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CNRS/Institut de Mathématiques de Marseille, Aix Marseille Université,
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Abstract. The main problem addressed here is to decide whether it is or not possible to go from a given position on a peg-solitaire

board to another one. No non-trivial sufficient conditions are known, but tests have been devised to show it is not possible.

We expose the way these tests work in a unified formalism and provide a new one which is strictly stronger than all the previous

ones.
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1. Introduction

Peg solitaire (also called Hi-Q) is a very simple board game

that appeared in Europe most probably at the end of the 17th

century. Its prior origin is unknown. The first evidence is

a painting by Claude-Auguste Berey of Anne Chabot de

Rohan (1663–1709) playing it. It seems to have then become

popular in some royal courts. The mathematical study of the

game started in 1710 when Leibniz writes a memoir on the

subject [1]. We refer the reader to the excellent historical

account presented in J. Beasley’s book [2]. Let us introduce

rapidly how this game is being played. The first data is a board

S which in first approximation may be thought of as a subset

of Z2. The classical ones are the english board and the french

one drawn below, and we present a third one introduced by

J.C. Wiegleb in 1779 (see [2]).

Figure 1. English board

Figure 2. French board

Figure 3. Wiegleb board

Each square of this board can hold at most one peg, and a

problem as we define it here is to go from a given distribution

of these pegs (say I ) to another one (say J ), via a succession

of legal moves that we now define. Given three consecutive

squares P , Q and R in a row or a column (but not on a

diagonal), of which two consecutive (say P and Q) contain

a peg while the third one (R) does not, a legal move consists

in removing the two pegs in P and Q and putting one on

the empty square R. We classically say that the closest peg

in P jumps over the middle one in Q and lands in R, while

destroying the peg in Q. As a trivial consequence, the number

of pegs on the board decreases when the game proceeds

further. For most authors, a problem consists in reducing the

initial distribution of pegs, what we call thereafter the initial

position, to a single peg via legal moves. They qualify the

position as solvable if this is possible. We shall say that the

problem in our sense is feasible if one can go from the initial

position to the final one by using legal moves. Note that the

number of such moves is known and equals the difference

between the number of pegs in the initial position and the

number of pegs in the final one (that is: |I | − |J |).
Given a problem, we can try all possible legal moves

and repeat this action until the required number (|I | − |J |)
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of moves is reached or no further move is possible. This

process usually gets stuck because of the combinatorial

explosion. For instance E. Harang [3] computed that there

are 577 116 156 815 309 849 672 paths on the english

board from the initial position consisting of the full board

on which we leave the central square empty. Of which

40 861 647 040 079 968 lead to the final peg being on the

central square. See also [4]. In fact, numerous setting tend

to show that the problem is NP-complete. For this sentence

to have a sense, we are to choose a way of extending the

board to infinity, and there is no canonical fashion to achieve

that. The case of an n × n board is studied in [5] while the

k × n board with k fixed is shown to be linear in [6]. Of

course, one may wonder whether the english board as a subset

of a 7 × 7 board is tractable or not and the answer is still

no, at least not without huge resources. The number of paths

being enormous, we look for tests that will ensure us that it

is not possible to solve a given problem. We would welcome

any test that would guarantee the feasibility, but none are yet

known.

The first of this test is attributed to M. Reiss in 1857

in [7] though J. Beasley traces it back to A. Suremain de

Missery, a former officer of the French artillery, around 1842.

We again refer the reader to [2] for more historical details. It

is also described in Lucas book [8], which contains also more

material and in the dedicated chapter of [9]. A seemingly

more algebraic approach is proposed in [10], but it turns out

to be only a different setting for the same test. This test is

very often reduced by modern authors to the rule-of-three test

(see below).

We shall first present these tests in a formalism that will

help us clarify the situation; this formalism will also be

adequate to present the advances realised on the subject in

1961/1962 at Cambridge university by a group of students

(among which were J. Beasley) led by J. H. Conway.

We shall finally present a different test, which we term

quadratic, and which is stronger than all previous ones.

It however relies on solving a larger integer linear program

and can sometime be resource demanding. We provide

however numerous examples that we have discovered by

exploring thousands of problems, and this in itself shows the

practicality of the approach. The theory of this test in its purest

form is complete, but we provide in the two last sections

several improvements of it, on which we are still working.

All examples have been computed via an intensive use of the

lp−solve library [12], a GTK interface and a C-program both

due to the author.

Let us end this introduction by mentioning that J. Beasley

also introduced a very geometrical tool (the in and out

Theorems), but it does not fit well in our framework and has

not been worked out for an arbitrary problem (to the best of

my knowledge at least), even if one remains on an english

board. We shall not discuss it here. In more recent time, there

has been attempts at working out a model of this game via

string rewriting as in [6]. This approach remains however

fundamentally one dimensional as are string rewriting rules.

It has had applications though in describing the complexity of

the game.

2. Main formalism of the linear board

Given a board S, we consider the Z-module F (S, Z) of all

rational integer valued functions over this board, and define

similarly F (S, F2) and F (S, Q). This is one of the main

step of the formalization: a position in the game is given by a

subset I ⊂ S (the set of squares containing a peg), which we

model by its characteristic function 11I . If P ∈ S, we note P̌

the function that is 1 in P and 0 everywhere else. A move is

thus the function f = P̌ + Q̌ − Ř and 11I − f should become

another characteristic function; we have of course assumed

that P , Q and R where three consecutive points in this order

either in a row or in a column of S. We denote the set of these

moves by D(S). In the case of the english board, D(S) has

cardinality 76, while S has cardinality 33.

