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We report on three-dimensional direct numerical simulation of wave turbulence on the free surface
of a magnetic fluid subjected to an external horizontal magnetic field. A transition from capillary-
wave turbulence to anisotropic magneto-capillary wave turbulence is observed for an increasing field.
At high enough field, wave turbulence becomes highly anisotropic, cascading mainly perpendicularly
to the field direction, in good agreement with the prediction of a phenomenological model, and with
anisotropic Alfvén wave turbulence. Although surface waves on a magnetic fluid are different from
Alfvén waves in plasma, a strong analogy is found with similar wave spectrum scalings and similar
magnetic-field dependent dispersionless wave velocities.

Introduction.— Most of nonlinear wave systems reach
a wave turbulence regime as a result of wave interac-
tions [1, 2]. This phenomenon occurs in various domains
at different scales such as ocean surface waves, plasma
waves, hydroelastic or elastic waves, internal or inertial
waves, and optical waves [2]. The weakly nonlinear the-
ory (called weak turbulence theory) derived analytically
the solutions of the corresponding kinetic equations [1–
5]. These solutions, known as the Kolmogorov-Zakharov
(KZ) spectra, describe the energy transfers towards small
scales (direct cascade) or large ones (inverse cascade).
Athough these solutions have been tested in different sys-
tems, numerical and experimental works are currently a
paramount of interest to understand in what extend this
theory can describe real physical systems.
One of the most important system is Alfvén waves

in magnetohydrodynamics (MHD) [6], initially observed
in laboratory plasma [7–10], and recently in astrophys-
ical plasma such as the Sun’s outer [11] or inner [12]
atmosphere. Three-dimensional (3D) Alfvén waves in
a turbulent regime were initially predicted to follow
the isotropic Iroshnikov-Kraichnan spectrum [13, 14].
However, they become strongly anisotropic in a pres-
ence of an intense magnetic field, and transfer energy
mainly in the plane transverse to the field, thus becom-
ing nearly two-dimensional [2, 15, 16]. The spectrum
of this anisotropic weak turbulence regime has been de-
rived [17, 18], then observed in the Jupiter’s magneto-
sphere [19], and confirmed recently numerically [20, 21].
An analogous anisotropic behavior is predicted for hydro-
dynamics waves on the surface a magnetic fluid subjected
to a horizontal magnetic field [22]. Although wave tur-
bulence regimes have been observed on the surface of a
ferrofluid in an external magnetic field both experimen-
tally [23, 24] and numerically [25], the anisotropic regime
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has never been reported so far in such a system, to our
knowledge.
In this Letter, we show the existence of an analogy

between Alfvén wave turbulence and wave turbulence on
the surface of a magnetic fluid. The analogy is not only
qualitative but also quantitative in term of cascade of
energy. In particular, we show that an anisotropic MHD
wave turbulence emerges at high enough magnetic field
with a wave spectrum showing similar scalings than the
ones of anisotropic Alfvén wave turbulence predictions.
Theoretical backgrounds.— We consider an ideal in-

compressible magnetic liquid of infinite depth subjected
to an external horizontal magnetic field B directed along
the x-axis. The dispersion relation of linear waves on the
surface of such a ferrofluid reads, neglecting gravity, [26]

ω2(k) = [B2/(µ̃ρ)]k2x + (γ/ρ)k3 , (1)

where k ≡ |k| =
√

k2x + k2y is the wave number, ω is the

angular frequency, γ and ρ are the surface tension and
mass density of the liquid, µ̃ = µ0(µ+ 1)/(µ− 1)2, µ0 is
the magnetic permeability of vacuum, and µ is the rel-
ative permeability of the liquid. Equation (1) describes
the anisotropic propagation of surface waves. We de-
fine v2A = B2/(µ̃ρ), the group velocity of dispersionless
magnetic surface wave propagating along B (analogous
to Alfvén velocity [6]). Note that µ is here constant,
whereas µ experimentally depends of B [24]. This change
has no impact here since vA is the parameter used to
quantify magnetic effects.
The power spectrum of wave elevation S(k) is defined

as the square modulus of the Fourier transform of the
wave elevation η(x, y). Without magnetic field, the KZ
spectrum for isotropic capillary wave turbulence reads [4]

Sc(k) = CKZP
1/2 (γ/ρ)

