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SECOND-ORDER UNIFORMLY ASYMPTOTIC-PRESERVING
SPACE-TIME-IMEX SCHEMES FOR HYPERBOLIC BALANCE

LAWS WITH STIFF RELAXATION∗

LOUIS REBOUL† , TEDDY PICHARD† , AND MARC MASSOT†

Abstract. We consider hyperbolic systems of conservation laws with relaxation source terms
leading to a diffusive asymptotic limit under a parabolic scaling. We introduce a new class of second-
order in time and space numerical schemes, which are uniformly asymptotic preserving schemes. The
proposed Implicit-Explicit (ImEx) approach, does not follow the usual path relying on the method of
lines, either with multi-step methods or Runge-Kutta methods, or semi-discretized in time equations,
but is inspired from the Lax-Wendroff approach with the proper level of implicit treatment of the
source term. As a result, it yields a very compact stencil in space and time and we are able to
rigorously show that both the second-order accuracy and the stability conditions are independent of
the fast scales in the asymptotic regime, including the study of boundary conditions. We provide
an original derivation of l2 and l∞ stability conditions of the scheme that do not deteriorate the
second order accuracy without relying on a limiter of any type in the linear case, in particular for
shock solutions, and extend such results to the nonlinear case, showing the novelty of the method.
The prototype system for the linear case is the hyperbolic heat equation, whereas barotropic Euler
equations of gas dynamics with friction are the one for the nonlinear case. The method is also able
to yield very accurate steady solutions in the nonlinear case when the relaxation coefficient in the
source term depends on space. A thorough numerical assessment of the proposed strategy is provided
by investigating smooth solutions, solutions with shocks and solutions leading to a steady state with
space dependent relaxation coefficient.

Key words. Second order Implicit-Explicit numerical methods, hyperbolic systems of conser-
vation laws with stiff source terms, asymptotic-preserving schemes in diffusive limit, l∞-stable and
shock capturing methods

AMS subject classifications. 65M06, 65M12, 35L65, 76N15, 76M45, 82C40

1. Introduction. We construct and analyze numerical schemes adapted to the
hyperbolic-parabolic regimes arising for linear and non-linear hyperbolic problems
with a relaxation term. Such systems can result from relaxation approximations of
conservation laws [18, 33] as well as fluid limits of kinetic equations [4]. Our incentive
originates in the field of plasma physics to perform high-fidelity simulations of sheaths
through a new class of numerical methods [3, 35] for fluid models [2]. However, we
provide here the key ideas in a simpler context, where numerical analysis is attainable.

We focus on a parabolic scaling corresponding to long-term term behaviors with a
stiff source term, and that can be expressed by the introduction of a small parameter
ε > 0. Consider the system in non-dimensional form:

(1.1) ∂tw +
1

ε
∂xf (w) =

σ

ε2
S (w)

with w ∈ Ω ⊂ Rn a state vector, f : Ω 7→ Rn a flux function with a Jacobian matrix
A (w) with a full basis of eigenvalues so that Equation (1.1) is hyperbolic when σ = 0.
For the sake of introducing and analyzing a new class of schemes within the scope
of this work, we consider only linear source term S (w) = Bw with B ∈ Mn. The
asymptotic regime of Equation (1.1) is defined by ε → 0. The limit depends on
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the specific flux f and source term S. In this paper, we investigate both a linear
case: the classical hyperbolic heat equation (HHE), and a non-linear case: the Euler
equations with friction (Euler-friction). These two models are representative of the
main difficulties that arise when trying to approximate solutions of equations of the
form (1.1). As it is well known (see e.g. [23, 13]), the disparity of scales renders the
classical Finite-Volume methods overly diffusive and consequently poorly accurate in
such regimes, whereas stability conditions become exceedingly restrictive.

Preserving an accurate description of the asymptotic phenomena with good sta-
bility properties while discretizing the original PDE has been the subject of a vast
body of literature within the framework of so-called asymptotic-preserving (AP)
schemes. Several clever strategies have been designed: combination of source and
flux terms [20, 24, 5], control of the numerical dissipation [17], relaxation techniques
when the stiffness of the problem is carried by linear operators [25], ImEx strategies
in order to benefit from stability conditions close to that of fully implicit schemes but
at the cost of explicit computations [7]. Several contributions, as the present one,
focus on the parabolic scaling specifically [29, 24, 25, 26].

We focus here on ImEx techniques, that have shown to be suitable for the design of
high-order in time and space AP-methods (see [1] and ref. therein) over a wide range
of application. However, their construction usually focuses on the time discretization
and tend to overlook the challenges linked to the spatial approximations. For instance,
stability analysis is routinely performed under the hypothesis that the discrete spatial
operator is exact (so-called semi-discretization in time). As a result, such methods
may lack of suitable spatial discretizations and sometime exploit unnecessarily com-
plex methods. Similarly, truncation error studies are customarily replaced by simpler
procedure, such as verifying only that the limit scheme when ε→ 0 produces an ap-
proximation of the desired order of the limit system, and potentially missing accuracy
loss in intermediate regimes. Current ImEx methods decouple time and space, either
using linear-multistep (LM, [1]) or Runge-Kutta (RK, [7]) methods, which require
large stencils and, consequently, complex boundary and initial conditions are used.
Similar conclusions can be drawn for other methods (e.g. [17]).

The purpose of the present contribution is to provide a class of numerical schemes
that are high-order in space and time, uniformly asymptotic preserving in a diffu-
sive limit, and applicable to linear and non-linear systems of conservation laws with
stiff source terms. It is designed by coupling intrinsically time and space, as in the
Lax-Wendroff approach [31] for systems of conservation laws, but in the presence of
source [41]. Such an approach does not rely on a classical ODE approach or semi-
discretized equations and it yields an ImEx strategy with a very compact stencil in
space and time. It has the ability to deal properly with boundary conditions and
offers the possibility to conduct fine stability and truncation error analyses. In this
paper, we stick to second order accuracy and only aim at providing stability con-
traints, which are uniform in the small parameter ε. But we do not go fully implicit
on the (potentially) non-linear fluxes. Thus, we do not alleviate the natural parabolic
stiffness limitation of explicit methods for diffusion equations as in [7, 8, 6]. However,
we introduce a novel implicit treatment of the source (Reverse Runge-Kutta methods
presented in Appendix C) and provide an original derivation of l2 and l∞ stability
conditions of the uniformly AP second order scheme in space and time. Thus, it yields
the ability to treat shocks without resorting to limiters in the linear case. For the
first and second order schemes applied to the HHE, we conduct a detailed truncation
error and stability analysis, clarifying which spatial operator are the viable options
compatible with the chosen discrete time structure. We also carefully consider the
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question of boundary conditions and provide numerical test-cases that involve non-
trivial boundary conditions. Our method is then applied to Euler-friction. To our
knowledge, no second order method both in time and space for this set of equations
was provided in the literature. We eventually present a numerical assessment of the
new scheme with a thorough numerical study of smooth and shock solutions for the
HHE, and of smooth, shock solutions as well as a stationary solution with variable in
space relaxation coefficient, showing the ability of the method to capture accurately
the steady state, even if not formally well-balanced (in the sense of [9]).

The paper is organized as follows: Section 2 presents the models and asymptotic
limits we will investigate in the present work. Section 3 introduces relevant numerical
notions as well as recalls the limitations of classical finite volume approach. First and
second order AP ImEx methods are introduced for the HHE and thoroughly studied
in Sections 4 and 5. Methods are then extended to the nonlinear case of Euler-friction
in Section 6 and verified numerically in Section 7.

2. Models. In what follows, we introduce the HHE, a linear model on which the
new methods will be derived and their numerical analysis conducted, as well as the
Euler-friction equations that will stand as our prototype nonlinear model.

2.1. Hyperbolic heat equations. The system of HHE [40, 15, 16, 32] reads:

∂tE +
1

ε
∂xF = 0,(2.1a)

∂tF +
1

ε
∂xE = − σ

ε2
F.(2.1b)

We do not detail here the various related physics (propagation of heat at finite speed,
low-order moment model for radiative transfer modeling [10], or electrical line trans-
mission so-called the telegrapher’s equation).

2.1.1. Goldstein-Taylor model. An equivalent form of Equation (2.1) can be
found in setting u = E + F , v = E − F to obtain the Goldstein-Taylor model [20]:

∂tu+
1

ε
∂xu = − σ

ε2

u− v
2

,(2.2a)

∂tv −
1

ε
∂xv = − σ

ε2

v − u
2

.(2.2b)

This equivalent formulation is particularly convenient to study the stability of numer-
ical methods developed in this paper. The variables u and v can also be seen as the
Riemann invariants of the convective part of equations (2.1).

2.1.2. Boundary conditions. We consider a finite domain of simulation I =
[xL, xR], with xL, xR ∈ R, xL < xR. The question of boundary conditions naturally
arises in this setting. We will consider two types of boundary conditions:

- Periodic boundry conditions: E(xL) = E(xR), F (xL) = F (xR).
- Hybrid Dirichlet-Neumann boundary conditions: imposing a constant Dirich-

let boundary conditions for E, the structure of Equation (2.1) imposes ∂xF =
−ε∂tE = 0, that is homogeneous Neumann boundary conditions on F .

To our knowledge this second case is seldom detailed in the literature, although it
appears indirectly in some exact test-cases used, e.g. in [17, 10].

2.1.3. Energy dissipation. If we consider a smooth solution of Equation (2.1),
we can obtain by multiplying Equation (2.1a) by E and Equation (2.1b) by F :

(2.3) ∂t
(
E2 + F 2

)
+

2

ε
∂x (EF ) = −2σ

ε2
F 2.
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Assuming periodic or hybrid homogeneous Dirichlet-Neumann boundary conditions
and integrating relation (2.3) over Ω we obtain that:

(2.4) ∂t

∫
Ω

(
E2 + F 2

)
(t, x) dx ≤ 0.

We will expect our numerical schemes to obey a discrete equivalent of (2.4), namely
it should feature some form of l2-stability.

2.1.4. Asymptotic regime. A general method to study the asymptotic limit
of a model of the form (1.1) is to use a Chapman-Enskog like approach, see e.g. [17].
It consists in considering the following formal expansion of the state vector w:

(2.5) w = w0 + εw1 +O
(
ε2
)
.