Here comes the main remark. Assume we can go from I

to J by the succession of legal moves f1, f2, . . . , fk . Then we

have

11I − 11J =
�

1≤i≤k

fi . (1)

There are three ways to exploit this writing. We can say

that

• 11I−11J is a rational integer linear combination of members

of D(S). This leads to the classical Reiss’s theory, or to

the lattice criterion of [11].

• 11I −11J is a linear combination with non-negative rational

coefficients of members of D(S). This leads to the main

part of Conway’s group theory.
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• 11I − 11J is a linear combination with non-negative integer

coefficients of members of D(S). This leads to what we

call the full linear test, or also the non-negative integer test.

We introduce some notations

V (S, Z) =
�

f∈D(S)

Z · f (2)

and

V +(S, Q) =
�

f∈D(S)

Q+ · f , V +(S, Z) =
�

f∈D(S)

Z+ · f.

(3)

3. Reiss theory and the rule-of-three test

Let us first expose rapidly and in modern notations the

classical material. Since characteristic functions have values 0

or 1, it is tempting to look at 11I as taking its values in the

field with two elements F2. To avoid confusion, we denote 1̃1I

this characteristic function as an element of F (S, F2). If one

can go from the initial position I to the final one J by the

succession of legal moves f1, f2, . . . , fk , one still has

1̃1I − 1̃1J =
�

1≤i≤k

f̃i

where f̃i are of course the moves seen with values in F2.

If f = P̌ + Q̌ − Ř, then f̃ is the function over S that takes the

value 1 ∈ F2 at all the three points P , Q and R, and vanishes

otherwise. However, F2 is now a field and V (S, F2) is simply

a vector space! Deciding whether 1̃1I − 1̃1J belongs to it is a

simple matter requiring only linear algebra.

Let us investigate this problem further. One way to

characterize V (S, F2) as a subspace of F (S, F2) is to

compute equations of it. By using the canonical scalar

product, this reduces to computing V (S, F2)
⊥ which means

the elements χ ∈ F (S, F2) such that

∀f = P̌ + Q̌ − Ř ∈ D(S), χ(P) + χ(Q) = χ(R) (4)

since any such χ verifies

∀g ∈ V (S, F2),
�

A∈S

χ(A)g(A) = 0. (5)

We need a name for such elements of V (S, F2)
⊥, and we

propose the name witness. Let us start to do so on the english

board. Let us determine a function χ0. We first fix four values

on a square, for instance

Figure 4. Starting values

By using (4), we can readily extend these values:

Figure 5. Extension

As it turns out, there are two ways to compute a: either

by adding the two values on the column above its square or

the two on the line containing it. The result is here the same

a = 1. We can use this process to compute the values of χ0

on the full board.

What is the dimension of V (S, F2) in this case? The values

on the initial square determine the values everywhere as we

have just now remarked, and there is thus 16 witnesses. But

these values are not linearly independant and there are linearly

generated by the four

We can even use this process to extend the values to Z2.

This yields

Figure 6. Over Z2
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Now that the reader sees the regularity of this tiling,

he will be convinced that they can be extended to Z2. The

way one drops the english board on it yields for instance this

witness:

And once, the witnesses are determined, equations defining

V (S, F2) are obtained by taking the scalar product with

(a basis of) them. A classical problem is to determine whether

it is possible to start with the french board filled with pegs,

except for the central square that is left empty and to end

with only one peg. This can be shown to be impossible by

using the theory above, but we leave this pleasure to the

reader.

This theory of witnesses is essentially what is called

Reiss’s theory [7], though it is expressed with other words,

and is present in Lucas’s book [8]. We say “essentially”

because they do not use any linear algebra and that their way

to reach this result is by using direct move together with

reversed ones (to undo a move). They obtain what they call

characteristic positions, which is equivalent to the equations

defining V (S, F2). This is however what is presented [10].

There are still a distinction to be made:

1. One can start from witnesses of Z2, restrict them to

S and get witnesses for this board. This is called the

rule-of-three. Of course, we get only a four independant

equations that may not define V (S, F2) fully. If the board

is thick enough, for instance when there exists a defining

square from which all the other values of the witnesses can

be deduced, this is enough.

2. One can start from V (S, F2) and directly compute a basis

of witnesses. This is required when the board is weakly

connected (or even not connected!) and V (S, F2)
⊥ has

dimension larger than 4. Several examples like that are

given in [11].

4. The integer linear test and the lattice criterion

Thinking back in terms of V (S, Z), the lattice criterion of

[11] is to say that 11I − 11J should belong to V (S, Z). How

is this test connected with the previous one? Or, alternatively:

we decided to reduce the problem modulo 2; Why not try to do

so modulo 3? Let us first note that we may identify F (S, F2)

with F (S, Z)/2 · F (S, Z) via

˜ : F (S, Z) → F (S, F2)

g �→ g̃ : S → F2

P �→ g(P) mod 2

. (6)

During this process, V (S, Z) is of course sent on V (S, F2).