−3/4
k−15/4 , (2)

where CKZ is the nondimensional KZ constant and P is
the energy flux per unit area and density. The energy
spectrum is Ec(k) = (γ/ρ)k2Sc(k). To date, the KZ
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spectrum has been very well confirmed for capillary waves
both experimentally (e.g., see [27–30]) and numerically
[31–35] for weakly nonlinear capillary waves. For B 6=
0, no weak turbulence prediction for magneto-capillary
waves exists so far, only dimensional analysis has been
done [23, 24]. For Alfvén waves in a plasma within a
strong magnetic field (e.g., along x), the energy transfer
by three-wave interactions has been shown to be frozen
in the field direction and to occur only in the transverse
direction to B [15]. The weak turbulence predictions
for the power spectrum of such anisotropic Alfvén wave
turbulence (ky ≫ kx, i.e., |k| ∼ ky) reads [16–18]

Sm(k) = CmP
1/2v

−3/2
A k−3

y , (3)

where Cm = 1.467 [36] (a
√
2π factor was missing in [18]).

The energy spectrum is Em(k) = v2akS
m(k).

Model equations.— The numerical model used here is
based on the Hamiltonian equations describing the MHD
motion of an ideal irrotational and incompressible fer-
rofluid subjected to an external horizontal magnetic field.
We assume the absence of free electric charge and cur-
rent in the fluid, which means that the magnetic field
in the liquid is also potential. In the quadratic nonlin-
ear approximation, the equations of boundary motion are
written as

ηt = k̂ψ − k̂(ηk̂ψ)−∇⊥(η∇⊥ψ) + D̂kη , (4)

ψt = ∇2
⊥η +

1

2

[

(k̂ψ)2 − (∇⊥ψ)
2
]

+ V 2
Ak̂

−1ηxx

−AµV
2
A

2

[

2k̂−1∂x

(

ηk̂ηx −∇⊥η · ∇⊥k̂
−1ηx

)

− η2x

−2ηηxx − (∇⊥k̂
−1ηx)

2
]

+ F(k, t) + D̂kψ , (5)

where ∇⊥ = {∂x, ∂y} is the nabla operator, ψ the ve-

locity potential, k̂ is the integral operator having the

form k̂fk = kfk, k̂
−1 is the inverse k̂-operator, V 2

A =

v2A[ρ/(gγ)]
1/2 is the nondimensional MHD wave speed, g

is the gravity acceleration, and Aµ = (µ − 1)/(µ + 1) is

the magnetic Atwood number. D̂k is the viscosity op-
erator acting as, D̂kfk = −ν(k − kd)

2fk, for k ≥ kd,

and, D̂k = 0, for k < kd, the coefficient ν determines
the intensity of energy dissipation (see [37–39]). More
details on the derivation of Eqs. (4) and (5) from po-
tential equations are given in the Supplemental Mate-
rial [40]. The pumping term F(k, t) in Eq. (5) is defined
in Fourier space as F(k, t) = F (k) exp[iω(k)t], where
F (k) = F0 exp[−(k−k0)4/kf ], with F0 is the forcing am-
plitude reached at k = k0. The wave vectors are pumped
in the Fourier space in the range k ∈ [1, kf ] (see below),
and in all directions. In the absence of dissipation and
pumping, exact analytical solutions of Eqs. (4)-(5) has
been found in the strong-field limit and µ≫ 1 [37, 38].
For finite µ, the surface waves collapse under the ac-

tion of infinitely strong horizontal field [41]. Thus, for a

FIG. 1. Free surface gradient at a fixed time in the steady
state (t = 250) for different values of B: V 2

A = (a) 0, (b) 25,
(c) 100, and (d) 300. B is along the x-axis.

correct simulation of the free surface MHD wave turbu-
lence, it is necessary to take into account the regularizing
effects of viscosity and surface tension.

