001) (considering scales σ = 1 . . . 4,
orientations θ = [0°, 45°, 90°, 135°]). The computed similarity matrices are converted to adjacency ma-
trices by putting one if the similarity is higher than ninety-seven percent quantile and zero otherwise.
Co-terms Title and Co-terms Description are adjacency matrices representing the co-terms between
the title and description of products, respectively. Finally, Co-viewed and Co-purchased are adja-
cency matrices Y, where Yij = 1 means that these two products are viewed (respectively purchased)
simultaneously when users make a query.

3 https://aminer.org/citation
4 https://dl.acm.org/citation.cfm?id=1646452
5 http://jmcauley.ucsd.edu/data/amazon/links.html

https://aminer.org/citation
https://dl.acm.org/citation.cfm?id=1646452
http://jmcauley.ucsd.edu/data/amazon/links.html


12 Rafika Boutalbi* et al.

Figure 9 shows all graphs (slices) for the Amazon-products-10 dataset. The dataset is composed
of seven graphs. We notice that each slice has different structures and different degrees of complexity.
Our TSPLBM input is a tensor (Node × Node × Graph) for each dataset DBLP1, DBLP3, Nus-Wide-8,
and Amazon-products-10 with different sparsity 0.96, 0.99, 0.83, and 0.98 respectively.

Fig. 9: Amazon-products-10 dataset.

What is the impact of considering multiple graphs on clustering results? We first compare
TSPLBM applied on all graphs simultaneously with PSBM, PLBM, SPLBM used on each graph. The goal is
to evaluate TSPLBM in terms of clustering with a comparison with the baselines. On the other hand, we
aim to measure how the combination of different information through graphs, impacts, and improves
results. Note that TSPLBM can be viewed as an ensemble method.

We perform 30 random initializations and compute Accuracy and Normalized Mutual Information
(NMI) (Strehl and Ghosh, 2002) metrics by averaging all runs. The clustering accuracy noted (ACC)
discovers the one-to-one relationship between two partitions and measures the extent to which each
cluster contains data points from the corresponding class. However, NMI is based on Mutual Infor-
mation (MI) and measures the amount of retrieved information considering our knowledge about the
clusters and the obtained results by a clustering method while respecting the proportions of clusters.

In Figure 10, the performances of the four algorithms PSBM, PLBM, SPLBM, and TSPLBM on the four
datasets, are reported. PSBM, PLBM, and SPLBM are applied on each slice (graph) separately. TSPLBM
is applied to the tensor considering all graphs simultaneously. We notice that, in most cases, TSPLBM
is better than other algorithms applied to each graph and allows us to achieve the best trade-off.
TSPLBM includes all graphs and also the graphs with a very complex structure. DBLP3 obtains the
lowest results due to the complex structure of dataset composed of 12K papers with very close or
complementary topics on computer science. We observe that PLBM and SPLBM do a better job than
PSBM for all datasets on the more informative slices. It is also worth noting that PLBM does good
performances in terms of Accuracy on DBLP1 and in terms of NMI on DBLP3. TSPLBM performs a
natural consensus when considering all slices and allows us to obtain a unique partition at the end
with good clustering results.

How does the TSPLBM differ from multiview methods in terms of clustering performance?
The Multi-view clustering (MvC), Bickel and Scheffer (2004) aims to perform clustering from diverse
sources or domains, where each object is described by several sets of features (or views). The MvC
methods are used in several applications such as image clustering, where we can have different kinds
of features. They allow to take into account the information arsising of each view.

Because of the diversity of feature sets, each view can be converted to a symmetric instancesxin-
stances similarity/dissimilarity matrix. This brings us back to a tensor representation of these views
where each of them is a graph where the edges are continuous. Thereby, even though each view is not a
count matrix, we compared TSPLBM–after binarisation– with two recent and effective algorithms SwMV
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Fig. 10: Comparison in terms of Accuracy and NMI for all datasets with PSBM, PLBM, SPLBM and
TSPLBM.