Injecting this expansion into Equation (1.1) yields a hierarchy of equations that cus-
tomarily leads to the limit equation at order zero, that is a close-form equation on w0.
Using expansion (2.5) into (2.1b) yields F0 = 0 (at order O

(
ε−2
)
) and σF1 = ∂xE0

(order O
(
ε−1
)
), which ultimately leads to the diffusive limit:

(2.6) ∂tE0 − ∂x
(

1

σ
∂xE0

)
= 0,

when injected into Equation (2.1a) at order O
(
ε0
)
. This relatively simple linear sys-

tem already remarkably embodies the notion of asymptotic regime, in that it behaves
as an hyperbolic system when ε ∼ 1 but degenerates to a parabolic diffusive limit in
the regime ε → 0. As such it encompasses a significant part of the challenges that
arise when designing numerical methods for systems of the form (1.1) while being
linear and therefore making the study of accuracy and stability properties for newly
elaborated schemes relatively amenable.

2.2. Euler-friction. The second model considered in this paper is that of baro-
tropic Euler equations with high friction:

∂tρ+
1

ε
∂x (ρu) = 0,(2.7a)

∂t (ρu) +
1

ε
∂x
(
ρu2 + p(ρ)

)
= − σ

ε2
ρu,(2.7b)

where ρ is the density of the fluid and u its macroscopic velocity and where we assume
that pressure verifies p′(ρ) > 0 [5]. As compared to HHE, Equation (2.7) introduces
all the difficulties linked with nonlinear hyperbolic systems, such as the onset of shocks
in finite time from regular initial data or the necessity to preserve the invariance of
the convex space of admissible states

{
(ρ, ρu) ∈ R2, ρ ≥ 0

}
.

2.2.1. Linearized equations. It is possible to linearize (2.7) around a solution
ρ0, (ρu)0, considering the perturbed solution ρ = ρ0 + ρ̃ and (ρu)0 + ρ̃u with ρ̃� ρ0

and ρ̃u� (ρu)0, leading to the equations:

∂tρ̃+
1

ε
∂xρ̃u = 0,(2.8a)

∂tρ̃u+
1

ε
∂x
(
2u0ρ̃u+

(
c20 − u2

0

)
ρ̃
)

= − σ
ε2
ρ̃u,(2.8b)

where u0 = (ρu)0 /ρ0 and c0 = p′ (ρ0). One can notice that when u0 = 0 and c0 = 1
equations (2.8) reduce to equations (2.1), by setting E = ρ̃ and F = ρ̃u.
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2.2.2. Asymptotic regime. Using an analogous approach as the one used for
the HHE (2.1), one can derive the diffusive limit when ε→ 0, see e.g. [5]:

(2.9) ∂tρ0 − ∂x
(

1

σ
∂x (p (ρ0))

)
= 0,

which in the isothermal case and with the law of perfect gases, that is p(ρ) = c2ρ,
c > 0, is nearly identical to the diffusive limit (2.6).

3. Numerical basic notions and notations. The new methods are derived
and their properties studied on the HHE. Consequently in this section we introduce,
in a linear framework, the notations used in the rest of this paper. We recall the
notions of stability, truncation and consistency errors for linear numerical schemes.

3.1. Numerical approximation. Let w be a solution of Equation (1.1) over
I ×R+. Finite-volume methods aim at approximating the average of w over the cells
Cj =

[
xj+1/2, xj−1/2

]
at time tn = t0 + n∆t:

(3.1) w̄nj =
1

|Cj |

∫
Cj

w (tn, x) dx,

for 1 ≤ j ≤ N and n ≥ 0, where xj+1/2 = j∆x + xL with a mesh size ∆x =
(xR − xL) / (N + 1) and a time step ∆t > 0 both assumed constant to alleviate no-
tations. The approximation of w̄nj is usually denoted wnj , and the accuracy of a
numerical method is evaluated via its global error : enj = w̄nj − wnj . A method is said
to be of order p in time and q in space if ||enj || = O (∆tp + ∆xq) where || · || is a
suitable norm depending on the expected regularity of the solutions. Here we will
consider the norms || · ||∞ and || · ||2.

3.2. Upwind scheme. Our prototype linear finite-volume scheme is derived
using upwind fluxes and centered source terms for (2.2) [10]. For HHE (2.1), it reads:

En+1
j − Enj

∆t
+
Fnj+1 − Fnj−1

2∆x
− ∆x

2ε

Enj+1 − 2Enj + Enj−1

∆x2
= 0,(3.2a)

Fn+1
j − Fnj

∆t
+
Enj+1 − Enj−1

2∆x
− ∆x

2ε

Fnj+1 − 2Fnj + Fnj−1

∆x2
= − σ

2ε2
Fnj .(3.2b)

On this simple linear model all classical finite volume approximated fluxes (upwind,
Roe, Rusanov, HLL) yield the exact same scheme, hence our choice of the upwind
scheme as an example and reference to be later compared with AP-schemes.

3.3. Boundary conditions. The computation of En+1
1 , En+1

N , Fn+1
1 and Fn+1

N

in the scheme (3.2) involves the values En+1
0 , En+1

N+1, Fn+1
0 qnd Fn+1

N+1 in ghost-cells.
To impose periodic boundary conditions the natural choice is:

(3.3) En0 = EnN , Fn0 = FnN , EnN+1 = En1 , FnN+1 = Fn1 .

A second order discrete form of the hybrid Dirichlet-Neumann boundary conditions
presented in Subsection 2.1.2 reads:

(3.4)
En0 + En1

2
= EL,

Fn1 − Fn0
∆x

= 0,
EnN + EnN+1

2
= ER,

FnN+1 − FnN
∆x

= 0,

where EL and ER are the values imposed on E at the left and right boundaries.
Both these sets of boundary conditions are compatible with any scheme for the

hyperbolic heat equations (2.1) that are presented in this paper.
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3.4. Convergence. In the linear framework, convergence is obtained through
Lax theorem (see e.g. [30]) by showing that the scheme is consistent and stable.

3.4.1. Stability. This discretization of (2.1) yields the l2-diminishing property:

(3.5)
∑
j

((
En+1
j

)2
+
(
Fn+1
j

)2)
∆x ≤

∑
j

((
Enj
)2

+
(
Fnj
)2)

∆x.

This automatically grants the l2-stability, that is:

∃K > 0,∀n ≥ 0,
∑
j

((
Enj
)2

+
(
Fnj
)2)

∆x ≤ K
∑
j

((
E0
j

)2
+
(
F 0
j

)2)
∆x.

Theorem 3.1. The upwind scheme (3.2) is l2-diminishing if the condition:

(3.6)
∆t

ε∆x
+
σ∆t

ε2
≤ 1

is satisfied or equivalently ∆t ≤ ∆tmax with ∆tmax = (ε2∆x)/(ε+ σ∆x).

See [10] for a proof of this result. This very strict stability constraint can be alleviated
a little by using an implicit source term but remains of the order ∆tmax = O (ε∆x).

3.4.2. Consistency. Consistency is studied via truncation error analysis. The
truncation error is defined by εnj = w̄n+1

j − wn+1
j , where wn+1

j is the approximation

yielded by the scheme at time tn+1 under the assumption that wnj = w̄nj is exact at
previous time tn. For a stable scheme, the truncation error is linked to the global
error via a relation of the form ||enj || ≤ C

∑n
k=0 ||εkj ||. Consequently, we need εnj =

∆tO (∆tp + ∆xq) for the scheme to be order p and q respectively in time and space.
An equivalent notion that allows to alleviate computations is the consistency

error cnj = εnj /∆t. Formally, the consistency error can be seen as the error obtained
by injecting the exact solution of problem (2.1) into the numerical scheme (3.2).

Lastly, as smooth solutions are considered in consistency studies, we use the
equivalent formalism of finite difference for the sake of legibility. Basically, we replace
w̄nj by w (tn, xj) with xj = (j + 1/2) ∆x in error terms.

Theorem 3.2. The consistency error for the upwind scheme (3.2) satisfies:

(3.7) cnj (E) = O
(

∆t+
∆x

ε

)
, cnj (F ) = O

(
∆t+ ∆x+

∆x2

ε

)
.

Hence, the global error of the upwind scheme scales as enj = O (∆t+ ∆x (1 + 1/ε)).
The proof is similar to the one proposed in [10]. We conclude with a few remarks:

- Theorems 3.1 and 3.2 assess the claim that classical finite volume methods
are inaccurate and come at high computational cost in the diffusive regime.

- From now on, instead of considering regimes defined by ε → 0 or ε ∼ 1, as
in the continuous case, we rather consider the regimes ε� ∆x, ε ∼ ∆x and
∆x� ε, more suitable to the discrete formalism.

4. First-order AP-schemes. We first present our formalism, that paves the
way for the second order and nonlinear extensions of the AP-methods, on a first order
AP-scheme applied to HHE (2.1). At order one, various time integration methods
(Runge-Kutta, multi-step, Taylor series LW) are nearly interchangeable and conse-
quently this formalism is similar to the one used in [1, 7].
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4.1. Principle. Let us write the general structure of the scheme we consider:

En+1
j − Enj

∆t
+

1

ε
[∂xF ]

n+1
j = 0,(4.1a)

Fn+1
j − Fnj

∆t
+

1

ε
[∂xE]

n+1
j = − σ

ε2
Fn+1
j ,(4.1b)

where [∂xE]
n+1
j and [∂xF ]

n+1
j must be consistent approximations of ∂xE and ∂xF

at time tn+1 and position xj . This structure encompasses an implicit version of
Scheme (3.2) where fluxes and source are approximated at time tn+1 instead of tn.
The reason for approximating ∂xF at time tn+1 is that it features some fast scales
and needs to be implicit in order to obtain a CFL stability condition less restrictive
than that of the explicit upwind scheme.

The main difference with other ImEx schemes found in the literature [1, 7] is

that we consider also [∂xE]
n+1
j instead of [∂xE]

n
j in Equation (4.1b). We did so for

two reasons: to make the scheme more symmetric, which will make stability analysis
significantly simpler, and to anticipate the fact that any part of the flux can contain
fast scales in the general case (1.1), and more particularly for (2.7).

A fully implicit scheme would come at great computational cost as one would
have to solve linear systems. The flux terms in (4.1) are defined through a formal
discrete equivalent of the partial derivative with respect to space of Equation (2.1):

[∂xE]
n+1
j − [∂xE]

n
j

∆t
+

1

ε
[∂xxF ]

n
j = 0,(4.2a)

[∂xF ]
n+1
j − [∂xF ]

n
j

∆t
+

1

ε
[∂xxE]

n
j = − σ

ε2
[∂xF ]

n+1
j .(4.2b)

with explicit diffusion terms and an implicit source term. The reason for this choice
is in the strength of this ImEx approach: it comes at the cost of a scalar linear im-
plicit scheme, that is almost at explicit cost, but with significantly improved stability
properties.

