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Abstract: We propose some variants of a multi-modal logic of joint action, preference and
knowledge that support reasoning about epistemic games in strategic form.
The first part of the paper deals with games with complete information. We first provide
syntactic proofs of some theorems that are well-known in the area of interactive epistemol-
ogy and that specify some sufficient epistemic conditions of equilibrium notions such as
Nash equilibrium and Iterated Deletion of Strictly Dominated Strategies (IDSDS). Then, we
present a variant of the logic extended with dynamic operators of Dynamic Epistemic Logic
(DEL). We show that it allows to express the notion IDSDS in a more compact way.
The second part of the paper deals with games with weaker forms of complete information.
We first discuss several assumptions on different aspects of perfect information about the
game structure (e.g. the assumption that a player has perfect knowledge about the players’
strategy sets or about the preference orderings over strategy profiles), and show that every
assumption is expressed by a corresponding logical axiom of our logic. Then we provide a
proof of Harsanyi’s claim that all uncertainty about the structure of a game can be reduced
to uncertainty about payoffs.
Sound and complete axiomatizations of the logics presented in the paper are given, as well
as some complexity results for the satisfiability problem.

Keywords: Game theory; modal logic; Dynamic Epistemic Logic

1. Introduction

The aim of this article is to propose a modal logic framework that allows to reason about epistemic
games in strategic form. In this kind of games players decide what to do according to some general
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principles of rationality while being uncertain about several aspects of the interaction such as other
agents’ choices, other agents’ preferences, etc.

While epistemic games have been extensively studied in economics (in the so-called interactive epis-
temology area, see e.g. [1–6]) and while there have been few analyses of epistemic games in modal logic
(see, e.g., [3,7–9]), no modal logic approach to epistemic games has been proposed up to now which
addresses all the following issues at the same time:

• to provide a logic, and a corresponding formal semantics, which is sufficiently general:

– to express solution concepts like Nash Equilibrium or Iterated Deletion of Strictly Dominated
Strategies (IDSDS) and to derive syntactically the epistemic and rationality conditions on
which such solution concepts are based,

– to study both epistemic games with complete information and with incomplete information;

• to prove its soundness and completeness;

• to study its computational properties like decidability and complexity.

In this article, we try to fill this gap by proposing some variants of a multi-modal logic of joint action,
preference and knowledge interpreted on a Kripke-style semantics, that allow to represent both epistemic
games with complete information and epistemic games with different forms of incomplete information
about the game structure. We give sound and complete axiomatizations of all these logics as well as
some complexity results for the satisfiability problem.

The article is organized in two parts: the first part is focused on strategic games with complete infor-
mation, while the second one extends the analysis to strategic games with incomplete information.

In Section 2 we present a modal logic, calledMLEG (Modal Logic of Epistemic Games), that sup-
ports reasoning about epistemic games with complete information in which an agent can only have
uncertainty about other agents’ current choices. A complete axiomatization and complexity results for
this logic are given.

Section 3 is devoted to the analysis inMLEG of the epistemic conditions of Nash equilibrium and
IDSDS. We use the logicMLEG in order to provide syntactic proofs of some theorems that are well-
known in the area of interactive epistemology such as the theorem that specifies some sufficient epis-
temic conditions of Nash equilibrium in terms of players’ rationality and knowledge about other players’
choices, and the theorem characterizing IDSDS in terms of common knowledge about rationality.

In Section 4 we make MLEG dynamic by extending it with constructions of Dynamic Epistemic
Logic (DEL) [10–12], and we show that this dynamic version ofMLEG allows to express the notion
IDSDS in a more compact way than in the staticMLEG. A complete axiomatization for this dynamic
extension of the logicMLEG is given.

In Section 5 we show how our logical framework can be easily adapted in order to study strategic
interaction with incomplete information about the game structure. In Section 6 we discuss several as-
sumptions on different aspects of complete information about the game structure (e.g. the assumption
that a player has perfect knowledge about the players’ strategy sets or about the players’ preference
ordering over strategy profiles). We show that every assumption is expressed by a corresponding log-
ical axiom. Consequently, a class of epistemic games characterized by a specific aspect of complete
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information about the game structure corresponds to a specific variant of the logicMLEG. We present
some complexity results for these variants of the logicMLEG, that are interesting because they show
how complexity of our logic varies from games with complete information to games with incomplete
information.

We also provide a formal proof of Harsanyi’s claim that all uncertainty about the structure of a game
can be reduced to uncertainty about payoffs. The novel aspect of our contribution is that we prove
Harsanyi’s claim in a purely qualitative setting with no probabilities, while existing proofs are given in a
quantitative setting with probabilities (see, e.g., [13]).

Proofs of theorems are given in an Annex at the end of the article.
Before concluding this introduction, we would like to emphasize an aspect of our work that could be

interesting for a game-theorist.
As the logics presented in this paper are sound and complete, they allow to study strategic interaction

both at the semantic level and at the syntactic level. In this sense, they provide a formal framework which
unifies two approaches traditionally opposed by authors working in the area of formal interactive episte-
mology: the semantic approach and the syntactic approach.1 However, it is worth noting that syntactic
derivations of various results concerning the epistemic foundations of game theory are not interesting
in itself. Instead, this kind of analysis is useful to identify specific features that are important for the
foundations of game theory, for example whether certain assumptions on the players’ knowledge are in-
deed necessary to prove results concerning the epistemic conditions of equilibrium notions such as Nash
equilibrium and IDSDS. Typical assumptions on players’ knowledge are for example the assumption
that knowledge is positively and negatively introspective (i.e. if I know that ϕ is true then I know that I
know that ϕ is true, and if I do not know that ϕ is true then I know that I do not know that ϕ is true),
the factivity principle that knowing that ϕ implies that ϕ is true, the assumption that every player knows
what he has decided to do, or the assumption that a player has perfect knowledge about some aspects of
the game such as the players’ strategy sets and the players’ preference ordering over strategy profiles.

2. A logic of joint actions, knowledge and preferences

We present in this section the multi-modal logicMLEG (Modal Logic of Epistemic Games) integrat-
ing the concepts of joint action, belief and preference. This logic supports reasoning about epistemic
games in strategic form in which an agent might be uncertain about the current choices of the other
agents.

2.1. Syntax

The syntactic primitives ofMLEG are the finite set of agents Agt , the set of atomic formulas Atm,
a nonempty finite set of atomic action names Act = {a1, a2, . . . , a|Act |}. Non-empty sets of agents are
called coalitions or groups, noted C1, C2, . . .. We note 2Agt∗ = 2Agt \ {∅} the set of coalitions.

To every agent i ∈ Agt we associate the set Act i of all possible ordered pairs agent/action i:a, that is,
Act i = {i:a | a ∈ Act}. Besides, for every coalition C we note ∆C the set of all joint actions of this
coalition, that is, ∆C =

∏
i∈C Act i. Elements in ∆C are C-tuples noted αC , βC , γC , δC , . . .. If C = Agt ,

1See [2] for an analysis of the relation between the two approaches.
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we write ∆ instead of ∆Agt . Elements in ∆ are also called strategy profiles. Given δ ∈ ∆, we note δi the
element in δ corresponding to agent i. Moreover, for notational convenience, we write δ−i = δAgt\{i}.

The language LMLEG of the logicMLEG is given by the following rule:

ϕ ::= p | ⊥ | ¬ϕ | (ϕ ∨ ϕ) | [δC ]ϕ | �ϕ | Kiϕ | [good]i ϕ

where p ranges over Atm, i ranges over Agt , and δC ranges over
⋃
C∈2Agt∗ ∆C . The classical Boolean

connectives ∧, →, ↔ and > (tautology) are defined from ⊥, ∨ and ¬ in the usual manner. We also
follow the standard rules for omission of parentheses.

The formula [δC ]ϕ reads “if coalition C chooses the joint action δC then ϕ holds”. Therefore, [δC ]⊥
reads “coalition C does not choose the joint action δC ”.
� is a necessity operator which enables to quantify over possible joint actions of all agents, that

is, over the strategy profiles of the current game (the terms “joint actions of all agents” and “strategy
profiles” are supposed here to be synonymous). �ϕ reads “ϕ holds for every alternative strategy profile
of the current game”, or simply “ϕ is necessarily true”.

Operators Ki are standard epistemic modal operators. Construction Kiϕ is read as usual “agent i
knows that ϕ is true”, whereas the construction [good]i ϕ is read “ϕ is true in all worlds which are for
agent i at least as good as the current one concerning the strategy profile that is chosen”. We define
〈good〉iϕ as an abbreviation of ¬ [good]i ¬ϕ. Operators [good]i are used in MLEG to define agents’
preference orderings over the strategy profiles of the current game. Similar operators are studied by [14].

We use EKCϕ as an abbreviation of
∧
i∈C Kiϕ, i.e. every agent in C knows ϕ (if C = ∅ then EKCϕ is

equivalent to >). Then we define by induction EKkCϕ for every natural number k ∈ N:

EK0
Cϕ

def
= ϕ

and for all k ≥ 1,
EKkCϕ

def
= EKC(EKk−1

C ϕ).

We define for all natural numbers n ∈ N, MKnCϕ as an abbreviation of
∧

1≤k≤n EK
k
Cϕ. MKnCϕ expresses

C’s mutual knowledge that ϕ up to n iterations, i.e. everyone in C knows ϕ, everyone in C knows that
everyone in C knows ϕ, and so on until level n.

Finally, 〈δC〉ϕ abbreviates ¬ [δC ]¬ϕ, ♦ϕ abbreviates ¬�¬ϕ and K̂iϕ abbreviates ¬Ki¬ϕ. ♦ϕ means
“ϕ is possibly true”. Therefore 〈δC〉ϕ reads “coalition C chooses the joint action δC and ϕ holds”, and
〈δC〉> simply reads “coalition C chooses the joint action δC”.

The operator ♦ and the operators 〈δC〉 can be combined in order to express what a coalition of agents
can do. In particular, ♦〈δC〉> has to be read “coalition C can choose the joint action δC”. For the
individual case, ♦〈i:a〉> has to be read “agent i can choose action a” or also “action a is in the strategy
set (action repertoire) of agent i”. Furthermore, ♦〈δ〉> is read “coalition Agt can choose the joint action
(strategy profile) δ” or also “δ is a strategy profile of the current game”.

2.2. Semantics

In this subsection, we introduce a Kripke-style possible world semantics of our logicMLEG.

Definition 1 (MLEG-frames). MLEG-frames are tuples F = 〈W,∼, R,E,�〉 where:
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• W is a nonempty set of possible worlds or states;

• ∼ is an equivalence relation on W ;

• R is a collection of total functions RC : W −→ ∆C one for every coalition C ∈ 2Agt∗, mapping
every world in W to a joint action of the coalition such that:

C1 δC = RC(w) if and only if for every i ∈ C, δi = Ri(w),2

C2 if for every i ∈ Agt there is vi such that w ∼ vi and δi = Ri(vi) then there is a v such that
w ∼ v and δ = RAgt(v);

• E : Agt −→ 2W×W maps every agent i to an equivalence relation Ei on W such that:

C3 if wEiv, then i:a = Ri(w) if and only if i:a = Ri(v),

C4 if wEiv then w ∼ v;

• �: Agt −→ 2W×W maps every agent i to a reflexive, transitive relation �i on W such that:

C5 if w �i v then w ∼ v,

C6 if w ∼ v and w ∼ u then v �i u or u �i v.

δC = RC(w) means that coalition C performs the joint action δC at world w.
If w ∼ v then w and v correspond to alternative strategy profiles of the same game. For short, we

say that v is alternative to w. Given a world w, we use the notation ∼(w) = {v | w ∼ v} to denote the
equivalence class made up of those worlds corresponding to alternative strategy profiles of the game of
which w is one of the strategy profile. Consider e.g. Agt = {1, 2} and Act = {c, d, skip}. In the frame
in Figure 1 we have w1 ∼ w2. This means that the joint action performed at w1 (viz. 〈1:c, 1:c〉) and the
one performed at w2 (viz. 〈1:c, 1:d〉) are alternative strategy profiles of the same game defined by the
equivalence class ∼(w1) = {w1, w2, w3, w4}.

For every C ⊆ Agt , if there exists v ∈ ∼(w) such that C performs δC at v then we say that δC is
possible at w (or δC can be performed at w).
wEiv means that, for agent i, world v is (epistemically) possible at w, whilst w �i v means that for

agent i, world v is at least as good as world w. We write w =i v iff w �i v and v �i w, and w <i v iff
w �i v and not v �i w.

Let us discuss the semantic constraints in Definition 1.
According to Constraint C1, at world w coalition C chooses the joint action δC if and only if, every

agent i in C chooses the action δi at w. In other words, a certain joint action is performed by a coalition if
and only if every agent in the coalition does his part of the joint action. According to the Constraint C2,
if every individual action in a joint action δ is possible at world w, then their simultaneous occurrence is
also possible at world w.

Constraint C3 just says that an agent knows what he has decided to do. This is a standard assumption
in interactive epistemology and epistemic analysis of games (see [3] for instance).

2Note that for notational convenience we write Ri instead of R{i}.
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Figure 1. The equivalence class {w1, w2, w3, w4} represents the Prisoner’s Dilemma game
[15] between two players 1 and 2 (action c stands for ‘cooperate’ and action d stands for
‘defect’). Thick ellipses are epistemic relations for 1, thin ellipses are epistemic relations for
2 (both 1 and 2 are uncertain about the other’s action).

v v

vv

w1 w2

w3 w4

2 : c 2 : d

1 : c

1 : d

w2 <1 w4 <1 w1 <1 w3
w3 <2 w4 <2 w1 <2 w2

We suppose complete information about the specification of the game, including the players’ strategy
sets (or action repertoires) and the players’ preference ordering over strategy profiles. This assumption is
formally expressed by the Constraint C4: if world v is epistemically possible for agent i at w, then w and
v correspond to alternative strategy profiles of the same game. Complete information about the structure
of the game is a standard assumption in game theory. In Section 5, this assumption will be relaxed in
order to deal with realistic situations in which an agent might be uncertain about his own utility and
other agents’ utilities associated to a certain strategy profile, as well as about his own action repertoire
and other agents’ action repertoires.

Finally, we have two constraints over the relations�i. We suppose that a world v is for agent i at least
as good as w only if v is a world which is possible at w, i.e. only if v and w correspond to alternative
strategy profiles of the same game (Constraint C5). Furthermore, we suppose that every agent has a
complete preference ordering over the strategy profiles of the current game (Constraint C6).

REMARK. Note that in the case of complete information (Constraint C4) the relation ∼ is superfluous
because all other relations are included into ∼ (Constraints C5 and C6). So in this case we can suppose
∼ to be the universal relationW ×W and� to be the well-known universal modality.3 We decided to in-
troduce the relation ∼ in this part of the paper in order to be able to generalize the definition of model in
the case of imcomplete information (see Section 5). In fact, in the case of games of imcomplete informa-
tion, a player can imagine alternative games and there is no one-to-one correspondence between models
and games (i.e. every model does not necessarily correspond to a unique strategic game). Therefore, the
relation ∼ can no longer be supposed to be the universal relation.

Definition 2 (MLEG-models). MLEG-models are couples F = 〈F, π〉 where:

3 The universal modality has been used since the dawning of modal logic (it is just a plain old S5 operator [16]). More
recently, it has been used in several modal logic analysis of preferences and games (see, e.g., [14,17,18]).



