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Abstract
We characterize the subdi¤erential and the Fenchel conjugate of convex integral

functions by means of respectively the approximate subdi¤erential and the conju-
gate of the associated convex normal integrands. The results are stated in Suslin
locally convex spaces, and do not require continuity-type quali�cation conditions
on the functions, nor special topological or algebraic structures on the index set.
Consequently, when con�ned to separable Banach spaces, the characterizations of
such a subdi¤erential are obtained using only the exact subdi¤erential of the given
integrand but at nearby points. We also provide some simpli�cations of our formulas
when additional continuity conditions are in force.
Key words. Integral functions and functionals, convex normal integrands, sub-

di¤erentials, Suslin spaces.
Mathematics Subject Classi�cation (2010): 26B05, 26J25, 49H05.

1 Introduction

Given two proper lower semi-continuous (lsc) convex extended real-valued functions
f1; f2 : X ! R1 := R [ f+1g, de�ned on a locally convex space X; the well-known
Hiriart-Urruty-Phelps Theorem ([9]) asserts that the approximate subdi¤erential of the
sum f1 + f2 is given for all x 2 X and " � 0 by

@"(f1 + f2)(x) =
T
�>0

clw
�

0B@ S
"1+"2�"+�
"1;"2�0

@"1f1(x) + @"2f2(x)

1CA ; (1)

where clw
�
stands for the weak*-closure in the topological dual space X� of X; and @"

denotes the approximate subdi¤erential (6). Another variant of (1) has been established
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in [6] under a weaker lsc property. The main feature of formula (1) is that (i) it requires
no continuity-like conditions on f1 or f2 and (ii) under appropriate continuity-type qual-
i�cation conditions, it implies the exact calculus rules of Moreau and Rockafellar ([20];
see, also, [33, Theorem 2.8.7]). We continue with this spirit in the current work by
providing a similar formula for continuous sums. Given in�nitely many proper and lsc
convex extended real-valued functions ft : X ! R1 := R [ f+1g; indexed in a mea-
sure space (T; E ; �) with a �-�nite nonnegative (E-)complete measure �, we consider the
convex integral function If : X ! R1 given by

If (x) :=
R
T ft(x)d�; x 2 X:

We prove that the approximate subdi¤erential of If ; @"If (x); can also be characterized
by means of the approximate subdi¤erential of the data functions ft as follows,

@"If (x) = cl
w�
�S

"(�)2A"
R
T@"(t)ft(x)d�

�
; for " > 0; (2)

and, consequently, the (exact) subdi¤erential of If is written

@If (x) =
T
">0

clw
�
�S

"(�)2A"
R
T@"(t)ft(x)d�

�
; (3)

where A" is de�ned in (27). As for �nite sum formula (1), (2)-(3) hold without any
conditions on the involved functions, except a mere condition ((22)-(21)) needed to
make our analysis consistent; for instance, to guarantee the properness of If , and to
determine the sense of the given (strong or weak) integrals.

The term of the right-hand side in each of formulas (2)-(3) requires an appropriate
justi�cation due to the use of vector multi-valued integration, leading us to limit ourselves
to the framework of Suslin locally convex spaces. This setting is less general but includes
most of the spaces that appear in applications ([2]) and, at the same time, it is suitable
for the use of measurable selection theorems ([28]). But that does not prevent (2) from
recovering (1) in its general setting of locally convex spaces (see Corollary 11).

Formulas (2)-(3) will be simpli�ed considerably, eliminating the closure clw
�
and the

intersection on "; when additional natural quali�cation conditions are imposed. That is,
since our approach is based on submerging X in subspaces of functions de�ned in T and
taking their values in X (namely, L1(T;X)), our conditions will intrinsically depend on
the continuity properties of the associated functional ~If : L1(T;X)! R; de�ned by

~If (x(�)) =
R
T f(t; x(t))d�:

The speci�cation of the topology in L1(T;X) will be crucial in determining the appro-
priate quali�cation conditions and, therefore, the desired formulas for @If (x). While the
Mackey-continuity of ~If at some constant function on X (say x0(�) � x0 2 dom If ; the
e¤ective domain of If ) will give

@"If (x) =
S
"(�)2A"

R
T@"(t)ft(x)d�; for " � 0;
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the norm-continuity of ~If at such a point x0(�) (when X is, in addition, Banach) will
result in

@"If (x) =
S
"(�)2A"�"0
0�"0�"

R
T@"(t)ft(x)d�+N

"0
dom If

(x);

where N"0dom If (x) is the "0-normal set to dom If (7).
In terms of the Fenchel conjugation (5), and using the continuous in�mal convolution

.
R
T (see (4)), the conjugate of If is shown to satisfy

(If )
� = clw

� �
.
R
T f

�
t d�

�
:

Thus, provided that the Mackey continuity condition above is veri�ed, the last formula
simpli�es to (with an exact continuous in�mal convolution)

(If )
� = .

R
T f

�
t d�: (4)

If, instead, X is in addition Banach and the used continuity condition is with respect to
the norm topology in L1(T;X), then

(If )
� =

�
.
R
T f

�
t d�

�
��dom If ;

where both .
R
T and the (�nite-) in�mal convolution � are exact.

In an additional step, we apply a variant of the Brøndsted-Rockafellar theorem ([33,
Theorem 3.1.1]) to derive other characterizations of @If (x), always free of quali�cation
conditions, which are written by means of exact subdi¤erentials of the ft�s but at nearby
points. For instance, provided that X is a separable re�exive Banach space, we prove
that x� 2 @If (x) if and only if there are sequences (xn(�)) � L1(T;X) and (x�n(�)) �
L1(T;X�) such that (xn(�)) norm-converges to x, limn

R
T ft(xn(t))d� = If (x), x�n(t) 2

@ft(xn(t)); for a.e. t 2 T;

k�k - lim
n

R
Tx

�
n(t)d� = x�; and lim

n

R
T jhx

�
n(t); xn(t)� xij d� = 0;

where k�k also denotes the norm in X�: This result slightly extends similar characteriza-
tions given in [10], where it is established that (xn(�)) � Lp(T;X) for �xed p 2 [1;+1[ :
The case p = +1 has also been considered in [18], where the elements (x�n(�)) used
above are taken in the dual space (L1(T;X))� rather than in L1(T;X�):

There are many other contributions on this subject at di¤erent stages of generalities
that can be found, for instance, in [3], [10], [14], [19], [21], [22], [23], [24], [25], [26], [27],
[30], [32], among many others.

This paper is organized as follows: notation and some preliminary results are gath-
ered in Section 2. Subdi¤erential and duality properties of convex integral functionals are
reviewed and investigated in Section 3. In Section 4, we characterize the "-subdi¤erential
of convex integral functions, de�ned on Suslin locally convex spaces, and provide the ex-
pressions of the associated conjugates.
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2 Notation and preliminary results

Let X be a real locally convex space (lcs, for short), and let X� be its topological
dual space with respect to a given dual pairing h�; �i ; de�ned on X� �X by hx�; xi :=
x�(x); and endowed with a compatible topology for the pairing h�; �i : Examples of such
a topology on X� are the weak* topology (denoted by w� or �(X�; X)), the Mackey
topology (denoted by �(X�; X)), or the topology of the norm when X is re�exive. The
weak topology on X (denoted by w or �(X;X�)) is also a comptabile topology on X.
By NX we refer to the family of convex closed and balanced neighborhoods of the origin
in X; and by B(X) the Borel �-Algebra of X:When X is a normed space, we denote its
closed unit ball by BX :

We say that X is Suslin if it is the image by a continuous mapping of a separable
completely metrizable (Polish) space; thus, a Suslin space X is separable but does not
need to be metrizable. Many locally convex spaces that are used in applications are
Suslin ([5]); for instance, if X is a separable Banach, then the spaces (X; k�k); (X;w)
and (X�; w�) are Suslin.

We use the notation R+ := [0;+1[; R := R [ f�1g and R1 := R [ f+1g. Given
a set A � X; we denote by cl(A) (or A; indistinctly), coA; coA, int(A), and ri(A);
the closure, the convex hull, the closed convex hull, the interior, and the topological
relative interior of A; respectively. The indicator function iA : X ! R1 of A is de�ned
by iA(x) := 0 for x 2 A; and iA(x) := +1 otherwise. The characteristic function
1A : X ! [0; 1] of A is de�ned by 1A(x) := 1 for x 2 A; and 1A(x) := 0 otherwise.
Given a set A � X�; by clw

�
(A) we denote its weak*-closure. The polar set of A is

A� := fu 2 X : hx�; ui � 1; for all x� 2 Ag; and the support function of A is the function
, �A : X ! R de�ned by �A(x) := supx�2A hx�; xi ; with the convention �; � �1:

A function ' : X ! R is said to be proper if ' > �1 and its (e¤ective) domain,
dom' := fx 2 X : '(x) < +1g; is nonempty. The function ' is lower semi-continuous
(lsc) (convex, resp.) if its epigraph, epi' := f(x; �) 2 X � R : '(x) � �g, is closed
(convex, resp.). If ' is proper, convex and lsc, then we write ' 2 �0(X): The closed hull
of ' is the function cl' : X ! R such that epi(cl') = cl(epi'):

The conjugate function of ' is the function '� : X� ! R de�ned by

'�(x�) := sup
X
(x� � '): (5)

Given " � 0; an element x� 2 X� is called an "-subgradient of ' at x 2 '�1(R) if

hx�; y � xi � '(y)� '(x) + ", for all y 2 X: (6)

The set of such elements is called the "-subdi¤erential of ' at x; and it is denoted by
@"'(x): The set @'(x) := @0'(x) is the subdi¤erential of ' at x: When x 62 dom' we
set @"'(x) := ;: The "-normal set and the normal cone to a set A � X at x 2 X are
respectively de�ned by

N"A(x) := @"iA(x) and NA(x) := N0A(x): (7)
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Given two functions '; : X ! R, the (�nite) in�mal convolution of ' and  is the
function '� : X ! R de�ned by

('� )(x) := inff'(y) +  (x� y) : y 2 Xg:

We say that '� is exact at x 2 X if there exists y 2 X such that ('� )(x) =
'(y) +  (x� y): For instance, '� is exact at x 2 X with '(x1) +  (x2) = ('� )(x)
whenever x1 + x2 = x and

@'(x1) \ @ (x2) 6= ;: (8)

Next we recall some classical results of convex functions and sets, which are used in the
sequel and that can be found, e.g., in [20] and [33].