Injecting Equation (4.2) into Equation (4.1), we obtain:

En+1
j − Enj

∆t
+
M

ε
[∂xF ]

n
j −

M∆t

ε2
[∂xxE]

n
j = 0,(4.3a)

Fn+1
j − Fnj

∆t
+
M

ε
[∂xE]

n
j −

M∆t

ε2
[∂xxF ]

n
j = −σM

ε2
Fnj ,(4.3b)

where M = 1/(1 + (σ∆t)/ε2). This factor M embodies the effect of our implicit step
(4.2) at the cost of an explicit step. When ∆t� ε, it behaves as a perturbation of one
of order one in ∆t: M = 1 +O (∆t). However, in regimes where ε� ∆t, it follows a
scaling M = O

(
ε2
)

so the M factor will help control terms that scale as ε−1 or ε−2.
We will systematically discretize the second order derivative in space terms using

the classical centered approximations:

[∂xxE]
n
j =

Enj+1 − 2Enj + Enj−1

∆x2
, [∂xxF ]

n
j =

Fnj+1 − 2Fnj + Fnj−1

∆x2
.

The choice of discretization for [∂xE]
n
j and [∂xF ]

n
j is critical to recover uniform

accuracy with respect to ε. We can use for instance the upwind or centered discretiza-
tion. Ultimately our choice lie in a trade-off between accuracy and stability. In what
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follows, we discuss such options, showing that surprisingly the centered approximation
is a viable option while using an upwind approximation of the fluxes, as in (3.2), is not
accurate in intermediate regimes where ∆x ∼ ε (this case is detailed in Appendix B).

4.2. Centered discretization of the fluxes. If we use center discretization:

[∂xE]
n
j =

Enj+1 − Enj−1

2∆x
, [∂xF ]

n
j =

Fnj+1 − Fnj−1

2∆x
,

we obtain the following first order scheme, afterward called ImEx1-ctr scheme:

En+1
j − Enj

∆t
+
M

ε

Fnj+1 − Fnj−1

2∆x
− M∆t

ε2

Enj+1 − 2Enj + Enj−1

∆x2
= 0,(4.4a)

Fn+1
j − Fnj

∆t
+
M

ε

Enj+1 − Enj−1

2∆x
− M∆t

ε2

Fnj+1 − 2Fnj + Fnj−1

∆x2
= −M σ

ε2
Fnj .(4.4b)

4.2.1. l∞-stability.

Theorem 4.1. The ImEx1-ctr scheme (4.4) together with periodic (3.3) or hybrid
(3.4) boundary conditions is l∞-diminishing for the variables u, v, that is:

(4.5) max
1≤j≤N

(∣∣un+1
j

∣∣ , ∣∣vn+1
j

∣∣) ≤ max
1≤j≤N

(∣∣unj ∣∣ , ∣∣vnj ∣∣) ,
under the condition:

(4.6) ∆tmin :=
ε∆x

2
≤ ∆t ≤ ∆tmax :=

σ∆x2

4

1 +

√
1 + 2

(
4ε
σ∆x

)2
2

.

Proof. To conduct the stability analysis, we switch to variables u = E + F and
v = E − F , for which the scheme (4.4) can be rewritten:

un+1
j = λ1u

n
j + λ2u

n
j+1 + λ3u

n
j−1 + λ4v

n
j , λ1 =1− 2M∆t2

ε2∆x2
− Mσ∆t

2ε2
,(4.7a)

vn+1
j = λ1v

n
j + λ2v

n
j−1 + λ3v

n
j+1 + λ4u

n
j , λ2 =

M∆t2

ε2∆x2
− M∆t

2ε∆x
,(4.7b)

λ3 =
M∆t2

ε2∆x2
+
M∆t

2ε∆x
, λ4 =

Mσ∆t

2ε2
.

One notices that λ1 + λ2 + λ3 + λ4 = 1. Therefore we can deduce from Equa-
tion (4.7) that the quantities un+1

j and vn+1
j at time tn+1 are convex combinations

of the quantities unj and vnj at time tn so long as we have λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0
and λ4 ≥ 0. We systematically have λ3 ≥ 0 and λ4 ≥ 0. Condition λ3 ≥ 0 leads to
∆t ≥ ε∆x/2 = ∆tmin. Condition λ1 ≥ 0 breaks down to the study of the domain
of positivity of a second-order polynomial in ∆t, ultimately yielding ∆tmax such as
defined in (4.6).

Under these conditions, we can express un+1
j and vn+1

j as convex combination of

un+1
j and vn+1

j and consequently we have the discrete maximum principle:

min
0≤j≤N+1

(
unj , v

n
j

)
≤ min

1≤j≤N

(
un+1
j , vn+1

j

)
≤ max

1≤j≤N

(
un+1
j , vn+1

j

)
≤ max

0≤j≤N+1

(
unj , v

n
j

)
,

where we recall that indexes j = 0, N + 1 stand for the ghost cells used to enforce
boundary conditions. Under periodic boundary conditions (3.3) we have un0 = unN ,
unN+1 = un1 , vn0 = unN and vnN+1 = un1 . Meanwhile under hybrid boundary conditions
(3.4), we have un0 = −vn1 , unN+1 = −vnN , vn0 = −un0 and vnN+1 = −unN . In both case
(4.5) follows, which concludes the proof.
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A few remarks can be drawn from the previous studies:
- One observes that ∆tmax is always strictly bigger than ∆tmin:

(4.8) ∆tmax =
σ∆x2

4

1 +

√
1 + 2

(
4ε
σ∆x

)2
2

>
σ∆x2

4

√
2
(

4ε
σ∆x

)2
2

=
√

2∆tmin.

It is always possible to make the ImEx1-ctr scheme stable irrespectively of ε.
- In the regime ε� ∆x we have the classical parabolic stability condition:

(4.9) ∆tmax ∼
ε→0

σ∆x2

4
.

In the regime ∆x� ε, we have a classical hyperbolic stability conditions:

(4.10) ∆tmax ∼
∆x→0

ε∆x√
2
.

- The numerical diffusion in scheme (4.4), essential to stability, scales as ∆t.
This explains the need for a lower bound in ∆t to avoid suppressing the
stabilizing mechanism of the scheme. Possible ways of lifting this restriction
are discussed at the end of this section.

- The l∞-stability is in general stronger than the l2-stability. The convex com-
bination form (4.7) ensures that the scheme does not produce any spurious
numerical oscillations around discontinuities. This formulation also allows to
retrieve the energy inequality (3.5).

4.2.2. l2-stability. Under a slightly less limiting condition, l2-stability follows.

Theorem 4.2. The ImEx1-ctr scheme (4.4) together with periodic boundary con-
ditions (3.3) is l2-diminishing under the condition:

(4.11) ∆t ≤ ∆tmax =
σ∆x2

4

1 +

√
1 +

(
4ε
σ∆x

)2
2

.

Proof. Let us first notice that for all n ≥ 0, 1 ≤ j ≤ N :(
Enj
)2

+
(
Fnj
)2

=
1

4

((
unj + vnj

)2
+
(
unj − vnj

)2)
=

1

2

((
unj
)2

+
(
vnj
)2)

,

or in other words ||Enj ||2l2 + ||Fnj ||2l2 = 1
2

(
||unj ||2l2 + ||vnj ||2l2

)
so we can show that (3.5)

holds for variables u and v. Because we assume periodic boundary conditions we only
need to show that the Fourier modes ûnj = ûei(nω∆t−jk∆x) and v̂nj = v̂ei(nω∆t−jk∆x),

with ω, k ∈ R are not amplified in l2-norm by the scheme. We have:

wn+1
j = Awnj , wnj =

(
ûnj
v̂nj

)
, A =

(
1− a− ic− b b

b 1− a+ ic+ b

)
,

a =
4M∆t2

ε2∆x2
sin2

(
k∆x

2

)
, c =

M∆t

ε∆x
sin (k∆x) , b =

σM∆t

2ε2
.

We can separate the hyperbolic structure from source and diffusion terms:

A =
1

2
(A1 +A2) , A1 =

(
1− 2a− i2c 0

0 1− 2a+ i2c

)
, A2 =

(
1− 2b 2b

2b 1− 2b

)
.



10 L. REBOUL, T. PICHARD, AND M. MASSOT

Matrix A2 is self-adjoint, it can be diagonalized in an orthogonal basis and conse-
quently we have ||A2|| = ρ (A2) = |1− 4b|. Because b is non-negative it is equivalent
to −1 ≤ 1− 4b or 2b ≤ 1, i.e. M σ∆t

ε2 ≤ 1, which always holds by definition of M .

The matrix A1 is diagonal so that we have ||A1||2 = (1− 2a)
2

+ (2c)
2
. Setting

M ′ = 2M for convenience in our notations, we have:

||A1||2 =1−M ′ 4∆t2

ε2∆x2
sin2

(
k∆x

2

)(
2−M ′

(
1− sin2

(
k∆x

2

)(
1− 4∆t2

ε2∆x2

)))
.

Consequently in order to satisfy the condition ||A1||2 ≤ 1 we simply need the condi-
tion:

2−M ′
(

1− sin2

(
k∆x

2

)(
1− 4∆t2

ε2∆x2

))
≥ 0.

This condition holds if (4∆t2)/(ε2∆x2) ≤ 1, so we consider the case (4∆t2)/(ε2∆x2) >
1 in what follows. Using the definition of M , this last condition reduces to finding the
positive root of a second-order polynomial equation, leading to (4.11), which concludes
the proof.

Remark 4.3. The first noticeable point here is that there is no ∆tmin for the l2-
stability. The second is that even if the two maximum time steps (4.6) and (4.11) are
equivalent in the regime ε � ∆x, they differ by a factor

√
2 in the regime ∆x � ε.

This is due to the fact the inequality ||A2|| ≤ 1 saturates only in the regime ε� ∆x
and is far from optimal in the regime ∆x � ε. The actual limit on the time step
∆tmax for the l2-stability is likely to be the same as that of l∞-stability.

4.2.3. Accuracy. Having shown stability, we can demonstrate that accuracy is
maintained throughout every regime. It is called uniformly asymptotic preserving.

Theorem 4.4. Suppose that (4.11) holds. Then, the ImEx1-ctr scheme (4.4)
provides cnj (E) = O(∆x) and cnj (F ) = O(∆x) independently on ε.