Equations (4) and (5) are solved numerically using
the pseudo-spectral methods with the total number of
Fourier harmonicsN×N . The time integration scheme is
based on the explicit fourth-order Runge-Kutta method
with a step dt. To stabilize the numerical scheme, a low-
pass anti-aliasing filter is used [31]. At each integration
time step, harmonics with wavenumbers greater than ka
are equated to zero. The effect of this low-pass filter-
ing can be thus interpreted as “superviscosity” acting
at small scales. Simulations are performed in a periodic
box of size 2π × 2π with N = 1024, dt = 5 × 10−5,
F0 = 2000, k0 = 3, kf = 6, kd = 150, ka = 212,
and ν = 10. All numerical simulations are carried out
for a magnetic fluid with Aµ = 0.5, which corresponds
to µ = 3. We present below four series of simula-
tions with different values of the magnetic parameter
V 2
A = 0, 25, 100, and 300. The typical wave steepness

ǫ ≡
〈√

∫

S
||∇η(x, y, t)||2dxdy/S

〉

t
used is 0.16 and is

found to be almost constant when B is increased. The
stationary state is reached after a time t ≈ 50, and each
simulation lasts up to t = 500.

Phenomenological analysis—The theoretical spectrum
expected from our model equations [Eqs. (4) and (5)]
is obtained following a phenomenological method de-
scribed in Ref. [16, 36] and detailed in the Supplemen-
tal Material [40]. We assume a strong magnetic field

(VAkx ≫ k
3/2
y ) and an anisotropy of the wave field

(ky ≫ kx). The fourth member of the rhs of Eq. (5)
provides then an estimation of the nonlinear magnetic
timescale as Tm

nl ∼ ψ/(V 2
Ak

2
xη

2). Assuming that all
the magnetic potential energy is transferred to capil-
lary kinetic energy, one has V 2

Akxη
2 ∼ ψ2ky, and thus
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FIG. 2. (a)-(c) Power spectra S(kx, ω) of surface waves in the field direction (x-axis) for different B, i.e., different VA. Log-
color bar. The red-dashed lines correspond to Eq. (1) (dispersion relation) and white dash-dotted lines to nondispersive wave
propagation, ω = VAkx. (d)-(f) Power spectra S(ky , ω) of waves traveling along y-axis. The red dashed lines correspond to

ω = k
3/2
y and ω = k

3/2
y /21/2. (g) and (h): Cross sections S(kx, ky, ω

⋆) of the power spectrum at a fixed frequency ω⋆ = 600 for
different fields V 2

A = 0 and V 2

A = 300, respectively. Red-dashed lines correspond to |k(ω⋆)| using Eq. (1).

Tm
nl ∼ 1/(ψkykx) with ψ2 ∼ kyE/kx. Using the power

budget, the energy flux then reads P ∼ kyE/(ωT
2
nl),

with E the energy spectrum. The power spectrum of
wave elevations, Sm(k) = E(k)/(V 2

Ak), finally reads

Sm(k) ∼ P 1/2V
−3/2
A k−3

y , which is found to be the same
as the shear-Alfvén wave turbulence prediction of Eq. (3).

Anisotropic regime.— Figure 1 shows the gradient of
the free surface, at a fixed time in the steady state,
for different B. We observe a transition from an
isotropic regime [Fig. 1(a)] to a highly anisotropic regime
[Fig. 1(d)]. Indeed, the surface relief in Fig. 1(d) be-
comes almost unidirectional, corresponding to surface
waves propagating mainly in the direction perpendicular
to B (see below). This anisotropy is due to the stabi-
lizing effect of a horizontal magnetic field on a magnetic
liquid. Indeed, for waves propagating in the field direc-
tion, the field lines pierce the wavy liquid-gas interface,
and flatten it in the field direction as a consequence of the
field boundary conditions at the interface [22, 42]. This
behavior is close to the anisotropy observed when Alfvén
waves propagate in the direction of a magnetic field [2],
although of a different origin.

Nonlinear dispersion relation.— The anisotropy is also
evidenced by the full power spectrum S(k, ω) of surface
waves. Figures 2(a)-(c) show the spectrum S(kx, ω) for
waves traveling along the field direction for different B,
i.e., different VA. For B = 0, the energy injected at low
k is redistributed within a large range of wave numbers
around the linear dispersion relation of Eq. (1), as ex-

pected. When B is increased, the nonlinear dispersion
relation is deformed [see Fig. 2(b)], then becomes quasi-
dispersionless in the field direction [see Fig. 2(c)]. The
spectra S(ky, ω) of waves traveling normally to the field
are shown in Figs. 2(d)-(f) for different B. Figure 2(d)
corresponds to pure capillary waves (B = 0). When B is
increased, waves of higher and higher wavenumbers are
generated. Such enhanced energy transfers perpendicu-
lar to the field direction when the latter is increased, are
a consequence of the anisotropic effect described above.
Figures 2(e) and (f) display also the emergence of a sec-
ond branch in the dispersion relation. This branch cor-
responds to bound waves (harmonics due to nonreso-
nant interactions) [43]. Figures 2(g) and (h) show the
cross sections S(kx, ky, ω