Given ' 2 �0(X); for all x 2 X and " � 0

@"'(x) = fx� 2 X� : '(x) + '�(x�) � hx�; xi+ "g: (9)

We also have (because the topology on X� is compatible)

('�)� = '; (10)

and so, for all x� 2 X�;

@'�(x�) = (@')�1(x�) := fx 2 X : x� 2 @'(x)g:

More generally, when the topology on X� is not necessarily compatible but contains the
�(X�; X)-topology, we have that

X \ @'�(x�) = (@')�1(x�); for all x� 2 X�: (11)

Also, using the fact that @"' � dom'� and dom('��dom'�) = dom' + dom(�dom'�);
we verify that

'��dom'� = ': (12)

If Y is another lcs and A : Y ! X is a linear continuous mapping, then for all " > 0,
y 2 X

(' �A)� = clw�(A�'�) and @"(' �A)(y) = clw
�
(A�@"'(Ay)); (13)

where A� is the adjoint mapping of A; and A�'� : Y � ! R is the convex function given
by

(A�'�)(y�) := inff'�(x�) : A�x� = y�g:

If ' is �nite and continuous somewhere in A(Y ); then for all " � 0; y 2 X and y� 2 Y �

@"('�A)(y) = A�(@"'(Ay)) and ('�A)�(y�) = (A�'�)(y�) = minf'�(x�) : A�x� := y�g:
(14)

Let (T; E ; �) be a measure space with � being a complete �-�nite nonnegative mea-
sure. For simplicity reasons, sometimes we may assume that � is �nite and, in particular,
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�(T ) = 1 (see, e.g., [11]). Indeed, given a positive function � 2 L1(T ), we have that
�1 := �(�)=(1+�(�)) 2 L1(T )\L1(T ) and the function �0 := �1(�)

k�1(�)kL1(T )
2 L1(T )\L1(T )

satis�es k�0(�)kL1(T ) = 1: Hence, the measure ~� de�ned on E by

~�(A) :=
R
A�0(t)d�; A 2 E ; (15)

is a nonnegative complete measure such that ~�(T ) = 1 and d~� = �0(�)d�:
We suppose that both X and X� are Suslin. A function ' : T ! X is said to be

weakly measurable (written ' 2 M(T; E ; X)) if the scalar function hx�; '(�)i : t 2 T 7!
hx�; '(t)i is E-measurable, for every x� 2 X�. In the current setting of Suslin spaces,
such a measurability property is equivalent to the classical measurability of ' in the
sense that '�1(V ) 2 E for every open set V � X or, equivalently, that ' is the limit
of a sequence of simple measurable functions (see, e.g., [31, Lemma 2] and [2, Theorem
III.36]).

A measurable function ' : T ! X is said to be weakly integrable, if the functions
hx�; '(�)i; x� 2 X�; are integrable, and for each A 2 E there exists xA 2 X such that

hx�; xAi =
R
A hx

�; '(t)i d�; for all x� 2 X�:

The weak integral of ' is
w-
R
T'(t)d� := xT :

Given the equivalence relation that two functions are equivalent if they coincide in the
complememt of a negligible set, we denote by L1w(T;X) the vector space of equivalence
classes of weakly integrable functions.

A measurable function ' : T 7! X is said to be (strongly) integrable, ifR
T�V ('(t)) < +1; (16)

for some V 2 NX� , that is, �V ('(�)) belongs to the usual space L1(T ): We denote
by L1(T;X) the vector space of equivalence classes of integrable functions. Since X� is
Suslin, the function �V ('(�)) is measurable for being the supremum of a countable family
of measurable functions, and the above integral makes sense. Also, if ' 2 L1(T;X) and
(16) holds for some V 2 NX� , then for each x� 2 X� the Cauchy-Schwarz inequality
implies

hx�; '(t)i � �V ('(t))�V �(x
�); for a.e. t 2 T:

Hence, since �V �(x�) 2 R (because V � is compact in X; by the Alaoglu-Banach-Bourbaki
theorem), for each �xed A 2 E we have thatR

A jhx
�; '(t)ij d� � �V �(x

�)
R
A�V ('(t))d� < +1;

and the function hx�; '(�)i is integrable on A. Moreover, the linear mapping lA : X� ! R
de�ned by

lA(x
�) :=

R
A hx

�; '(t)i d�;
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satis�es, for all x� 2 V;

jlA(x�)j �
R
A jhx

�; '(t)ij d� � �V �(x
�)
R
A�V ('(t))d� �

R
A�V ('(t))d� < +1;

and this shows that lA is continuous on X�, that is, lA 2 X�� = X (as V 2 NX� and we
are considering a compatible topology in X�); that is, ' is weakly integrable. In other
words, every integrable function is weakly integrable, and so we call strong integral or,
simply, integral of ' the element of X given byR

T'(t)d� := w-
R
T'(t)d�:

Equivalently, since X is Suslin, the measurabilty of ' entails the existence of some
sequence of measurable simple functions 'k : T ! X; say 'k =

P
1�k�nk xk1Ak (for

xk 2 X; Ak 2 E , nk � 1); that converges for a.e. on T to '; and we have thatR
T'(t)d� = limk

R
T'k(t)d� = limk

X
1�k�nk

xk�(Ak):

We also de�ne the vector space (of equivalence classes) L1(T;X) as follows

L1(T;X) :=

�
' : T ! X :

' measurable and '(T nN) is bounded in X
for some negligible set N � T

�
:

If X is additionally a re�exive Banach space with a norm k�k, then L1(T;X) and
L1(T;X) are normed spaces with norms given respectively by (see, e.g., [5, Ch. 2])

k'k1 := ess sup k'(t)k and k'k1 :=
R
T k'(t)k d�:

In other words, when X is Banach re�exive, the usual vector space of Bochner integrable
functions (requiring

R
T k'(t)k d� < +1) coincides with our de�nition in (16), provided

that we endow X� with its norm topology which is compatible for the pairing (X;X�):
However, the de�nition in (16) can be restrictive in non-re�exive Banach spaces and,
consequently, the family of integrable functions following our de�nition can be smaller
than the usual family of Bochner integrable functions. But with respect to our goals
of characterizing the subdi¤erential of the integral functions If (x) :=

R
T f(t; x)d�, this

discrepancy will be an advantage and will provide us with more precise characterizations
of the required subdi¤erential @If (see Theorem 6 and subsequent results).

We recall the Lebesgue decomposition theorem for separable Banach spaces (see,
e.g., [16, Theorem 4.1]), ensuring that the dual space of L1(T;X) is written as

(L1(T;X))� = L1(T;X�)� �(T;X�); (17)

where �(T;X�) denotes the set of singular measures on T , that is, � 2 �(T;X�) if and
only if there exists a nondecreasing sequence of positive measure sets (Tn)n � T such
that T n ([nTn) is negligible and h�; z(�)1Tni = 0; for all z(�) 2 L1(T;X) and n � 1:

Given a set-valued map F : T � X, we say that F is measurable if, for each open
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set U � X; we have ft 2 T : F (t)\U 6= ;g 2 E : By SF ; S1;wF and S1F we denote the sets
of measurable, weakly integrable and integrable selectors of F given respectively by

SF := f' : T ! X measurable : '(t) 2 F (t); a.e. t 2 Tg;

S1;wF := f' 2 L1w(T;X) : '(t) 2 F (t); a.e. t 2 Tg;

and
S1F := f' 2 L1(T;X) : '(t) 2 F (t); a.e. t 2 Tg:

The weak integral and the (strong) integral of the set-valued map F are respectively
given by

w-
R
TF (t)d� :=

n
w-
R
T'(t)d� : ' 2 S

1;w
F

o
;R

TF (t)d� :=
�R
T'(t)d� : ' 2 S

1
F

	
:

A linear subspace L � M(T; E ; X) is said to be decomposable ([21]-[24]) if, for any
measurable set A � T and any measurable functions f 2 L and g 2 Mk(T; E ; X) (that
is, g(T nN) is compact in X with N � T negligible), we have that

1Af + 1TnAg 2 L:

We have the following lemma.