Proof. We make all necessary assumptions on the regularity of the solution (E,F )
to (2.1) in this proof, and by an abuse of notation, we use the generic notation
wnj = w(tn, xj). The consistency error on E reads:

cnj (E) =∂tE
n
j +

M

ε
∂xF

n
j −

M∆t

ε2
∂xxE

n
j

+O (∆t‖∂ttE‖∞) +O
(
M∆x2

ε
‖∂xxxF‖∞

)
+O

(
M∆t∆x2

ε2
‖∂xxxxE‖∞

)
.(4.12)

By hypothesis, ‖∂xxxF‖∞ = ε‖∂txxE‖ = O (ε) and ∆t = O (∆x) and consequently
the first two terms in Equation (4.12) are O(∆x). Furthermore, M∆t/ε2 ≤ 1/σ and
consequently the last term is O(∆x2). Factorizing by M and using (2.1b) provides:

cnj (E) =
O(∆x)

M

(
∂tE

n
j +

1

ε

(
∂xF

n
j −

∆t

ε
∂xxE

n
j −

σ∆t

ε
∂xF

n
j

))
=

O(∆x)
M

(
∂tE

n
j − ∂tEn+1

j +O
(

∆t2

ε

))
=

O(∆x)
O
(
M∆t+

M∆t2

ε

)
.

where =
O(∆x)

denotes that we omited the terms that have already been shown to

be uniformly of order O (∆x) in all regimes. Using analogous argument, we have
M∆t2/ε = O (ε∆t/σ) so that the first order accuracy is achieved in all regimes.
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The consistency on F reads:

cnj (F ) =∂tF
n
j +

M

ε
∂xE

n
j −

M∆t

ε2
∂xxF

n
j +M

σ

ε2
Fnj

+O (∆t‖∂ttF‖∞) +O
(
M∆x2

ε
‖∂xxxE‖∞

)
+O

(
M∆t∆x2

ε2
‖∂xxxxF‖∞

)
.(4.13)

The first and last terms of Equation (4.13) can been dealt with using the same ap-
proach as before. Regarding the middle term, we consider each regime: If ε � ∆x,
then ∆t ≈ ∆x2 and M ≈ ε2/∆t which leads to M∆x2/ε ≈ ε� ∆x. If ε ≈ ∆x, then
M∆x2/ε ≤ ∆x2/ε ≈ ∆x. If ε� ∆x, then ∆x ≤ ε and consequently M∆x2/ε ≤ ∆x.
Then the consistency error reads:

cnj (F ) =
O(∆x)

M

(
∂tF

n
j +

1

ε

(
∂xE

n
j −

∆t

ε
∂xxF

n
j

)
+
σ

ε2

(
Fnj + ∆t∂tF

n
j

))
=

O(∆x)
M

(
∂tF

n
j +

1

ε
∂xE

n+1
j +

σ

ε2
Fn+1
j +O

(
∆t2

ε
+
σ∆t2

ε2

))
=

O(∆x)
O
(
M∆t+

M∆t2

ε
+
σM∆t2

ε2

)
.

Using that σM∆t2/ε2 ≤ ∆t, we retrieve order one accuracy in all regimes.

Remark 4.5. In this proof, even though second order centered discretization of
the fluxes have been used, the error term O

(
M∆x2/ε

)
degenerates to order 1 in the

regime ∆x ≈ ε. This is not an issue since we only aim at first order accuracy. This
aspect will be dealt with in Section 5 for the second order scheme.

4.3. Alternative fluxes. We have shown that scheme (4.4) possesses strong
robustness property under conditions (4.6); however, the presence of a lower bound
∆tmin to ensure that shock do not trigger spurious oscillations can be seen as too
restrictive. It is possible to remove this minimal time step condition by choosing
more diffusive approximations for the fluxes. We suggest the following:

[∂xF ]
n+1
j = Fn+1

j+ 1
2

− Fn+1
j− 1

2

, Fn+1
j+ 1

2

=
1

2

(
Fn+1
j + Fn+1

j + λj+ 1
2
(Enj+1 − Enj )

)
,

(4.14a)

[∂xE]
n+1
j = En+1

j+ 1
2

− En+1
j− 1

2

, En+1
j+ 1

2

=
1

2

(
En+1
j + En+1

j + λj+ 1
2
(Fnj+1 − Fnj )

)
,

(4.14b)

where λj+1/2 = max
(
|Fn

j+1|
En

j+1
,
|Fn

j |
En

j

)
. This eventually leads to:

En+1
j − Enj

∆t
+
M

ε

Fnj+1 − Fnj−1

2∆x
− M∆t

ε2

Enj+1 − 2Enj + Enj−1

∆x2
(4.14c)

− M∆x

2ε

λj+1/2

(
Enj+1 − Enj

)
− λj−1/2

(
Enj − Enj−1

)
∆x2

= 0,

Fn+1
j − Fnj

∆t
+
M

ε

Enj+1 − Enj−1

2∆x
− M∆t

ε2

Fnj+1 − 2Fnj + Fnj−1

∆x2
(4.14d)

− M∆x

2ε

λj+1/2

(
Fnj+1 − Fnj

)
− λj−1/2

(
Fnj − Fnj−1

)
∆x2

= −M σ

ε2
Fnj .
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The diffusion term
λj+1/2M∆x

2 ∂xxE is now controlled in all regimes since λj+1/2 scales
as |F | = O (ε). Furthermore, as F ∼ ε∂xE/σ, the factor λj+1/2 vanishes where the
variation of E are small. In such areas, the scheme (4.14) effectively reduces to the
ImEx1-ctr scheme (4.4). On the contrary in the vicinity of discontinuities this scheme
reduces to an upwind-like scheme (see (B.1)). Rigorous proofs of these assertions are
significantly more involved than what has been done previously and consequently they
are only verified numerically.

5. Second-order AP-schemes. In line with the introduced formalism, the sec-
ond order scheme has a general structure of the form:

En+1
j − Enj

∆t
+

1

ε
[∂xF ]

n+1/2
j = 0,(5.1a)

Fn+1
j − Fnj

∆t
+

1

ε
[∂xE]

n+1/2
j = − σ

ε2
F
n+1/2
j .(5.1b)

5.1. Principle. A naive approach would be to set:

[∂xF ]
n+1/2
j − [∂xF ]

n
j

∆t/2
= −1

ε
[∂xxE]

n
j −

σ

ε2
[∂xF ]

n+1/2
j ,(5.2a)

[∂xE]
n+1/2
j − [∂xE]

n
j

∆t/2
= −1

ε
[∂xxF ]

n
j ,(5.2b)

F
n+1/2
j =

Fn+1
j + Fnj

2
,(5.2c)

leading to the scheme:

En+1
j − Enj

∆t
+
M1/2

ε
[∂xF ]

n
j −

M1/2∆t

ε
[∂xxE]

n
j = 0,(5.3a)

Fn+1
j − Fnj

∆t
+
M1/2

ε
[∂xE]

n
j −

M∆t

ε
[∂xxF ]

n
j = −

σM1/2

ε2
Fnj ,(5.3b)

with M1/2 = 1/(1 + σ∆t/(2ε2)). Unfortunately, scheme (5.3) can be shown to have
stability constraints in either l2 or l∞ norms that scale as ∆tmax = O (ε∆t). The idea
is that our current choice of source term (5.2c) is not “implicit enough” and we have
to shift it somehow a little bit more toward time tn+1. We introduce a Reverse Runge-
Kutta methodology1 in order to treat the source term “as implicitly as possible”. A
brief literature review and synthetic presentation of this approach for second order can
be found in Appendix C. Going for second order with nice A-stability and L-stability
properties, it boils down to reach time tn+1/2 in (5.2c) from time tn+1:

F
n+1/2
j = Fn+1

j − ∆t

2
[∂tF ]

n+1
j

= Fn+1
j +

∆t

2ε

(
[∂xE]

n+1
j +

σ

ε
Fn+1
j

)
=

(
1 +

σ∆t

2ε2

)
Fn+1
j +

∆t

2ε
[∂xE]

n
j −

∆t2

2ε2
[∂xxF ]

n
j .(5.4)

1Called reflected in [11] or adjoint in [21], it is investigated in [27, 36] (See Appendix C).
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To the knowledge of the authors, this step differs essentially from other classes of
ImEx schemes found in the literature [1, 7]. It is important for stability reasons that
a similar backward step be used for the fluxes, starting from tn+1/2 and coming back
to tn because the term [∂xxE]

n
j cannot be brought to tn+1/2 without using a term of

the form [∂xxxF ]
n
j , which would increase the stencil:

[∂xF ]
n+1/2
j − [∂xF ]

n
j

∆t/2
= −1

ε
[∂xxE]

n
j −

σ

ε2

(
[∂xF ]

n+1/2
j − ∆t

2
[∂txF ]

n+1/2
j

)
= −1

ε
[∂xxE]

n
j −

σ

ε2

(
[∂xF ]

n+1/2
j +

∆t

2ε

(
[∂xxE]

n
j +

σ

ε
[∂xF ]

n+1/2
j

))
= −1

ε

(
1 +

σ∆t

2ε2

)
[∂xxE]

n
j −

σ

ε2

(
1 +

σ∆t

2ε2

)
[∂xF ]

n+1/2
j .(5.5)

For [∂xE]
n+1/2
j , we keep the formula (5.2b). Regarding the choice of discrete operator

for the fluxes [∂xE]
n
j , [∂xF ]

n
j we have shown in Section 4 that the centered discretiza-

tion is a valid choice and we use it as a reference in this section. Using these different
elements we obtain the ImEx2-ctr second-order centered scheme:

En+1
j − Enj

∆t
+
M1

ε

Fnj+1 − Fnj−1

2∆x
− M+

1 ∆t

2ε2

Enj+1 − 2Enj + Enj−1

∆x2
= 0,(5.6a)

Fn+1
j − Fnj

∆t
+
M2

ε

Enj+1 − Enj−1

2∆x
− M+

2 ∆t

2ε2

Fnj+1 − 2Fnj + Fnj−1

∆x2
= −σM2

ε2
F̃nj ,(5.6b)

M1 =
1

1 + σ∆t
2ε2

(
1 + σ∆t

2ε2

) , M+
1 =

1 + σ∆t
2ε2

1 + σ∆t
2ε2

(
1 + σ∆t

2ε2

) ,
M2 =

1 + σ∆t
2ε2

1 + σ∆t
ε2

(
1 + σ∆t

2ε2

) , M+
2 =

1 + σ∆t
ε2

1 + σ∆t
ε2

(
1 + σ∆t

2ε2

) , F̃nj =
Fnj+1 + 4Fnj + Fnj−1

6
.

The choice of F̃nj will be justified during the accuracy study. Meanwhile, we can see

that factors M1, M+
1 , M2 and M+

2 are essentially perturbations of factor M , allowing
for a finer control. We emphasize that the second order method has the same overall
structure as the first order one. In particular it is more compact in space than other
ImEx approaches based on classical RK or LM methods [1, 8]. We now show that it
is endowed with good stability and accuracy properties in all regimes.