Version November 25, 2010 submitted to Games 7 of 49

• F is aMLEG-frame;

• π : Atm −→ 2W is a valuation function.

The truth conditions for Boolean operators and for operators [δC ], �, Ki and [good]i are:

• M,w |= p iff w ∈ π(p);

• M,w |= ¬ϕ iff not M,w |= ϕ;

• M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ ;

• M,w |= [δC ]ϕ iff if RC(w) = δC then M,w |= ϕ;

• M,w |= �ϕ iff M, v |= ϕ for all v such that w ∼ v;

• M,w |= Kiϕ iff M, v |= ϕ for all v such that wEiv;

• M,w |= [good]i ϕ iff M, v |= ϕ for all v such that w �i v.

A formula ϕ is true in an MLEG-model M iff M,w |= ϕ for every world w in M . A formula ϕ is
MLEG-valid (noted |= ϕ) iff ϕ is true in allMLEG-models. A formula ϕ isMLEG-satisfiable iff ¬ϕ
is notMLEG-valid.

2.3. Axiomatization and complexity results

We callMLEG the logic that is axiomatized by the principles given in Figure 2.
Note that the principles of modal logic S5 for the operator � are: the four axiom schemas (K) (�ϕ ∧

�(ϕ → ψ)) → �ψ, (T) �ϕ → ϕ, (4) �ϕ → ��ϕ, (B) ϕ → �♦ϕ, and the rule of inference
(Necessitation) ϕ

�ϕ . The principles of modal logic S5 for the operators Ki are: the four axiom schemas

(K) (Kiϕ ∧ Ki(ϕ → ψ)) → Kiψ, (T) Kiϕ → ϕ, (4) Kiϕ → KiKiϕ, (B) ϕ → KiK̂iϕ, and the rule of
inference (Necessitation) ϕ

K̂iϕ
. The principles of modal logic S4 for the operators [good]i are: the three

axiom schemas (K) ([good]i ϕ ∧ [good]i (ϕ → ψ)) → [good]i ψ, (T) [good]i ϕ → ϕ, (4) [good]i ϕ →
[good]i [good]i ϕ, and the rule of inference (Necessitation) ϕ

[good]iϕ
.

Note also that Axiom Indep is the MLEG counterpart of the so-called axiom of independence of
agents of STIT logic (the logic of Seeing to it that) [19]. This axiom enables to express the basic game
theoretic assumption that the set of strategy profiles of a game in strategic form is the cartesian product
of the sets of individual actions for the agents in Agt .

We write `MLEG ϕ if ϕ is a theorem ofMLEG, that is, if ϕ can be deduced by applying the axioms
and the rules of inference of the logicMLEG.

As the following theorem 1 highlights, we can prove that the logic MLEG is sound and complete
with respect to the class ofMLEG-models.

Theorem 1. MLEG is determined by the class ofMLEG-models.
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Figure 2. Axiomatization ofMLEG

All principles of classical propositional logic(CPL)

All principles of modal logic S5 for �(S5�)

All principles of modal logic S5 for every Ki(S5Ki)

All principles of modal logic S4 for every [good]i(S4[good]i
)

[δC ]ϕ↔ (〈δC〉> → ϕ)(Def[δC ])

〈δC〉> ↔
∧
i∈C

〈δi〉>(JointAct) ∨
δC∈∆C

〈δC〉>(Active)

〈δC〉> → [δ′C ]⊥ if δC 6= δ′C(Single) ( ∧
i∈Agt

♦〈δi〉>

)
→ ♦〈δ〉>(Indep)

〈i:a〉> → Ki〈i:a〉>(Aware)

�ϕ→ [good]i ϕ(Incl[good]i,�)

(♦ϕ ∧ ♦ψ)→ (♦(ϕ ∧ 〈good〉iψ) ∨ ♦(ψ ∧ 〈good〉iϕ))(PrefConnect)

�ϕ→ Kiϕ(CompleteInfo)
ϕ, ϕ→ ψ

ψ
(ModusPonens)

Moreover we can prove a result about complexity of the satisfiability problem of the logicMLEG,
that is, the complexity of the problem of deciding whether a given MLEG formula ϕ is MLEG-
satisfiable or not. This question is highly related to automated reasoning. Here, we give a lower-bound
and upper-bound for the complexity of the satisfiability problem (for more information about the com-
plexity theory, the reader may refer to [20]):

Theorem 2. If the number of agents is greater of equal to 2, the satisfiability problem of MLEG is
EXPTIME-hard and in NEXPTIME.

We conjecture that the satisfiability problem ofMLEG is EXPTIME-complete. Indeed, we think that
this can proved by the argument used for proving that the satisfiability problem of S52 with common
knowledge [21] or propositional dynamic logic (PDL) [22] is EXPTIME-complete.

2.4. A variant ofMLEG with joint determinism

We present here a variant of MLEG where models have an additionnal constraint of determinism
for the joint actions of all agents: different worlds in an equivalence class ∼ (w) correspond to the
occurrences of different strategy profiles:

CD if w ∼ v and δ = RAgt(w) and δ = RAgt(v), then w = v;
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AMLEG-model satisfying the constraint CD is called aMLEGdet-model.
The axiom corresponding to the Constraint CD is:

(〈δ〉> ∧ ϕ)→ �(〈δ〉> → ϕ)(JointDet)

We callMLEGdet the logic that is axiomatized by the principles given in Figure 2 plus axiom Joint-
Det.

Theorem 3. MLEGdet is determined by the class ofMLEGdet-models.

Although the Constraint CD excludes pure uncertainty about uncertainty (i.e. cases where the same
profile is played at two states on the basis of different information), it is interesting because it allows
to establish a connection between our logical framework and Coalition Logic (CL) [23,24], where it is
assumed that if every agent in Agt opts for an action the next state of the world is uniquely determined.
As shown in [25], the logic MLEGdet extended by the operator next of linear temporal logic (LTL)
embeds Coalition Logic (CL) [23,24]. In particular, if we extendMLEGdet by the temporal operator X
(where Xϕ means “ϕ will be true in the next state”) CL cooperation modalities of the form [C] can be
reconstructed in our logicMLEG as follows.

tr([C]ϕ) =
∨
δ∈∆ (♦〈δC〉> ∧�(〈δC〉> → Xϕ))

That is, the CL expression “coalition C can enforce an outcome state satisfying ϕ” (noted [C]ϕ) is
translated in our logic as “there exists a joint action δC of the agents in C such that the agents in C can
perform δC , and necessarily if the agents in C perform δC then ϕ will be true in the next state, no matter
what the agents outside C do”.

REMARK. It is worth noting that, while MLEGdet embeds Coalition Logic, the basic logic MLEG
embeds Chellas’ STIT logic with agents and groups [26], under the hypothesis that the number of agents’
choices is bounded (see [27] for more details). In fact, differently from Coalition Logic, in STIT joint
actions of all agents are not necessarily deterministic. STIT logic has formulas of the form [C cstit:ϕ]

that are read “group C sees to it that ϕ”. The translation of STIT modalities of the form [C cstit:] into
MLEG would be the following:

tr([C cstit:ϕ]) =
∨
δ∈∆(〈δC〉> ∧�(〈δC〉> → ϕ))

That is, the STIT expression “group C sees to it that ϕ” is translated into DLA as “there exists a joint
action δC of the agents in C such that the agents in C perform δC , and necessarily if the agents in C
perform δC then ϕ will be true, no matter what the agents outside C do”.

The constraint of joint determinism CD is also useful for complexity reasons. Indeed, if we add CD
to our logic, the complexity of the satisfiability problem drops to NP.

Theorem 4. The satisfiability problem ofMLEGdet is NP-complete.

3. A logical account of epistemic games

This section is devoted to the analysis in the modal logicMLEG of the epistemic aspects of strategic
games. We first consider the basic game-theoretic concepts of best response and Nash equilibrium, and
their relationships with the notion of epistemic rationality assumed in classical game theory. Finally, we
provide an analysis of Iterated Deletion of Strictly Dominated Strategies (IDSDS).
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3.1. Best Response and Nash Equilibrium

The modal operators [good]i and � enable to capture in MLEG a notion of comparative goodness
over formulas of the kind “ϕ is for agent i at least as good as ψ”, noted ψ ≤i ϕ:

ψ ≤i ϕ
def
= � (ψ → 〈good〉iϕ) .

According to the previous definition, ϕ is for agent i at least as good as ψ if and only if, for every world v
corresponding to a strategy profile of the current game in which ψ is true, there is a world u corresponding
to a strategy profile of the current game in which ϕ is true and which is for agent i at least as good as
world v. We can prove that ψ ≤i ϕ is a total preorder. Indeed, the formulas ψ ≤i ψ (reflexivity),
(ϕ1 ≤i ϕ2)∧ (ϕ2 ≤i ϕ3)→ (ϕ1 ≤i ϕ3) (transitivity) and (ϕ1 ≤i ϕ2)∨ (ϕ2 ≤i ϕ1) (connectedness, also
called completeness) are valid inMLEG. We define the corresponding strict ordering over formulas:

ψ <i ϕ
def
= (ψ ≤i ϕ) ∧ ¬(ϕ ≤i ψ).

Formula ψ <i ϕ has to read “ϕ is for agent i strictly better than ψ”. Finally, we define a notion of
comparative goodness over strategy profiles and the corresponding strict ordering over strategy profiles:

δ ≤i δ′
def
= 〈δ〉> ≤i 〈δ′〉> and δ <i δ

′ def
= (δ ≤i δ′) ∧ ¬(δ′ ≤i δ).

Formula δ ≤i δ′ has to be read “strategy profile δ′ is for agent i at least as good as strategy profile δ” and
formula δ <i δ

′ has to be read “strategy profile δ′ is for agent i strictly better than strategy profile δ”.
Some basic concepts of game theory can be expressed inMLEG in terms of comparative goodness.

We first consider best response. Agent i’s action a is said to be a best response to the other agents’ joint
action δ−i, noted BR(i:a,δ−i), if and only if i cannot improve his utility by deciding to do something
different from a while the others choose the joint action δ−i, that is:

BR(i:a,δ−i)
def
=

∧
b∈Act

(〈i:b, δ−i〉 ≤i 〈i:a, δ−i〉).

REMARK. Note that the definition of best response BR(i:a,δ−i) given above only works for a complete
preference relation �i. To see why, suppose that Agt = {i, j} and Act = {a, b}, and consider the model
M = 〈W,∼, R,E,�, π〉 such that W = {w1, w2}, ∼= W ×W , RAgt(w1) = 〈i:a, j:a〉, RAgt(w2) =

〈i:b, j:a〉 and Ei = Ej =�i=�j= {(w1, w1), (w2, w2)}. Here the relation �i does not satisfy the
constraint C6 (i.e. �i is not complete). Intuitively, BR(i:a, j:a) should be true at any world of M
because if i plays a while j plays a, he does not improve his utility by playing b. Nevertheless, as
((〈i:b〉> ∧ 〈j:a〉>) ≤i (〈i:a〉> ∧ 〈j:a〉>)) is false at any world ofM, we have that BR(i:a, j:a) is also
false at every world ofM.

Given a certain strategic game, the strategy profile (or joint action) δ is said to be a Nash equilibrium
if and only if for every agent i ∈ Agt , i’s action δi is a best response to the other agents’ joint action δ−i:

Nash(δ)
def
=
∧
i∈Agt

BR(δi,δ−i).
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From Axiom CompleteInfo, S5 for �, Axioms K and T for Ki the fiveMLEG-theorems in Propo-
sition 1 are provable. They express complete information about the players’ preferences ordering over
strategy profiles, complete information about the existence of a Nash equilibrium, and complete infor-
mation about the players’ repertoires. Surprisingly formulas of Proposition 1 are kinds of introspection
properties, but they are provable without axioms of positive and negative introspections for knowledge:
(4) Kiϕ→ KiKiϕ or (5) ¬Kiϕ→ Ki¬Kiϕ.

Lemma 1. For all i ∈ Agt and n ∈ N:

• `MLEG (ψ ≤i ϕ)↔ MKnAgt(ψ ≤i ϕ);

• `MLEG (ψ <i ϕ)↔ MKnAgt(ψ <i ϕ);

• `MLEG Nash(δ)↔ MKnAgtNash(δ);

• `MLEG ♦〈δi〉> ↔ MKnAgt♦〈δi〉>;

• `MLEG �[δi]⊥ ↔ MKnAgt�[δi]⊥

It has to be noted that weak preference operators [good]i, used here to define some basic concepts
of game theory, have been studied before by [14,17] and by [18], where complete axiomatizations for
different kinds of preference logics and for a combination of preference logic with epistemic logic are
given. In [14,17] Liu proposed a complete modal logic of knowledge and preference extended by dy-
namic operators of knowledge update and preference upgrade in the style of dynamic epistemic logic
(DEL). In [18] van Benthem et al. studied different variants of preference logic that allow to express
different readings of ceteris paribus preferences [28]. They first present a basic modal logic of weak and
strict preference which allows to express the “all other things being normal” reading of ceteris paribus
preferences. Then they present a more general modal logic in which modal operators of weak and strict
preference are relativized to sets of formulas representing conditions to be kept equal. They show that
this logic allows to express the “all other things being equal” reading of ceteris paribus preferences and
to characterize the notion of Nash equilibrium as a preference for a given strategy profile for a game,
given that others keep the same strategy. 4 One of the main contribution of our work is to propose a
modal logic which integrates the notion of weak preference studied by Liu and van Benthem et al. with
notions of action and knowledge, and which provides a suitable framework for a logical analysis of epis-
temic strategic games both with perfect information and with weaker forms of perfect information. The
latter are the subject of the second part of the paper (Sections 5 and 6).

3.2. Epistemic rationality

The followingMLEG formula characterizes a notion of rationality which is commonly supposed in
the epistemic analysis of games (see, e.g., [4,7]):∧

a,b∈Act

(
〈i:a〉> →

∨
δ∈∆

(
K̂i〈δ−i〉> ∧ (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉)

))
.

4The normality reading of ceteris paribus preferences expresses preferences which hold under certain normal conditions,
whereas the equality reading expresses preferences which hold when certain facts are kept constant.
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This means that an agent i is rational if and only if, if he chooses a particular action a then for every
alternative action b, there exists a joint action δ−i of the other agents that he considers possible such
that, playing a while the others play δ−i is for i at least as good as playing b while the others play δ−i.
This means that epistemic rationality simply consists in not choosing a strategy that is strictly dominated
within the agent’s set of epistemic alternatives.

As in MLEG formula δ ≤i δ′ and formula Ki(δ ≤i δ′) are equivalent, the previous definition of
rationality can be rewritten in the following equivalent form:

Rati
def
=

∧
a,b∈Act

(
〈i:a〉> →

∨
δ∈∆

(
K̂i〈δ−i〉> ∧ Ki (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉)

))
.

Theorem 5. For all i ∈ Agt:

`MLEG Rati ↔ KiRati(5a)

`MLEG ¬Rati ↔ Ki¬Rati(5b)

Theorem 5 highlights that the concepts of rationality and irrationality are introspective. That is, an
agent i is (resp. is not) epistemically rational if and only if he knows this. The syntactic proof of Theorem
5a given in the annex shows that it can be proved either by means of Axioms K, T, 4 and 5 for knowledge
modal operators or by means of Axioms K, T and 5 for knowledge and a principle of introspection over
preferences of the form “(δ ≤i δ′)→ Ki(δ ≤i δ′)”. Theorem 5b is provable from Theorem 5a by means
of Axioms T and 5 for knowledge.