Lemma 1 Assume that X and X� are Suslin. Then, for every functions ' 2 L1(T;X�)
and  2 L1(T;X); the function t 7�! h'(t);  (t)i is integrable, and the mapping

h'; iL1(T;X�);L1(T;X) :=
R
T h'(t);  (t)i d�; (18)

is a separating duality pairing for the pair (L1(T;X); L1(T;X�)):

Proof. The measurability of the function t ! h'(t);  (t)i easily follows. Let V 2
NX such that

R
T �V ('(t))d� < +1: Then, since  2 L

1(T;X), there exists some � > 0
such that  (t) 2 �V; a.e. t 2 T: Consequently, jh'(t);  (t)ij � ��V ('(t))�V �('(t)) �
��V ('(t)) and, so, R

T jh'(t);  (t)ij d� � �
R
T�V ('(t))d� < +1;

that is, the function t 7�! h'(t);  (t)i is integrable.
Finally, according to [31], L1(T;X) and L1(T;X�) are decomposable subspaces of

measurable functions and (18) is a separating pairing.
A function ' : T �X ! R1 is said to be a convex normal integrand if the mapping

(t; x) 7! 't(x) := '(t; x) is E 
 B(X) measurable, and '(t; �) 2 �0(X) for all t 2 T:
Equivalently, ' is a convex normal integrand if and only if the mapping t � epi'(t; �)
has closed and convex values and its graph belongs to E 
 B(X) (see [2, Lemma VII-
1]). If ' is a convex normal integrand, then so is '� : T � X� ! R1 de�ned by
'�(t; x�) := ('(t; �))�(x�) (see [2, Corollary VII-2]).
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Given an extended real-valued measurable function ' : T ! R; we de�ne as usual
its (extended) integral asR

T'(t)d� :=
R
T'

+(t)d��
R
T'

�(t)d�

if
R
T'

+(t)d� < +1; and
R
T'(t)d� := +1 otherwise. Here '+ := maxf'; 0g and

'� := maxf�'; 0g; that is, '+ and '� are the (measurable) positive and negative
parts of ', respectively. If, in addition, ' is bounded from below by an integrable
function, then

R
T'

�(t)d� 2 R and, consequently,
R
T'(t)d� 2 R (we say in this case that

' is integrable) if and only if
R
T'(t)d� < +1: Then, for a convex normal integrand

f : T �X ! R1, we consider the integral function If : X ! R de�ned by

If (x) :=
R
T f(t; x)d�; (19)

and introduce the associated convex integral functional ~If : L1(T;X)! R de�ned as

~If (x(�)) :=
R
T f(t; x(t))d�: (20)

Both de�nitions (19) and (20) will require appropriate integral lower bounds of f(�; x)
and f(�; x(�)): Namely, we shall frequently use either the condition

f(t; �) � h
(t); �i+ �(t) (for all t 2 T nN), with 
 2 L1w(T;X�), � 2 L1(T ); (21)

or the following one

f(t; �) � h
(t); �i+ �(t) (for all t 2 T nN), with 
 2 L1(T;X�), � 2 L1(T ); (22)

where N � T is a �xed negligible set. Condition (21) implies that If > �1; and for
all x 2 X we have

R
T f

�(t; x)d� 2 R; hence, If (x) 2 R i¤
R
T f

+(t; x)d� 2 R: Similarly,
(22) ensures the stronger property ~If > �1; and for all x(�) 2 L1(T;X) we haveR
T f

�(t; x(t))d� 2 R, so that ~If (x) 2 R i¤
R
T f

+(t; x(t))d� 2 R: It is worth recalling
that, since every function from �0(X) is bounded from below by a continuous a¢ ne
function, both conditions (22) and (21) automatically hold when T is �nite and � is the
counting measure.

The following lemma gives us some insight on the geometry of dom If : The relation
in (iii) below can also be found, e.g., in [14].

Lemma 2 Assume that X is Suslin, and let f : T � X ! R1 be a convex normal
integrand satisfying (22). Then the following assertions hold true.

(i) If x 2 dom If ; then there exists a negligible set N � T such that

x 2
T

t2TnN
dom f(t; �):

9



(ii) There is some negligible set N � T such that

int(dom If ) � cl
 T
t2TnN

dom f(t; �)
!
:

(iii) If X is �nite-dimensional, then there is some negligible set N � T such that

int(dom If ) �
T

t2TnN
dom f(t; �):

Proof. (i) Given x 2 dom If ; we have that
R
T f(t; x)d� < +1 and so, due to (22),

f(t; x) 2 R for a.e. t 2 T:
(ii) We may assume that int(dom If ) 6= ;. Using the separability of X; there

exists a countable set D := f(xn)n�1g � dom If such that cl(dom If ) = D: Next,
by assertion (i); for each n � 1 there exists some negligible set Nn � T such that
xn 2 \t2TnNn dom f(t; �) � \t2TnN dom f(t; �); where N := [n�1Nn is also a negligible
set. Hence,

D �
T

t2TnN
dom f(t; �); (23)

and we deduce int(dom If ) � D � cl
�
\t2TnN dom f(t; �)

�
:

(iii) Assume that X is �nite-dimensional and int(dom If ) 6= ;: As in (ii); there is a
countable set D � dom If such that cl(dom If ) = D: We also have that cl(dom If ) =
coD; due to the convexity of If ; while (23) entails

coD �
T

t2TnN
dom f(t; �): (24)

Hence, since we have assumed that int(dom If ) 6= ;; we obtain

int(dom If ) = int(cl(dom If )) = int(coD) = ri(coD) = ri(coD);

because X is �nite-dimensional. Therefore int(dom If ) = int(coD) and (24) implies

int(dom If ) = int(coD) �
T
t2TnN dom f(t; �):

Proposition 3 below reviews the main duality result for the functional ~If de�ned in
(20). It was given �rstly in �nite-dimensional spaces in [21], and secondly for separable
re�exive Banach spaces in [24] (see, also, [3]). The present form of Proposition 3 can be
found in [31, Theorem] and is valid for general locally convex Suslin spaces.

Proposition 3 Assume that X and X� are Suslin, and let f : T � X ! R1 be a
convex normal integrand satisfying (22). Let V1 � M(T; E ; X) and V2 � M(T; E ; X�)
be two decomposable subspaces paired with a separating bilinear mapping. Assume that
the (e¤ective) domains of the functionals ~If : V1 � M(T; E ; X) ! R1 and ~If� : V2 �
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M(T; E ; X�) ! R1 are nonempty. Then ~If 2 �0(V1), ~If� 2 �0(V2); (~If )� = ~If�, and
(~If�)

� = ~If :

3 Convex functional integrals and duality

In this section, X and its dual X� are two locally convex Suslin spaces, endowed with
locally convex and compatible topologies with respect to the pairing hx�; xi := x�(x)
de�ned on X� � X: We consider the measure space (T; E ; �) where the measure � is
�-�nite, nonnegative and complete. Given a convex normal integrand f : T �X ! R1;
we review here some duality properties between the convex integral functionals ~If :
L1(T;X)! R and ~If� : L1(T;X�)! R, de�ned by

~If (x(�)) =
R
T f(t; x(t))d� (25)

and
~If�(x

�(�)) =
R
T f

�(t; x�(t))d�: (26)

Taking into account Lemma 1, we consider the duality pair (L1(T;X); L1(T;X�)) as-
sociated to the separating pairing

hx�(�); x(�)i :=
R
T hx

�(t); x(t)i d�; x(�) 2 L1(T;X); x�(�) 2 L1(T;X�):

Consequently, the "-subdi¤erential of the functional ~If at x(�) 2 (~If )�1(R) (� L1(T;X))
is the set @" ~If (x(�)) of subgradients x�(�) 2 L1(T;X�) such that, for all y(�) 2 L1(T;X);

hx�(�); y(�)� x(�)i � ~If (y(�))� ~If (x(�)) + ";

that is, R
T hx

�(t); y(t)� x(t)i d� �
R
T f(t; y(t))d��

R
T f(t; x(t))d�+ ":

Similarly, the "-subdi¤erential of ~If� at x�(�) 2 (~If�)
�1(R) (� L1(T;X�)) is the set

@" ~If�(x
�(�)) of subgradients x(�) 2 L1(T;X) such that, for all y�(�) 2 L1(T;X�);

hy�(�)� x�(�); x(�)i � ~If�(y
�(�))� ~If�(x�(�)) + ";

that is, R
T hy

�(t)� x�(t); x(t)i d� �
R
T f

�(t; y�(t))d��
R
T f

�(t; x�(t))d�+ ":

We start by giving di¤erent consequences (and characterizations) of condition (22), sta-
ting that for some functions 
 2 L1(T;X�) and � 2 L1(T ) we have, for a.e. t 2 T;

ft(x) � h
(t); xi+ �(t); for all x 2 X;
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where we denote ft := f(t; �): Also, if there exists x0(�) 2 L1(T;X) such that ~If (x0(�)) 2
R, then for a.e. t 2 T we have

f�t (x
�(t)) � hx0(t); x�(t)i � f(t; x0(t)); for all x�(�) 2 L1(T;X�);

that is, the function t 7�! f�t (x
�(t)) is bounded from below by the integral func-

tion hx0(�); x�(�)i � f(�; x0(�)): Hence, the function t 7�! f�t (x
�(t)) is integrable i¤R

T (f
�
t )
+(x�)d� < +1:

We shall use the following notation,

A" :=
�
"(�) 2 L1(T;R+) :

Z
T
"(t)d� � "

�
; " � 0; (27)

and
A+" := f"(�) 2 A" : "(t) > 0; a.e. t 2 Tg ; " > 0:

Proposition 4 Let f be a convex normal integrand such that ~If (x0(�)) 2 R for some
x0(�) 2 L1(T;X). Then condition (22) is equivalent to each one of the following asser-
tions.