5.2. l∞-stability. The ImEx2-ctr scheme (5.6) is no longer symmetric in E and
F , we introduce the variables ũ =

√
M2E +

√
M1F and ṽ =

√
M2E −

√
M1F that

diagonalize the hyperbolic part of the scheme. We can see that in regimes where
∆t� ε, we have ũ→ u and ṽ → v.

Theorem 5.1. The ImEx2-ctr scheme (5.6) together with periodic (3.3) or hybrid
(3.4) boundary conditions is l∞-diminishing for the variables ũ, ṽ provided that:

(5.7) ∆tmin := ε∆x+
σ∆x

6
≤ ∆t ≤ ∆tmax :=

σ∆x2

9/2

1 +

√
1 + 9

2

(
2ε
σ∆x

)2
2

.

Proof. The proof is similar to that of Theorem 4.1. Transposing equations (5.6)
to the variables û and v̂ and reordering the terms in the manner of Equation (4.7) we
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obtain the stability conditions:

1−
M+

+ ∆t2

ε2∆x2
− M2σ∆t

3ε2
≥ 0,(5.8a)

M+
+ ∆t2

2ε2∆x2
− M̃∆t

2ε∆x
− M2σ∆t

2× 6ε2
≥ 0,(5.8b)

M2σ∆t

3ε2
−
M+
−∆t2

ε2∆x2
≥ 0,(5.8c)

with M̃ =
√
M1M2, M+

± =
(
M+

1 ±M
+
2

)
/2 > 0. If M+

+ ∆t2/(ε2∆x2) ≤ 2/3 and
M2σ∆t/(3ε2) ≤ 1/3 then the first condition (5.8a) holds. By construction, the latter
always holds. For the first, one computes:

M+
1 =

1 + σ∆t
ε2

3
4 +

(
1
2 + σ∆t

2ε2

)2 ≤ 1 + σ∆t
ε2(

1
2 + σ∆t

2ε2

)2 ≤ 4

1 + σ∆t
ε2

,(5.9)

M+
2 =

1 + σ∆t
ε2

1
2 +

(
1√
2

+ σ∆t√
2ε2

)2 ≤
1 + σ∆t

ε2(
1√
2

+ σ∆t√
2ε2

)2 =
2

1 + σ∆t
ε2

.(5.10)

In the end we retrieve the bound M+
+ = 1

2

(
M+

1 +M+
2

)
≤ 3/(1 + (σ∆t)/(ε2)). The

study then reduces again to finding the root of a second-order polynomial equation
and we find ∆tmax as defined in (5.7). The second condition (5.8b) holds provided
that:

∆t ≥ ∆tmin := ε∆x+
σ∆x

6
≥ M̃

M+
+

ε∆x+
M2

M+
+

σ∆x2

6
,

since M̃/M+
+ ≤ 1 and M2/M

+
+ ≤ 1. Finally the last condition (5.8c) is equivalent to:

3

8

σ∆t
ε2(

1 + σ∆t
2ε2

) (
1 + σ∆t

2ε2

(
1 + σ∆t

2ε2

)) ∆t2

ε2∆x2
≤ 1.

This condition is verified if ∆t ≤ 2
3σ∆x2 or if ∆t ≤ 2

√
2
3ε∆x. One of theses two

upper limits is always bigger than ∆tmax so it is not restrictive.

Remark 5.2. It is possible that the lower and upper bounds collide in the regimes
∆x ≈ ε and ∆x � ε. This is due to the fact that the proposed ∆tmin and ∆tmax
are not actual solutions of equations associated with conditions (5.8a) and (5.8b).
However numerically solving these equations, we have found that in practice we always
obtain ∆tmax > ∆tmin for the actual solutions of (5.8a) and (5.8b).

5.3. l2-stability. We also have a lower-bound-free result for the l2-norm.

Theorem 5.3. The ImEx1-ctr scheme (4.4) together with periodic boundary con-
ditions (3.3) is l2-diminishing for variables ũ and ṽ under the condition:

(5.11) ∆t ≤ ∆tmax =
σ∆x2

6

1 +

√
1 + 6

(
2ε

σ∆x2

)2
2

.

Proof. As we use periodic boundary conditions, we study again the Fourier modes
ˆ̃unj = ˆ̃uei(nω∆t−jk∆x) and ˆ̃vnj = ˆ̃vei(nω∆t−jk∆x). The scheme writes wn+1

j = Awnj ,
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with:

wnj =

(
ˆ̃unj
ˆ̃vnj

)
, A =

(
1−M+

+ a− iM̃c−M2b M2b−M−− a
M2b−M−− a 1−M+

+ a+ iM̃c−M2b

)
,

a =
2∆t2

ε2∆x2
sin2

(
k∆x

2

)
, c =

∆t

ε∆x
sin (k∆x) , b =

2 + cos (k∆x)

3

σ∆t

2ε2
.

We split the matrix A into A = 1
2 (A1 +A2) where:

A1 =

(
1− 2M+

+ a− 2iM̃c 0

0 1− 2M+
+ a+ 2iM̃c

)
,

A2 =

(
1− 2M2b 2M2b− 2M+

−a
2M2b− 2M+

−a 1− 2M2b

)
.

Because A1 is a diagonal matrix we have ||A1||2 =
(
1− 4aM+

+

)2
+
(

4M̃
)2

. Thus,

setting M ′+ = 2M1 and M̃ ′ = 2M̃ ′, we obtain:

||A1||2 = 1−M ′+
4∆t2

ε2∆x2
sin2

(
k∆x

2

)
×1−M ′+

( M̃ ′

M ′+

)2

− sin2

(
k∆x

2

)( M̃ ′

M ′+

)2

− ∆t2

ε2∆x2

 .

By construction, we have M̃ ′ ≤M ′+. We want the following condition to hold:

1−M ′+

( M̃ ′

M ′+

)2

− sin2

(
k∆x

2

)( M̃ ′

M ′+

)2

− ∆t2

ε2∆x2

 ≥ 0.

When ∆t2

ε2∆x2 ≤ M̃ ′

M ′+
≤ 1 this condition is verified. Now we consider the case where

∆t2

ε2∆x2 ≥ M̃ ′

M ′+
. Then the condition holds if:

1 +
σ∆t

ε2
≥ 6

( M̃ ′

M ′+

)2

−

( M̃ ′

M ′+

)2

− ∆t2

ε2∆x2


where we have used the fact that M ′+ = 2M+

+ and the inequality M+
+ ≤ 3/(1 +

σ∆t/(ε2)). In the end this leads to 1 + σ∆t/(ε2) ≥ 6∆t2/(ε2∆x2), which eventually
leads to condition (5.11).

5.4. Accuracy. The ImEx2-ctr is uniformly AP as shown in the following theo-
rem. The proof is similar to that of Theorem 4.4 but it is more technical and is thus
presented in Appendix A for the sake of legibility.

Theorem 5.4. Suppose that (5.7) and (5.11) holds. Then the ImEx2-ctr scheme
(5.6) provides cnj (E) = O(∆x2) and cnj (F ) = O(∆x2) independently of ε.

5.5. Alternative fluxes: MUSCL reconstruction. The ImEx2-ctr scheme
(5.6) has a restrictive stability condition in the regimes where ε ≤ ∆x. This means
that the interval between upper and lower bounds on ∆t, to ensure that no spurious
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oscillations appear in the vicinity of discontinuities, almost collapses. However the
use of a MUSCL method with customary approximation of the fluxes (Rusanov, HLL
or Roe) suffers accuracy loss in the regime ε ≈ ∆x in a similar manner to what occurs
with the first order scheme. We circumvent this and modify scheme (4.14) (which
does not lose accuracy in this regime) with λj+ 1

2
= 0 in (4.14a) (no diffusion) and

λj+ 1
2

= 1 with a MUSCL-like reconstruction (see for instance [38]) in (4.14b). Since
the implicit flux F is re-injected in the E equation, the scheme eventually achieves
second order accuracy in both unknowns. The slopes in this reconstruction are limited
using a minmod limiter to preserve stability. This scheme is afterward referred to as
ImEx2-minimod. Numerical evidence of the relevance of these choices are presented
in Section 7.

6. Euler-friction. In this section, we adapt the schemes ImEx1-ctr (4.4) and
ImEx2-ctr (5.6) to barotropic Euler-friction (2.7) that reads Equation (1.1) with:

(6.1) w =

(
ρ
ρu

)
, f (w) =

(
ρu

ρu2 + p (ρ)

)
, S (w) = Bw, B =

(
0 0
0 1

)
.

with p′ (ρ) > 0. We no longer assume that σ is constant, it may depend on space: σ(x),
leading to a steady solution for long times for which ρ can have arbitrary complex
shape unlike in the σ-constant case where it must be linear. Furthermore, we assume
that the flux is homogeneous, i.e. f(w) = A(w)w where A(w) is the Jacobian of f ,
and more specifically we consider p(ρ) = Cρι. The homogeneity of the flux, essentially
depending on the choice of equation of state for the pressure term, is verified for a
wide variety of models (see for instance [19]), including the full set of Euler equations.

6.1. First-order AP-scheme. We recall the full structure of the scheme:

(6.2)
wn+1
j −wn

j

∆t
+

1

ε
[∂xf (w)]

n+1
j = −B

ε2
σjw

n+1
j .

We need to design the term [∂xf (w)]
n+1
j . Assuming sufficient regularity, we have:

∂tf (w) = A (w) ∂tw = −1

ε
A (w) ∂xf (w)− σ

ε2
A (w)Bw.

Formally, the identity [f (w)]
n+1
j = [f (w)]

n
j + ∆t [∂tf (w)]

n
j is rewritten:

(6.3) [f (w)]
n+1
j = [f (w)]

n
j −

∆t

ε
[(A(w)∂xf (w))]

n
j −

∆tσj
ε2

[(A(w)Bw)]
∗
j ,

where the flux term is chosen explicit and the source term is chosen of the form:

[A(w)Bw]
∗
j = A(wn

j )Bw∗j ,(6.4)

w∗j = wn
j −

∆t

ε
[∂xf (w)]

n
j −

∆tσj
ε2

Bw∗j = IMj

(
wn
j −

∆t

ε
[∂xf (w)]

n
j

)
,

with IMj = Diag(1,Mj) and Mj = 1/(1 + σj∆t/ε
2) as in (4.3). This corresponds to

fixing the non-linear part at time tn explicit and the linear part at time tn+1 computed
using (6.2) with explicit fluxes. All together, using that A(w)w = f(w) and applying
(formally) the space derivative to (6.3) leads to:

[∂xf (w)]
n+1
j = [∂xfM (w)]

n
j −

∆t

ε
[∂x (AM (w)∂xf (w))]

n
j ,(6.5a)

AM (w) = A (w) IM , fM (w) = AM (w)w,(6.5b)
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which, applied to (6.1), provides:

fM (w) =

(
Mρu

(2M − 1) ρu2 + p (ρ)

)
,(6.5c)

AM (w)∂xf (w) =

(
M∂x

(
ρu2 + p (ρ)

)
2uM∂x

(
ρu2 + p (ρ)

)
+
(

(p′ (ρ))
2 − u2

)
∂x(ρu)

)
.(6.5d)

Coming back to (6.2), the complete structure finally reads:

(6.6)
wn+1
j −wn

j

∆t
+

1

ε
[IM∂xfM (w)]

n
j −

∆t

ε2
[IM∂x (AM∂xf (w))]

n
j = −σjMj

ε2
Bwn

j .