Let us state formally two questions we want to answer:

1. Is V (S, Z) a lattice of full rank in F (S, Z)?

2. How to compute F (S, Z)/V (S, Z)?

In the sequel, we introduce a hypothesis on the geometry

of the board S that will enables us to answer fully these

questions. It will turn out that this will also exhibit the very

tight link between the integer linear test and the theory of

witnesses, as exposed in the previous section.

If the two points P and R of S are extremities of a member

of D(S), we say that P and R are neighbors and we note

P ◦ R. The reflexive and transitive closure of this relation

is an equivalence relation, and if two points A and B are

equivalent according to it, we note A ≡ B. We can now state

an important definition:

Definition 4.1. A board S is said to be with no isolated point

if for every point P of S, there exists a point Q ≡ P and

which is the middle point of a move.

Most boards will verify this hypothesis. It means that each

≡-equivalence class contains a middle point. However the

number of such classes may vary. For a sufficiently thick

board, there will be exactly 4 classes, but there may be

more, if the board is not connected for instance, or contains

thick chambers very weakly connected by only one square.

The reader will easily construct examples of boards with no

isolated point but where the number of classes is larger than 4.

The following Theorem is central in our discussion:

Theorem 4.1. If S is with no isolated point, then

2F (S, Z) ⊂ V (S, Z).
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A final notation before sketching the proof: if f = P̌ + Q̌ −
Ř ∈ D(S), we note f� = −P̌ + Q̌ + Ř the reversed move

(with equal middle point).

Proof. We show that for every P ∈ S, we have 2 P̌ ∈
V (S, Z). If P is a middle point, say of the move f, then

2 P̌ = f + f� belongs to V (S, Z). Otherwise, there exists a

chain P = P0 ◦ P1 ◦ . . . ◦ Pn where Pn is a middle point.

Furthermore, by definition, there exists fi ∈ D(S) such that

2 P̌i − 2 P̌i+1 = fi − f�i for every i = 0, . . . , n − 1. Finally, we

can also write 2 P̌n = fn + f�n for some fn ∈ D(S). Summing

up all these equations, we reach

2 P̌0 = f0−f�0+f1−f�1+· · ·+fn−1−f�n−1+fn +f�n ∈ V (S, Z),

which is the required conclusion since P = P0. ✷

This Theorem has several consequences. First of all, on

such boards, the Q-vector spanned by the f’s (that would

be V (S, Q)) is the whole space: V (S, Z) is a sublattice of

F (S, Z) of full rank. Let us note the following Lemma that

will be required later:

Lemma 4.1. If S has no isolated points, we have |S| ≤
|D(S)| ≤ 4|S| − 8.

Proof. The lower bound comes from the fact that D(S)

generates F (S, Q). For the upper bound, count horizontal

and vertical moves separately. For the horizontal (resp.

vertical) ones, count the moves according to their left-hand

side (resp. lower) point. The lemma follows readily. ✷

As a main consequence, we have the following Theorem.

Theorem 4.2. Assume S to be with no isolated point and let

g ∈ F (S, Z). Then

g ∈ V (S, Z) ⇐⇒ g̃ ∈ V (S, F2).

(See (6) for the definition of g̃).

Proof. Indeed, the direct implication is obvious, while the

reversed one follows from Theorem 4.1: we know that

g ∈ V (S, Z) + 2 · F (S, Z) but this last space is nothing but

V (S, Z). ✷

This Theorem tells us that the lattice criterion is not

stronger than Reiss’s theory, when properly understood, and

provided we restrict our attention to non-pathological boards.

Figure 7. A pathological board

In fact [11] do not even give a single example when reduction

modulo 2 does not solve the problem. Here is one:

The total number of pegs on the squares A, B, C and D

remains constant. It is not difficult to see that this example is

in fact general and we have:

Theorem 4.3. A board S is with no isolated point if and only

if V (S, Z) has maximal rank in F (S, Z).

On boards with no isolated points, reducing the situation

modulo any odd integer is not going to give any information;

indeed Theorem 4.2 implies (after some work) that

V (S, Z/mZ) = F (S, Z/mZ) (whenever m is odd).

Notice finally that F (S, Z)/V (S, Z) is simply a product of

copies of Z/2Z in this case. It is not difficult to tackle the case

with isolated points by generalising the reasoning used for the

board drawn Fig. 7, and get that F (S, Z)/V (S, Z) is always

a product of copies of Z/2Z with copies of Z. These results

have no influence on what we develop hereafter, so we do not

provide any formal proof.

5. Resource counts, pagoda functions and the linear
test in non-negative rationals

The next main step takes place in 1961/1962 at Cambridge

university when J. H. Conway led a group of students that

studied this game. They came out with another and different

test, also clearly explained in [9] and that we now describe.

This test exploits the fact that (1) has non-negative

coefficients, i.e. the test consists in writing that, if we can go

from I to J with legal moves, then

11I − 11J ∈ V +(S, Q). (7)
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As it turns out, V +(S, Q) is a cone in a vector space, and

determining whether a point belongs to it or not is fast. We

know generators of this cone (the elements of D(S); they

can be shown to be generator of its extreme half-lines), and

it would be interesting to determine equations for its facets.