Nie et al. (2017) and MultiNMF Liu et al. (2013b). To evaluate the three algorithms, we selected six
multi-view datasets UC-digits, 3sources, BBC, 100leaves, DBLP1, and Nus-Wide-8. These datasets
are available at https://github.com/KunyuLin/Multi-view-Datasets.

We perfomed the same experimentation procedure as TSPLBM with 30 runs, and we compute the
average of ACC, NMI, and Purity Sripada and Rao (2011). For the MultiNMF, we pricked up the
results in terms of ACC and NMI that are available in these two papers Wang et al. (2020, 2015).

In Table 2 are reported the obtained results on the six multi-view datasets. Thereby SwMV does a
better job than MultiNMF ; it achieves good results on UC-digits and 100Leaves. However, SwMV could
not give the clustering for DBLP1. On the other hand, TSPLBM achieves highly better results than
SwMV on the four datasets.

Overall, from these experiments, even with binary edges, we observe that TSPLBM gives encouraging
results compared with SwMV and MultiNMF applied on graphs with continuous edges.

Comparison between TSPLBM and tensor decomposition approaches Undoubtedly and for a
long time, to deal with tensor data X ∈ Rn×n×v, the tensor decomposition methods are the most
popular (Kolda and Bader, 2009). Even if they are not devoted to clustering, they allow ton contribute
to this task. Actually, these methods return a factor matrix ∈ Rn×r (r is a given rank) for each
mode that can be used for clustering. In the following, we focus on only one mode. Thus, we used
a list of suitable algorithms for the clustering: Kmeans++ (Arthur and Vassilvitskii, 2007), Spectral

clustering (SC) (Ng et al., 2001), and the EM algorithm (Dempster et al., 1977) derived from
diagonal Gaussian Mixture Model (GMM) available in the Scikit-Learn package. Thereby, we compared

https://github.com/KunyuLin/Multi-view-Datasets
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Table 2: Mutiview Clustering performance comparison.

Datasets
MultiNMF1 SwMV2 TSPLBM

ACC NMI ACC NMI Purity ACC NMI Purity
UC-digits 0.88 0.80 0.94 0.91 0.95 0.74 0.80 0.76
3sources 0.48 0.46 0.35 0.10 0.36 0.66 0.54 0.66
BBC 0.48 0.33 0.33 0.05 0.33 0.66 0.66 0.66
100leaves 0.67 0.86 0.59 0.87 0.61 0.46 0.81 0.46
DBLP1 - - NA NA NA 0.83 0.57 0.85
Nus-Wide-8 - - 0.28 0.004 0.28 0.56 0.41 0.56

1 - symbol means that we could not retrieve the results for MultiNMF for these datasets.
2 NA symbol means that the SwMV algorithm could not find clustering solution.

the sparse tensor co-clustering algorithm TSPLBM with PARAFAC (Harshman and Lundy, 1994) and Tucker

decomposition (Tucker, 1966) on the six datasets presented in the previous section.

We use different ranks (10, 20 and 50). We performed 30 runs with random initialization. Then
we computed ACC, NMI, and purity by averaging all runs. In figure 11 are reported the obtained
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Fig. 11: Comparison between TSPLBM and tensor decomposition approaches based on clustering
performances.

clustering results for the six datasets according to the different tensor-based algorithms (PARAFAC,
Tucker decomposition, and TSPLBM) and the clustering algorithms applied on the obtained tensor
decomposition. The results concern tensor decomposition approaches with rank number equal to 10
(The results for rank 20 and 50 are similar to those using rank equal to 10). We observe that in major
cases for the six datasets the TSPLBM does a better job than PARAFAC and Tucker decomposition. For
the 3sources and Caltech-7 datasets, PARAFAC and Tucker decomposition with GMM obtained close
results in terms of Purity and Accuracy but TSPLBM achieves higher performances in terms of NMI.
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Fig. 12: Time complexity analysis.