The following theorem specifies some sufficient epistemic conditions for guaranteeing that the chosen
strategy profile is a Nash equilibrium: if all agents are rational and every agent knows the choices of the
other agents, then the selected strategy profile is a Nash equilibrium. This theorem has been stated for
the first time by Aumann & Brandeburger [1,5].

Theorem 6. For all δ ∈ ∆:
`MLEG

((∧
i∈Agt Rati

)
∧
∧
i∈Agt Ki〈δ−i〉>

)
→ Nash(δ)

The syntactic proof of Theorem 6 in the annex at the end of the paper shows that it can be proved
just by means of Axioms K and T for the epistemic modal operators. Axiom CompleteInfo, positive
and negative introspection for knowledge (Kiϕ → KiKiϕ and ¬Kiϕ → Ki¬Kiϕ) are not needed for the
proof.

3.3. Iterated deletion of strictly dominated strategies

A strategy a for agent i is a strictly dominated strategy, noted SD≤0(i:a), if and only if, if a can be
performed then there is another strategy b such that, no matter what joint action δ−i the other agents
choose, playing b is for i strictly better than playing a:

SD≤0(i:a)
def
= ♦〈i:a〉> →

∨
b∈Act

(
♦〈i:b〉> ∧

∧
δ∈∆

(♦〈δ−i〉> → (〈δ−i, i:a〉 <i 〈δ−i, i:b〉))

)
.
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An example of strictly dominated strategy is cooperation in the Prisoner Dilemma (PD) game: whether
ones opponent chooses to cooperate or defect, defection yields a higher payoff than cooperation. There-
fore, a rational player will never play a dominated strategy. So when trying to predict the behavior
of rational players, we can rule out all strictly dominated strategies. The so-called Iterated Deletion
of Strictly Dominated Strategies (IDSDS) (or iterated strict dominance) [15] is a procedure that starts
with the original game and, at each step, for every player i removes from the game all i’s strictly domi-
nated strategies, thereby generating a subgame of the original game, and that repeats this process again
and again. IDSDS can be inductively characterized in our logicMLEG by defining a concept of strict
dominance in the subgame of depth at most n, noted SD≤n(i:a). For every n ≥ 1:

SD≤n(i:a)
def
= ¬SD≤n−1(i:a)→

∨
b∈Act

(
¬SD≤n−1(i:b) ∧

∧
δ∈∆

(
¬SD≤n−1(δ−i)→ (〈δ−i, i:a〉 <i 〈δ−i, i:b〉)

))
.

where SD≤k(δC) is defined as follows

SD≤k(δC)
def
=
∨
i∈C

SD≤k(δi)

for every k ≥ 0 and for every δC . According to this definition, a is a strictly dominated strategy for agent
i in a subgame of depth at most n, noted SD≤n(i:a), if and only if, if a is not strictly dominated for i in
all subgames of depth k < n then there is another strategy b such that b is not strictly dominated for i in
all subgames of depth k < n and, no matter what joint action δ−i the other agents choose, if the elements
in δ−i are not dominated in all subgames of depth k < n then playing b is for i strictly better than playing
a. In other terms SD≤n(i:a) means that strategy i:a does not survive after n rounds of IDSDS. We can
prove by recurrence on n that the length of the formula SD≤n(δ) is

O(|Act ||Agt |)2n+1)

where O(...) is the “Big Oh Notation” [20], |Act | is the number of action and |Agt | is the number of
agent and n is the number of rounds of IDSDS. That is, the length of the formula SD≤n(δ) is exponential
in n. In Section 4, we are going to extend the language in order to capture the concept of IDSDS with a
compact formula.

As the following MLEG-theorems highlight, the truth of SD≤n(i:a) depends of the game but does
not depend on the point where the formula is checked.

Proposition 1. For all a ∈ Act , for all n ≥ 0, we have:

• `MLEG SD≤n(i:a)↔ �SD≤n(i:a);

• `MLEG ¬SD≤n(i:a)↔ �¬SD≤n(i:a).

The following Theorem 7 is the qualitative version of a probabilistic- based result of Stalnaker [29]
who has been the first to use probabilistic Kripke structures in order to characterize the IDSDS proce-
dure in terms of common knowledge of rationality (see [3,30] for some recent discussion of Stalnaker’s
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Table 1. Some sufficient conditions for Theorems 5, 6, 7

Assumptions about knowledge operators Assumptions about information Result
over game structure

KT45 none Theorem 5
KT5 introspection over preferences: Theorem 5

(δ ≤i δ′)→ Ki(δ ≤i δ′)
KT none Theorem 6
KT complete information about Theorem 7

players preference ordering
over strategy profiles:
(δ ≤j δ′)→ Ki(δ ≤j δ′)
(δ <j δ

′)→ Ki(δ <j δ
′)

complete information about
players’ strategy sets:
♦〈j:a〉> → Ki♦〈j:a〉>
�[j:a]⊥ → Ki�[j:a]⊥

results). A similar result was also proved, with differing degrees of formality, by Bernheim [31], Pearce
[32], Brandenburger & Dekel [33], and Tan & Werlang [34]. Note that Stalnaker’s proof is purely se-
mantic. According to the Theorem 7, if there is mutual knowledge of rationality among the players to
n levels and the agents play the strategy profile δ then, for every agent i, δi survives IDSDS until the
subgame of depth n+1.

Theorem 7. For all positive integer n, for all δ ∈ ∆, we have:

`MLEG

((
MKnAgt

∧
i∈Agt

Rati

)
∧ 〈δ〉>

)
→ ¬SD≤n(δ)

(note that ¬SD≤n(δ) is just the abbreviation of
∧
i∈Agt ¬SD

≤k(δi)).
The syntactic proof of Theorem 7 given in the annex shows that, although Axiom CompleteInfo,

positive and negative introspection for knowledge (Kiϕ→ KiKiϕ and ¬Kiϕ→ Ki¬Kiϕ) are not needed
for the proof, we need to assume that a player has complete information about the players’ strategy
sets as well as about the players’ preference ordering over strategy profiles. Table 1 summarizes the
sufficient conditions for the syntactic proof of Theorem 7 together with the sufficient conditions for
the syntactic proofs of Theorems 5 and 6. It highlights an interesting aspect of our syntactic analysis
of games based on modal logic: the fact that we can easily verify whether certain assumptions about
knowledge and information over the game structure are indeed necessary to prove results concerning the
epistemic foundations of game theory.

It has to be noted that Theorem 7 provides only one direction of the characterization result for the
IDSDS procedure as formulated in the game-theoretic literature, according to which IDSDS is fully
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characterized by the epistemic condition of common knowledge of rationality between the players (see,
e.g., [3,29,30]).

The other direction states approximately that, for every strategic game, if δ is the strategy profile that
is chosen and that survives to the infinite procedure IDSDS, then there is (a state in) an epistemic model
for that game in which the profile δ is played and the players have common knowledge of rationality.

This statement is formally expressed by the following theorem (a similar result is proved in [3]).

Theorem 8. Consider an arbitraryMLEG-model M = 〈W,∼, R,E,�, π〉, a world w in M and δ ∈ ∆

such that for all positive integers n we have M,w |= 〈δ〉> ∧ ¬SD≤n(δ). Then, there is a model M ′ =

〈W,∼, R,E ′,�, π〉 such that for all positive integers n we have M ′, w |= MKnAgt
∧
i∈Agt Rati.

The idea is that, for every strategic game, if δ is the strategy profile of this game which is chosen and
that survives after n rounds of the procedure IDSDS, for all positive integers n, then it is possible to find
an “epistemic configuration” for the players which satisfies common knowledge of rationality between
the players. In other words, if δ is a strategy profile of a given strategic game that survives after all
rounds of the procedure IDSDS then it is always possible to justify the choice of δ by the fact that the
players have common knowledge of rationality.

Note that Theorem 8 is different from stating that the logic MLEG cannot prove the negation of
conjunctions of this type: a given profile δ is played, survives after n rounds of IDSDS and rationality
of players is common knowledge up to degree n. By the completeness ofMLEG this just means that
the conjunction (MKnAgt

∧
i∈Agt Rati) ∧ 〈δ〉> ∧ ¬SD

≤n(δ) is consistent in MLEG. Indeed, the latter
trivially holds, as we can always exhibit the trivial model M = 〈W,∼, R,E,�, π〉 such that W = {w},
RAgt(w) = δ and E ′i(w) = {w} for every i ∈ Agt , and in which M,w |= (MKnAgt

∧
i∈Agt Rati)∧ 〈δ〉> ∧

¬SD≤n(δ) holds for every n.

3.4. Discussion: related works on modal logic analysis of epistemic games under complete information

Although several modal logics of games in strategic forms have been proposed in recent times (see,
e.g., [25,35]), few modal logics of epistemic games under complete information exist. Among them
we should mention [3,8,9,36]. Let us compare our modal logicMLEG with some of these alternative
approaches.

De Bruin [8] has developed a logical framework which enables to reason about the epistemic aspects
of strategic games and of extensive games. His system deals with several game-theoretic concepts like
the concepts of knowledge, rationality, Nash equilibrium, iterated strict dominance, backward induction.
Nevertheless, de Bruin’s approach differs from ours in several respects. First of all, our logical approach
to epistemic games is minimalistic since it relies on few primitive concepts: knowledge, action, historical
necessity and preference. All other notions such Nash equilibrium, rationality, iterated strict dominance
are defined by means of these four primitive concepts. On the contrary, in de Bruin’s logic all those
notions are atomic propositions managed by a ad hoc axiomatization (see, e.g., [8, pp. 61,65] where
special propositions for rationality and iterated strict dominance are introduced). Secondly, we provide
a semantics and a complete axiomatics for our logic of epistemic games. De Bruin’s approach is purely
syntactic: no model-theoretic analysis of games is proposed nor completeness result for the proposed
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logic is given. Finally, de Bruin does not provide any complexity results about his logic while we
provide complexity results for the satisfiability problem of our logic.

In [36] van der Hoek & Pauly investigate how modal logics can be used to describe and reason
about games. They show how epistemic logic can be combined with constructions expressing agents’
preferences over strategy profiles in order to study the epistemic aspects of strategic games and to define
a concept of rationality similar to the one discussed in Section 3.2. Although van der Hoek & Pauly
discuss the combination of action, preference and epistemics for the analysis of epistemic games they do
not provide a unified modal logic framework combining operators for knowledge, for preference and for
action with a complete axiomatization and with a study of its computational properties like decidability
and complexity. The latter is one of the main contribution of our work.

Roy [9] has recently proposed a modal logic integrating preference, knowledge and intention. In his
approach every world in a model is associated to a nominal which directly refers to a strategy profile in
a strategic game. This approach is however limited in expressing formally the structure of a strategic
game. In particular, in Roy’s logic there is no principle like theMLEG Axiom Indep explaining how
possible actions δi of individual agents are combined to form a strategy profile δ of the current game.
Another limitation of Roy’s approach is that it does not allow to express the concept of (weak) rationality
that we have been able to define in Section 3.2 (see [9, pp. 101]). As discussed in the previous sections
this is a crucial concept in interactive epistemology since it is used for giving epistemic justifications of
several solution concepts like Nash equilibrium and IDSDS (see Theorems 6 and 7).

Bonanno [3] integrates modal operators for belief, common belief with constructions expressing
agents’ preferences over individual actions and strategy profiles, and applies them to the semantic char-
acterization of solution concepts like Iterated Deletion of Strictly Dominated Strategies (IDSDS) and
Iterated Deletion of Inferior Profiles (IDIP). As in [9], in Bonanno’s logic every world in a model cor-
responds to a strategy profile of the current game. Although this logic allows to express the concept of
weak rationality, it is not sufficiently general to enable to express in the object language solution concepts
like Nash equilibrium and IDSDS (note that the latter is defined by Bonanno only in the metalanguage).

It is to be noted that, differently fromMLEG, most modal logics of epistemic games in strategic form
(including Roy’s logic and Bonanno’s logic) postulate a one-to-one correspondence between models and
games (i.e. every model of the logic corresponds to a unique strategic game, and worlds in the model are
all strategy profiles of this game). Such an assumption is quite restrictive since it prevents from analyzing
in the logic games with incomplete information about the game structure in which an agent can imagine
alternative games. We will show in Section 5 that this is something we can do in our logical framework
by removing Axiom CompleteInfo fromMLEG.

4. Game transformation

We provide in this section an alternative and more compact characterization of the procedure IDSDS
in our logicMLEG. To this aim, we introduce special events whose effect is to transform the current
game by removing certain strategies from it. In particular, these special events can used to delete a
strictly dominated strategy from the current game. These special events are similar to the notion of
announcement in Dynamic Epistemic Logic (DEL) [10–12].
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LGT is the set of game transformation formulas and is defined by the following rule:

χ ::= �ψ → [i:a]⊥ | χ ∧ χ

where ψ ∈ LMLEG , i ∈ Agt and a ∈ Act . Thus, game transformation formulas are of the form ‘if
property ψ necessarily holds in the current game, then action a should not be performed by agent i’.
GT is the set of game transformation events and is defined as GT = {χ! | χ ∈ LGT }.
We extend the MLEG language with dynamic operators of the form [χ!] with χ! ∈ GT . The for-

mula [χ!]ϕ has to be read ‘ϕ holds, after the occurrence of the game transformation event χ!’. We call
MLEGGT the extended logic. The truth condition for [χ!]ϕ is:

M,w |= [χ!]ϕ iff if M,w |= χ then Mχ, w |= ϕ

with Mχ = 〈W χ,∼χ, Rχ, Eχ,�χ, πχ〉 and:

W χ = {w | w ∈ W and M,w |= χ};
∼χ = ∼ ∩(W χ ×W χ);

for every C ∈ 2Agt∗, Rχ
C = RC |Wχ ;

for every i ∈ Agt , Eχ
i = Ei ∩ (W χ ×W χ);

for every i ∈ Agt , �χi = �i ∩(W χ ×W χ);

for every p ∈ Atm, πχ(p) = π(p) ∩W χ.

Thus, an event χ! removes from the model M all worlds in which χ is false. Every epistemic relations
Ei, every preference orderings �i, every function RC , and the valuation π are restricted to the worlds in
which χ is true.

In the resulting structure Mχ, the relations ∼χ, Rχ
δC

, Eχ
i , �χi verify the constraints of Definition 1

because of the syntactic restriction χ ∈ LGT . This result is summed up in the following theorem:

Theorem 9. Let χ ∈ LGT . If M is aMLEG model then Mχ is aMLEG model.

REMARK. The syntactic restriction on game transformation formulas is given in order to ensure that
the updated model Mχ is still a MLEG model. In fact, Theorem 9 does not hold if we allow χ to
be any formula in LMLEG . For instance suppose M is a MLEG model such that W = {w, v, u, z},
∼(w) = {w, v, u, z}, R{i,j}(w) = 〈i:a, j:a〉, R{i,j}(v) = 〈i:a, j:b〉, R{i,j}(u) = 〈i:b, j:a〉 and R{i,j}(z) =

〈i:b, j:b〉. If χ = 〈i:a〉> ∨ 〈j:b〉> then the updated model Mχ is no longer aMLEG-model because it
does not satisfy the constraint C2.