The paper [14] gives properties of these facets. In [9] as well

as in [2], so called resource counts or pagoda functions are

introduced. These are functions π on S such that

∀f = P̌ + Q̌ − Ř ∈ D(S), π(P) + π(Q) ≥ π(R). (8)

As a consequence, for any such function and if g belongs to

V +(S, Q), one has

�π, g� =
�

A∈S

π(A)g(A) ≥ 0. (9)

In particular, if one can derive J from I with legal moves,

then �π, 11I � is not less than �π, 11J �. Here are some examples

Figure 8. A resource count

Figure 9. Another resource count

Determining which of these corresponds to equations of

facets would be very valuable, but their structure seems

too intricate to classify them in a small number of regular

families. For instance , a direct computation in case of the

english board stumbles on the fact that there are an enormous

Figure 10. A third resource count

quantity of such facets for a human eye to be able to look at

them and derive some patterns. It is not sure that this path is

blocked, though I tend to believe it is.

We do not dwell any further in this part of the theory since

it is extremely well exposed and detailed in [9], [2] and on a

number of web pages. The reader will most probably better

unterstand the strength of this theory by looking at section 8

of this paper.

We should stress out here that the approach of this

Cambridge group is commonly reduced to the use of

real-valued “pagoda” functions as above. This is an extremely

minimal understanding of their work and for instance does not

account for the GNP balance sheet, what J. Beasley in [2] calls

Conway’s balance sheet in his chapter 6; this one is however

one of the main tool of [9]. It mixes integer valued pagoda

functions together with such functions with values in F2.

Beasley’s use of pagoda functions which he calls ressource

counts (see chapter 5 of [2]) relies already on the integer

character of the values taken: that is how he builds his “move

map”.

The GNP diagram, or GNP balance sheet, is somewhat off

our framework, and is in fact superseded by the next test.

6. The linear test in non-negative integers

The third test consists in combining both preceding ideas and

write that if we can go from I to J with legal moves, then

11I − 11J ∈ V +(S, Z). (10)

This time, deciding that an element belongs to the integer

points of a cone is NP-hard, but in practice, it takes only some

fraction of a second on an english board (this was not the case

in 1962!). We have of course

V +(S, Z) ⊂ V (S, Z)
	

V +(S, Q) (11)
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and this inclusion is strict, even when one restricts our

attention to differences of characteristic functions. For

instance this test shows that one cannot go from the position

of Fig. 11 to only the central peg while the rational and integer

linear tests are passed. This example is interesting in showing

the impact of the board, for it is feasible in legal moves if we

add to the english board the grey square on the upper right

side.

Figure 11. Impossible

We present a smaller counterexample in Figs. 12 and 13

that enables easier direct computations.

Figure 12. Starting position

Figure 13. Ending position

When g belongs to this intersection (i.e. the right-hand side

of (11)) the denominators in a non-negative writing do not

seem to be any worse than 1/2. Here is the conjecture we

make:

Conjecture 6.1. If S has no isolated points, then

V (S, Z)
	

V +(S, Q) ⊂ 1
2 V +(S, Z).

Here is another related conjecture that may be easier to

handle (and maybe easier to disprove!).

Conjecture 6.2. Let B ⊂ D(S) be a basis of V (S, Q). If S

has no isolated points, then

2F (S, Z) ⊂ V (B) =
�

f∈B
Z · f.

The condition on S cannot be removed since it is

equivalent to V (S, Z) being of full rank.

At this point, we have described the situation and we

hope the reader is now able to understand properly what is

what. The theory so far has two drawbacks: it draws only on

properties of 11I − 11J , and it does not use the order in which

the moves are played. Our next criteria, the simple quadratic

test, will not go beyond this abelian nature, but will break the

first hurdle. It is better to investigate the game a bit further

before exposing it.

7. How integer linear programming is used

The cone V +(S, Z) is determined by the set D(S) of

generators. Let us introduce the notation f̌ for the function

over D(S) that is 1 in f and 0 everywhere else. We consider

the map

� : F (D(S), Z) → V (S, Z)

F = 

f∈D(S) x(f) f̌ �→ 


f∈D(S) x(f) f.

(12)

The integer linear program we write is simply to minimize

any linear form of the (x(f))f subject to the constraints

∀f ∈ D(S), x(f) ≥ 0, and �(F) = 11I − 11J .

The linear form we choose is usually



f x(f) since we know

what should be its value if a solution exists.

8. Thickness of a move

Given a problem, say from I to J , we define the thickness of

the move f to be the maximum number of times this move

can be used, whatever sequence of legal moves f1, f2, . . . , fk

we choose. This thickness is zero allover if the problem is not

feasible. In general, given h ∈ V +(S, Z), we shall speak of

the thickness of f at h. Computing this quantity is naturally

difficult, but we can bound it from above and even provide a

uniform bound for it. The main Theorem reads as follows
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Theorem 8.1. Let h ∈ V +(S, Z), f0 ∈ D(S) and π be

a resource count on S such that �π, f0� = 1. The move f0

can appear at most �π, h� in any writing of h as a linear

combination of elements of D(S) with non-negative integer

coefficients.