To evaluate the computing time of TSPLBM comparing to tensor decomposition approaches, we
represent in figure 12 the time execution in seconds of the compared methods for each datastet.
We notice that for the four datasets 3sources, BBC, DBLP1, and UCI-digits, TSPLBM is close to all
other approaches in terms of time execution. However, with Nus-wide-8 and 100Leaves, the time
execution is more important, this is due to the dataset size and the number of clusters for Nus-wide-
8 and 100Leaves. In figure 11, we observe however, that TSPLBM outperforms tensor decomposition
approaches with approximately 25 points of ACC for these two datasets.

How can the proposed model help us in the interpretation of the obtained results? The
objective of this part is to analyze the obtained topics and demonstrate how the proposed model can
help and then improve the interpretation of the obtained clusters.

The second analysis that we made is dimensionality reduction of topics-tags matrix using the
correspondence analysis method (CA) (Benzecri, 1973; Nenadic and Greenacre, 2007). The choice of
CA is due to the connection between mutual information and chi-square, which is based in CA, see,
e.g., (Govaert and Nadif, 2018). The matrix topic-tags ZTM is constructed from image-tagsM based
on obtained topics (or partition) Z obtained by TSPLBM. In Figure 13, are projected the tags and topics
on the two first dimensions of CA including the top tags in terms of contribution6 on the CA results.

We can notice that there are some close topics and other very different one. For instance, topic
3 about weddings is opposed to topics 8 and 6 about snow and temple considering the first and the
second dimension respectively. On the other hand, we can see that topics 1 and 2 about plants and
animals are close.

Figure 14 presents the tags whose contribution is important. We show the frequencies of each
term for each topic. For topics 2 and 5 (pink and purple color respectively), we can see that the four
top tags are Nature, Green, Macro, and Flower related to Plants topic and Street, City, Night and
Architect related to Town topic.

Based on the Co-tags graph and the obtained topics, we construct a graph of image clusters linked
by edges representing the intensity of joint tags between all topics, this can be computed by Z>HZ
where Z is obtained by TSPLBM, and H is the co-tags matrix. We can notice that there are some
topics with a strong relationship like plants-snow and town-persons. On the other hand, some topics
with a weak link like animals-town and animals-temple. This representation highlights that there are

6 With CA each tag contributes to the inertia of each axis. The contribution of a tag to axis α is expressed as a
percent of the inertia for axis α.
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Fig. 13: CA applied on topic-tags matrix.

Fig. 14: Frequency matrix of subject tags whose contribution is important.

some tags used with confused meaning. In this context, it is possible to use tensor models for tags
completion and tags correction (Tang et al., 2017; Veit et al., 2017).

6.2 Implicit consensus vs. explicit consensus

In the first part of our experiments, we have observed that TSPLBM applied on all slices simultaneously
is, in most cases, better than other algorithms. As we are in an unsupervised context, we have found it
helpful to run the calculation with several different random initial conditions and take the best result
in terms of maximum log-likelihood, overall runs.
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Figure 15 shows the 30 performed runs sorted according to Normalized log-likelihood (NL), which
is the objective function of TSPLBM. We also draw the ACC and NMI curve according to the 30 runs. We
observe that for DBLP1, the best runs leading to maximal NL are the best runs in terms of clustering
(ACC and NMI). However, this observation is not noticed in all datasets; for instance, some best runs
can achieve less good results in terms of ACC and NMI. This problem is recurrent with all unsupervised
methods where the best runs in terms of the objective function are not necessarily the best ones in
terms of clustering. On the other hand, we may see the proposed model as an implicit consensus model
for graphs clustering, and it is tempting to compare the proposed model to ensemble-based clustering
methods.
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Fig. 15: Normalized Log-likelihood vs NMI and ACC for all runs.