We have reduction axioms for χ! which guarantee the completeness of the logicMLEGGT explaining
how a dynamic operator [χ!] interacts with the Boolean operators and modal logic operators ofMLEG.
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Theorem 10. The following schemata are valid in the logicMLEGGT .

R1. [χ!]p↔ (χ→ p)

R2. [χ!]¬ϕ↔ (χ→ ¬[χ!]ϕ)

R3. [χ!](ϕ1 ∧ ϕ2)↔ ([χ!]ϕ1 ∧ [χ!]ϕ2)

R4. [χ!]�ϕ↔ (χ→ �[χ!]ϕ)

R5. [χ!]Kiϕ↔ (χ→ Ki[χ!]ϕ)

R6. [χ!] [good]i ϕ↔ (χ→ [good]i [χ!]ϕ)

R7. [χ!] [δC ]ϕ↔ (〈δC〉> → [χ!]ϕ)

The principles R1.-R7. are called reduction axioms because, read from left to right, they reduce
the complexity of those operators in a formula. In particular the principles R1.-R7. explains how to
transform any formula ϕ of the language with dynamic operators in a formula without dynamic operators.
More generally, we have an axiomatization result:

Theorem 11. The logic MLEGGT is completely axiomatized by the axioms and inference rules of
MLEG together with the schemata of Theorem 10 together with the following rule of replacement of
proved equivalence:

ψ1 ↔ ψ2

ϕ↔ ϕ[ψ1 := ψ2]

where ϕ[ψ1 := ψ2] is the formula ϕ in which we have replaced all occurrences of ψ1 by ψ2.

Now, consider the following formula:

χSD
def
=

∧
i∈Agt ,a∈Act

(�SD≤0(i:a)→ [i:a]⊥).

where SD≤0(i:a) has been defined in Subsection 3.3. The effect of the game transformation event
χSD! is to delete from every game∼(w) in the model M all worlds in which a strictly dominated strategy
is played by some agent.

As the following Theorem 12 highlights, the procedure IDSDS that we have characterized in Section
3.3 in the static MLEG can be characterized in a more compact way in MLEGGT . Suppose δ is the
selected strategy profile. Then, for every agent i, δi survives IDSDS until the subgame of depth n+1 if
and only if, the event χSD! can occur n+1 times in sequence.

Theorem 12. For all δ ∈ ∆, for all n ≥ 0,
`MLEGGT 〈δ〉> →

(
¬SD≤n(δ)↔ 〈χSD!〉n+1>

)
.

The above theorem says that if δ is performed, then the formula ¬SD≤n(δ), defined in Subsection 3.3,
whose length is exponential in n and the more compact formula 〈χSD!〉n+1> are equivalent. Indeed the
length of the formula 〈χSD!〉n+1> is O(n(|Agt ||Act |)2) where n is the number of IDSDS rounds, |Agt |
is the number of agents and |Act | is the maximal number of actions.

We conjecture that there is no formula ϕ ∈ MLEG more compact than ¬SD≤n(δ) such that `MLEG
〈δ〉> →

(
¬SD≤n(δ)↔ ϕ

)
. If our conjecture is true, Theorem 12 would imply that the representation
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of IDSDS inMLEGGT is necessarily more succinct than the representation of IDSDS inMLEG (i.e.
there is no representation of IDSDS inMLEG that is equally or more succinct than the representation
of IDSDS inMLEGGT ). The latter is indeed a variant of the result given in [37] showing that S5 with
public announcements is more succinct than S5.

Finally, here is a compact reformulation of Theorem 7 inMLEGGT :

Theorem 13. For all n ≥ 0, `MLEGGT
(
MKnAgt

∧
i∈Agt Rati

)
→ 〈χSD!〉n+1>.

It has to be noted that the approach to game dynamics based on Dynamic Epistemic Logic (DEL)
proposed here is inspired by [7] in which strategic equilibrium is defined by fixed-points of operations of
repeated announcement of suitable epistemic statements and rationality assertions. However, the analysis
of epistemic games proposed in [7] is mainly semantical and the author does not provide a full-fledged
modal language for epistemic games which allows to express in the object language solution concepts
like Nash Equilibrium or IDSDS, and the concept of rationality. Moreover, van Benthem’s analysis does
not include any completeness result for the proposed framework and there is no proposal of reduction
axioms for a combination of DEL with a static logic of epistemic games. On the contrary, these two
aspects are central in our analysis.

5. Incomplete information

We here consider a more general class of games which includes strategic games with incomplete
information about the game structure including the players’ strategy sets (or action repertoires) and the
players’ preference ordering over strategy profiles. This kind of games have been explored in the past by
Harsanyi [38]. A more recent analysis is given by [39].

We are interested here in verifying whether the results obtained in Sections 3.2 and 3.3 can be gener-
alized to this kind of games, that is:

1. Are rationality of every player and every agent’s knowledge about other agents’ choices still suf-
ficient to ensure that the selected strategy profile is a Nash equilibrium in a strategic game with
incomplete information about the game structure?

2. Is mutual knowledge of rationality among the players still sufficient to ensure that the selected
strategy profile survives iterated deletion of dominated strategies in a strategic game with incom-
plete information about the game structure?

To answer these questions, we have to remove Axiom CompleteInfo of the form �ϕ → Kiϕ from
MLEG and the corresponding semantic constraint C4 from the definition ofMLEG frames expressing
the hypothesis of complete information about the game structure. We callMLEG∗ the resulting logic
andMLEG∗-models the resulting class of models. Then we have to check whether Theorems 6 and 7
given in Sections 3.2 and 3.3 are still derivable inMLEG∗.

We have a positive answer to the previous first question. Indeed, the formula((∧
i∈Agt Rati

)
∧
∧
i∈Agt Ki〈δ−i〉>

)
→ Nash(δ)

is derivable inMLEG∗. But we have a negative answer to the second question. Indeed, the following
formula is invalid inMLEG∗ for every δ ∈ ∆ and for every n ∈ N such that n > 0:
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((
MKnAgt

∧
i∈Agt Rati

)
∧ 〈δ〉>

)
→ ¬SD≤n(δ).

This can be proved as follows. We suppose Agt = {1, 2} and we exhibit in Figure 3 aMLEG∗-model
M and a world w1 in M in which for all n, (MKn{1,2}

∧
i∈{1,2} Rati)∧〈1:main〉>∧SD≤1(1:main) is true.

We call Alarm Game the scenario corresponding to this model.

Figure 3. Alarm Game. Again thick circles represent epistemic possibility relations for
agent 1 whereas thin circles represent epistemic possibility relations for agent 2. The two
equivalence classes∼(w1) = {w1, w2, w3, w4} and∼(w5) = {w5, w6, w7, w8} correspond to
two different games where agents have different preference ordering over strategy profiles.

u u
uu

w1 w2

w3 w4

2 : proc 2 : skip

1 : main

1 : back

w5 =2 w6 =2 w7 =2 w8
w2 <2 w4

w5 =1 w6 =1 w7 =1 w8
w1 <1 w3 <1 w2

w1 <1 w3

w1 <2 w3

u u
uu

w5 w6

w7 w8

1 : main

1 : back

2 : proc 2 : skip

SCENARIO DESCRIPTION. We call Alarm Game the scenario represented by the model in Figure 3.
Agent 1 is a thief who intends to burgle agent 2’s apartment. Agent 1 can enter the apartment either
by the main door or by the back door (action 1:main or action 1:back ). Agent 2 has two actions avail-
able. Either he does nothing (action 2:skip) or he follows a security procedure (action 2:proc) which
consists in locking the two doors and in activating a surveillance camera on the main door. Entering
the apartment by the main door when agent 2 does nothing (i.e. the strategy profile 〈1:main, 2:skip〉
executed at world w2) and entering by the back door when agent 2 does nothing (i.e. the strategy profile
〈1:back , 2:skip〉 executed at world w4) are for agent 1 the best situations and are for him equally prefer-
able. Indeed, in both cases agent 1 will successfully enter and burgle the apartment. On the contrary,
trying to enter the apartment by the back door when 2 follows the security procedure (i.e. the strategy
profile 〈1:back , 2:proc〉 executed at world w3) is for 1 strictly better than trying to enter by the main door
when 2 follows the security procedure (i.e. the strategy profile 〈1:main, 2:proc〉 executed at world w1).
Indeed, in the former case agent 1 will be simply unable to burgle the apartment, in the latter case not
only he will be unable to burgle the apartment but also he will disclose his identity. The two possible
situations in which agent 1 does not succeed in burgling the apartment (worlds w1 and w3) are equally
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preferable for agent 2 and are for 2 strictly better than the situations in which agent 1 successfully burgles
the apartment (worlds w2 and w4).

At world w1 agent 1 enters by the main door while agent 2 follows the security procedure. This is
the only world in the model M in which agent 1 has some uncertainty. Indeed, in this world agent 1 can
imagine the alternative game defined by the equivalence class ∼(w5) = {w5, w6, w7, w8} in which he
enters by the back door while agent 2 does nothing (world w8). We suppose that in such a game, even if
agent 2 follows the security procedure, agent 1 will succeed in burgling his apartment. This is the reason
why the four strategy profiles 〈1:main, 2:skip〉, 〈1:back , 2:skip〉, 〈1:main, 2:proc〉 and 〈1:back , 2:proc〉
are equally preferable for the two agents.

Concerning the automated reasoning aspects of the logicMLEG∗, we conjecture that the complexity
of its satisfiability problem is PSPACE. Indeed, we think that it is possible to build a tableau method
using only a polynomial amount of memory for the satisfiability problem ofMLEG∗. In other terms, we
conjecture that if we move fromMLEG toMLEG∗, the complexity decreases from EXPTIME-hard to
PSPACE. We here provide an unsurprising lower-bound for the complexity ofMLEG∗.

Theorem 14. The satisfiability problem of a given formula ϕ in aMLEG∗-model is PSPACE-hard.

The situation is different when we add the Axiom JointDet of joint determinism discussed in Section
2.4. Let us call MLEGdet∗ the logic resulting from adding Axiom JointDet of joint determinism to
the logicMLEG∗ andMLEGdet∗-models the class of models resulting from adding the corresponding
Constraint CD to MLEG∗-models. While the complexity of the satisfiability problem for MLEGdet

was NP-complete, it increases to PSPACE-complete forMLEGdet∗. More precisely:

Theorem 15. • If card(Agt) = 1 and card(Act) = 1 then the satisfiability problem of a given
formula ϕ in aMLEGdet∗-model is NP-complete.

• If card(Agt) ≥ 2 or card(Act) ≥ 2 the satisfiability problem of a given formula ϕ in aMLEGdet∗-
model is PSPACE-complete.

6. Weaker forms of complete information

In the previous section, we have removed Axiom CompleteInfo of the form �ϕ → Kiϕ from the
logicMLEG to obtain a new logicMLEG∗ in which agents may have incomplete information about all
aspects of the game they play, including the players’ strategy sets (or action repertoires) and the players’
preference ordering over strategy profiles.

Nevertheless, in some cases we would like to suppose that agents have complete information about
some specific aspects of the game they play. For example, we would like to suppose that:

1. an agent has complete information about his strategy sets even though he may have incomplete
information about other agents’ strategy sets or,

2. that an agent has complete information about the strategy set of every agent even though he may
have incomplete information about agents’ preference ordering over strategy profiles.
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The former assumption applies to the scenario in which a robber enters a bank, approaches the bank
teller and demands money waving a gun. In this situation the bank teller has complete information about
his strategy set: he knows that he can either sound the alarm or do nothing. But the bank teller does not
know the robber’s strategy set, as he is not sure whether the robber’s gun is loaded or not (i.e. the bank
teller does not know whether the robber is able to kill him by shooting). The latter assumption applies to
a card game like Poker. In Poker a player has complete information about every player’s strategy set, as
he knows that a given point in the game a player has the option to check (if no bet is in front of him), bet,
or fold. However, a Poker player has incomplete information about other players’ preference ordering
over strategy profiles, as he cannot see other players’ cards.

In other terms, we would like to build variants ofMLEG∗ in which some formulas of Lemma 1 are
derivable.

6.1. Complete information about strategy sets

We show here how to relax the Axiom CompleteInfo in order to express the assumption of complete
information about strategy sets without necessarily assuming complete information over the payoffs.

If we replace Axiom CompleteInfo by the following axiom schemas:

♦〈i:a〉> → Ki♦〈i:a〉>(CompleteInfoStrategyi)

for all i ∈ Agt and a ∈ Act , then every agent i has complete information about his strategy set. That
is, if an agent i can perform an action a then agent i knows that he can perform action a. Axiom
CompleteInfoStrategyi corresponds to the following semantic constraint on models. For every i ∈ Agt

and a ∈ Act :

C7 if wEiu and there is v such that w ∼ v and i:a = Ri(v) then, there is z such that u ∼ z and
i:a = Ri(z).

If we replace Axiom CompleteInfo by the following axiom schemas:

♦〈j:a〉> → Ki♦〈j:a〉>(CompleteInfoStrategyi,j)

for all i, j ∈ Agt and a ∈ Act , then an agent i has complete information about the strategy sets of every
agent. That is, if an agent j can perform an action a then every agent i knows that agent j can perform
action a. Axiom CompleteInfoStrategyi,j corresponds to the following semantic constraint on models.
For every i, j ∈ Agt and a ∈ Act :

C8 if wEiu and there is v such that w ∼ v and j:a = Rj(v) then, there is z such that u ∼ z and
j:a = Rj(z).

Obviously Axiom CompleteInfoStrategyi,j is more general than Axiom CompleteInfoStrategyi, that
is, CompleteInfoStrategyi,j implies CompleteInfoStrategyi. It is also worth noting that the previous
Axiom CompleteInfoStrategyi,j together with Axiom Indep and Axiom JointAct imply ♦〈δ〉> →
Ki♦〈δ〉>. The latter means that if δ is a strategy profile of the current game then every agent knows this.
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REMARK. Note also that CompleteInfoStrategyi and CompleteInfoStrategyi,j are respectively equiv-
alent to�[i:a]⊥ → Ki�[i:a]⊥ and�[j:a]⊥ → Ki�[j:a]⊥ thanks to Axiom 5 for the epistemic operators
Ki.

In the sequel we call MLEG∗∗ the logic that results from adding the previous Axiom
CompleteInfoStrategyi,j to the logic MLEG∗ discussed in Section 5, and we call MLEG∗∗-models
the corresponding models that results from adding the semantic constraint C8 to theMLEG∗-models.
MLEG∗∗ is the logic of epistemic strategic games in which the only uncertainty is about agents’ prefer-
ence ordering over strategy profiles.

6.2. An analysis of the Harsanyi transformation

We conclude our discussion about games with incomplete information by shedding light on Harsanyi’s
claim that all uncertainty about the structure of a game can be reduced to uncertainty about payoffs [38].

Harsanyi proposed a way of transforming a game with uncertainty over both the payoffs and the strat-
egy choices of the players into a game with no strategy-set uncertainty, without affecting the epistemic
implications. More precisely, a player’s choice is rational in the initial game if and only if the player’s
choice will continue to be rational after the game transformation. In other words, according to Harsanyi,
it is always possible to reduce all kinds of incomplete information about the structure of a game to in-
complete information about the strategy choices without affecting the rationality or irrationality of a
player.

