Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Communications Année : 2022

Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization

Résumé

Abstract Designing molecular materials with very large exciton diffusion lengths would remove some of the intrinsic limitations of present-day organic optoelectronic devices. Yet, the nature of excitons in these materials is still not sufficiently well understood. Here we present Frenkel exciton surface hopping, an efficient method to propagate excitons through truly nano-scale materials by solving the time-dependent Schrödinger equation coupled to nuclear motion. We find a clear correlation between diffusion constant and quantum delocalization of the exciton. In materials featuring some of the highest diffusion lengths to date, e.g. the non-fullerene acceptor Y6, the exciton propagates via a transient delocalization mechanism, reminiscent to what was recently proposed for charge transport. Yet, the extent of delocalization is rather modest, even in Y6, and found to be limited by the relatively large exciton reorganization energy. On this basis we chart out a path for rationally improving exciton transport in organic optoelectronic materials.
Fichier principal
Vignette du fichier
s41467-022-30308-5.pdf (1.89 Mo) Télécharger le fichier
Origine : Publication financée par une institution

Dates et versions

hal-03672528 , version 1 (30-03-2024)

Identifiants

Citer

Samuele Giannini, Wei-Tao Peng, Lorenzo Cupellini, Daniele Padula, Antoine Carof, et al.. Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization. Nature Communications, 2022, 13 (1), pp.2755. ⟨10.1038/s41467-022-30308-5⟩. ⟨hal-03672528⟩
21 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More