(i) For all x(�) 2 dom ~If and " � 0; we have

@" ~If (x) =
S
"(�)2A"fx

�(�) 2 L1(T;X�) : x�(t) 2 @"(t)ft(x(t)), a.e. t 2 Tg;

and
@" ~If (x(�)) 6= ;; whenever " > 0:

(ii) The convex functionals ~If and ~If� are proper, ~If is �(L1(T;X); L1(T;X�))-lsc,
~If� is �(L1(T;X�); L1(T;X))-lsc, and we have that

~If� = (~If )
� and ~If = (~If�)

�:

(iii) For all " > 0 and x(�) 2 dom ~If (equivalently, for some x 2 dom ~If ), we have
that S

"(�)2A+"
R
T@"(t)ft(x(t))d� 6= ;:

(iv) There exists a function � 2 L1(T;X�) such thatR
T f

�
t (�(t))d� < +1:

(v) For some U 2 NX , there exist � 2 L1(T ) and nonnegative function r 2 L1(T )
such that, for a.e. t 2 T;

ft(x) + r(t)�U�(x) � �(t); for all x 2 X:

Proof. We establish in the order the set of implications (ii) =) (iii) =) (22) =)
(iv) =) (ii) =) (i) =) (ii) and the equivalence (22)() (v):

(ii) =) (iii): Assume that (ii) holds, and �x " > 0 and x(�) 2 dom ~If ; so that
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@ "
2

~If (x(�)) 6= ; (e.g., [33, Theorem 2.4.4(iii)]). Take x�(�) 2 @ "
2

~If (x(�)) (� dom
�
~If

��
=

dom ~If� � L1(T;X�); by (ii)). Then the functions f(�; x(�)); f�(�; x�(�)); and hx�(�); x(�)i
are integrable, and (ii) yieldsR

T [f(t; x(t)) + f
�(t; x�(t))� hx�(t); x(t)i]d�

=
R
T f(t; x(t))d�+

R
T f

�(t; x�(t))d��
R
T hx

�(t); x(t)i d�
= ~If (x(�)) + ~If�(x�(�))� hx�(�); x(�)i

= ~If (x(�)) +
�
~If

��
(x�(�))� hx�(�); x(�)i � "

2
:

Let us denote

"(t) := f(t; x(t)) + f�(t; x�(t))� hx�(t); x(t)i+ "�0(t)

2
;

where �0 2 L1(T ) \ L1(T ) is a positive function such that k�0(�)kL1(T ) = 1 (see (15)).
Then "(�) 2 A+" ; as "(t) �

"�0(t)
2 > 0 for a.e. t 2 T; and x�(t) 2 @"(t)ft(x(t)) for a.e.

t 2 T . In other words, x�(�) is an integrable selection of the measurable multifunction
t� @"(t)ft(x(t)); and assertion (iii) holds true.

(iii) =) (22): Assume that, for each " > 0 and x(�) 2 dom ~If ; there are "(�) 2 A+"
and x�(�) 2 L1(T;X�) such that x�(t) 2 @"(t)ft(x(t)) for a.e. t 2 T: Then, for all such
t 2 T; we have

f(t; y) � hx�(t); y � x(t)i+ f(t; x(t))� "(t), for all y 2 X;

that is, (22) follows with 
 := x�(�) 2 L1(T;X�) and � := f(�; x(�))�hx�(�); x(�)i�"(�) 2
L1(T ):

(iv) =) (ii): Assume that ~If�(�) < +1 for some � 2 L1(T;X�): Due to the
current assumption ~If (x0(�)) 2 R; Proposition 3 implies that ~If = (~If�)

�; and so ~If is
�(L1(T;X); L1(T;X�))-lsc and proper. The same argument shows that ~If� is proper,
�(L1(T;X�); L1(T;X))-lsc and satis�es ~If� = (~If )�:

(ii) =) (i): Fix x(�) 2 dom ~If and " � 0: Since ~If is assumed to be proper,
convex and �(L1(T;X); L1(T;X�))-lsc, we have that @" ~If (x(�)) 6= ; when " > 0: Take
x�(�) 2 @" ~If (x(�)) � L1(T;X�). Then ~If (x(�)) 2 R and (ii) implies that

~If (x(�)) + (~If )�(x�(�))� hx�(�); x(�)i = ~If (x(�)) + ~If�(x�(�))� hx�(�); x(�)i
=
R
T (ft(x(t)) + f

�
t (x

�(t))� hx�(t); x(t)i)d� � ":

Thus, taking "(t) := ft(x)+ f
�
t (x

�(t))�hx�(t); x(t)i ; we have that "(�) 2 A" and x�(t) 2
@"(t)ft(x(t)) for a.e. t 2 T: Conversely, let x�(�) 2 L1(T;X�) and "(�) 2 A" be such that
x�(t) 2 @"(t)ft(x(t)) for a.e. t 2 T; that is,

ft(x(t)) + f
�
t (x

�(t)) � hx�(t); x(t)i+ "(t):
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Then, since x(�) 2 dom ~If ; we have that x�(�) 2 dom ~If� andR
T ft(x(t))d�+

R
T f

�
t (x

�(t))d� �
R
T hx

�(t); x(t)i d�+ ": (28)

Consequently, because we have, for all z(�) 2 L1(T;X);

hx�(�); z(�)i � ~If (z(�)) =
R
T (hx

�(t); z(t)i � f(t; z(t))) d� �
R
T f

�
t (x

�(t))d�;

inequality (28) gives rise to

~If (x(�)) + (~If )�(x�(�)) � ~If (x(�)) + ~If�(x�(�))
=
R
T ft(x(t))d�+

R
T f

�
t (x

�(t))d� �
R
T hx

�(t); x(t)i d�+ ";

which shows that x�(�) 2 @" ~If (x(�)):

(i) =) (ii): Assumption (i) implies that the convex functional ~If is proper and
�(L1(T;X); L1(T;X�))-lsc. Moreover, given any x(�) 2 dom ~If ; for each " > 0 assertion
(i) yields some x�(�) 2 @" ~If (x(�)) and "(�) 2 A" such that x�(t) 2 @"(t)ft(x(t)) for a.e.
t 2 T: This implies that

hx�(t); x(t)i � ft(x(t)) + f
�
t (x

�(t)) � hx�(t); x(t)i+ "(t); for a.e. t 2 T;

and the functions f(�; x(�)) and f�(�; x�(�)) are integrable. Hence, by integrating,R
T f

�
t (x

�(t))d� � �~If (x(t)) +
R
T hx

�(t); x(t)i d�+
R
T "(t)d� < +1;

and x�(�) 2 dom ~If� : Therefore, according to Proposition 3, we have that (~If�)� = ~If
and ~If� = (~If )�; that is, ~If� is proper.

(22) =) (v): Assume that (22) holds with 
 2 L1(T;X�) and � 2 L1(T ): Then
there exists some U 2 NX such that

R
T �U (
(t))d� < +1. Moreover, using the Cauchy-

Schwartz inequality, for a.e. t 2 T we have that

ft(x) � h
(t); xi+ �(t) � ��U�(x)�U (
(t)) + �(t); for all x 2 X;

and (v) follows by taking r(�) := �U (
(�)) (2 L1(T;R+)) and �(�) := �(�):

(v) =) (22): By (v); there exists U 2 NX such that, for a.e. t 2 T , ft(x) +
r(t)�U�(x) � �(t); for all x 2 X: Observe that the convex function �U� is continuous
on X, as U� is w�-compact by the Alaoglu-Banach-Bourabaki theorem. Hence, since
x0(t) 2 dom ft for a.e. t 2 T; by Lemma 2(i); for a.e. t 2 T the Moreau-Rockafellar
Theorem implies that

(ft + r(t)�U�)
�(0) =

�
f�t �ir(t)U�

�
(0) � ��(t);

where the in�mal convolution is exact. Hence, there is some u� 2 �r(t)U� = r(t)U�
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such that f�t (u
�) � ��(t), and the measurable multifunction F : T � X� de�ned by

F (t) := fu� 2 r(t)U� : f�t (u�) � ��(t)g;

has nonempty closed convex values (a.e. t 2 T ). Consequently, the measurable selection
theorem ([31]) gives rise to a measurable selection 
(�) of F; that is, for a.e. t 2 T we
have that f�t (
(t)) � ��(t) and, so,

ft(x) � h
(t); xi+ �(t) for all x 2 X:

Moreover, because 
(t) 2 r(t)U� we infer that
R
T �U (
(t))d� �

R
T r(t)d� < +1; and


 2 L1(T;X�).

Finally, the implication (22) =) (iv) is straightforward.

The following result is the counterpart of Proposition 4 for weak integrals. Note
that the duality arguments used before are not directly applicable here, because the pair
(L1(T;X); L1w(T;X

�)) does not need to form a duality pair. It is worth observing that,
generally, we cannot take strong integrals instead of weak integrals in the following result
(see Example 2).

Corollary 5 Let f be a convex normal integrand such that If (x0) < +1; for some
x0 2 X: Then the following assertions are equivalent.