The first works about consensus or ensemble classification have emerged in the context of super-
vised learning; see for instance (Maclin and Opitz, 1997; Schapire, 2003; Dietterich, 2000). However,
only the majority voting type algorithms work on the model output level, and the most well-known
classification ensembles approaches are based on different variants of voting (Bauer and Kohavi, 1999;
Crammer et al., 2008; Gao et al., 2009). This approach has been extended to unsupervised learning
(Strehl and Ghosh, 2002; Vega-Pons and Ruiz-Shulcloper, 2011). A clustering ensemble, also known
as a consensus clustering or clustering aggregation, is defined in the same manner as for classifica-
tion (Hanczar and Nadif, 2012; Alqurashi and Wang, 2019; Yu et al., 2019). It consists in combining
multiple clustering models (partitions) into a single consolidated partition that we refer to as explicit
consensus clustering. In other words, from r partitions {Z1, Z2, Z3,. . . , Zr}, a consensus clustering
leads to a unique partition Z∗. Based on consensus functions, many approaches exist; see for instance
(Strehl and Ghosh, 2002; Hanczar and Nadif, 2012; Affeldt et al., 2020a,b).

In (Strehl and Ghosh, 2002), the authors introduced three ensemble clustering methods that can
produce a consensus partition. All of them consider the consensus problem on a hypergraph represen-
tation of the set of partitions. More specifically, each partition is a binary classification matrix (with
objects in rows and clusters in columns) where the concatenation of all the set defines the hypergraph.
Figure 16 presents this matrix and different steps to construct a combination of these different graphs
of clusters, emerged from different partitions, to obtain a unique graph. To this end, we rely on the
three hypergraph clustering-based approaches proposed by Strehl and Ghosh (2002), namely CSPA

(Cluster-based Similarity Partitioning Algorithm), HGPA (HyperGraph Partitioning Algorithm), and
MCLA (Meta-CLustering Algorithm). To improve clustering results of TSPLBM we will adopt the ensem-
ble approach. We explore in the next part, how implicit consensus clustering through TSPLBM behaves
compared to explicit consensus through cluster ensembles of multiple graphs. In Figure 17, we report
the proposed approach to compare TSPLBM with the clustering ensemble methods proposed by Strehl
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Fig. 16: Process of the transition from clustering to consensus clustering.

and Ghosh (2002). To do this, we used the implementation of python package Cluster Ensembles7. It
relies on CSPA, HGPA, and MCLA and returns the best results in terms of the mean of NMI between the
obtained consensus clustering Z∗ and the different clustering solutions {Z1, Z2, Z3,. . . , Zr}. Therebey,
with TSPLBM, we select the top ten runs maximizing log-likelihood then we carry out the consensus by
using the cluster-ensembles methods. With SPLBM, PLBM, and PSBM, we consider two steps. The first
step is the same as that used with TSPLBM to select the top ten runs and apply the cluster-ensembles
methods. The second one consists in applying another clustering consensus between graphs to obtain
a unique partition. Note that the slice consensus is implicitly provided by the TSPLBM algorithm.

Fig. 17: Ensemble methods with PSBM, PLBM, SPSBM and TSPBLM. Description of the assessment process
of all algorithms in terms of ACC and NMI.

In Figure 18 are reported the obtained results in terms of NMI using the comparison approach
described above. We can notice that TSPLBM achieves the highest NMI for all datasets. SPLBM does a

7 https://pypi.org/project/Cluster_Ensembles/

https://pypi.org/project/Cluster_Ensembles/
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better or similar job than PLBM on three datasets, while PSBM obtains the lowest NMI measures on all
datasets. These results can be explained by the fact that the implicit consensus achieved by TSPLBM

is optimized within the objective function of the algorithm, unlike the explicit consensus, where the
partitions are obtained separately.
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Fig. 18: Consensus clustering based NMI comparison.

7 Conclusion

It is well known that the traditional Poisson SBM fails to detect relevant clusters of edges, this
requires a degree-corrected SBM (DC-SBM). Drawing on this, we first established some connections
between Poisson SBM and the corrected version DC-SBM with Poisson LBM commonly used for
the co-clustering of contingency tables. We justified the extension of the latter to deal with multiple
graphs clustering. To take into account the sparsity of the tensor, we modified the parametrization
of the model and proposed a Tensor SPLBM (TSPLBM). We derived, thereby, an EM-like learning
algorithm called TSPLBM capable of performing clustering from a tensor data. On real datasets of text
and image graphs, we have shown that TSPLBM, is better than the cited baselines algorithms in terms
of clustering.