⋆) of the power spectrum for a
fixed frequency value, ω⋆. For B = 0 [see Fig. 2(g)],
the energy is distributed isotropically in all directions
along a circle of radius |k(ω⋆)| (only the first quadrant is
shown). When B is increased, the energy is redistributed
anisotropically, much stronger in the perpendicular direc-
tion than in the field direction [see Fig. 2(h)]. This effect
is reported for all frequencies (see Supplemental Mate-
rial [40]). A stronger nonlinear broadening also appears
since bound waves occur normal to the field direction. To
sum up, at high magnetic field, anisotropic wave propa-
gation is observed (ky ≫ kx) as expected by weak MHD
(or shear-Alfvén) wave turbulence as well as appearance
of nonlinear coherent structures in the y direction.
Wave interactions.— The MHD surface wave turbu-

lence observed here involved nonlinear waves cascading
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FIG. 3. Power spectra S(k) of wave elevations for different VA.
Curves have been shifted for clarity. Dashed line: capillary-
wave turbulence theory of Eq. (2) [4]. Solid line: anisotropic
MHD wave turbulence theory of Eq. (3). Inset: Spectra in
the field direction S(kx) (green line) and normal to the field
S(ky) (blue line). V 2

A = 300.

towards small scales as a result of anisotropic three-
wave resonant interactions occurring mainly in the per-
pendicular direction of the magnetic field (see inset of
Fig. 3). These three-wave resonant interactions are well
evidenced by computing the third-order correlation (or
bicoherence) of wave elevations (see Supp. Mat. [40]).
Wave-number spectrum.— To quantify the transition

from isotropic capillary wave turbulence to anisotropic
MHD wave turbulence, we compute the power spectra of
surface elevations in frequency, S(ω) and in wave number
S(k). S(k) is shown in Fig. 3 for different VA. At zero
field, the spectrum is in good agreement with the KZ
spectrum in k−15/4 of Eq. (2). At intermediate field, the
spectrum exponent decreases slightly, but is still close to
the one predicted by weak turbulence theory. At high
enough field, we observe a transition from the KZ spec-
trum to a spectrum in k−3 in rough agreement with the
scaling of the phenomenological model and of anisotropic
Alfvén wave turbulence of Eq. (3) (see main Fig. 3).
Specifically, the inset of Fig. 3 shows the spectra S(kx)
along the field direction (x-axis) and S(ky) perpendicu-
lar to it (y-axis) for V 2

A = 300. S(ky) is found to scale as
k−3
y as expected by Eq. (3) whereas S(kx) is more than

one order of magnitude smaller than S(ky) in the iner-
tial range. Thus, the spectrum, S(k) = Ck(P, VA)k

−3,
observed in the main Fig. 3, is mainly due to the energy
transferred perpendicularly to the external field. We de-
termine now the scaling of the coefficient Ck with the
energy flux P and with the magnetic parameter VA by
performing two series of simulations: (i) at a fixed mag-
netic field (V 2

A = 300) for different amplitudes of the
energy pumping; (ii) at a fixed rate of energy dissipa-
tion P for different fields. The spectrum is then found
to increase with the pumping as Ck(P ) ∼ P 1/2 [see inset
(a) of Fig. 4] and to decrease with the magnetic field as
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FIG. 4. Power spectra S(ω) of wave elevations for differ-
ent VA. Curves have been shifted for clarity. Dashed line:
capillary-wave turbulence theory in ω−17/6 from Eq. (2) us-

ing ω ∼ k−3/2 [4]. Solid line: predictions for anisotropic

MHD surface wave turbulence from Eq. (3) with ω ∼ k−3/2.
Inset: spectrum coefficients Ck (square), Cky

(diamond) and

Cω (circle) versus (a) P for fixed V 2

A = 300, and (b) VA for

fixed P ≈ 2.7 × 10−3. Solid lines: best fits in P 1/2V
−3/2
A .