The basic idea of Harsanyi’s transformation is that having a strategy with a highly undesirable payoff
is for a player equivalent to not having the strategy at all. Suppose we start with a game with uncertainty
over both the payoffs and the strategy choices of the players. This means that, some player i has a
strategy a in his strategy set and another player j does not know this or some player i does not have a
strategy a in his strategy set and another player j does not know this. To eliminate player’s j strategy-
set uncertainty is sufficient to add the strategy a to the set of strategies which in player j’s opinion are
included in player i’s strategy space and to assign the lowest possible payoff to the new strategy profiles
in which player i chooses strategy a. If player j is rational then the game transformation does not affect
his choice, as his decision is not affected by the highly undesirable options that have been added by the
game transformation.

We here provide a formal proof of Harsanyi’s claim in a purely qualitative setting with no probabil-
ities. See [13] for a formal proof of Harsanyi’s claim in a quantitative setting using interactive belief
systems à la Aumann & Brandeburger [1] with probabilities.

Let us start with a model M = 〈W,∼, R,E,�, π〉 of the logicMLEG∗ in which players may have
incomplete information about all aspects of the game. We want to show that we can build a corresponding
model M ′ = 〈W ′,∼′, R′, E ′,�′, π′〉 of the logicMLEG∗∗ in which players can only have incomplete
information about payoffs and which satisfies the same formulas Rati as M .

Let [W ] = {∼(w) | w ∈ W} be the partition of W induced by the equivalence relation ∼. We note
S1, S2, . . . the elements of [W ]. Let ΠM = {δ | for every δi there is u ∈ W such that M,u |= 〈δi〉>} be
the set of strategy profiles with respect to the model M .

The model M ′ can be defined as follows.
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• for every Si ∈ [W ], S ′i = Si ∪ {wδi | δ ∈ ΠM and there is no v ∈ Si such that M, v |= 〈δ〉>}

• W ′ =
⋃
Si∈[W ] S

′
i

• for every w, v ∈ W ′, w ∼′ v if and only if there is Si ∈ [W ] such that w, v ∈ S ′i

• for every C ∈ 2Agt∗ and w ∈ W , R′C(w) = RC(w)

• for every C ∈ 2Agt∗ and wδi ∈ W ′ \W , R′C(w) = δC

• for every i ∈ Agt and w ∈ W , E ′i(w) = Ei(w)

• for every i ∈ Agt and wδi ∈ W ′ \W , E ′i(w
δ
i ) = {wδi }

• for every i ∈ Agt and w ∈ W , �′i (w) =�i (w)

• for every i ∈ Agt and wδi ∈ W ′ \W , �′i (wδi ) =∼′(wδi )

• for every p ∈ Atm, π′(p) = π(p) ∪ {wδi | wδi ∈ W ′}

It is straightforward to check that M ′ is indeed aMLEG∗∗-model without strategy-set uncertainty.
The following Theorem 16 is a formal characterization of Harsanyi’s claim.

Theorem 16. For every w ∈ W and for every i ∈ Agt , M,w |= Rati if and only if M ′, w |= Rati.

The following corollary of Theorem 16 highlights that Harsanyi transformation does not affect com-
mon knowledge about the rationality or irrationality of a player.

Corollary 1. For every w ∈ W , for every i ∈ Agt and for every C ∈ 2Agt∗, we have M,w |= MKnCRati

if and only if M ′, w |= MKnCRati.

7. Conclusion

We have presented a multi-modal logic that enables to reason about epistemic games in strategic form.
This logic, called MLEG (Modal Logic of Epistemic Games), integrates the concepts of joint action,
preference and knowledge. We have shown that MLEG provides a highly flexible formal framework
for the analysis of the epistemic aspects of strategic interaction. Indeed,MLEG can be easily adapted
in order to integrate different assumptions on players’ knowledge about the structure of a game.

Directions for future research are manifold. In this article (Section 3.2) we only considered the notion
of individualistic rationality assumed in classical game theory: an agent decides to perform a certain
action only if the agent believes that this action is a best response to what he expects the others will do.
Our plan is to extend the present modal logic analysis of epistemic games to other forms of rationality
such as fairness and reciprocity [40]. According to these notions of rationality, rational agents are not
necessarily self-interested but they also consider the benefits of their choices for the group. Moreover,
their decisions can be affected by their beliefs about other agents’ willingness to act for the well-being
of the group. In [41] we did some first steps into this direction.

Another aspect we intend to investigate in the future is a generalization of our approach to mixed
strategies. Indeed, at the current stage the multi-modal logicMLEG only enables to reason about pure
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strategies. To this aim, we will have to extend MLEG by modal operators of probabilistic beliefs as
the ones studied by [42,43]. We also postpone to future work an analysis of the epistemic conditions of
Bayesian equilibrium in the resulting logical framework.
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A. ANNEX: Proofs of some theorems

A.1. Proof of Theorem 1 and 3

MLEG is determined by the class of MLEG-models. MLEGdet is determined by the class of
MLEGdet-models.

Proof. We only provide a sketch of the proof of Theorem 3. The proof of Theorem 1 is a straightforward
adaptation of the proof of Theorem 3. It is sufficient to remove the constraint (S6) from the following
definition 3.

It is straightforward to show that all axioms in Figure 2 are valid and that the rules of inference
preserve validity in the class ofMLEGdet-models. The other part of the proof is shown using two major
steps.

Step 1. We provide an alternative semantics forMLEGdet in terms of standard Kripke models whose
semantic conditions correspond one-to-one to the axioms in Table 2. The definition of KripkeMLEGdet-
models is the following one.

Definition 3 (KripkeMLEGdet-model). KripkeMLEGdet-models are tuples M = 〈W,∼, R,E,�, π〉
where:

• W is a nonempty set of possible worlds or states;

• ∼ is an equivalence relation on W ;

• R :
⋃
C∈2Agt∗ ∆C −→ 2W×W maps every joint action δC to a transition relation RδC ⊆ W ×W

between possible worlds such that:

S1 RδC (w) 6= ∅ if and only if, for every i ∈ C Rδi(w) 6= ∅,

S2 if RδC (w) 6= ∅ then RδC (w) = {w},

S3
⋃
δC∈∆C

RδC (w) 6= ∅,

S4 if δC 6= δ′C then RδC (w) = ∅ or Rδ′C
(w) = ∅,

S5 if for every i ∈ Agt there is vi such that w ∼ vi and Rδi(vi) 6= ∅ then there is a v such that
w ∼ v and Rδ(v) 6= ∅;

S6 if w ∼ v and Rδ(w) 6= ∅ and Rδ(v) 6= ∅, then w = v;

• E : Agt −→ W ×W maps every agent i to an equivalence relation Ei on W such that:

S6 if (w, v) ∈ Ei, then i:a = Ri(w) if and only if i:a = Ri(v),

S7 if wEiv then w ∼ v;

• �: Agt −→ W ×W maps every agent i to a reflexive, transitive relation �i on W such that:

S8 if w �i v then w ∼ v,

S9 if w ∼ v and w ∼ v′ then v �i v′ or v′ �i v;
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• π : Atm −→ 2W is a valuation function.

Truth conditions of MLEGdet formulas in Kripke MLEGdet-models are again standard for atomic
formulas and the Boolean operators. The truth conditions for Boolean operators and for operators �, Ki
and [good]i are the ones of Section 2.2. The truth condition for operators [δC ] are:

• M,w |= [δC ]ϕ iff M, v |= ϕ for all v ∈ RδC (w).

It is a routine task to prove that the axiomatic system of the logicMLEGdet given in Table 2 is sound and
complete with respect to this class of KripkeMLEGdet-models via the Sahlqvist theorem, cf. [44, Th.
2.42]. Indeed all axioms in Table 2 are in the so-called Sahlqvist class [45]. Thus, they are all expressible
as first-order conditions on Kripke models and are complete with respect to the defined model classes.

Step 2. The second step shows that the semantics in terms of MLEGdet-models of Definition 2
and the semantics in terms of Kripke MLEGdet-models of Definition 3 are equivalent. As the logic
MLEGdet is sound and complete for the class of Kripke MLEGdet-models and is sound for the class
ofMLEGdet-models, we have that for everyMLEGdet formula ϕ, if ϕ is valid in the class of Kripke
MLEGdet-models then ϕ is valid in the class ofMLEGdet-models. Consequently, for everyMLEGdet

formula ϕ, if ϕ is satisfiable in the class ofMLEGdet-models then ϕ is satisfiable in the class of Kripke
MLEGdet-models. Therefore, in this second step we just need to show that for every MLEGdet for-
mula ϕ, if ϕ is satisfiable in the class of Kripke MLEGdet-models then ϕ is satisfiable in the class of
MLEGdet-models.

Suppose ϕ is satisfiable in the class of KripkeMLEGdet-models. This means that there is a Kripke
MLEGdet-model M = 〈W,∼, R,E,�, π〉 and world w such that M,w |= ϕ. We can now build a
MLEGdet-model M ′ = 〈W ′, R′, E ′,�′, π′〉 which satisfies ϕ. The model M ′ is defined as follows:

• W ′ = W ;

• for every C ∈ 2Agt∗ and v ∈ W ′, R′C(v) = δC if and only if RδC (v) 6= ∅;

• for every i ∈ Agt , E ′i = Ei;

• for every i ∈ Agt , �′i=�i;

• π′ = π.

By induction on the structure of ϕ, it is just a trivial exercise to show that we have M ′, w |= ϕ.
ut

A.2. Proof of Theorem 2

Proof. Let us start to prove that the satisfiability problem ofMLEG is EXPTIME-hard when card(Agt) ≥
2. Let us consider two distinct agents i, j ∈ Agt . Let us consider a modal formula ϕ made of operators
Ki, Kj and �. It is easy to check that the following two statements are equivalent:

• ϕ is satisfiable in the logic where Ki and Kj are S5-operators and � is the universal modality;

• ϕ is satisfiable inMLEG.
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So we have a reduction from the satisfiability problem of MLEG to the satisfiability problem of S52

plus universal modality �.
But the satisfiability problem of S52 plus the universal modality � is EXPTIME-hard as it is the

case for the satisfiability problem of K plus the universal modality [46]. Indeed, we can reduce the
satisfiability problem of S52 plus the universal modality � to the satisfiability problem of K plus the
universal modality by translating a formula of K plus the universal modality into S52 plus universal
modality. Let x be an extra proposition. The translation works as follows:

• tri(�ψ) = x ∧ Ki[¬x→ trj(ψ)] where � is the K-operator;

• trj(�ψ) = ¬x ∧ Kj[x→ tri(ψ)] where � is the K-operator;

• for all a ∈ {i, j}, tra = �[tri(ψ) ∨ trj(ψ)] where � is the universal operator.

And ϕ is satisfiable in K plus universal modality iff tri(ϕ) is satisfiable in S52 plus the universal modality.
SoMLEG is EXPTIME-hard.

Now let us prove that the satisfiability problem ofMLEG is NEXPTIME. We are going to prove that
we can make a filtration of anyMLEG model, preserving both the semantic constraints of Definition 1
and the truth of formulas (see [47] for a general introduction to the filtration method in modal logic). Let
us consider aMLEG-model M = 〈W,∼, R,E,�, π〉 where we suppose∼ to be the universal modality,
without loss of generality. As usual, we consider a formula ϕ, the set Γ = SF (ϕ) of all subformulas of
ϕ and the equivalence relation ≡ over W defined by w ≡ u iff for all ψ ∈ Γ, M,w |= ψ iff M,u |= ψ.
We note |w| the equivalence class of ≡ containing w. Let us define M ′ = 〈W ′,∼, R′, E ′,�′, π′〉 by:

• W ′ = {|w| | w ∈ W};

• ∼= W ′ ×W ′;

• RC(|w|) = RC(w);

• |w|Ei|u| iff for all formulas Kiψ ∈ Γ, M,w |= Kiψ iff M,u |= Kiψ and Ri(w) = Ri(u);

• |w| �′i |u| iff for all formulas [good]i ψ ∈ Γ, M,w |= [good]i ψ implies M,u |= [good]i ψ;

• π′(p) = {|w| | w ∈ π(p) and p appears in ϕ}.

We leave the reader checking thatM ′ is well-defined, M ′ satisfies the constraints of Definition 1 and that
if M,w |= ϕ then M ′, |w| |= ϕ.

This filtration implies that if a formula ϕ is satisfiable, then it is satisfiable in a model of size O(2|ϕ|)

where |ϕ| is the length of the formula ϕ. A possible algorithm for solving the satisfiability of ϕ may be
as follows:

• Guess non-deterministically aMLEG-modelM = 〈F, π〉whose size is bounded byO(2|ϕ|) where
π only gives truthness of propositions occuring in ϕ;

• Guess non-deterministically a world w of M ;

• Check if M,w |= ϕ.
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This algorithm non-deterministically runs in exponential time. So the satisfiability problem ofMLEG
is in NEXPTIME. ut

A.3. Proof of Theorem 4

Proof. The satisfiability problem ofMLEGdet is clearly NP-hard because it is a conservative extension
of the classical propositional logic whose satisfiability problem in NP-complete (Cook’s Theorem [20]).

Now let us prove it is in NP. Clearly if a formula ϕ isMLEGdet-satisfiable, there exists aMLEGdet-
model F = 〈F, π〉 whose size is bounded by card(Act)card(Agt). Here is an non-deterministic algorithm
to check if a given formula ϕ is satisfiable:

• Guess non-deterministically aMLEGdet-modelM = 〈F, π〉whose size is bounded by card(Act)card(Agt)

where π only gives truthness of propositions occuring in ϕ;

• Guess non-deterministically a world w of M ;

• Check if M,w |= ϕ.

This algorithm non-deterministically runs in polynomial time. So the satisfiability problem ofMLEGdet

is in NP.
ut

A.4. Proof of Theorem 5a

For all i ∈ Agt , we have: `MLEG Rati ↔ KiRati

Lemma 2. `MLEG [i:a]⊥ → Ki[i:a]⊥

Proof. 1. `MLEG
∨
b∈Act〈i:b〉>;

from Active;

2. `MLEG [i:a]⊥ → [i:a]⊥ ∧
∨
b∈Act〈i:b〉>

by 1. and Boolean principles;

3. `MLEG [i:a]⊥ ∧
∨
b∈Act〈i:b〉> →

∨
b6=a〈i:b〉>

by Boolean principles;

4. `MLEG 〈i:b〉> → Ki〈i:b〉> if b 6= a

by Aware;

5. `MLEG
∨
b 6=a〈i:b〉> →

∨
b 6=a Ki〈i:b〉>

by 4. and Boolean principles;

6. `MLEG 〈i:b〉> → [i:a]⊥ if b 6= a; by Single;

7. `MLEG Ki(〈i:b〉> → [i:a]⊥) if b 6= a

by Necessitation of Ki from 6;
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8. `MLEG Ki〈i:b〉> → Ki[i:a]⊥ if b 6= a

by Axiom K for Ki plus ModusPonens from 7;

9. `MLEG
∨
b 6=a Ki〈i:b〉> → Ki[i:a]⊥

by Boolean principles from 8.

10. `MLEG [i:a]⊥ → Ki[i:a]⊥

by 2, 3, 5 and 9.
ut

Now let us prove Theorem 5a. We give here a version of the proof that uses Axioms K, T, 4 and 5 for
epistemic modal operators.