The choices made in this construction extends the ones made in the linear case in (4.2)
to the non-linear Euler-Friction equation (6.1) while preserving a tractable formula.
Indeed, using this generic construction to the linear HHE (2.1) yields exactly (4.2).

6.1.1. Spatial discretization. We must choose how to compute the terms
[IM∂xfM (w)]

n
j and [IM∂x(AM∂xf (w))]

n
j . For the fluxes we choose a modified Ru-

sanov approach (see (4.14)) that reads:

[IM∂xfM (w)]
n
j =IMj

[
fMj+1

(
wn
j+1

)
− fMj−1

(
wn
j−1

)
2∆x

(6.7)

−∆x

2

λj+1/2

(
wn
j+1 −wn

j

)
− λj−1/2

(
wn
j −wn

j−1

)
∆x2

]
,

where λj+1/2 = max (Mj+1 |uj+1| ,Mj |uj |). Regarding the second-order derivatives
in space, a classical centered discretization is used. In this discretization step, one
must choose what value to use for Mj+1/2 and unj+1/2. Here the coefficient Mj+1/2 is

obtained by replacing σj by (σj +σj+1)/2 in M and the velocity is obtained with the
approximation unj+1/2 = (

√
ρnj+1u

n
j+1 +

√
ρnj u

n
j )/(

√
ρnj+1 +

√
ρnj ).

6.1.2. Stability and accuracy. The linearized version of the Euler-friction sys-
tem is (up to a linear change of variable) equivalent to the HHE. Thus, the linear sta-
bility and truncation error analyses follow from that of the previous sections. Besides,
we can obtain a positivity result on the mass density.

Theorem 6.1. The first-order ImEx scheme (6.6) with fluxes (6.7) for the Euler-
friction equations preserves the positivity of the mass density under the condition:
(6.8)

∆tmax ≤
σmin∆x2

2

(
1− ε|u|nmax

σmin∆x

)
+

√(
1− ε|u|nmax

σmin∆x

)2

+ 4×
2ε2

(
(|u|nmax)

2
+c2

)
σ2
max∆x2

2
,

that is for n ≥ 0,
(
ρnj ≥ 0, ∀j ∈ {1, ..., N}

)
implies

(
ρn+1
j ≥ 0, ∀j ∈ {1, ..., N}

)
.

Proof. Compute:

ρn+1
j =

(
1− ∆t

ε∆x

λj+1/2 + λj−1/2

2
− ∆t2

ε2∆x2

(
Mj+1/2 +Mj−1/2

) ((
unj
)2

+ c2
))

ρnj

+
∆t

ε∆x

(
Mj+1/2∆t

ε∆x

((
unj+1

)2
+ c2

)
+
λj+1/2

2
−
Mj+1u

n
j+1

2

)
ρnj+1

+
M∆t

ε∆x

(
Mj−1/2∆t

ε∆x

((
unj−1

)2
+ c2

)
+
λj−1/2

2
+
Mj−1u

n
j−1

2

)
ρnj−1.
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By construction λj+1/2 ≥ |Mj+1uj+1| and λj−1/2 ≥ |Mj+1uj−1|, thus the factor in
front of ρnj±1 are positive. The factor in front of ρnj if the following inequality holds:

1− ∆t

ε∆x
Mmax |u|nmax −

2∆t2

ε2∆x2
Mmax

(
(|u|nmax)

2
+ c2

)
≥ 0,

where Mmax = 1/
(
1 + σmin∆t/ε2

)
, σmin = minj σj and |u|nmax = maxj

∣∣unj ∣∣. This
leads to a second-order equation which positive solution is (6.8).

6.2. Second-order AP-scheme. The second-order scheme is of the form:

(6.9)
wn+1
j −wn

j

∆t
+

1

ε
[∂xf (w)]

n+1/2
j = −σj

ε2
Bw

n+1/2
j ,

where we need to define both [∂xf (w)]
n+1/2
j and wn+1/2. Concerning the source

term, we use again the Reverse Runge-Kutta method as in (5.4):

w
n+1/2
j = wn+1

j +
∆t

2ε

(
[∂xf (w)]

n+1
j +

σj
ε
Bwn+1

j

)
.(6.10)

The flux term [∂xf (w)]
n+1
j is given by (6.5). For the flux term [∂xf (w)]

n+1/2
j , we

rewrite (6.3) and (6.4) replacing ∆t by ∆t/2 and the term w∗j at time tn+ 1
2 is computed

by:

w∗j = wn
j −

∆t

2ε
[∂xf (w)]

n
j −

∆tσj
2ε2

B

(
w∗j +

∆t

2ε
[∂xf(w)]

n
j +

σj∆t

2ε2
Bw∗j

)
= IM1j

wn
j −

∆t

2ε
IM+

1j

[∂xf(w)]
n
j ,

where M1 and M+
1 are defined in (5.6). Here, the source term is computed at time

tn using a Reverse Runge-Kutta step from time tn+1/2 (the ∗-terms), as it is done
in (5.5). All together, this leads to the scheme:

wn+1
j −wn

j

∆t
+
IM3j

ε

[ [
∂xfM1

(w)
]n
j
− ∆t

2ε

[
∂x

(
AM+

1
(w)∂xf (w)

)]n
j

− σj∆t

2ε2
B

(
[∂xfM (w)]

n
j −

∆t

ε
[∂x (AM∂xf (w))]

n
j

)]
= −

σjM3j

ε2
Bwn

j ,

where M3 = 1/(1 + (σ∆t/ε2)(1 + (σ∆t/(2ε2)))). The two flux and diffusion terms are
kept separated because the coefficient σ a priori depends on space and do not pass
under the space derivative sign.

Regarding the spatial discretization, as in Section 5.5, we use a centered dis-
cretization of the diffusive terms, and Lax-Friedrichs-like fluxes (6.7) with λ = 0 in ρ
and λ = 1 in ρu combined with a MUSCL reconstruction on ρu (in a manner similar
to that of Subsection 5.5). Thus we have successfully extended the ImEx2-ctr scheme
(5.6) to a nonlinear system with complex fluxes and non-constant σ coefficient. The
uniform second order accuracy can be obtained in the manner of Theorem 5.4.

7. Numerical results. We consider three test-cases. The first one is a bounda-
ry-value problem of the HHE (2.1), for which an exact smooth solution can be derived.
This analytical test-case is used to establish the order of the methods presented in
this paper. The second test case is a Riemann problem used to demonstrate the
capacity of the methods, in both linear and nonlinear settings, to handle correctly
shocks. Finally the last test-case assesses how well the methods capture steady states
in the nonlinear case with non-constant σ.
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7.1. Exact test-case. We consider the HHE complemented with Dirichlet boun-
dary conditions EL, EF , imposed on the E variable respectively on the left and right
boundaries of the domain. It can be shown that an exact solution of this problem is:

E (t, x) = f (t) g(x) +
ER − EL
xR − xL

(x− xL) + EL,

F (t, x) = εf ′(t)G(x)− ε

σ
(ER − EL) ,

for t ≥ 0, x ∈ [xL, xR], where:

f(t) = α
λ+e

λ−t − λ−eλ+t

λ+ − λ−
+ β

eλ+t − eλ−t

λ+ − λ−
, λ± = − σ

2ε2

1∓

√
1−

(
2πε

σ

)2
 ,

g(x) = sin (π (x− xL)) , G(x) =
cos (π (x− xL))

π
.

The parameter α determines the amplitude of the solution and we choose β = −π
2

σ α
in order for the initial condition to satisfy ∂tf = O (ε). In the verification that follows
we use α = σ = 1 for simplicity.
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Fig. 1. l∞-norm of the global errors on E and F of the ImEx1-ctr scheme (4.4) compared to
the analytical solution for different values of ε as a function of ∆x.

In Figure 1, we can observe that the ImEx1-ctr scheme (4.4) is of order one when
we consider mesh size such that ∆x ≤ ε and transition to a second order scheme in
regimes where ε� ∆x. For ε = 10−3 the chosen range of mesh sizes ∆x encompasses
both asymptotes with a transition around ∆x ≈ ε.

We observe a similar transition, in Figure 2, between two asymptotes related to
the regimes ∆x ≤ ε and ∆x ≥ ε. These asymptotes are now of slope 2, which mean
the ImEx2-ctr scheme (5.6) guarantees second order accuracy uniformly in all regimes.

Lastly, Figure 3 confirms that computing the flux on variable F using MUSCL
reconstruction with a minmod limiter in the ImEx2-ctr scheme is still compatible with
second order accuracy in all regimes.
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Fig. 2. l∞-norm of the global errors on E and F of the ImEx2-ctr scheme (5.6) compared to
the analytical solution for different values of ε as a function of ∆x.
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Fig. 3. l∞-norm of the global errors on E and F of the ImEx2-minmod scheme compared to
the analytical solution for different values of ε as a function of ∆x.

7.2. Riemann problem. The next test-case is that of an initial condition of the
form of a Riemann problem. The linear case, which demonstrates the ability of the
second-order method to be shock capturing without using slope limiters is presented
in Appendix D. For the more challenging case of the nonlinear Euler-friction equations
(2.7), this test-case reads:

ρ(0, x) = 1{x≤ xR+xL
2 }ρL + 1{x> xR+xL

2 }ρR, (ρu) (0, x) = 0.