On the other hand, we can note that the proposed clustering algorithm TSPLBM can be seen as an
implicit consensus clustering between multiple graphs. To reinforce our idea that TSPLBM can be used
in this sense, a comparative study with explicit consensus through ensemble clustering methods was
realized. Experiments on several real graphs datasets highlight the effectiveness of TSPLBM. Thereby,
this work gives an extra dimension to LBM as an ensemble method.

Our approach has made it possible to propose a like-EM learning algorithm. It is possible to
develop a like-Classification EM version. To do this, all that is needed is to insert a classification step
between E and M steps. This could lead to propose an extension of DC-SBM for multiple graphs. In
this paper, the number of clusters has been assumed to be known, it would be interesting to propose
an extension of some criteria, such as ICL (Integrated Completed Likelihood) criterion, already used
with SBM (Daudin et al., 2008).
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A Appendix: Proof of Equation 3

The marginal density function f(X; Ω) of TSPLBM can be written as:

f(X; Ω) =
∑

(z,w)∈Z×W

∏
i,k

π
zik
k

∏
j,k

ρ
wjk
k

n∏
i,j=1

g∏
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v∏
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P(xbij ;x
b
i.x

b
.jγ

b
k`)}

zikwjk

g∏
k, 6̀=k
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v∏
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b
i.x

b
.jγ

b)}zikwj` .

Thus, the complete-data log-likelihood function is given by:

LC(Z,W,Ω) =
∑
i,k

zik log πk +
∑
j,k

wjk log ρk +
∑
k

LkC

where

LkC =
∑
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zikwjk{
v∑
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b
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∑
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b
i.x

b
.jγ

b)}.

Hence, the aim is to maximize the following lower bound of the log-likelihood criterion:

FC(Z̃,W̃,Ω) = LC(Z̃,W̃,Ω) +H(Z̃) +H(W̃)

where LC(Z̃,W̃,Ω) is the fuzzy complete-data log-likelihood function. As X is symmetric per slice b, when i = j we

have zik = wjk and for k = 1, . . . , g we have πk = ρk and H(Z̃) = H(W̃). The FC(Z̃,Ω) takes the following form:

FC(Z̃,Ω) = LC(Z̃,Ω) + 2H(Z̃) with LC(Z̃,Ω) = 2
∑
i,k

z̃ik log πk +
∑
k

LkC .

Then, we can simplify the model by optimizing 1
2
FC(Z̃,Ω) leading to optimizing 1

2
LC(Z̃,Ω) +H(Z̃).

B Appendix: Proof of Equation 4

The simplified optimization criterion can be written as:
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∑
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Note that the term
∑
i,j,b x

b
ij log(xbi.x

b
.j)−log(xbij !) is a scalar which does not depend on z, w, and Ω and therefore can

be ignored for optimization purpose.To keep formulas uncluttered we therefore discard this term in the subsequent
development. Thus, we obtain:
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C Appendix: Update z̃ik ∀i, k

To obtain the expression of z̃ik, we maximize (3) with respect to z̃ik, subject to the constraint
∑
k z̃ik = 1. The

corresponding Lagrangian, up to terms which are not a function of z̃ik, is given by :

L(z̃, β) =
∑
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z̃ik log πk +
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Taking derivatives with respect to z̃ik, we obtain:

∂L(z̃, β)

∂z̃ik
= log πk +

1

2

∑
j,k

z̃jk

(
v∑
b=1

Pijbk`

)
+

1

2

∑
j 6=i,k 6=`

z̃j`

(
v∑
b=1

Pijbkk

)
− log z̃ik − 1− β.

Setting this derivative to zero yields:
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Summing both sides over all k′ yields exp(β+1) =
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Plugging exp(β + 1) in z̃ik leads to:
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equivalent to
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Now, based on simplification obtained in equation 4, the expression 1
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can be written as:
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Thus, plugging the estimation of γbkk’s and γb (equation 6) yields to :
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The term Nb(log(γb)− 1) does not depend on z̃ik we can simplify the expression to:
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Finally, considering a particular k, we can re-write the equation C as:
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