Proof. 1. `MLEG Rati ↔
∧
a,b∈Act(〈i:a〉> →

∨
β∈∆(K̂i〈β−i〉> ∧ Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

by Definition of Rati;

2. K̂i〈β−i〉> ↔ KiK̂i〈β−i〉>

by Axiom 5 for Ki;

3. Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)↔ KiKi(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)

by Axiom 4 for Ki plus Boolean principles;

4. `MLEG Rati →
∧
a,b∈Act(〈i:a〉> →

∨
β∈∆(KiK̂i〈β−i〉> ∧ KiKi(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

by 1, 2, 3 and Boolean principles;

5. `MLEG Kiϕ ∧ Kiψ . . .↔ Ki(ϕ ∧ ψ . . . )

by modal logic K principles;

6. `MLEG [i:a]⊥ → Ki [i:a]⊥

by Lemma 2;

7. `MLEG Rati →
∧
a,b∈Act(Ki [i:a]⊥ ∨

∨
β∈∆ Ki(K̂i〈β−i〉> ∧ Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

by 4, 5, 6 and Boolean principles;

8. `MLEG Kiϕ ∨ Kiψ . . .→ Ki(ϕ ∨ ψ . . . )

by modal logic K principles;

9. `MLEG Rati → Ki
∧

a,b∈Act

([i:a]⊥ ∨
∨
β∈∆

(K̂i〈β−i〉> ∧ Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))︸ ︷︷ ︸
Rati

by 7 and 8;

10. `MLEG KiRati → Rati

by Axiom T of Ki;
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11. `MLEG Rati ↔ KiRati

by 9 and 10.
ut

We give another version of the proof of Theorem 5a that uses Axioms K, T and 5 for epistemic modal
operators and introspection over preferences “(δ ≤i δ′)→ Ki(δ ≤i δ′)”.

Proof. 1. `MLEG Rati ↔
(∧

a,b∈Act(〈i:a〉> →
∨
β∈∆(K̂i〈β−i〉> ∧ Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

)
by Definition of Rati;

2. K̂i〈β−i〉> ↔ KiK̂i〈β−i〉>

by Axiom 5 for Ki;

3. `MLEG Rati ↔
∧
a,b∈Act(〈i:a〉> →

∨
β∈∆(KiK̂i〈β−i〉> ∧ Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

by 1 and 2;

4. `MLEG Kiϕ ∧ Kiψ . . .↔ Ki(ϕ ∧ ψ . . . )

by modal logic K principles;

5. `MLEG [i:a]⊥ → Ki [i:a]⊥

by Lemma 2;

6. `MLEG Rati ↔
∧
a,b∈Act(Ki [i:a]⊥ ∨

∨
β∈∆ Ki(K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

by 2, 4, 5 and Boolean principles;

7. `MLEG Kiϕ ∨ Kiψ . . .→ Ki(ϕ ∨ ψ . . . )

by modal logic K principles;

8. `MLEG Rati → Ki
∧
a,b∈Act([i:a]⊥ ∨

∨
β∈∆(K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

9. `MLEG (〈β−i, i:b〉 ≤i 〈β−i, i:a〉)→ Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)

by Lemma 1 (or introspection over preferences);

10. `MLEG Rati → Ki
∧

a,b∈Act

([i:a]⊥ ∨
∨
β∈∆

(K̂i〈β−i〉> ∧ Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))︸ ︷︷ ︸
Rati

by 8 and 9;

11. `MLEG KiRati → Rati

by Axiom T of Ki;

12. `MLEG Rati ↔ KiRati

by 10 and 11.
ut
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A.5. Proof of Theorem 6

For all δ ∈ ∆, we have:
`MLEG

((∧
i∈Agt Rati

)
∧
∧
i∈Agt Ki〈δ−i〉>

)
→ Nash(δ)

Proof. 1. `MLEG 〈δ−i〉> → [β−i]⊥ if β−i 6= δ−i

by Single;

2. `MLEG Ki (〈δ−i〉> → [β−i]⊥) if β−i 6= δ−i

by necessitation of Ki;

3. `MLEG (Ki〈δ−i〉> → Ki[β−i]⊥) if β−i 6= δ−i

by axiom K of Ki plus ModusPonens;

4. `MLEG Ki〈δ−i〉> ∧ K̂i〈β−i〉> ↔ ⊥ if β−i 6= δ−i

by Boolean principles;

5. `MLEG Kj〈δ−j〉> → 〈δ−j〉>

by axiom T of S5Ki .

6. `MLEG 〈δ−j〉> → 〈δi〉> if j 6= i

by JointAct;

7. `MLEG Kj〈δ−j〉> → 〈δi〉> for j 6= i

by 5 and 6;

8. `MLEG
((∧

i∈Agt Rati
)
∧
∧
i∈Agt Ki〈δ−i〉>

)
→
∧
b∈Act

(
〈δi〉> →

∨
β∈∆

(
K̂i〈β−i〉> ∧ Ki((〈i:b, β−i〉> ≤i (〈δi, β−i〉>)

))
∧ 〈δi〉> ∧ Ki〈δ−i〉>

by Boolean principles and 7;

9. `MLEG
∧
b∈Act

(
〈δi〉> →

∨
β∈∆

(
K̂i〈β−i〉> ∧ Ki((〈i:b, β−i〉> ≤i (〈δi, β−i〉>)

))
∧〈δi〉>∧Ki〈δ−i〉>

→
∧
b∈Act

∨
β∈∆

(
K̂i〈β−i〉> ∧ Ki((〈i:b, β−i〉> ≤i (〈δi, β−i〉>)))

)
∧ Ki〈δ−i〉>

by Boolean principle “A ∧ (A→ B)→ B”;

10. `MLEG
∧
b∈Act

∨
β∈∆

(
K̂i〈β−i〉> ∧ Ki((〈i:b, β−i〉> ≤i (〈δi, β−i〉>)))

)
∧ Ki〈δ−i〉>

→
∧
b∈Act

∨
β∈∆

(
K̂i〈β−i〉> ∧ Ki〈δ−i〉> ∧ Ki((〈i:b, β−i〉> ≤i (〈δi, β−i〉>)))

)
by distributivity of ∧ over

∨
β∈∆;

11. `MLEG
∧
b∈Act

∨
β∈∆

(
K̂i〈β−i〉> ∧ Ki〈δ−i〉> ∧ Ki((〈i:b, β−i〉> ≤i (〈δi, β−i〉>)))

)
→
∧
b∈Act Ki((〈i:b, δ−i〉> ≤i (〈δi, δ−i〉>)

by 4 plus Boolean principles;
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12. `MLEG Ki((〈i:b, δ−i〉> ≤i (〈δi, δ−i〉>)→ (〈i:b, δ−i〉> ≤i (〈δi, δ−i〉>)

by Axiom T of Ki;

13. `MLEG
∧
b∈Act Ki((〈i:b, δ−i〉> ≤i (〈δi, δ−i〉>)→

∧
b∈Act

(〈i:b, δ−i〉> ≤i (〈δi, δ−i〉>)︸ ︷︷ ︸
BR(δi,δ−i)

by 12 and Boolean principles;

14. `MLEG
((∧

i∈Agt Rati
)
∧
∧
i∈Agt Ki〈δ−i〉>

)
→ BR(δi, δ−i)

by 8, 9, 10, 11 and 13;

15. `MLEG
((∧

i∈Agt Rati
)
∧
∧
i∈Agt Ki〈δ−i〉>

)
→ Nash(δ)

by 14 and Boolean principles.
ut

A.6. Proof of Theorem 7

For all δ ∈ ∆, `MLEG
((

MKnAgt
∧
i∈Agt Rati

)
∧ 〈δC〉>

)
→ ¬SD≤n(δC)

Proof.

Lemma 3. `MLEG SD≤n(i:a)→ KjSD
≤n(i:a)

Proof. The proof of the lemma consists in proving by induction on n that `MLEG SD≤n(i:a)→ KjSD
≤n(i:a)

and `MLEG ¬SD≤n(i:a)→ Kj¬SD≤n(i:a). We leave the proof of these twoMLEG-theorems based on
Lemma 1 to the reader.

ut

Basic case n = 0

Here we prove `MLEG
((∧

i∈Agt Rati
)
∧ 〈δC〉>

)
→ ¬SD≤0(δC).
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1. `MLEG 〈δC〉> →
∧
i∈C〈δi〉>

by Axiom JointAct

2. `MLEG Ki(〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)→ (〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

by Axiom T of Ki;

3. `MLEG
((∧

i∈Agt Rati
)
∧ 〈δC〉>

)
→ 〈δi〉> ∧

∧
b∈Act

(∨
β∈∆

(
K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

))
if c ∈ C

By 1, 2, axiom T for Ki and Boolean principles;

4. `MLEG K̂i〈β−i〉> → ♦〈β−i〉>

by CompleteInfo or (Lemma 1 considered as axioms plus axiom T for �);

5. `MLEG 〈δi〉> → ♦〈δi〉>

by Axiom T for �;

6. `MLEG 〈δi〉> ∧
∧
b∈Act

(∨
β∈∆

(
K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

))
→ ♦〈δi〉> ∧

∧
b∈Act

(∨
β∈∆ (♦〈β−i〉> ∧ 〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

)
by 4, 5 and Boolean principles;

7. `MLEG ♦〈δi〉> ∧
∧
b∈Act

(∨
β∈∆ (♦〈β−i〉> ∧ 〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

)
→ ♦〈δi〉> ∧

∧
b∈Act

♦〈i:b〉> →

(∨
β∈∆

(♦〈β−i〉> ∧ 〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

)
︸ ︷︷ ︸

¬SD≤0(δi)

by Boolean principles;

8. `MLEG
((∧

i∈Agt Rati
)
∧ 〈δC〉>

)
→ ¬SD≤0(δi) if c ∈ C

by 3, 6, 7 and Boolean principles;

9. `MLEG`MLEG
((∧

i∈Agt Rati
)
∧ 〈δC〉>

)
→ ¬SD≤0(δC)

by 8 and Boolean principles.
Inductive case

let n ∈ N and let us prove that if the theorem 7 is true for all k ≤ n then it is true for n+ 1.
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1. `MLEG
((

MKn+1
Agt

∧
i∈Agt Rati

)
∧ 〈δC〉>

)
→
((

MKnAgt
∧
i∈Agt Rati

)
∧ 〈δC〉>

)
by Axiom T for Ki plus Boolean principles;

2. `MLEG
((

MKnAgt
∧
i∈Agt Rati

)
∧ 〈δC〉>

)
→ ¬SD≤n(δC)

by induction;

3. `MLEG ¬SD≤n(δ)→ ¬SD≤n(δi)

by Definition of ¬SD≤n(δ) and Boolean principles;

4. `MLEG
((

MKn+1
Agt

∧
i∈Agt Rati

)
∧ 〈δC〉>

)
→ ¬SD≤n(δi)

by 1, 2, 3;

5. `MLEG
((

MKn+1
Agt

∧
i∈Agt Rati

)
∧ 〈δC〉>

)
→ Rati ∧ KiMKnAgtRati ∧ 〈δC〉>;

by Boolean principles

6. `MLEG Rati ∧ KiMKnAgtRati ∧ 〈δC〉>

→
∧
b∈Act

∨
β∈∆(K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉)) ∧ KiMKnAgtRati if i ∈ C

by JointAct, definition of Rati and Boolean principles;

7. `MLEG
∧
b∈Act

∨
β∈∆(K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉)) ∧ KiMKnAgtRati

→
∧
b∈Act

∨
β∈∆(K̂i〈β−i〉> ∧ KiMKnAgtRati ∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉))

by distributivity of ∧ over
∨
β∈∆;

8. `MLEG K̂i〈β−i〉> ∧ KiMKnAgtRati → K̂i(〈β−i〉> ∧MKnAgtRati)

by modal logic K principle “K̂iA ∧ KiB → K̂i(A ∧B)” ;

9. `MLEG (〈β−i〉> ∧MKnAgtRati)→ ¬SD≤n(β−i)

by induction;

10. `MLEG Ki
(
(〈β−i〉> ∧MKnAgtRati)→ ¬SD≤n(β−i)

)
by necessitation rule on 9;

11. `MLEG K̂i(〈β−i〉> ∧MKnAgtRati)→ K̂i¬SD≤n(β−i)

by modal logic K principles applied on 10;

12. `MLEG K̂i¬SD≤n(β−i)→ ¬SD≤n(β−i) by Lemma A.6;

13. `MLEG K̂i〈β−i〉> ∧ KiMKnAgtRati → ¬SD≤n(β−i)

from 8, 11 and 12;

14. `MLEG
∧
b∈Act

∨
β∈∆(K̂i〈β−i〉> ∧ KiMKnAgtRati ∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉))

→
∧
b∈Act

∨
β∈∆(¬SD≤n(β−i) ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:δi〉))

by 13 and Boolean principles;
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15. `MLEG
∧
b∈Act

∨
β∈∆(¬SD≤n(β−i) ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:δi〉))

→
∧
b∈Act(¬SD

≤n(i:b)→
∨
β∈∆(¬SD≤n(β−i) ∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉)))

by Boolean principles;

16. `MLEG
((

MKn+1
Agt

∧
i∈Agt Rati

)
∧ 〈δC〉>

)
→
∧
b∈Act(¬SD

≤n(i:b)→
∨
β∈∆(¬SD≤n(β−i)∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉))) if c ∈ C

by 5, 6, 7, 14, 15;

17. `MLEG
((

MKn+1
Agt

∧
i∈Agt Rati

)
∧ 〈δC〉>

)
→ ¬SD≤n+1(δi) if c ∈ C

by 4 and 16;

18. `MLEG
((

MKn+1
Agt

∧
i∈Agt Rati

)
∧ 〈δC〉>

)
→ ¬SD≤n+1(δC)

by 17.
ut

A.7. Proof of Theorem 8

Consider an arbitraryMLEG-model M = 〈W,∼, R,E,�, π〉, a world w in M and δ ∈ ∆ such that
for all positive integers n we have M,w |= 〈δ〉> ∧ ¬SD≤n(δ). Then, there is a model M ′ = 〈W,∼
, R,E ′,�, π〉 such that for all positive integers n we have M ′, w |= MKnAgt

∧
i∈Agt Rati.

Proof. The proof is based on the following Lemma 4.

Lemma 4. For all δ ∈ ∆, we have
`MLEG ¬SD≤n(i:a)↔

(¬SD≤n−1(i:a) ∧
∧
b∈Act

∨
δ∈∆

(¬SD≤n−1(δ−i) ∧ (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉))).

In other words, player i’s strategy a survives after n rounds of IDSDS if and only if, a survives after
n − 1 rounds of IDSDS and in the subgame of depth n, for every alternative strategy b of i, there is a
joint action δ−i of the other agents that survives after n − 1 rounds of IDSDS such that playing a while
the others play δ−i is for i at least as good as playing b while the others play δ−i.

Lemma 4 ensures that the definition of SD≤n(i:a) can be rewritten in the following shorter equivalent
form:

SD≤n(i:a)
def
= ¬SD≤n−1(i:a)→∨

b∈Act

∧
δ∈∆

(¬SD≤n−1(δ−i)→ (〈δ−i, i:a〉 <i 〈δ−i, i:b〉)).

Let us consider w such that for all positive integers n, M,w |= 〈δ〉> ∧ ¬SD≤n(δ). We can now show
how to build the accessibility relations E ′i of the model M ′ in such a way that for all positive integers n
M ′, w |= MKnAgt

∧
i∈Agt Rati. The construction goes as follows.