(i) Condition (21) holds with some 
 2 L1w(T;X�) and � 2 L1(T ).
(ii) For any " > 0 and x 2 dom If ; we have thatS

"(�)2A+" w-
R
T@"(t)ft(x)d� 6= ;:

Proof. It is clear that (ii) implies (i). For the opposite implication, we assume (i) and
introduce the convex normal integrand ~f : T �X ! R1 given by

~f(t; x) := f(t; x)� h
(t); xi � �(t); (29)

hence, for a.e. t 2 T ,
~f(t; x) � 0 for all x 2 X:

Obviously, the convex normal integrand ~f satis�es (22), and we have that

~I ~f (x01T (�)) =
R
T f(t; x0)d��

R
T (h
(t); x0i+ �(t))d� < +1:

Then, for every x 2 dom If and " > 0; we have x(�) � x1T (�) 2 dom ~I ~f ; and Proposition
4(iii) yields some "(�) 2 A+" such that

; 6=
R
T@"(t)

~ft(x)d�:

Take x�(�) 2 L1(T;X�) such that x�(t) 2 @"(t) ~f(t; x); for a.e. t 2 T: Then

x�(t) 2 @"(t) ~ft(x) = @"(t)ft(x)� 
(t), a.e. t 2 T;
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and ~x�(�) := x�(�) + 
(�) 2 L1w(T;X�) (because L1(T;X�) � L1w(T;X
�)) is a selection of

the multifunction t� @"(t)ft(x):

4 Characterization of the "-subdi¤erential of If

As in the previous section, X and its dual X� are two locally convex Suslin spaces
endowed with compatible topologies with respect to a given pairing h�; �i de�ned on X��
X:We consider the measure space (T; E ; �) where the measure � is �-�nite, nonnegative
and complete. In this section, we characterize the "-subdi¤erential of the convex integral
function If : X ! R1; de�ned by

If (x) =
R
T f(t; x)d�;

where f : X � T ! R1 is a convex normal integrand.
We begin by the following example to justify the need of using approximate subdif-

ferentials @"(t)ft with t-varying approximations "(�).

Example 1 Given T := [0; 1] with the Lebesgue measure; we consider the integral
function If : R! R1 de�ned by

If (x) :=
R 1
0
x2

t dt;

that is, If is the indicator function of the singleton f0g, so that

@If (0) = @if0g(0) = R:

We verify, on the one hand, that for every " � 0T
�>"

cl
�R 1
0 @�ft(0)dt

�
= [�4

p
"; 4
p
"]: (30)

Indeed, given t 2 (0; 1) and � > "; we have that � 2 @�ft(0) if and only if

�2
p
�p
t
= sup
x<0

x2+t�
tx � � � inf

x>0

x2+t�
tx = 2

p
�p
t
:

So,

R 1
0 @�ft(0)dt =

�Z 1

0
�(t)dt : �2

p
�p
t
� �(t) � 2

p
�p
t
; a.e. t 2 [0; 1]

�
= [�4

p
�; 4
p
�]; (31)

and we get T
">0

cl
�R 1
0 @"ft(0)dt

�
= f0g  @If (0):

On the other hand, given 0 < � < " < 1; we consider the function �(�) de�ned on [0; 1]
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by
�(t) := �2

4t ; if t 2 [t�; 1]; and �(t) :=
�2t
4 ; otherwise,

where t� := e1�
1
� (2 ]0; 1[): Then we getR 1
0 �(t)dt =

R t�
0 (�

2t=4)dt+
R 1
t�
(�2=(4t))dt

= �2t2�=8 + (�
2=4)(�1 + 1=�) � �2=8 + �=4 � � � ";

so that �(�) 2 A"; and (31) entails

R 1
0 @�(t)ft(0)dt =

�R 1
0 �(t)dt :

�� � �(t) � �; a.e. t 2 [0; t�]
��
t � �(t) � �

t ; a.e. t 2 [t�; 1]

�
= [��t� � 1� 1=�; �t� + 1 + 1=�]:

Consequently, since �t� + 1 + 1=� ! +1 as � ! 0; we deduceS
0<�<"

R 1
0 @�(t)ft(0)dt =

S
0<�<"

[��t� � 1� 1=�; �t� + 1 + 1=�] = R,

which gives us T
">0

cl

 S
"(�)2A"

R 1
0 @"(t)ft(0)dt

!
= R = @If (0):

We give now the characterization of the subdi¤erential set @"If (x) (" � 0). The �rst
two expressions below do not require any quali�cation condition on the data functions
ft := f(t; �); t 2 T . These expressions are simpli�ed in (i)-(ii) under additional continuity
conditions. The formula in statement (ii) is a known result in separable and re�exive
Banach spaces (see [14] and references therein). The counterpart of formula (35) for the
"-subdi¤erential is given in Corollary 9.

Theorem 6 Let f be a convex normal integrand satisfying condition (22): Then, for
every x 2 X; we have that

@"If (x) = cl
�S

"(�)2A"
R
T@"(t)ft(x)d�

�
; for all " > 0; (32)

and, consequently,

@If (x) =
T
">0

cl
�S

"(�)2A"
R
T@"(t)ft(x)d�

�
: (33)

Moreover, the following assertions hold.

(i) If ~If is continuous with respect to the Mackey topology �(L1(T;X); L1(T;X�)) at

some x0(�) � x0 2 dom If ; then

@"If (x) =
S
"(�)2A"

R
T@"(t)ft(x)d�; for all " � 0; (34)
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(ii) If X is a (separable) Banach space and ~If is continuous with respect to the norm

topology on L1(T;X) at some x0(�) � x0 2 dom If ; then

@If (x) =
R
T@ft(x)d�+Ndom If (x): (35)

Proof. To prove formula (32), it is enough to establish the inclusion ���when @"If (x) 6=
;; that is, ~If (x) = If (x) 2 R. Thus, the mapping ~If : L1(T;X)! R1 is proper, convex
and �(L1(T;X); L1(T;X�))-lsc, due to Proposition 4. We also have that If = ~If � A;
where A : X ! L1(T;X) is the linear mapping given by

Au := u: (36)

Notice that A is �X -�(L1(T;X); L1(T;X�))-continuous, where �X is the initial topology
on X; with the adjoint being the mapping A� : L1(T;X�)! X� de�ned by

A�(u�) =
R
Tu

�(t)d�: (37)

Next, taking into account (13), Proposition 4 gives rise to

@"If (x) = cl
�
A�@" ~If (Ax)

�
(38)

= cl
�S

"(�)2A"
R
Tx

�(t)d� : x� 2 L1(T;X�); x�(t) 2 @"(t)ft(x) a.e. t 2 T
�

= cl
�S

"(�)2A"
R
T@"(t)ft(x)d�

�
; (39)

and the desired inclusion ���in (32) follows. Formula (33) comes easily from (32) thanks
to the relation @If (x) = \">0@"If (x):

(i) To prove this statement, we �rst check that the operator A : X ! L1(T;X)
de�ned in (36) is �X -�(L1(T;X); L1(T;X�))-continuous. Indeed, given a net (zi)i �
X which �X -converges to z 2 X and a (symmetric) �(L1(T;X�); L1(T;X))-compact
set K � L1(T;X�); there exists a weak symmetric convex neighborhood U of 0 in
L1(T;X) such that K � U�: Since A is �X -�(L1(T;X); L1(T;X�))-continuous, as we
have commented before, we �nd some i0 such that for all i posterior to i0 we have
zi1T � z1T = A(zi � z) 2 U and, so,

0 � sup
z�(�)2K

hz�(�); zi1T (�)� z1T (�)i � sup
z�(�)2U�;u(�)2U

hz�(�); u(�)i � 1:

Hence, zi1T (�) � z1T (�) 2 K� eventually for i; and A is �X -�(L1(T;X); L1(T;X�))-
continuous. Therefore @"If (x) = A�@" ~If (Ax) (by (14)) and, like in (39) above, assertion
(i) follows again by Proposition 4.

(ii)We consider here the pair (L1(T;X); (L1(T;X))�); where L1(T;X) is endowed
with its norm topology and (L1(T;X))� is the corresponding topological dual space; that
is, (L1(T;X))� = L1(T;X�) � �(T;X�) due to the Lebesgue decomposition theorem.
We also consider the k�kX -�(L1(T;X); L1(T;X�))-continuous linear mapping A1 : X !
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L1(T;X) given by
A1u := u; (40)

whose adjoint mapping A�1 : (L
1(T;X))� ! X� satis�es

A�1(u
�) =

R
Tu

�(t)d�; for all u� 2 L1(T;X�): (41)

Then, using the relation If = ~If �A together with (14), we get

@If (x) = A�1@ ~If (A1x): (42)

Moreover, on account of (17), for each given x�(�) 2 @ ~If (A1x) (� (L1(T;X))�) there
are some elements x�1(�) 2 L1(T;X�) and y� 2 �(T;X�) such that

x�(�) = x�1(�) + y�; (43)

and so, for all y(�) 2 L1(T;X),

hx�1(�) + y�; y(�)�A1xi � ~If (y(�))� ~If (A1x): (44)

We choose a nondecreasing sequence of positive measurable sets (Tn)n � T such that
the set T n ([nTn) is negligible and

hy�; z(�)1Tni = 0; for all z(�) 2 L1(T;X) and all n � 1:

Then, on the one hand, for any given y(�) 2 dom ~If � L1(T;X) and n � 1; relation
(44) yields R