The scalar product �π, h� is defined in (9). We can derive

absolute bounds from this Theorem by using a variant of a

resource count already used by Conway. First note that we

are interested only in the case h = 11I − 11J which implies

that |h(A)| ≤ 1 for all A ∈ S. Now let ρ = (
√

5 − 1)/2

be a solution of x2 + x = 1. To each point (a, b) ∈ Z2, we

associate the weight π(a, b) = ρ|a|+|b|. Next, we drop our

board S on Z2 in such a way that the middle point of f0 be

the (0, 0) element. The reader will check that the restriction

of π to S is a resource count on S which we denote again by

π . We have �π, f0� = 1, while

|�π, h�| ≤ �π, 11S� ≤ 8ρ + 13 = 17.944 · · · .

This short argument show that the thickness of any move on

any board is bounded above by 17. This is most probably a

way too large majorant (reaching a thickness of 4 is already

extremely difficult, and it can be shown on using better

resource counts that the maximal thickness on the english

board is at most 5), but it is universal, i.e. independant of the

board we choose.

A similar argument is also the main ingredient of [6]

(see Theorem 3.1 therein, with most probably a wrong

computation at the end. The 26 of this result is to be replaced

by a 34 but this leaves the rest of the argument intact), and is

the basis on which rely the low complexity results.

Given a problem, we can refine this upper bound by

selecting a more appropriate resource count. Furthermore,

once a majorant is given, say m, we can check whether

11I −11J −mf0 is feasible or not (this means, whether it passes

whichever test we select). If not, we decrement m and repeat

the process.

9. A simple quadratic test

Let us consider the two following problems: we are to go from

the left hand side position with only the black pegs (or with

the grey peg added) to the right hand side one with a sole

black peg (or with the grey peg added). Both problems pass

the positive integer test. The reader will easily check that the

larger problem (with the grey peg) is in fact doable in legal

moves, which implies that no test relying only on 11I − 11J

would be able to show the first problem to be impossible. The

quadratic test we propose now is however able to show this

impossibility.

Figure 14. Starting position

Figure 15. Ending position

Let us start our description of the quadratic test.

9.1 The geometrical support

To each couple (A, B) ∈ S × S, we associate a symbol

A X� B, to which we add the property

A X� B = B X� A. (13)

We set

S X� S = �
A X� B, A, B ∈ S

�
. (14)

We next consider functions on S X� S. We denote by ˇA X� B

the function that is 1 on A X� B and 0 everywhere else.

Note that ˇA X� B = ˇB X� A. We go from F (S, Q)2 to

F (S X� S, Q) by

X� : F (S, Q) × F (S, Q) → F (S X� S, Q)

(g1, g2) �→ g1 X� g2

=
�

A,B∈S

g1(A)g2(B) ˇA X� B.

Notice that the value of g1 X� g2 on ˇA X� B is g1(A)g2(B) +
g1(B)g2(A) if A �= B and g1(A)g2(A) if A = B.
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9.2 The effect of legal moves

Assume now that we can go from I to J by the legal move

f ∈ D(S). We have

11I X� 11I = (11J + f) X� (11J + f)

= 11J X� 11J + f X� 11J + 11J X� f + f X� f.

On using the identity f X� 11J = 11J X� f, we reach

11I X� 11I = 11J X� 11J + (211J + f) X� f.

We note that

211J + f =
�

A∈J
f(A)=0

2 Ǎ + |f|,

from which we infer

11I X� 11I = 11J X� 11J + |f| X� f +
�

A∈J
f(A)=0

2 Ǎ X� f. (15)

This is the equation we want to exploit; we do so in pretty

much the same way we exploited (1). We set

D(S X� S) = {2 Ǎ X� f, A ∈ S, f ∈ D(S)/f(A) = 0}
×

�
{|f| X� f, f ∈ D(S)}. (16)

Note that if f = P̌ + Q̌ − Ř then

|f| X� f = ˇP X� P + 2 ˇP X� Q + ˇQ X� Q − ˇR X� R. (17)

We define our cone by

V +(S X� S, Z) =
�

c∈D(SX�S)

Z+ · c. (18)

A problem being given by an initial position I and a final

one J , the simple quadratic test consists is saying that

11I X� 11I − 11J X� 11J ∈ V +(S X� S, Z), which can

again be solved with integer linear programming. However

the spaces are much larger, and the resolution becomes more

troublesome. Note the following Lemma:

Lemma 9.1.

|S X� S| = |S|(|S| + 1)/2,

|D(S X� S)| = (|S| − 2)|D(S)|.

Indeed, there are |D(S)| moves of type |f| X� f, and, for

each f ∈ D(S), there are |S| − 3 moves of type 2 Ǎ X� f with

f(A) = 0. For the english board, the cardinality of |D(S X�
S)| is thus 2 356 for a board of 561 squares.

We have already given an example showing that this test is

sometimes better than the linear test with non-negative integer

coefficients but we show now that this is always the case.

To do so, let us define
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F0(S X� S, Z) = 

A∈S Z · ˇA X� A

+ 

A�=B∈S Z · 2 ˇA X� B

W (S X� S, Z) = 

A�=B∈S Z · 2 ˇA X� B.