We present the results in Figure 4 for the hyperbolic regime. The hyperbolic regime
is more challenging than intermediate and parabolic regimes, for which the methods
can function without limiters (see Appendix D). We can observe that the ImEx2-ctr
scheme (5.6) triggers spurious oscillations whereas the ImEx2-minmod scheme essen-
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Fig. 4. Approximated solutions at time t = 0.15, with σ = 1 and ε = 0.5 (hyperbolic regime),
computed respectively by the ImEx2-ctr method (4), ∆tctr = 1.8∆tmax, from (5.11), the ImEx2-
minmod method (◦), ∆tmnmd = 1.18∆tmax, from (5.11) and the MUSCL-Hancock method with
Strang splitting, Reverse RK2 (O), ∆tMH = 0.9 min

(
2ε2/σmax, ε∆x/ (umax + c)

)
, using N = 64

cells, with the latter scheme used as reference (solid line) with N = 2048 cells.

tially shows equivalent performances as the classical MUSCL-Hancock scheme coupled
with Strang splitting. It must be noted that in the nonlinear case the additional nu-
merical diffusion of the ImEx2-minmod scheme does not remove completely the lower
boundary condition ∆tmin, however the interval of possible values for the time step is
large enough to be compatible with all the velocities present in the problem, unlike the
ImEx2-ctr scheme. As a result we have in the ImEx2-minmod scheme a method that
incorporates enough numerical diffusion to be shock-capturing in the hyperbolic limit
while retaining the asymptotic-preserving properties of the ImEx2-ctr in intermediate
hyperbolic-parabolic and parabolic regimes.

7.3. Steady state with non-constant relaxation coefficient. The last test-
case is concerned with the problem of correctly capturing steady states when the
coefficient σ is non longer assumed spatially constant. This case is particularly in-
teresting since it allows to consider both parabolic and hyperbolic regimes in one
configuration. For a specific function σ(x), x ∈ [xL, xR], the steady state solution can
be easily characterized since we have for the isothermal Euler-friction equations:

∂x (ρu) = 0, ∂x

(
(ρu)

2

ρ
+ c2ρ

)
= −σ

ε
ρu, ρ(t, xL) = ρL, ρ(t, xR) = ρR,

so that if we set ρu = εa with a ∈ R we obtain:

a =
ρLρLIσ

2ε2 (ρL − ρR)

√1 +
4c2ε2 (ρL − ρR)

2

ρLρLI2
σ

− 1

 , Iσ =

∫ xR

xL

σ(x)dx,

ρ(x) =
f̄

2c2

1 +

√
1−

(
fmin
f̄

)2
 , f̄ = βσfR + (1− βσ) fL, fmin = 2εac
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where fR = ε2a2/ρR + c2ρR, fL = ε2a2/ρL + c2ρL, βσ = Ix/Iσ and Ix =
∫ x
xL
σ(x)dx.
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Fig. 5. Density ρ and momentum ρu obtained at time tf = 2, with non-constant σ and
ε = 10−2, respectively with the ImEx2-ctr method (4), ∆tctr = 0.9∆tmax, from (5.11), the ImEx2-
minmod method (◦), ∆tmnmd = 0.9∆tmax, from (5.11) and the MUSCL-Hancock method with
Strang splitting, Reverse RK2 (O), ∆tMH = 0.9 min

(
2ε2/σmax, ε∆x/ (umax + c)

)
, using N = 64

cells, with the steady state solution used as reference (solid line).

In Figure 5, we consider the case where:

σ(x) = (σmax − σmin)
1− 2

π arctan
(
x− xc

2

τ

)
1− 2

π arctan
(
xL− xc

2

τ

) + σmin,

where we define and chose σmax = 1, σmin = 0.1, xc = (xR + xL) /2 and τ =
xc/ (2 tan (π/2 (1− γ))), so that 1− π/2 arctan (xc/ (2τ)) = γ, with γ = 0.1 in order
to obtain a C∞-function on [xL, xR], going from σmax at xL to σmin at xR and reaches
90% of its right-value at xc/2. What we observe is that although the ImEx2-ctr and
ImEx2-minmod methods are not strictly well-balanced, in the sense of [9], especially
where σ′ is at its maximum value and at the boundaries for the minmod version, they
still yield incomparably better results that the classical MUSCL-Hancock method
coupled with Strang splitting.

8. Conclusions. We have derived two methods, ImEx2-ctr for the HHE and
ImEx2-minmod for Euler-friction, which have the following properties:

- It is uniformly of second order accuracy in time and space in all regimes,
- Its stability condition does not collapse with ε in regimes where ε→ 0,
- It can be readily extended to the nonlinear case of Euler-friction equations,
- In both linear and nonlinear setting it is shock-capturing; in the linear case

and in the proper time step interval, ImEx2-ctr without slope limitation is
even l∞-stable

- In both linear and nonlinear settings it captures accurately steady states when
σ is not constant in space.

Let us underline the novelties of the methodology. First the methods are build
relying on a coupled space-time discretization in the spirit of Lax-Wendroff approach,



SECOND-ORDER UNIFORMLY AP SPACE-TIME-IMEX SCHEMES 23

but including an interesting implicit treatment of the sources and fluxes involving stiff
relaxation. In particular, a specific integration in time of the source is introduced, from
the class of mono-implicit methods, with nice stability properties which outmatch the
classical second order implicit method [21, 27, 36]. This leads to fine evaluation and
design of the stability properties, that are lost when time and space are decoupled as
in most of the classic approaches. Besides, as opposed to the coupling of ODE solvers
associated with WENO schemes for example, the proposed method is strongly com-
pact in space and time in the spirit of a MUSCL-Hancock or Lax-Wendroff methods,
while reaching interesting properties mentioned above.

This study is the building block of a series of natural extensions. We presently
investigate ways to ensure the shock capturing property in a less diffusive way than
ImEx2-minmod using slope limiters compatible with coupling between the fluxes and
the source term, that is still maintaining the space-time approach. Besides, we are
designing extensions of the schemes presented here to two-dimensional settings, to the
problem of low-Mach limit and to more complex systems of equations such as that of
the Euler-Poisson equations that can be used in plasmas physics. The ideas developed
in this contribution are extended to plasma physics in a forthcoming paper and can
also be used for the hyperbolic framework encountered in kinetic-fluid limits [34].

Appendix A. Proof of Theorem 5.4. We start with the consistency error
on F . Isolating the spatial error term reads:

cnj (F ) =∂tF
n+1/2
j +

M2

ε
∂xE

n
j −

M+
2 ∆t

2ε2
∂xxF

n
j +

σM2

ε2
Fnj

+O
(
∆t2

)
+O

(
M2∆x2

6ε

(
∂xxxE

n
j +

σ

ε
∂xxF

n
j

))
+O

(
M+

2 ∆t

2ε2
∆x2

)
.

Starting near the equilibrium manifold provides 1
ε

(
∂xxxE

n
j + σ

ε ∂xxF
n
j

)
= O (1). This

legitimizes our choice of discretization for the source term. As M+
2 ≤ 2M (see (5.10)),

these consistency error terms are controlled as in the proof of Theorem 4.4, via
M∆t/ε2 ≤ 1. Now we must compute the time-error generated in the term:

M2

ε
∂xE

n
j −

M+
2 ∆t

2ε2
∂xxF

n
j

=
1

ε
(
1 + σ∆t

ε2

(
1 + σ∆t

2ε2

)) ((1 +
σ∆t

2ε2

)
∂xE

n
j −

∆t

2ε

(
1 +

σ∆t

ε2

)
∂xxF

n
j

)
=

1

ε
(
1 + σ∆t

ε2

(
1 + σ∆t

2ε2

)) (∂xEn+1/2
j +O

(
∆t2

)
+
σ∆t

2ε2
∂xE

n+1
j +O

(
∆t3

ε2

))
.

This inequality produces two new error terms that must be controled. Noticing that
x 7→ x2/ (1 + x (1 + x/2)) is strictly increasing on R+ and using the hypotheis ∆t =

O
(

∆x

(
σ∆x+

√
(σ∆x)

2
+ ε2

))
, then:

∆t2

ε
(
1 + σ∆t

ε2

(
1 + σ∆t

2ε2

)) =
ε3∆t2

ε2 (ε2 + σ∆t) + (σ∆t)
2
/2

= O

ε∆x2

ε2

(
σ∆x+

√
(σ∆x)

2
+ ε2

)2

ε2

2

(
σ∆x+

√
(σ∆x)

2
+ ε2

)2

+ ε4

2 + (ε∆t)
2
/2

 = O
(
ε∆x2

)
.
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Similarly, x 7→ x3/ (1 + x (1 + x/2)) is strictly increasing on R+ and using that ∆t =

O
(

∆x

√
(σ∆x)

2
+ ε2

)
, then:

∆t3

ε3
(
1 + σ∆t

ε2

(
1 + σ∆t

2ε2

)) = O

(
ε∆x2 ∆x

(
∆x2 + ε2

)√
∆x2 + ε2

ε4 + ε2∆x
√

∆x2 + ε2 + ∆x2 (∆x2 + ε2)

)
= O

(
ε∆x2

)
,

using
√

∆x2 + ε2 ≤ ∆x in the numerator and observing that the denominator is
smaller than ∆x2

(
∆x2 + ε2

)
. Coming back to cnj (F ), this provides:

cnj (F ) =
CNj (F )

1 + σ∆t
ε2

(
1 + σ∆t

2ε2

) +O
(
∆x2

)
,

CNj (F ) =

(
1 +
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(
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))
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1

ε
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σ∆t

2ε2
∂xE

n+1
j
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σ
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(
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)
Fnj

Using the identities ∂tF
n+1/2
j + (1/ε)∂xE

n+1/2
j = −(σ/ε2)F

n+1/2
j and Fnj +

∆t∂tF
n+1/2
j = Fn+1

j +O
(
∆t3

)
leads to:

CNj (F ) =
σ

ε2
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σ∆t

2ε2

)
Fn+1
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2ε
∂xE
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2ε2
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.

Now, using ∂xE
n+1
j + (σ/ε)Fn+1

j = ∂tF
n+1
j provides

CNj (F ) =
σ
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Fn+1
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σ
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2ε2
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using the previous estimates.
Concerning E, we have:

cnj (E) =
En+1
j − Enj
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+
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ε

Fnj+1 − Fnj−1

2∆x
− M+

1 ∆t

2ε2
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First, the flux discretization provides:

M1

ε
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∂xF
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M1∆x2

2ε
∂xxxF

n
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(
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ε
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)
,

with ∂xxxF
n
j = O (ε) again such that the error is O

(
∆x2

)
. Second, the diffusion term

provides:
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,

but M+
1 ∆t/(2ε2) ≤ 1/σ = O (1) so that O

(
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)

= O
(
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)
. Under

the usual stability conditions, we have O
(
∆t2
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= O

(
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. Now we have:
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j +
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ε
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1 ∆t

2ε2
∂xxE

n
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which leads to:

cnj (E) =
Cnj (E)

1 + σ∆t
2ε2

(
1 + σ∆t

2ε2

) +O
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)
Cnj (E) =
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1
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2ε2

(
1 +
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2ε2

)
∂xxE

n
j

)
=
−∆t

2ε
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n+1/2 − ∂xFnj
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+
1
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n
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σ
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2ε

(
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n
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σ

ε
∂xF
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j

)))
.