Tn
hx�1(t); y(t)� xi d� = hx�1(�); (y(�)�A1x)1Tn(�)i

= hx�1(�) + y�; (y(�)�A1x)1Tn(�)i
� ~If ((y(�)�A1x)1Tn(�) +A1x)� ~If (A1x)
=
R
Tn
ft(y(t))d��

R
Tn
ft(x)d�:

But we have that ~If (y(�)) 2 R; ~If (A1x) = If (x) 2 R and hx�1(�); y(�)�A1xi 2 L1(T ),
and the last inequality yields, as n! +1;

hx�1(�); y(�)�A1xi =
R
T hx

�
1(t); y(t)� xi d� � ~If (y(�))� ~If (A1x); (45)

showing that x�1(�) 2 @ ~If (A1x)\L1(T;X�): Thus, according to Proposition 4(i); we have
that x�1(t) 2 @ft(x) for a.e. t 2 T; and we deduce

A�1x
�
1(�) 2

R
T@ft(x)d�: (46)

On the other hand, for any y in dom If ; we have that A1y 2 dom ~If � L1(T;X) and

19



(44) implies

hy�; A1(y � x)i =


y�; (y � x)1TnTn

�
� �



x�1(�); (y � x)1TnTn

�
+ ~If ((y � x)1TnTn +A1x)� ~If (A1x): (47)

Observe that, for a.e. t 2 [nTn,

x�1(t); (y � x)1TnTn(t)

�
! 0 and ft((y � x)1TnTn(t) +A1x)! ft(x):

and so, since


x�1(�); (y � x)1TnTn(�)

�
� jhx�1(�); A1(y � x)ij ; by the dominance conver-

gence theorem
lim
n



x�1(�); (y � x)1TnTn

�
= 0:

Also, taking into account condition (22), the Fatou lemma assures that

lim sup
n!1

~If ((y � x)1TnTn +A1x) � ~If (x) = If (x):

Therefore, taking limits in (47), for all y 2 dom If

hA�1y�; y � xi = hy�; A1y �A1xi � 0;

and we infer that A�1y
� 2 Ndom If (x): Finally, combining this with (42), (43), and (46),

we derive that

@If (x) = A�1@ ~If (A1x) �
R
T@ft(x)d�+Ndom If (x);

and the proof is �nished as the opposite of this inclusion holds straightforwardly.

Remark 1 When X = Rn, the continuity assumption used in Theorem 6(ii) is equiv-
alent to the nonemptiness of int(dom If ); formula (35) is known in this case (see [13,
Theorem 4] and [18, Corollary 5.1]). Other consequences of the continuity of If is dis-
cussed in Lemma 2. Formula (35) was also obtained in [17] for continuous convex integral
functions de�ned on separable Banach spaces.

We give next the counterpart of Theorem 6 for weak integrals.

Corollary 7 Let f be a convex normal integrand satisfying (21). Then, for every x 2 X;
we have

@"If (x) = cl
�S

"(�)2A"w-
R
T@"(t)ft(x)d�

�
; for all " > 0;

and, consequently,

@If (x) =
T
�>0

cl
�S

�(�)2A�w-
R
T@�(t)ft(x)d�

�
:

Moreover, assertions (i) and (ii) in Theorem 6 are also valid when the weak integrals
are used instead of (strong) ones.
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Proof. Again we use the convex normal integrand ~f : T � X ! R1 de�ned in (29),
that is,

~f(t; u) := f(t; u)� h
(t); ui � �(t); (48)

where 
(�) in L1w(T;X) and �(�) 2 L1(T;R+) are as (21), together with the associated
functional ~I ~f : L

1(T;X)! R1 de�ned by

~I ~f (u) :=
R
T
~f(t; u)d�:

Hence, ~f(t; u) � 0 for a.e. t 2 T and all u 2 X; and Theorem 6 applies and yields, for
all x 2 dom If and " > 0;

@"I ~f (x) = cl
�S

"(�)2A"
R
T@"(t)

~ft(x)d�
�

= cl
�S

"(�)2A"
R
T

�
@"(t)ft(x)� 
(t)

�
d�
�

= w-
R
T
(t)d�+ cl

�S
"(�)2A"w-

R
T@"(t)ft(x)d�

�
:

Consequently, the desired formula of @"If (x) follows as

@"If (x) = @"I ~f (x) + w-
R
T
(t)d� = cl

�S
"(�)2A"w-

R
T@"(t)ft(x)d�

�
:

Next, the formula of @If (x) comes by intersecting this last set over " > 0: Finally, the
proof of assertions (i) and (ii) in Theorem 6 for weak integrals follows the same pattern.

Remark 2 Since the sets ["(�)2A"
R
T@"(t)ft(x)d� and ["(�)2A"w-

R
T @"(t)ft(x)d� are con-

vex, in the case of a re�exive Banach space X the expressions involving closures in
Theorem 6 and Corollary 7 are still valid if such closures are taken with respect to the
norm topology of X�.

The following example draws the attention to the choice of the functions 
 involved
in (22)-(21), and the in�uence they have in the determination of the subdi¤erential of
If .

Example 2 TakeX = l2; the space of real sequences (xn)n�1 such that
P
n�1x

2
n < +1;

and let (en)n�1 be its canonical basis: Let the integral function If : l2 ! R be de�ned
as

If (x) =
P
n�1

1

n
hen; xi = ha0; xil2 ; where a0 := (1=n)n�1 2 l

2;

that is, If is a linear form; hence,

@"If (x) = fa0g; for all x 2 l2 and " � 0.

The function If above corresponds to our model integral function with T = N, E is the
discrete �-Algebra of N; � is the counting measure, and f(n; x) := (1=n) hen; xi is the
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underlying convex normal integrand.
Notice that

P
n�1 j(1=n) hen; xij 2 R, for all x 2 l2, and

P
n�1 k(1=n)enk�(n) =P

n�11=n = +1: Hence, since l2 is a Hilbert space, the function 
 : T ! l2 de�ned as

(n) := (1=n)en satis�es


 2 L1w(T; l2) n L1(T; l2);

that is, 
 satis�es condition (21) but not (22). Therefore we can compute the "-
subdi¤erential of If at 0 by applying Corollary 7: for each " � 0; we have that

@"If (0) = cl
�S

"(�)2A"w-
R
T@"(t)ft(x)d�

�
=
n
(1=n)n�1

o
;

as expected. At the same time, the (strong) integrals
R
T @"(t)ft(x)d�; "(�) 2 A"; are all

empty, asR
T@"(t)ft(x)d� =

P
n�1(1=n)en; and

P
n�1 k(1=n)enk =

P
n�11=n = +1:

In other words,

; = cl
�S

"(�)2A"
R
T@"(t)ft(x)d�

�
& @"If (0); for all " � 0:

The conclusion of Theorem 6 is rewritten below in terms of the continuous in�mal
convolution of the conjugate functions f�t , t 2 T; which is the function .

R
T f

�
t d� : X

� ! R
de�ned by

.
R
T f

�
t d�(x

�) := .
R
T f

�
t (x

�)d�

:= inf
�R
T f

�
t (x

�(t))d� :
R
Tx

�(t)d� = x�; x�(�) 2 L1(T;X�)
	
:

Recall that clw
� �
.
R
T f

�
t d�

�
denotes the weak* closure of the function .

R
T f

�
t d�:

Theorem 8 Let f be a convex normal integrand satisfying (22) and If (x0) < +1, for
some x0 2 X: Then we have that

(If )
� = clw

� �
.
R
T f

�
t d�

�
: (49)

Moreover, the following assertions hold.

(i) With the assumptions of Theorem 6(i); for each x� 2 X� there exists x�(�) 2
L1(T;X�) such that

R
T x

�(t)d� = x� and

(If )
�(x�) = .

R
T f

�
t (x

�)d� =
R
T f

�
t (x

�(t))d�: (50)

(ii) With the assumptions of Theorem 6(ii); for each z� 2 X� there exist x�(�) 2
L1(T;X�) and y� 2 X� such that

R
T x

�(t)d�+ y� = z� and

(If )
�(z�) =

��
.
R
T f

�
t d�

�
��dom If

�
(z�) =

R
T f

�
t (x

�(t))d�+ �dom If (y
�): (51)
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Proof. As in the proof of Theorem 6, we write If = ~If �A, where ~If : L1(T;X)! R1
and A : X ! L1(T;X) is the �X -�(L1(T;X); L1(T;X�))-continuous linear mapping
de�ned in (36), and whose adjoint is computed in (37). Then, since ~If is proper, convex
and �(L1(T;X); L1(T;X�))-lsc, due to Proposition 4, (49) and (50) follow by applying
(13) and (14), respectively.

We are going to prove (51). Assume �rst that z� =2 dom(If )�: Since If 2 �0(X); and
(If )

� = (If )
���dom If by (12), (49) yields

+1 = (If )
�(z�) =

�
(If )

���dom If
�
(z�)

=
�
cl
�
.
R
T f

�
t d�

�
��dom If

�
(z�)

�
��
.
R
T f

�
t d�

�
��dom If

�
(z�) �

�
.
R
T f

�
t d�

�
(z�):

Hence, (51) obviously holds with x�(�) � �0(�)z� 2 L1(T;X�) and y� = 0; where �0(�) 2
L1(T ) is such that

R
T �0(t)d� = 1 (see (15)).