Then we can easily identify F0(S X� S, Z)/W (S X�
S, Z) with the space of integer valued functions on { ˇA X� A,

A ∈ S}, which we can in turn identify with S. By these

identifications, we start with a function h ∈ F (S, Z), build

h X� h ∈ F0(S X� S, Z) and is next send to h. In particular,

we get

11I X� 11I − 11J X� 11J ∈ V +(S X� S, Z)

�⇒ 11I − 11J ∈ V +(S, Z). (19)

The fact that this test is in fact strictly superior on some boards

in shown by the problem described by Figs. 14 and 15.

10. A quadratic test, with flatness constraints

If the simple quadratic test is stronger than the linear one

with positive integers, it turns out when used to be lacking in

efficiency. The last term in (15) can be written as 211K X� f

where K ⊂ S avoids the support of f. This is much better than

saying that it is a linear combination of 2 Ǎ X� f, but it leads

to 2|S|−3|D(S)| + |D(S)| generators! This is of course way

too much and makes this new set of generators impractical.

However, if F is a succession of legal moves from I to J ,

we can write

11I X� 11I −11J X� 11J =
�

f

x(f)|f| X� f+
�

f

�

A

yf(A)2 Ǎ X� f.

(20)

And we readily see that on this writing that the following

inequalities are satisfied

0 ≤ yf(A) ≤ x(f). (21)
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We call them the flatness constraints. Despite their number,

these constraints renders the quadratic test much more

efficient. In fact, The x(f) are related to the usual linear moves

by

11I − 11J =
�

f

x(f)f (22)

(see the process that enabled us to prove (19)) and as such

can be controlled in size by the thickness of f at 11I − 11J , as

defined in section 8.

On an english board, the x(f)’s are seldomly larger than 4,

and on arbitrary board they are anyway bounded.

Notice that if 11I X� 11I − 11J X� 11J passes this test,

then actually, it can be written as a linear combination with

non-negative integer coefficients of 2 Ǎ X� f with f(A) = 0

and diagonal moves |f| X� f. To realize such a writing, given

f, simply collect together all A’s for which yf(A) has a given

value into a set A. Note that these sets A are not the same as

the sets K we used at the very beginning of this section, but

are of same use.

The problem described by Figs. 16 and 17 goes through

the quadratic test with no flatness constraints, but is shown

impossible as soon as we add these constraints:

Figure 16. Starting position

Figure 17. Ending position

This new test is the main novelty of this paper and is

extremely efficient in practice, though it requires a processor

to carry out the required computations.

We end this part with three further examples of problems

shown to be impossible via the quadratic test with flatness

constraints. Here are two problems, with a same starting

position but different ending positions. None of them go

through the quadratic test with flatness constraints:

Figure 18. Starting position

Figure 19. First ending position

Figure 20. Second ending position

The third example is to go from the initial position to the

intermediate ending position. This is shown to be impossible

via the quadratic test with flatness constraints, though it again

passes the simple quadratic test. Moreover, the problem to go

from the initial position to the final ending position is feasible

in legal moves.

11. Additional constraints, a first draft

Now that we have seen that the quadratic test with flatness

constraints is very efficient, it is tempting to try to add some
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further constraints. This is the topic of these two last sections,

but this part is still very much in progress. The reader may

get the impression that it is not so much in progress than

more bluntly unfinished. After some months of efforts, I have

not been able to derive a unifying setup for what look like

protrusions of a hidden structure, which is why I deliver them

in this state.

Figure 21. Starting position

Figure 22. Intermediate ending position

Figure 23. Final ending position

The idea we follow is to add geometrical information to

control as much as possible these new variables yf(A) in (20).

Let us start with a fundamental inequality.

Proposition 11.1. Assume we can go from I to J in legal

moves. Then there exists a writing of 11I X� 11I − 11J X� 11J

(as in (20)) such that for every A ∈ S we have

0 ≤
�

f

yf(A) +
�

f/f(A) �=0

x(f) ≤ |I | − |J |. (23)

See (28) and (29) for refinements. Let F be a succession of

legal moves from I to J . We set

p(A,F) =
�

f

yf(A) +
�

f/f(A) �=0

x(f) (24)

where the yf(A)’s and the x(f)’s come from (20).

Proof. Given a move f, let us look at the situation of the board

before using this move. There are four possibilities for A:

• f(A) = 1, which means that A is on the board and

participates to the move. It is counted in x(f) and nowhere

else.

• A is not on the board but is created by the move. It is

counted in x(f) and nowhere else.

• A is on the board but does not participate to the move. It is

counted in yf(A) and nowhere else.

• A is not on the board and not created by the move. It is not

counted anywhere.

The proof follows by using this remark and an induction on

|I | − |J |. We have equality if and only if the last case above

never occurs, which means that A is never absent from the

position for two consecutive moves. ✷

We have seen that we can have equality in (23), but we can

even show that the right hand side is on average of the correct

order of magnitude. Indeed we have
�

A∈S

p(A,F) = |I | − 2 + |I | − 3 + · · · + |J | − 1

+ 3(|I | − |J |)

= (|I | − |J |) |I | + |J | + 3

2
since there are |I | − 2 points on the first move that are on the

board but do not participate to the move, then |I | − 3, and

so on. As a consequence

1

|S|
�

A∈S

p(A,F) = �|I | − |J |� |I | + |J | + 3

2|S| .

This shows that (23) prevents too wide deviations from the

mean, at least if |I | + |J | and |S| are of comparable size.