For all positive integers n, letAn be the subset of all joint actions β ∈ ∆ such thatM,w |= ¬SD≤n(β).
As |=MLEG ¬SD≤n+1(β) → ¬SD≤n(β), we have An+1 ⊆ An. Let us define A∞ =

⋂
n∈NAn. As ∆
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is finite, there exists a positive integer n0 such that A∞ = An0 and for all positive integers n > n0,
An = An0 . Let Ω be the set of all worlds u such that u ∼ w and such that there exists β ∈ A∞ such that
M,u |= 〈β〉>. Note that w ∈ Ω.

For all i ∈ Agt , we define E ′i as follows:

• for all s, t ∈ W , sE ′it iff either s, t ∈ Ω and Ri(s) = Ri(t) or s = t.

Now, let us prove that for all i ∈ Agt , for all s ∈ Ω, we have M ′, s |= Rati. Let a ∈ Act be such that
s |= 〈i:a〉>. As s ∈ Ω, we have M ′, s |= ¬SD≤n0+1(i:a). By Lemma 4, it implies that for all b ∈ Act,
there exists β ∈ ∆ such that M ′, s |= ¬SD≤n0(β−i) and 〈β−i, i:b〉 ≤i 〈β−i, i:a〉. But by definition of E ′i,
we have equivalence between M ′, s |= K̂i〈β−i〉> and M ′, s |= ¬SD≤n0(β−i). So for all s ∈ Ω, we have
M ′, s |= Rati. As for all i ∈ Agt we have E ′i(w) = Ω, we obtain M ′, w |= MKnAgt

∧
i∈Agt Rati for all

positive integers n. ut

A.8. Proof of Theorem 9

If M is aMLEG model then Mχ is aMLEG model.

Proof. It is just a routine to verify that ∼χ and every Eχ
i are equivalence relations, every �χi is reflexive

and transitive, and the model Mχ satisfies the semantic constraints C1, C4, C5 and C6.
Let us prove that Mχ satisfies constraints C2 and C3.
We first prove that Mχ satisfies constraint C2. We introduce the following useful notation. Suppose

χ1, χ2 ∈ LGT . Then, χ2  χ3 iff there is χ3 ∈ LGT such that χ1 = χ2 ∧ χ3.
Now, suppose for every i ∈ Agt there is vi such that vi ∼χ w and Rχ

i (vi) = δi. It follows that for
every i ∈ Agt there is vi such that vi ∼ w and Ri(vi) = δi. The latter implies that there is v such
that v ∼ w and Rδ(v) 6= ∅ (by the semantic constraint C2). Now, suppose for all v′ if v′ ∼χ w then
Rχ

Agt(v
′) = δ. It follows that: there is i ∈ Agt and ψ ∈ LMLEG such that �ψ → [δi]⊥  χ and

M, v |= �ψ. The latter implies that there is i ∈ Agt and ψ ∈ LMLEG such that �ψ → [δi]⊥  χ and
for all v′ ∼ w, M, v′ |= �ψ. We conclude that there is no vi ∼χ w such that Rχ

i (vi) = δi which leads to
a contradiction.

We now consider constraint C3. Suppose wEχ
i v and Rχ

i (w) = i:a. It follows that wEiv and Ri(w) =

i:a which implies Ri(v) = i:a, because M satisfies constraint C3. The latter implies Rχ
i (v) = i:a. Now,

suppose wEχ
i v and Rχ

i (v) = i:a. It follows that wEiv and Ri(v) = i:a which implies Ri(w) = i:a,
because M satisfies constraint C3. The latter implies Rχ

i (w) = i:a.
ut

A.9. Proof of Theorem 10

Proof. The proofs of R1-R6 go as in Dynamic Epistemic Logic (DEL) (see [10]). We here prove R7.
M,w |= [χ!] [δC ]ϕ,
IFF if M,w |= χ then Mχ, w |= [δC ]ϕ,
IFF if M,w |= χ then Mχ, w |= 〈δC〉> → ϕ (by Axiom Def[δC ]),
IFF if M,w |= χ then Mχ, w |= [δC ]⊥ or Mχ, w |= ϕ,
IFF if Mχ, w |= 〈δC〉> then, if M,w |= χ then Mχ, w |= ϕ,
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IFF if Mχ, w |= 〈δC〉> then, M,w |= [χ!]ϕ,
IFF if M,w |= 〈δC〉> then, M,w |= [χ!]ϕ,
IFF if M,w |= 〈δC〉> → [χ!]ϕ. ut

A.10. Proof of Theorem 11

The logicMLEGGT is completely axiomatized by the axioms and inference rules ofMLEG together
with the schemata of Theorem 10.

Proof. By means of the principles R1-R7 in Theorem 10, it is straightforward to prove that for every
MLEGGT formula there is an equivalentMLEG formula. In fact, each reduction axiom R2-R7, when
applied from the left to the right by means of the rule of replacement of proved equivalence, yields a
simpler formula, where ’simpler’ roughly speaking means that the dynamic operator is pushed inwards.
Once the dynamic operator attains an atom it is eliminated by the equivalence R1. Hence, the complete-
ness ofMLEGGT is a straightforward consequence of Theorem 1. ut

A.11. Proof of Theorem 12

For all δ ∈ ∆, for all n ≥ 0,
`MLEGGT 〈δ〉> →

(
¬SD≤n(δ)↔ 〈χSD!〉n+1>

)
.

Lemma 5. `MLEG
∨
a∈Act ¬SD

≤0(i:a).

Proof. 1. `MLEG
∨
a1∈Act〈i:a1〉>

by Active;

2. `MLEG
∨
a1∈Act ♦〈i:a1〉>

by 1 and T for � and Boolean principles;

3. `MLEG
∨
β∈∆〈β−i〉>

by Active;

4. `MLEG
∨
β∈∆ ♦〈β−i〉>

by 3;

5. `MLEG
∧
a∈Act SD

≤0(i:a)→
∧
a∈Act SD

≤0(i:a) ∧
∨
a∈Act ♦〈i:a〉> ∧

∨
β∈∆ ♦〈β−i〉>

by 2 and 4;

6. `MLEG ♦〈β−i〉> ∧ SD≤0(i:a) ∧ ♦〈i:a〉> →
∨
b∈Act(〈β−i, i:a〉 <i 〈β−i, i:b〉 ∧ ♦〈i:b〉>)

by Definition SD≤0(i:a) and Boolean principles;

7. `MLEG ♦〈β−i〉> ∧
∧
a∈Act SD

≤0(i:a) ∧ ♦〈i:a〉>

→
∨
b∈Act(〈β−i, i:a〉 <i 〈β−i, i:b〉 ∧ ♦〈β−i〉> ∧

∧
a∈Act SD

≤0(i:a) ∧ ♦〈i:b〉>)

by 6 and Boolean principles to propagate
∧
a∈Act SD

≤0(i:a);
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8. `MLEG ♦〈β−i〉> ∧
∧
a∈Act SD

≤0(i:a) ∧ ♦〈i:a〉>

→
∨
b1∈Act

∨
b2∈Act . . .

∨
bn∈Act〈β−i, i:a〉 <i 〈β−i, i:b1〉〈β−i, i:b1〉 <i 〈β−i, i:b2〉 . . .

〈β−i, i:bn−1〉 <i 〈β−i, i:bn〉 for all n ≥ 1;

by 7 and Boolean principles (induction on n);

9. `MLEG
∨
b1∈Act

∨
b2∈Act . . .

∨
bn∈Act〈β−i, i:a〉 <i 〈β−i, i:b1〉〈β−i, i:b1〉 <i 〈β−i, i:b2〉 . . .

〈β−i, i:bn−1〉 <i 〈β−i, i:bn〉

→
∨
b∈Act〈β−i, i:b〉 <i 〈β−i, i:b〉 if n > card(Agt)

by Boolean principles and because <i is transitive (as n > card(Agt), all sequence b1, . . . bn are
such that there exists i 6= j such that bi = bj);

10. `MLEG 〈β−i, i:b〉 <i 〈β−i, i:b〉 → ⊥

by Definition of <i and Boolean principles;

11. `MLEG ♦〈β−i〉> ∧
∧
a∈Act SD

≤0(i:a) ∧ ♦〈i:a〉> → ⊥

by 8, 9, 10;

12. `MLEG
∧
a∈Act SD

≤0(i:a) ∧
∨
a∈Act ♦〈i:a〉> ∧

∨
β∈∆ ♦〈β−i〉> → ⊥

by 11 and Boolean principles;

13. `MLEG
∧
a∈Act SD

≤0(i:a)→ ⊥

by 5 and 12;

14. `MLEG
∨
a∈Act ¬SD

≤0(i:a)

by 13 and Boolean principle.
ut

Lemma 6. `MLEGGT ¬SD≤n(i:a) ∧ χSD ↔ 〈χSD!〉¬SD≤n−1(i:a).

Proof. We prove it by induction. Let us consider the case n = 0 where ¬SD≤−1(i:a) = ♦〈i:a〉> by
convention.
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1. `MLEGGT ¬SD≤0(i:a)→ ♦〈i:a〉>

by Definition of ¬SD≤0(i:a) and Boolean principles;

2. `MLEGGT
∧
j∈Agt

∨
b∈Act ¬SD

≤0(j:b)

by Lemma 5 and Boolean principles;

3. `MLEGGT
∧
j∈Agt

∨
b∈Act ¬SD

≤0(j:b)↔
∧
j∈Agt

∨
b∈Act ¬SD

≤0(j:b) ∧ ♦〈j:b〉>

by 1 and Boolean principles;

4. `MLEGGT
∧
j∈Agt

∨
b∈Act ¬SD

≤0(j:b) ∧ ♦〈j:b〉>

by 2 and 3;

5. `MLEGGT ¬SD≤0(i:a) ∧ χSD ↔ ¬SD≤0(i:a) ∧ χSD ∧ ♦〈i:a〉>

by 1 and Boolean principles;

6. `MLEGGT ¬SD≤0(i:a) ∧ χSD ∧ ♦〈i:a〉> ↔ ¬SD≤0(i:a) ∧ χSD ∧ ♦〈i:a〉> ∧∧
j∈Agt

∨
b∈Act ¬SD

≤0(j:b) ∧ ♦〈j:b〉>

by 4 and Boolean principles;

7. `MLEGGT ¬SD≤0(i:a) ∧ χSD ∧ ♦〈i:a〉> ∧
∧
j∈Agt

∨
b∈Act ¬SD

≤0(j:b) ∧ ♦〈j:b〉>

→ χSD ∧
∨
β∈∆(¬SD≤0(β−i, i:a) ∧ ♦〈β−i, i:a〉>)

by Boolean principles and Indep;

8. `MLEGGT χSD ∧
∨
β∈∆(¬SD≤0(β−i, i:a) ∧ ♦〈β−i, i:a〉>)

→ χSD ∧
∨
β∈∆ ♦(¬SD≤0(β−i, i:a) ∧ 〈β−i, i:a〉>)

by Proposition 1 and K(�) principles;

9. `MLEGGT χSD ∧
∨
β∈∆ ♦(¬SD≤0(β−i, i:a) ∧ 〈β−i, i:a〉>)

→ χSD ∧
∨
β∈∆ ♦(χSD ∧ 〈i:a〉>)

by definitions of χSD, ¬SD≤0(β−i, i:a), JointAct and Boolean principles;

10. `MLEGGT 〈χSD!〉〈i:a〉> ↔ 〈i:a〉> ∧ χSD by R2. and R7.

11. `MLEGGT χSD ∧
∨
β∈∆ ♦(χSD ∧ 〈i:a〉>)→ χSD ∧ ♦(χSD ∧ 〈i:a〉>);

by Boolean principles;

12. `MLEGGT χSD ∧ ♦(χSD ∧ 〈i:a〉>)↔ χSD ∧ ♦(〈χSD!〉〈i:a〉>)

by Boolean principles and 10;

13. `MLEGGT χSD ∧ ♦(〈χSD!〉〈i:a〉>)↔ 〈χSD!〉♦〈i:a〉>.

by R2. and R4.;

14. `MLEGGT ¬SD≤0(i:a) ∧ χSD → 〈χSD!〉¬SD≤−1(i:a)

by 5, 6, 7, 8, 9, 11, 12, 13.
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15. `MLEGGT 〈χSD!〉¬SD≤−1(i:a)→ χSD ∧ ♦(χSD ∧ 〈i:a〉>)

by 13, 12;

16. `MLEGGT 〈i:a〉> ∧ χSD → ¬SD≤0(i:a) ∧ χSD;

by Definition of χSD and Boolean principles;

17. `MLEGGT χSD ∧ ♦(χSD ∧ 〈i:a〉>)→ χSD ∧ ♦¬SD≤0(i:a)

by 16, modal logic K(�) principles and Boolean principles;

18. `MLEGGT ♦¬SD≤0(i:a) ∧ χSD → ¬SD≤0(i:a) ∧ χSD

by ♦¬SD≤0(i:a)↔ ¬SD≤0(i:a);

19. `MLEGGT 〈χSD!〉¬SD≤−1(i:a)→ ¬SD≤0(i:a) ∧ χSD

by 15, 17, 18;

20. `MLEGGT ¬SD≤0(i:a) ∧ χSD ↔ 〈χSD!〉¬SD≤−1(i:a)

by 14 and 19.
Now let us consider the inductive case.
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1. `MLEGGT 〈χSD!〉¬SD≤n(i:a)↔ 〈χSD!〉(
¬SD≤n−1(i:a) ∧

∧
b∈Act(¬SD

≤n−1(i:b)→
∨
β∈∆(¬SD≤n(β−i) ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

)
by Definition of ¬SD≤n(i:a);

2. `MLEGGT 〈χSD!〉(
¬SD≤n−1(i:a) ∧

∧
b∈Act(¬SD

≤n−1(i:b)→
∨
β∈∆(¬SD≤n−1(β−i) ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

)
↔ (〈χSD!〉¬SD≤n−1(i:a) ∧

∧
b∈Act(〈χSD!〉¬SD≤n−1(i:b)→∨

β∈∆(〈χSD!〉¬SD≤n−1(β−i) ∧ 〈χSD!〉(〈β−i, i:b〉∧ ≤i 〈β−i, i:a〉))))

by Boolean principles and rules R2. and R3. (we can distribute 〈χSD!〉 over Boolean
connectives);

3. `MLEGGT 〈χSD!〉(〈β−i, i:b〉∧ ≤i 〈β−i, i:a〉)↔ (〈β−i, i:b〉∧ ≤i 〈β−i, i:a〉) ∧ χSD

by Boolean principles and Axiom R2., R3., R4. and R6.;

4. `MLEGGT (〈χSD!〉¬SD≤n−1(i:a) ∧
∧
b∈Act(〈χSD!〉¬SD≤n−1(i:b)→∨

β∈∆(〈χSD!〉¬SD≤n−1(β−i) ∧ 〈χSD!〉(〈β−i, i:b〉∧ ≤i 〈β−i, i:a〉))))

↔ χSD ∧¬SD≤n(i:a)∧
∧
b∈Act(χSD ∧¬SD≤n(i:b)→

∨
β∈∆(χSD ∧¬SD≤n(β−i)∧

χSD ∧ (〈β−i, i:b〉∧ ≤i 〈β−i, i:a〉)))

by induction and 3;