Using the usual Taylor expansions we obtain in the end:

cnj (E)=O

(
∆t2

ε
(
1 + σ∆t

2ε2

))+O

(
∆t3

ε4
(
1 + σ∆t

2ε2

(
1 + σ∆t

2ε2

)))+O(∆x2),

and the estimations found for cnj (F ) leads to simplify cnj (E) = O(∆x2).

Appendix B. Alternative discretizations for order 1 ImEx schemes: up-
wind discretization. Although we have shown that scheme (4.4) demonstrates
strong robustness property under the right set of stability conditions (4.6), the pres-
ence of a lower bound to ensure that shock do not trigger spurious oscillations can
be seen as too restrictive. An attempt to remove this lower bound constraint can
be made in using an upwind discretization of the fluxes, leading to the ImEx1-upwd
scheme:

En+1
j − Enj

∆t
+
M

ε

Fnj+1 − Fnj−1

2∆x
(B.1a)

−
(
M∆x

2ε
+
M∆t

ε2

)
Enj+1 − 2Enj + Enj−1

∆x2
= 0,

Fn+1
j − Fnj

∆t
+
M

ε

Enj+1 − Enj−1

2∆x
(B.1b)

−
(
M∆x

2ε
+
M∆t

ε2

)
Fnj+1 − 2Fnj + Fnj−1

∆x2
= −M σ

ε2
Fnj .

Theorem B.1. Assuming that periodic (3.3) or hybrid (3.4) boundary conditions
are used, the ImEx1-upwd scheme (B.1) is l∞-diminishing for variables u, v under the
condition:

(B.2) ∆t ≤ ∆tmax :=
σ∆x2

4

(1

2
− ε

σ∆x

)
+

√(
ε

σ∆x
− 1

2

)2

+ 2

(
2ε

σ∆x

)2
 .

Proof. The proof is very similar to that of Theorem 4.1, using a form of the
scheme (B.1) equivalent to the reordering (4.7) there is no longer any lower bound
condition and the only stability restriction is

1− 2M∆t2

ε2∆x2
− M∆t

ε∆x
− Mσ∆t

2ε2
≥ 0,

which leads to (B.2)
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Theorem B.2. In the regime ∆x ≈ ε, the ImEx1-upwd scheme (B.1) loses accu-
racy in the sense cnj (E) = O(1).

Proof. As compared to the consistency error conducted on scheme (4.4) we have
an additional error term for variable E of the form (M∆x/2ε)∂xxE. However in the
regime ε ≈ ∆x, we have M ≈ 1 and ∆x/ε ≈ 1 and consequently this new term is of
order O

(
∆x0

)
in this regime.

Remark B.3. The impossibility to use the classical upwind discretization is not
commonly discussed in literature but here we have shown that it does not yield an
asymptotic preserving scheme.

Appendix C. Reverse Runge-Kutta framework.
The approach we have used in order to integrate in time the source term is

essential in the construction of the time-space-ImEx method proposed in the paper.
We have called it a Reverse Runge-Kutta method. It has been introduced in the
classical monographs [12], where it is referred to as reflected, and [22], under the
denomination adjoint from a classical explicit RK method. Even if some general
properties of these this specific class of method are provided in these works, the
efficiency and computational aspects were rather investigated in [39, 14] (where they
are called implicit endpoint quadrature formulas and mono-implicite RK Formulae
respectively), and more recently in [28] and [37] (called inverse RK schemes and
implicit RK methods obtained as a result of the inversion of explicit methods).

Before introducing the core principle of the approach, since it is essentially based
on explicit Runge-Kutta methods, we introduce first-order and second order RK meth-
ods and the related notations and Butcher arrays. The general form of the autonomous
ODE we want to solve reads:

dtU = f(U),

where f is assumed to verify the assumptions of the Cauchy-Lipschitz theorem. With
these notations the explicit Euler method and its corresponding Butcher array read:

0
1

Un+1 = Un + ∆tf(Un).

The general form of explicit second-order methods parametrized by α ∈ (0, 1] reads:

0
α α

1− 1

2α

1

2α

Un1
= Un + α∆tf (Un) ,

Un+1 = Un + ∆t

(
1− 1

2α

)
f (Un) +

∆t

2α
f (Un1

) .

For α = 1 we retrieve the Heun method and for α = 1/2, the classical RK2:

Un1 = Un +
∆t

2
f (Un) ,

Un+1 = Un + ∆tf (Un1
) .

The principle of the Reverse Runge-Kutta method is the following: we substitute
−t to t (reversed time) and we apply the explicit method starting from the final point.
For instance, at order one and using the explicit Euler method we obtain:

Un = Un+1 −∆tf (Un+1) ,
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which boils down to the backward Euler method:

Un+1 = Un + ∆tf (Un+1) .

At second order, we obtain:

Un = Un+1 −∆t

(
1− 1

2α

)
f (Un+1)− ∆t

2α
f
(
Un+1 − α∆tf(Un+1)

)
,

which can be rewritten as:

Un+1 = Un + ∆t

(
1− 1

2α

)
f (Un+1) +

∆t

2α
f
(
Un+1 − α∆tf(Un+1)

)
.

Regarding absolute stability, the general stability function of an explicit second-
order method is

R (z) = 1 + z +
z2

2
.

Consequently, the stability function R∗(z) of second order Reverse RK methods can
be obtained by substituting −z → z and taking the inverse of R, leading to:

R∗ (z) =
1

R(−z)
.

Because 1/
∣∣1− z + z2/2

∣∣ ≤ 1 for all z ∈ C− the second-order Reverse RK methods
are A-stable and even L-stable.

These Reverse RK methods can be recast within the framework of classical RK
methods (the Butcher array can be obtained explicitly from the original one [22]):∣∣∣∣∣∣∣∣∣∣∣∣∣

Un1
= Un +

∆t

2α
f (Un1

) + ∆t

(
1− 1

2α

)
f (Un2

)− α∆tf (Un2
) ,

Un2 = Un +
∆t

2α
f (Un1

) + ∆t

(
1− 1

2α

)
f (Un2

) ,

Un+1 = Un +
∆t

2α
f (Un1

) + ∆t

(
1− 1

2α

)
f (Un2

) .

One notices that Un1
= Un2

−α∆tf (Un2
), so that it suffices to solve for Un2

directly.
The corresponding Butcher arrays for α ∈ (0, 1] and α = 1/2 (Reverse RK2 method
used in the paper) read:

1− α 1

2α
1− 1

2α
− α

1
1

2α
1− 1

2α

1

2α
1− 1

2α

1

2
1 −1

2

1 1 0

1 0

which shows that the Reverse RK methods are stiffly accurate and have excellent
stability properties. They can be shown to be computationally efficient as mono-
implicit methods.
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Appendix D. Riemann problem, second order and l∞-stability without
limitation. We consider the in this section the same Riemann-problem initial
condition as in Subsection 7.2, which reads in the linear case:

E(0, x) = 1{x≤ xR+xL
2 }EL + 1{x> xR+xL

2 }ER, F (0, x) = 0,

and in the nonlinear case

ρ(0, x) = 1{x≤ xR+xL
2 }ρL + 1{x> xR+xL

2 }ρR, (ρu) (0, x) = 0.

We show that for both the linear case in the hyperbolic regime (meaning ε = 0.5)
and the nonlinear case in the intermediate parabolic-hyperbolic regime (meaning
ε = 5.10−2 and ε = 10−2), the second-order centered methods do not trigger spu-
rious oscillations around discontinuities without using additional numerical diffusion
or slope limiters, provided that the time step falls within the acceptable range of
values determined in Equation (5.7) implying l∞-stability. Within this regimes, the
methods are quite accurate.
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Fig. 6. Variables E (left) and F (right) obtained at time tf = 20∆tctr ≈ 0.15, for
ε = 0.5, EL = 2 and ER = 1, respectively with the ImEx2-ctr method (4), ∆tctr =
(∆tmax + ∆tmin) /2, from (5.8a) and (5.8b), ImEx2-minmod method (◦), ∆tmnmd = 1.2∆tmax,
from (5.11) and MUSCL-Hancock method with Strang splitting, Reverse RK2 (O), ∆tMH =
0.9 min

(
2ε2/σmax, ε∆x/ (umax + c)

)
, using N = 64 cells, with the latter scheme used as refer-

ence (solid line) with N = 2048 cells.

For the linear hyperbolic regime case, shown in Figure 6, one observes that the
ImEx2-ctr method does not generate oscillations in the vicinity of the discontinuity
but, as expected, it is also significantly less diffusive than the ImEx2-minmod and
MUSCL-Hancock methods, which both achieve similar performances. We emphasize
however that in this case the estimations for ∆tmin and ∆tmax provided by (5.7)
collide and therefore one must compute numerically the bound ∆tmin and ∆tmax
corresponding to conditions (5.8a) and (5.8b) and choose ∆t within the proper interval
[∆tmin,∆tmax].



SECOND-ORDER UNIFORMLY AP SPACE-TIME-IMEX SCHEMES 29

0.4 0.2 0.0 0.2 0.4
x

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

ρ

0.4 0.2 0.0 0.2 0.4
x

0.05

0.00

0.05

0.10

0.15

0.20

ρ
u

Fig. 7. Mass ρ and momentum ρu obtained at time tf = 0.01 for ε = 5 × 10−2, ρL = 2 and
ρR = 1, respectively with the ImEx2-ctr method (4), ∆tctr = 1.87∆tmax, from (5.11), ImEx2-
minmod method (◦), ∆tmnmd = 0.9∆tmax, from (5.11) and MUSCL-Hancock method with Strang
splitting, Reverse RK2 (O), ∆tMH = 0.9 min

(
2ε2/σmax, ε∆x/ (umax + c)

)
, using N = 64 cells,

with the latter scheme used as reference (solid line) with N = 2048 cells.

It is remarkable to observe that unlike in the case of purely hyperbolic equations,
for which second order methods always require slope limiters in order to be stable
around shocks, the presence of a source term guarantees that there is always an
interval of possible time steps for which the ImEx2-ctr method can be l∞-stable.

Regarding the nonlinear intermediate and diffusive regimes case (ε = 5 × 10−2

and ε = 10−2), the interval of admissible time steps [∆tmin,∆tmax] is larger than in
the hyperbolic regime and as a result the ImEx2-ctr method does not generate any
oscillations, as can be seen in Figures 7 and 8. We can also note that the ImEx2-
minmod method yields equivalent performances to that of the ImEx2-ctr method, as
expected from the theoretical study of the paper, while the classic MUSCL-Hancock
method with splitting is already lagging behind in terms of accuracy.

Acknowledgments. We acknowledge the precious help of Löıc Gouarin and
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