We propose to improve on this double inequality in three

ways.

11.1 Using the speed at which a peg gets inside J

We define the depth of the point A with respect to the position

S containing it to be the minimum number Depth(A, S) of
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legal moves required to remove the peg in A. If A is not in S,

we set Depth(A, S) = 0. Let us recall a classical Lemma.

Lemma 11.1 (Leibniz). If the sequence of legal moves

f1, f2, . . . , fk goes from I to J , then the sequence of legal

moves fk, . . . , f2, f1 goes from S\J to S\I .

It is enough to verify this property when k = 1 where it

is obvious. Leibniz expressed this idea in a different manner:

he started from the final position J and tried to recover the

initial one by playing in reverse; he discovered it was the same

game, provided one considered the empty squares as having a

peg, and the ones with a peg as being empty. This is exactly

what we shall consider. Indeed, given a point A out of our

final position J , there is a minimal number a moves that will

“bring” its peg inside J , or kill it, namely Depth(A, S\J ).

Let us select a minimal path from J to A. Its last move puts

a peg in A, i.e. has A as point R since we could otherwise

shorten this path. Moreover it does not use A anymore as point

P or Q since we could again shorten the path. Consequently,

for any A /∈ J

p(A,F) ≤ max(0, |I | − |J | − Depth(A, S\J ) + 1). (25)

If A is in J , we have Depth(A, S\J ) = 0 so that (23) is

stronger.

Proof. Indeed A not in J implies Depth(A, S\J ) ≥ 1. The

Depth(A, S\J ) − 1 last moves cannot use A in any part of a

move, hence we can use (23) with |J | + Depth(A, S\J ) − 1

points as a final position instead of J if A is at some point of

time on the board. Else, it is never here and the upper bound

0 is fine. ✷

We do not know of any precise mean of computing this

depth, but we provide now a fast way to get an excellent lower

bound. Let us consider the oriented graph G built on the set

S and where we put an edge from A to B if there exists

f ∈ D(S) such that f(A) = 1 and f(B) = −1. A minimal path

that realizes Depth(A, S\J ) is readily transformed in a path

from A to J on G. Reciproquely from such a path from A to J

on this graph, we deduce a position K by adding the required

points P and Q necessary for the f’s. The only problem is that

this process may require to put several pegs on a same square

(we do not have any example of such a situation). Denoting by

δG(A, J ) the distance on this graph, we have established that

δG(A, J ) ≤ Depth(S\J ) (26)

Note that a final position L in case of δG is reduced to a

single point. The distance δG(A, J ) is now readily computed,

by using the Dijkstra’s algorithm for instance.

Practically, to find a minorant of this depth, we proceed in

two steps (with S = S\J ):

• We try every succession of 5 legal moves from S.

• Concerning the remaining ones, we first build the set S5

of points with Depth(A, S) ≤ 5. If A ∈ S5, we find the

minimum of δG(A, B) + Depth(B, S) for every B ∈ S5;

this a first lower bound for Depth(A, S), but sometimes the

lower bound 6 is simply better.

11.2 Using the speed at which a point is reached by I

Let us now examine the somewhat reciproqual situation, and

try to get the minimum of legal moves from the set I that puts

a peg in A. We need two pegs to create one, which means that

the distance δG(A, I ) is not a good lower bound anymore.

We define the height Height(A, I ) of A with respect to I

to be his minimal number, and set Height(A, I ) = ∞ if A

can never be reached. Computing this Height(A, I ) is very

difficult.

Lemma 11.2. Let I be a subset of S and A be such that

Height(A, I ) < ∞. For any non-negative resource count π ,

we have �11I , π� ≥ π(A).

Proof. Indeed there is a set J which contains A and that is

reachable from I . We thus have �11I , π� ≥ �11J , π� which in

turn is non less than π(P) by the non-negativity assumption

on π . ✷

Using Lemma 11.2 and some direct computations, we

get the following height-diagram for the left-hand side

position.

Figure 24. Starting position
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Figure 25. Height/-Depth

We next provide an example on which Lemma 11.2 is

not strong enough to decide whether some points have finite

heights or not. This problem passes the linear integer test.

We provide the height of each square (we simply computed

all position attainable in 5 moves!). The two squares on the

left-hand side (and the symmetric ones on the right-hand side)

are rather clearly not reachable, but the test deduced from

Lemma 11.2 fails to prove that. Even worse, we found for

each of this square a position got from the first one in 5 moves

and for which this square is not shown to be unreachable by

this test.

Figure 26. Starting position

Figure 27. Ending position

Practically, to find a minorant of this height, we proceed in

three steps:

Figure 28. Height/-Depth

• We try every succession of 5 legal moves.

• We use the Lemma 11.2 to determine those points that are

guaranteed to have infinite height. (We apply this test to all

of the derived positions).

• Concerning the remaining ones, we first build the set I5 of

points with Height(A, I ) ≤ 5. If A ∈ S\I5, we find the

minimum of δG(A, B) + Height(B, I ) for every B ∈ I5;

this a first lower bound for Height(A, I ), but sometimes

the lower bound 6 is simply better.