5. `MLEGGT [χSD ∧ ¬SD≤n(i:a) ∧
∧
b∈Act(χSD ∧ ¬SD≤n(i:b) →

∨
β∈∆(χSD ∧

¬SD≤n(β−i) ∧ χSD ∧ (〈β−i, i:b〉∧ ≤i 〈β−i, i:a〉)))]↔ [χSD∧

¬SD≤n(i:a) ∧
∧
b∈Act

(¬SD≤n(i:b)→
∨
β∈∆

(¬SD≤n(β−i) ∧ (〈β−i, i:b〉∧ ≤i 〈β−i, i:a〉)))︸ ︷︷ ︸
¬SD≤n+1(i:a)

]

by Boolean principles (we remove the multiple “χSD∧”);

6. `MLEGGT 〈χSD!〉¬SD≤n(i:a)↔ 〈χSD!〉 ↔ χSD ∧ ¬SD≤n+1(i:a)

by 1, 2, 4, 5.
Now let us finish the proof:
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1. `MLEGGT ¬SD≤n(δ)→ ¬SD≤n−1(δ)

by definition of ¬SD≤n(δ) and Boolean principles;

2. `MLEGGT ¬SD≤n(δ)→ ¬SD≤0(δ)

by 1 and Boolean principles (induction on n);

3. `MLEGGT ¬SD≤0(δ) ∧ 〈δ〉> → χSD

by Boolean principles (see definition of χSD);

4. `MLEGGT 〈δ〉> ∧ χSD ↔ 〈χSD!〉〈δ〉>

by rule R7.;

5. `MLEGGT 〈δ〉> ∧ ¬SD≤n(δ) ∧ χSD → 〈χSD!〉
(
〈δ〉> ∧ ¬SD≤n−1(δ) ∧ χSD

)
by 3, 4, Lemma 6, R2. and R3.;

6. `MLEGGT 〈δ〉> ∧ ¬SD≤n(δ) ∧ χSD → 〈χSD!〉n+1 (〈δ〉>)

by induction with 5;

7. `MLEGGT 〈δ〉> ∧ 〈χSD!〉n+1> → 〈χSD!〉(〈δ〉> ∧ 〈χSD!〉n>)

by rule R2. and R3.;

8. `MLEGGT 〈δ〉> ∧ 〈χSD!〉n+1> → 〈χSD!〉n+1〈δ〉>

by 7 and induction;

9. `MLEGGT 〈χSD!〉n+1〈δ〉> → 〈χSD!〉n+1♦〈δ〉>

by R2., R4. and T for � and Boolean principles;

10. `MLEGGT 〈χSD!〉n+1♦〈δ〉> → ¬SD≤n(δ)

by Lemma 6 and induction;

11. `MLEGGT 〈δ〉> → (¬SD≤n(δ)→ 〈χSD!〉n+1>

by 2, 3, 6;

12. `MLEGGT 〈δ〉> → (〈χSD!〉n+1> → ¬SD≤n(δ)

by 8, 9, 10;

13. `MLEGGT 〈δ〉> → (〈χSD!〉n+1> ↔ ¬SD≤n(δ)

by 11 and 12.
ut

A.12. Proof of Theorem 13.

For all n ≥ 0, `MLEGGT
(
MKnAgt

∧
i∈Agt Rati

)
→ 〈χSD!〉n+1>.
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Proof. By Theorem 7, Theorem 12 and Boolean principles. ut

A.13. Proof of Theorem 14

The satisfiability problem of a given formula ϕ in aMLEG∗-model is PSPACE-hard.

Proof. Let us prove that that the satisfiability problem ofMLEG∗ is PSPACE-hard. Let i be an agent.
Let us consider a formula ϕ written only with atomic propositions and with modal operators � and Ki.
We have equivalence between:

1. ϕ is satisfiable in aMLEG∗-model;

2. ϕ is satisfiable in a model of the logic S52(�,Ki) (i.e. the fusion of the logic S5 for � and S5 for
Ki).

Hence, we have reduced the satisfiability problem of a given formula ϕ in a MLEG∗-model to the
satisfiability problem of a given formula ϕ of S52(�,Ki) which is PSPACE-hard. So the satisfiability
problem of a given formula ϕ in aMLEG∗-model is PSPACE-hard.

ut

A.14. Proof of Theorem 15

• If card(Agt) = 1 and card(Act) = 1 then the satisfiability problem of a given formula ϕ in a
MLEGdet∗-model is NP-complete.

• If card(Agt) ≥ 2 or card(Act) ≥ 2 the satisfiability problem of a given formula ϕ in aMLEGdet∗-
model is PSPACE-complete.

Proof. We give here some hint for the proof. When there is only one agent and card(Act) = 1 then the
games are trivial and reduced to singletons. In these settings, aMLEGdet∗-frame F = 〈W,∼, R,E,�〉
is such that ∼ and �i for each agent i are equal to the relation {(w,w) | w ∈ W}. So the modal
operators [good]i and � are superfluous. The operator [δC ] can be treated as a proposition. Hence the
logic is similar to the logic S5 which is NP. This is the main argument why when there is only one
agent and card(Act) = 1 the logicMLEGdet∗ is NP. NP-hardness is granted becauseMLEGdet∗ is a
conservative extension of Classical Propositional Logic.

Now let us prove that the satisfiability problem of a given formula ϕ in a MLEGdet∗-model is
PSPACE-hard in other cases. First let us consider the case where card(Agt) ≥ 2. Let us consider
two distinct agents i, j ∈ Agt . Let ϕ be a formula written only with atomic propositions and with
epistemic modal operators Ki and Kj . We have equivalence between:

1. ϕ is satisfiable in aMLEGdet∗-model;

2. ϕ is satisfiable in the logic S52(Ki,Kj) (i.e. the fusion of the logic S5 for Ki and S5 for Kj).

The direction 1.→ 2. is straightforward and is already true with the assumption of the Axiom Complete-
Info. The direction 2. → 1. comes from the fact that the Constraint C4 (corresponding to the Axiom
CompleteInfo) has disappeared. So we can easily transform a model of the epistemic modal logic into
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aMLEGdet∗-model. Note that in the case of the logicMLEGdet, the direction 2. → 1. is not true any-
more. Indeed, it is not possible to transform a model of S52(Ka,Kb) with more than card(Act)card(Agt)

worlds into aMLEGdet-model. Hence, we have reduced the satisfiability problem of a given formula
ϕ in a MLEGdet∗-model into the satisfiability problem of a given formula ψ of S52(Ki,Kj) which is
PSPACE-hard. So the satisfiability problem of a given formula ϕ in a MLEGdet∗-model is PSPACE-
hard.

Now let us the consider the case where Agt = {i} and card(Act) ≥ 2. Let a and b be two distinct
actions. We prove that we can reduce the satisfiability problem of a given formula ϕ in aMLEGdet∗-
model to the satisfiability problem of K. Here is a possible translation:

• tr0(�ψ) = i:a ∧ ♦Kitr1(ψ) where � is the K-operator;

• tr1(�ψ) = i:b ∧ ♦Kitr0(ψ) where � is the K-operator;

• tr0(p) = i:a ∧ p for all propositions p;

• tr1(p) = i:b ∧ p for all propositions p.

And ϕ is satisfiable in K iff tr0(ϕ) is satisfiable in MLEGdet∗. Hence, the logic MLEGdet∗ is also
PSPACE-hard in this case.

Now we are going to prove that the satisfiability problem ofMLEGdet∗ is PSPACE. We do not give
all the details but we give the idea for a tableau method [21] for the logicMLEG∗. The tableau method
is a non-deterministic procedure. The creation of a model proceeds as follows:

• We start the procedure by guessing a “grid”, that is to say an equivalence class for the relation ∼
of maximal size card(Act)card(Agt) and also its preference relation as in the algorithm of Theorem
2. We also choose non-deterministically a world w in this class.

• We adapt the classical tableau method rules for the epistemic modal logic [21], that is to say:

– Suppose that a world w contains a formula of the form Kiψ. Then we propagate the formula
ψ in all nodes v such that wEiv.

– Suppose that a world w contains a formula of the form K̂iψ. Then we create an equivalence
class for ∼, we choose a point v such that Ri(v) = Ri(w) in this equivalence class and we
propagate ψ in v.

• Suppose that a node w contains a formula �ψ. Then we propagate the formula ψ in all nodes v
such that v ∼ w;

• Suppose that a node w contains a formula ♦ψ. Then we choose non-determiniscally a world v
such that v ∼ w and we propagate ψ in v.

• Suppose that a node w contains a formula [good]i ϕψ. Then we propagate the formula ψ in all
nodes v such that v �i w;

• Suppose that a node w contains a formula 〈good〉iψ. Then we choose non-determiniscally a world
v such that v �i w and we propagate ψ in v.
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During the construction, we explore the structure in depth first so that we only need to have one
branch in memory at each step. Thus, the algorithm is a non-deterministic procedure that uses only a
polynomial amount of memory. So the satisfiability problem ofMLEGdet∗ is in NPSPACE. According
the Savitch’s theorem [48], it is in PSPACE.

ut

A.15. Proof of Theorem 16

For every w ∈ W and for every i ∈ Agt , M,w |= Rati if and only if M ′, w |= Rati.

Proof. (⇒) We first prove the left-to-right direction. Suppose that M,w |= 〈i:a〉> and M,w |= Rati.
The latter means that for every b ∈ Act there is δ ∈ ∆ such thatM,w |= K̂i〈δ−i〉>∧Ki (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉).

The latter means that for every b ∈ Act there is δ ∈ ∆ such that:

A. there is v ∈ Ei(w) such that R−i(v) = δ−i and

B. for all u, v ∈ W if v ∈ Ei(w) and u ∼ v and RAgt(u) = 〈δ−i, i:b〉 then there is z ∈ W such that
u �i z and RAgt(z) = 〈δ−i, i:a〉.

Consider an arbitrary b ∈ Agt . It follows that there is an element δ of ∆ which satisfies the previous
conditions A and B. By definition of E ′i(w) and R′−i(v) we have that: if there is v ∈ Ei(w) such that
R−i(v) = δ−i then there is v ∈ E ′i(w) such that R′−i(v) = δ−i. Therefore, from item A, we conclude:

C. there is v ∈ E ′i(w) such that R′−i(v) = δ−i.

Take two arbitrary worlds u, v ∈ W ′ and suppose that v ∈ E ′i(w) and u ∼′ v andR′Agt(u) = 〈δ−i, i:b〉.
By definition of M ′, we have v ∈ Ei(w) and 〈δ−i, i:a〉 ∈ ΠM . Consider now the following three cases.

CASE 1. Suppose u ∈ W . Then, by definition of M ′, we have that u ∼ v and RAgt(u) = 〈δ−i, i:b〉.
Therefore, from item B, it follows that there is z ∈ W such that u �i z and RAgt(z) = 〈δ−i, i:a〉.
From the latter, by definition of M ′, we conclude that there is z ∈ W ′ such that u �′i z and R′Agt(z) =

〈δ−i, i:a〉.
CASE 2. Suppose that u 6∈ W and that there is z ∈ W such that z ∼ v and RAgt(z) = 〈δ−i, i:a〉.

From the former, by definition of M ′, it follows that �′i (u) =∼′(u). From the latter, by definition of
M ′, it follows that there is z ∈ W ′ such that z ∼′ v and R′Agt(z) = 〈δ−i, i:a〉. Therefore, we have that
there is z ∈ W ′ such that u �′i z and R′Agt(z) = 〈δ−i, i:a〉.

CASE 3. Suppose that u 6∈ W and that there is no z ∈ W such that z ∼ v and RAgt(z) = 〈δ−i, i:a〉.
From the former, by definition of M ′, it follows that �′i (u) =∼′(u). From the latter, by definition of
M ′ (and the fact that 〈δ−i, i:a〉 ∈ ΠM ), it follows that there is z ∈ W ′ such that z ∼′ v and R′Agt(z) =

〈δ−i, i:a〉 and �′i (z) =∼′(z). Therefore, we have that there is z ∈ W ′ such that u �′i z and R′Agt(z) =

〈δ−i, i:a〉.
From the previous three cases, it follows that:

D. for all u, v ∈ W ′ if v ∈ E ′i(w) and u ∼′ v and R′Agt(u) = 〈δ−i, i:b〉 then there is z ∈ W ′ such that
u �′i z and R′Agt(z) = 〈δ−i, i:a〉.
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From the items C and D we conclude that M ′, w |= Rati.

(⇐) Let us prove the right-to-left direction. Suppose that M ′, w |= 〈i:a〉> and M ′, w |= Rati. The latter
means that for every b ∈ Act there is δ ∈ ∆ such that M ′, w |= K̂i〈δ−i〉> ∧ Ki (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉).

The latter means that for every b ∈ Act there is δ ∈ ∆ such that:

E. there is v ∈ E ′i(w) such that R′−i(v) = δ−i and

F. for all u, v ∈ W ′ if v ∈ E ′i(w) and u ∼′ v and R′Agt(u) = 〈δ−i, i:b〉 then there is z ∈ W ′ such that
u �′i z and R′Agt(z) = 〈δ−i, i:a〉.

Consider an arbitrary b ∈ Agt . It follows that there is an element δ of ∆ which satisfies the previous
conditions E and F. By definition of E ′i(w) and R′−i(v) we have that: if there is v ∈ E ′i(w) such that
R′−i(v) = δ−i then there is v ∈ Ei(w) such that R−i(v) = δ−i. Therefore, from item E, we conclude:

G. there is v ∈ Ei(w) such that R−i(v) = δ−i.

Take two arbitrary worlds u, v ∈ W and suppose that v ∈ Ei(w) and u ∼ v and RAgt(u) = 〈δ−i, i:b〉.
By Definition of E ′i(w), ∼′ and R′Agt(u) we have v ∈ E ′i(w) and u ∼′ v and R′Agt(u) = 〈δ−i, i:b〉. Thus
by F. there is z ∈ W ′ such that u �′i z and R′Agt(z) = 〈δ−i, i:a〉. But as u ∈ W we have�′i (u) =�i (u).
Thus z ∈ W and R′Agt(z) = RAgt(z).

It follows that:

H. for all u, v ∈ W if v ∈ Ei(w) and u ∼ v and RAgt(u) = 〈δ−i, i:b〉 then there is z ∈ W such that
u �i z and RAgt(z) = 〈δ−i, i:a〉.

From the items G and H we conclude that M,w |= Rati.
ut

A.16. Proof of Corollary 1

For every w ∈ W , for every i ∈ Agt and for every C ∈ 2Agt∗, we have M,w |= MKnCRati if and only
if M ′, w |= MKnCRati.

Proof. Define a world v to be C-reachable from world w in n steps (with n ≥ 1), and note this wEC,nv,
if and only if there exist worlds w0, . . . , wn such that w0 = w and wn = v and for all 0 ≤ k ≤ n−1,
there exists i ∈ C such that wkEiwk+1. Define EC,n(w) = {v | wEC,nv}. We have M,w |= MKnCϕ if
and only if M, v |= ϕ for all v ∈ EC,n(w).

By definition of M ′, we have EC,n(w) = E ′C,n(w) for all w ∈ W . Therefore, M,w |= MKnCRati if
and only if M, v |= Rati for all v ∈ E ′C,n(w).

Moreover, according to Proposition 16, for every v ∈ W we have M, v |= Rati if and only if M ′, v |=
Rati. Therefore, we have that M, v |= Rati for all v ∈ E ′C,n(w) if and only if M ′, v |= Rati for all
v ∈ E ′C,n(w).

It follows that, M,w |= MKnCRati if and only if M ′, w |= MKnCRati.
ut
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