Now we take z� 2 dom(If )�; hence, (If )�(z�) 2 R because If 2 �0(X) and (If )� 2
�0(X

�): Given " > 0; by [33, Theorem 3.1.4] we choose elements z" 2 X and z�" 2 @If (z")
such that

j(If )�(z�" )� (If )�(z�)j � " and kz�" � z�k � ": (52)

Thus, according to Theorems 4 and 6(ii); there are

x�"(�) 2 @ ~If (z"1T ) \ L1(T;X�) and y�" 2 Ndom If (z") (53)

such that
x�"(t) 2 @ft(z"); for a.e. t 2 T; (54)

and
z�" =

R
Tx

�
"(t)d�+ y

�
" : (55)

At the same time, Theorem 6 ensures that

x�" :=
R
Tx

�
"(t)d� = A�1x

�
"(�) 2 @If (z");

where A1 : X ! L1(T;X) is the k�kX -�(L1(T;X); L1(T;X�))-continuous linear map-
ping de�ned in (40) and (41). Moreover, since we have (@If )�1(x�") = @(If )

�(x�") and
@�dom If (y

�
") = (@Icl(dom If ))

�1(y�") by (11), we obtain that z" 2 @�dom If (y�")\@(If )�(x�"):
So, (55), (8) and (12) imply that

(If )
�(z�" ) = ((If )

���dom If )(z�" ) = (If )�(x�") + �dom If (y�"): (56)

The rest of the proof is divided into four steps.
1st step. We prove in this step that, for each given " > 0;

(If )
�(z�" ) =

R
T f

�
t (x

�
"(t)) d�+ �dom If (y

�
"): (57)

The inequality ���in (57) comes from (56) and the following relation, which is a con-
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sequence of statement (i) of the current theorem,

(If )
�(x�") = cl

�
.
R
T f

�
t d�

�
(x�") �

R
T f

�
t (x

�
"(t)) d�:

Also, taking into account that z" 2 dom If ; by using (9) and (54) we obtain thatR
T f

�
t (x

�
"(t)) d� =

R
T (hx

�
"(t); z"i � ft (z"))d�

= hx�"; z"i � If (z") � (If )�(x�");

which leads us, again by (56), to the inequality ���in (57).
2nd step. We show here that the net (x�"(�))" � (L1(T;X))� has a cluster point

u�(�) + ��; with u�(�) 2 L1(T;X�) and �� 2 �(T;X�); satisfying

h�; y1Tni = 0; for all y 2 L1(T;X) and n � 1; (58)

for some nondecreasing sequence of positive measure sets (Tn)n � T such that T n([nTn)
is negligible. Consequently, the continuity properties of the operator A1 will imply that
the corresponding net (x�")" is �(X

�; X)-convergent to A�1u
�(�) + A�1�

�; while (52) and
(55) will ensure that the corresponding net (y�")" is �(X

�; X)-convergent to some y� 2 X�

such that
z� = A�1u

�(�) +A�1�� + y�: (59)

To show the existence of such u�(�) and ��, we use the current continuity assumption
to �nd some m; � > 0 such that for all y(�) 2 �BL1(T;X) we have ~If (x0+ y(�)) � m; that
is,

hx�"(�); y(�)i � hx�"(�); (z" � x0)1T i+ ~If (x01T + y(�))� If (z") + " (by (53))

� hz�" � y�" ; z" � x0i+m� If (z") + " (by (55))

� hz�" ; z" � x0i � If (z") +m+ " (by (53))

� (If )�(z�" )� hz�" ; x0i+m+ ";

and (52) yields some r � 0 such that

hx�"(�); y(�)i � (If )�(z�)� hz�; x0i+m+ 2"+ " kx0k � r: (60)

Therefore, using (17) and the weak*-compactness of B(L1(T;X))� , we may suppose that
the net (x�"(�))" is �((L1(T;X))�; L1(T;X�))-convergent when " # 0 to some u�(�)+��;
with u�(�) 2 L1(T;X�) and �� 2 �(T;X�): The existence of the sequence (Tn)n as
required in (58) comes from the de�nition of the space �(T;X�):

3th step. We prove in this step statement (ii) when all the ft�s are nonnegative.
Given n � 1; we denote by Inf ; I

�n
f : X ! R1 the convex integral functions given by

Inf (z) :=
R
Tn
ft (z) d� and I�nf (z) :=

R
TnTnft (z) d�;

so that the sequences (Inf )n and (I
�n
f )n are nondecreasing and nonincreasing, respec-
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tively. Moreover, invoking the main statement of the current theorem and the fact that
If � Inf , for all n � 1 and " > 0 we have that

(If )
�
�R
Tn
x�"(t)d�

�
) � (Inf )�

�R
Tn
x�"(t)d�

�
= cl

�
.
R
Tn
f�t d�

��R
Tn
x�"(t)d�

�
�
R
Tn
f�t (x

�
"(t))d�; (61)

and, similarly,

(I�nf )�
�R
TnTnx

�
"(t)d�

�
�
R
TnTnf

�
t (x

�
"(t))d�: (62)

Notice that
w�- lim

"!0

R
Tn
x�"(t)d� =

R
Tn
u�(t)d�; (63)

because of the convergence results of step 2 we have, for all z 2 X;DR
Tn
x�"(t)d�; z

E
= hx�"(�); z1Tn(�)i

�!"!0 hu�(�) + ��; z1Tn(�)i

= hu�(�); z1Tn(�)i =
DR
Tn
u�(t)d�; z

E
:

The same arguments show that

w�- lim
"!0

R
TnTnx

�
"(t)d� =

R
TnTnu

�(t)d�+A�1�
�; (64)

w�- lim
n!+1

R
Tn
u�(t)d� =

R
Tu

�(t)d� =: u�; and w�- lim
n!+1

R
TnTnu

�(t)d� = 0: (65)

Therefore, by making " # 0 in (61), and using (63) and the weak*-lower semicontinuity
of (If )�; we obtain for all n � 1

lim inf
"#0

R
Tn
f�t (x

�
"(t)) d�) � lim inf

"#0
(If )

�
�R
Tn
x�"(t)d�

�
� (If )�

�R
Tn
u�(t)d�

�
: (66)

Similarly, for all n � m � 1 we have that I�nf � I�mf ; so that (I�nf )� � (I�mf )� and (62)
together with (64) entail that

lim inf
"#0

R
TnTnf

�
t (x

�
"(t)) d� � lim inf

"#0
(I�nf )�

�R
TnTnx

�
"(t)d�

�
� (I�nf )�

�R
TnTnu

�(t)d�+A�1�
�
�

� (I�mf )�
�R
TnTnu

�(t)d�+A�1�
�
�
: (67)

Now, taking into account that the ft�s are supposed nonnegative, using successively (52),
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(57), (66)-(67) and (65) we get for any m � 1 (remember that u� :=
R
T u

�(t)d�)

(If )
�(z�) = lim inf

"#0
(If )

�(z�" )

= lim inf
n!+1

lim inf
"#0

�R
TnTnf

�
t (x

�
"(t)) d�+

R
Tn
f�t (x

�
"(t)) d�+ �dom If (y

�
")
�

� lim inf
n!+1

�
(I�mf )�

�R
TnTnu

�(t)d�+A�1�
�
�
+ (If )

�
�R
Tn
u�(t)d�

��
+ �dom If (y

�)

� (I�mf )� (A�1�
�) + (If )

� (u�) + �dom If (y
�),

and so, for all y 2 dom If (� dom I�mf ),

(If )
�(z�) � hA�1��; yi �

R
TnTmft(y)d�+ (If )

� (u�) + �dom If (y
�):

Thus, using the dominated convergence theorem, as m! +1 we get

(If )
�(z�) � hA�1��; yi+ (If )� (u�) + �dom If (y�):

In other words, for all y 2 X we have

(If )
�(z�) � hA�1��; yi � idom If (y) + (If )� (u�) + �dom If (y�);

and by taking the supremum over y 2 X we deduce, as (idom If )
� = �dom If ;

(If )
�(z�) � �dom If (A

�
1�
�) + (If )

� (u�) + �dom If (y
�)

� (If )� (u�) + �dom If (y� +A�1��):

Therefore, taking into account (10) and (12), (59) yields

(If )
�(z�) � ((If )���dom If ) (u� + y� +A�1��) = ((If )���dom If ) (z�) = (If )� (z�) ;

and the aimed relation follows.
4th step. We prove statement (ii) in the general case, when the ft�s are not necessar-

ily nonnegative. To this aim, we consider the convex normal integrand f̂ : T �X ! R1
de�ned by

f̂t(t; z) := f(t; z)� h
(t); zi � �(t);

where 
 2 L1(T;X) and � 2 L(T ) come from assumption (22). Then f̂ satis�es the
same continuity properties as f; dom If̂ = dom If ; and we have that

(If̂ )
�(�) = (If )�(�+ 
0) + �0;

where 
0 :=
R
T 
(t)d� and �0 :=

R
T �(t)d�: Consequently, using step 3, for all z

� 2
dom(If )

� we have that z� � 
0 2 dom(If̂ )
� and, so, there exist x�1(�) 2 L1(T;X�) and
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y� 2 X� such that
R
T x

�
1(t)d�+ y

� = z� � 
0 and

(If )
�(z�) = (If̂ )

�(z� � 
0)� �0 =
��
.
R
T (f̂t)

�d�
�
��dom If

�
(z� � 
0)� �0

=
R
T (f̂t)

�(x�1(t))d�+ �dom If (y
�)� �0

=
R
T f

�
t (x

�
1(t) + 
(t))d�+ �dom If (y

�):

Then, since the following relation is easily veri�ed,��
.
R
T f̂

�
t d�

�
��dom If

�
(z� � 
0) =

��
.
R
T f

�
t d�

�
��dom If

�
(z�) + �0;

the element x�(�) := x�1(�) + 
(�) 2 L1(T;X�) satsi�es
R
T x

�(t)d�+ y� = z� and

(If )
�(z�) =

��
.
R
T f

�
t d�

�
��dom If

�
(z�) =

R
T f

�
t (x

�(t))d�+ �dom If (y
�);

as we wanted to prove.