Set

C (A, I, J ) = min
�|I | − |J |, max

�
Depth(A, S\J ) − 1, 0

�

+ max
�

Height(A, I ) − 1, 0
��

. (27)

We have

p(A,F) ≤ |I | − |J | − C (A, I, J ). (28)

11.3 Using the speed at which a peg comes out of I

We finally improve on the lower bound in (23). The fact is that

some points are so much within the starting position I that

the peg on them cannot be eliminated before so many moves,

and this is precisely how we defined Depth(A, I ). We have

then

Depth(A, I ) ≤ p(A,F). (29)

11.4 Final discussion

We end this section with two remarks. First, both notions of

depth and height use only one of the two positions of the

problem, and this is a loss. For instance concerning height,
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if we manage to put a peg in a very far away square that is also

far from our final position, it is probable that we shall not be

able to bring it back to it; for instance, if the starting position

is given by Fig. 26, it is likely that we cannot put a point in the

lower left corner and finish as in Fig. 27. Secondly, constraints

(28) and (29) only avoid extremal cases, as we noted earlier,

and there are only 2|S| of them for a problem with about |S|2
variables; in fact, if S has no isolated point, Lemma 4.1 yields

|S|(|S| − 2) ≤ |D(S X� S)| ≤ 4|S|(|S| − 2).

This explains why these constraints are somewhat weak.

12. Additional constraints

Having in mind the counting argument displayed at the end of

last section, we see that finding conditions on couples (A, A�)
of points would not increase too much the size of the problem

but may yield more stringent constraints.

As of now, we have only found one such type of constraint,

which applies to initial positions I such that S\I is large

enough.

Let us start with some general considerations. Let

Height(A, A�, I ) be the minimum number of legal moves

necessary to put a peg in each of A and A�, starting

from a board with pegs on all the points of I . We assign

it value ∞ if no such succession exists. Note that the

height-function does not behave like a distance, since we

can have Height(A, A�, I ) > Height(A, I ) + Height(A�, I ).

We formulate a conjecture:

Conjecture 12.1. Height(A, A�, I ) ≥ Height(A, I )+Height

(A�, I ).

A proof or disproof of this conjecture has sofar escaped the

author.

Lemma 12.1. Consider two points A and A� such that

Height(A, A�, I ) = ∞. Then

p(A,F) + p(A�,F) −
�

f/f(A)f(A� ) �=0

x(f) ≤ |I | − |J |. (30)

Proof. Given a move f, let us look at the situation of the board

before using this move. There are several cases:

• A is on the board and is not moved by f. Then A� is not

on the board, and may not be created by f. This move is

counted in yf(A).

• A� is on the board and is not moved by f. Then A is not

on the board, and may not be created by f. This move is

counted in yf(A�).
• A is on the board and is moved by f. Then A� is not on the

board and may be created. This move is counted in x(f).

• A� is on the board and is moved by f. Then A is not on

the board and may be created. This move is counted in

x(f). ✷

The question arises as to whether this Lemma leads or not

to improvements, and we provide an example below showing

that it indeed does. The geometrical fact that we have used

is that a square can either contain a peg, or be empty, a

fairly trivial information that was until now absent from our

discussion.

Before exposing our example, let us address rapidly

the problem of computing couples (A, A�) with

Height(A, A�, I ) = ∞.

Lemma 12.2. Let I be a subset of S and A and A� be two

points of S. If there exists a non-negative resource count π ,

such that �11I , π� < π(A) + π(A�), then Height(A, A�, I ) =
∞.

We can improve on this criteria: simply form all positions

derived from I by one (or any fixed number) legal move, and

apply this criteria to each of them.

Here is a problem that is shown impossible by using

this criteria, though it passes the quadratic integer test with

flatness constraints:

Figure 29. Starting position

This example is also interesting because of the square with

an interrogation dot: it is “clearly” of infinite height, but our

automatic process is not able to conclude. Here is the list of

couples with Height(A, A�, I ) = ∞ that we have found:
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A A�

(3, 1) (1, 4), (2, 3), (3, 2), (3, 3)

(4, 1) (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 1), (3, 3),

(3, 4), (3, 6), (3, 7), (4, 2), (4, 3), (4, 4), (4, 5),

(4, 6), (4, 7), (5, 1)(1, 4), (2, 3), (3, 1), (3, 2),

(3, 3), (4, 1), (4, 2), (5, 2), (5, 3)

(5, 2) (3, 1), (4, 1)

(5, 3) (3, 1)

(5, 4) (4, 1)

(6, 3) (3, 1), (4, 1), (5, 1)

(6, 4) (4, 1), (5, 1)

(6, 5) (4, 1)

(7, 3) (1, 4), (2, 3), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3),

(4, 6), (5, 1), (5, 2), (5, 3), (6, 3), (6, 4), (6, 5),

(7, 4), (7, 4)(1, 4), (2, 4), (3, 1), (4, 1), (4, 2),

(4, 4), (4, 6), (4, 7), (7, 5)(5, 1), (5, 2), (5, 4), (5, 6),

(6, 3), (6, 4), (7, 5)(7, 5)(4, 1), (5, 1), (6, 3), (6, 5)

Figure 30. Ending position

Figure 31. Height/-Depth

Lemma 12.1 is of course of fairly limited use: we need the

starting position to leave free enough squares on the board.

However, it shows how more geometrical arguments may be

used to get improvements! Our journey ends here.
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