Corollary 9 (Theorem 6(ii); continued) Assume that X is a (separable) Banach
space, and let f be a convex normal integrand satisfying condition (22): If ~If is con-
tinuous with respect to the norm topology on L1(T;X) at some x0(�) � x0 2 dom If ;
then for every x 2 dom If and " � 0 we have that

@"If (x) =
S
"(�)2A"�"0
0�"0�"

R
T@"(t)ft(x)d�+N

"0
dom If

(x): (68)

Proof. Fix x 2 dom If and " � 0: On account of Theorem 8(ii); an element x� 2 X�

belongs to @"If (x) if and only if there are x�(�) 2 L1(T;X�) and y� 2 X� such thatR
T x

�(t)d�+ y� = x�;
R
T f

�
t (x

�(t))d� = ~If�(x
�(�)) 2 R (due to Proposition 4), and

If (x) + (If )
�(x�) = If (x) +

R
T f

�
t (x

�(t))d�+ �dom If (y
�)

� hx�; xi+ " =

R
Tx

�(t)d�; x
�
+ hy�; xi+ ":

Denote "1(t) := ft(x) + f�t (x
�(t))� hx�(t); xi (� 0); so that x�(t) 2 @"1(t)ft(x); and the

inequality above yields R
T "1(t)d�+ �dom If (y

�)� hy�; xi � ";

that is, "1(�) 2 L1(T ) and "1 :=
R
T "1(t)d� satis�es

0 � �dom If (y
�)� hy�; xi � "� "1:

In other words, y� 2 N"�"1dom If
(x); and we deduce

x� =
R
Tx

�(t)d�+ y� 2
R
T@"1(t)ft(x)d�+N

"�"1
dom If

(x);

that is, the inclusion ���in (68) follows. The proof is �nished as the opposite inclusion
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is straightforward.

We now characterize the subdi¤erential of If in a sequential form that involves exact
subgradients of the ft�s at appropriately chosen nearby points, namely at points con-
verging in the L1(T;X)-norm to the reference point. The use of Lp(T;X)-norms with
1 � p < +1; instead of L1(T;X); has been considered in [10]. The case p = +1
has also been investigated in [18] where the dual estimates are taken in the dual space
(L1(T;X))�, while the following result considers x�n(�) in the smaller space L1(T;X�).
It is worth recalling that the �nite sum version of Corollary 10 has been �rst established
in [29] (see, also, [4] and [15]).

Corollary 10 Assume X is a (separable) re�exive Banach space, and let f be a convex
normal integrand satisfying condition (21): Given x 2 X, we have that x� 2 @If (x) if
and only if there are sequences (xn(�)) � L1(T;X) and (x�n(�)) � L1(T;X�) such that

(i) (xn(�)) converges to x1T (�) in the L1(T;X)-norm,

(ii) x�n(t) 2 @ft(xn(t)); a.e. t 2 T;

(iii) x�n :=
R
Tx

�
n(t)d� converges to x

� in the norm of X�,

(iv)
R
T ft(xn(t))d�! If (x);

(v)
R
T hx

�
n(t); xn(t)� xi d�! 0:

Proof. Fix n � 1: If x� 2 @If (x); then by Theorem 6 and Remark 2 we �nd T0 � T;
("n) 2 A1=n2 and (~x�n) � L1(T;X�) such that �(T n T0) = 0;

~x�n =
R
T ~x

�
n(t)d�; k~x�n � x�k � 1=n; (69)

and
~x�n(t) 2 @"n(t)ft(x); for all t 2 T0;

hence, according to Proposition 4(i), we also have that ~x�n(�) 2 @ 1
n2

~If (x1T (�)): Next, by
the Brondsted-Rockafellar theorem [33, Theorem 1.4.1], there are �n 2 [�1; 1] ; z�n(�) 2
BL1(T;X�); xn(�) 2 L1(T;X) and

x�n(�) 2 @ ~If (xn(�)) (70)

such that
kxn(�)� x1T (�)kL1(T;X) + jh~x

�
n(�); xn(�)� x1T (�)ij �

1

n
; (71)

~If (xn(�))+
1

n
kxn(�)� x1T (�)kL1(T;X) +

1

n
jh~x�n(�); xn(�)� x1T (�)ij

� If (x) + h~x�n(�); xn(�)� x1T (�)i ; (72)
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x�n(�)� ~x�n(�) =
1

n
z�n(�) +

�n
n
~x�n(�): (73)

Consequently, from (70) together with Proposition 4(i), we infer that x�n(t) 2 @ft(xn(t))
and assertion (ii) follows. From (71) and (73) we obtain that kxn(�)� x1T (�)kL1(T;X) !
0 andR
T hx

�
n(t); xn(t)� xi d� =

R
T h~x

�
n(t); xn(t)� xi d�+

1

n

R
T hz

�
n(t) + �n~x

�
n(t); xn(t)� xi d�

� 1

n
+
2

n2
;

and assertions (i) and (v) follow. Moreover, from (72), (71) and the lower semi-continuity
of ~If (again by Proposition 4) we obtain

If (x) = ~If (x1T (�)) � lim inf
n

~If (xn(�))

� lim sup
n

~If (xn(�)) � If (x) + lim sup
n

h~x�n(�); xn(�)� x1T (�)i = If (x);

and assertion (iv) holds true. Now, using (69) and (73), we get

R
Tx

�
n(t)d�� x�



 � 

RTx�n(t)d�� RT ~x�n(t)d�


� 1

n

R
T kz

�
n(t)k d�+

1

n





Z
T
~x�n(t)d�





+ 1

n

� 2

n
+
1

n2
+
1

n
kx�k ;

and assertion (iii) holds.
The proof of the corollary is complete because the opposite implication is straight-

forward, that an element x� satisfying assertions (i)� (v) is necessary a subgradient of
If at x.

Remark 3 The limitation to Suslin locally convex spaces in the current work is mainly
due to the need to apply measurable selection theorems ([28]). Notice that general non-
convex integral functions over arbitrary Banach spaces are studied in [19], but assuming
some regular and uniform Lipschitz conditions on the integrands. This condition implies
in particular that the Clarke generalized subdi¤erential multifunction t � @�'t(x) is
w�-compact and non-empty valued, allowing the use of a measurable selection theorem
from [1]. In our case, the given integrands are assumed to be convex and only lsc, so
that the multifunction t � @ft(x) can be unbounded or even empty-valued, hence the
requirement of the separability of the space. However, we can avoid such a restriction
when T is �nite as we show in Corollary 11 below.

We close the paper by recovering formula (1) in general locally convex spaces, based
on Theorem 6.
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Corollary 11 Assume that X is a locally convex space. Given f1; f2 2 �0(X); for every
x 2 dom f1 \ dom f1 we have that

@"(f1 + f2)(x) = cl
w�

0B@ S
"1+"2�"
"1;"2�0

@"1f1(x) + @"2f2(x)

1CA ; for all " > 0;

and, consequently,

@(f1 + f2)(x) =
T
">0 cl

w� (@"f1(x) + @"f2(x)) :

Proof. First, observe that condition (22) holds in the current case. Fix x 2 dom f1 \
dom f1 and " > 0; and pick any �nite-dimensional subspace L � X such that x 2 L: Let
us denote by ~f1 and ~f2 the restrictions of the functions f1+iL and f2+iL; respectively, to
the subspace L: Hence, ~f1; ~f2 2 �0(L) and formula (32) applied in the �nite-dimensional
space L yields

@"( ~f1 + ~f2)(x) = cl

0B@ S
"1+"2�"
"1;"2�0

@"1
~f1(x) + @"2

~f2(x)

1CA ; (74)

where the closure is in the dual space L� of L: Observe that L� is isomorphic to the
quotient space X��L?; where L? is the orthogonal space of L: Also, we can easily
verify that

@"( ~f1 + ~f2)(x) = fx�jL : x
� 2 @(f1 + f2 + iL)(x)g;

and
@ ~fi(x) = fx�jL : x

� 2 @(fi + iL)(x)g; i = 1; 2;

where x�jL denotes the restriction of x
� 2 X� to L: Then (74) simpli�es to

@"(f1 + f2)(x) � clw
�

0B@ S
"1+"�"
"1;"2�0

@"1f1(x) + @"2f2(x) + L
?

1CA ;

and by taking the intersection over the L�s we obtain that

@"(f1 + f2)(x) � clw
�

0B@ S
"1+"2="
"1;"2�0

@"1f1(x) + @"2f2(x)

1CA :

Thus, we are done since the opposite inclusion is straightforward.
The last statement of the corollary easily follows from the main statement.
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