Ck ∼ V
−3/2
A [see inset (b)] for high enough VA. Note

that Cky
, the coefficient of the spectrum S(ky), is ob-

served to follow the same scaling. When returning to the
dimensional variables, we find thus

S(k) ≈ S(ky) = CP 1/2v
−3/2
A k−3

y , (6)

where C is a constant, independent of P and VA, to be
found numerically (see below). Equation (6) is similar to
the spectrum scalings found above by the phenomenolog-
ical model and to Eq. (3) describing anisotropic Alfvén
waves in plasma subjected to a strong magnetic field. Al-
though MHD surface waves on a magnetic fluid is phys-
ically different from MHD Alfvén waves in plasma, the
anisotropic effect on the energy transfer due to the mag-
netic field is common and leads to the same scaling for
the wave spectrum. Note that, in plasma, no wave prop-
agates normal to the field (only magnetic energy is trans-
ferred to the normal direction by shearing) whereas, in
our case, capillary waves propagates normal to the field,
the magnetic energy being transferred to capillary energy.
Frequency spectrum.— We compute now the frequency

spectrum S(ω) for different VA as shown in Fig. 4. At
zero field, the simulations again show a good agreement
with the predicted KZ spectrum in S(ω) ∼ ω−17/6 [4]. At
large enough B, the spectrum is less steep and scales as
S(ω) = Cωω

−7/3. The coefficient Cω is found to scale as

P 1/2 and V
−3/2
A (see insets of Fig. 4) as for Ck. Returning

to the dimensional variables thus leads to

S(ω) = C′(γ/ρ)2/3P 1/2v
−3/2
A ω−7/3 . (7)

where C′ is a constant. Note that the empirical spec-
tra of Eqs. (6)-(7) are found to be consistent with each
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other since they verify S(ω)dω = S(k)dk ≈ S(ky)dky,
using ky ≫ kx and ω(k) from Eq. (1). This also gives
C′ = 2C/3. We find the values of the constants C = 1.7
and C′ = 1.34 (using the best fits of Cky

and Cω in
Fig. 4a). C is close to the theoretical value Cm = 1.467
found for shear-Alfvén wave turbulence in plasma [36]
and the ratio 2C/3C′ = 0.85 is as expected close to
1. Moreover, the spectrum scaling with the energy flux
in P 1/2 is consistent with the fact that three-wave res-
onant interactions are involved here [2]. Finally, the
timescale separation hypothesis of wave turbulence is ver-
ified here since the nonlinear time is found much longer
than the linear time regardless of k (see Supplemental
Material [40]). A typical resonant triad is also shown
in [40] to highlight that resonant wave vectors are of
the same order of magnitude suggesting that wave in-
teractions are local. Our results thus differ from two-
dimensional MHD weak-turbulence predictions leading
to nonlocal interactions and a flat steady-state spec-
trum [44].
Conclusion.— We have numerically reported a tran-

sition from isotropic capillary-wave turbulence to a
strongly anisotropic MHD wave turbulence on a sur-
face of a magnetic fluid, for high enough magnetic field.
In this anisotropic regime, the wave spectrum is found
to be in good agreement with the prediction of three-
dimensional weak MHD (shear-Alfvén) wave turbulence.
This highlights the broad application of weak wave tur-
bulence where different physical systems can lead to sim-
ilar phenomena, only because they share similar disper-

sion relations and the same nonlinear interaction pro-
cess (three-wave resonant interactions). Such quantita-
tive analogy between Alfvén waves in plasma and surface
waves on magnetic fluids would deserve further studies in
particular theoretically, and could lead to a better under-
standing of plasma by studying them more easily. The
analogy discovered here could be pushed forward to ex-
plore open questions in wave turbulence such as the prop-
erties of large scales [30], or the critical balance separat-
ing weak turbulence from strong turbulence [21]. The
phenomenon reported here could also be observed exper-
imentally using a ferrofluid with a high magnetic suscep-
tibility and a high saturation magnetization. However,
such ferrofluids are currently still too viscous (at least
ten times the water value) which would prevent wave in-
teractions to occur. Finally, similar effects should be ex-
pected in electrohydrodynamics of nonconducting liquids
in a strong electric field due to the equivalence between
the underlying equations [45].
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In this Supplemental Material, we present additional data analyses related to wave turbulence on the surface of a
magnetic fluid subjected to a horizontal magnetic field: details of the numerical model (Sec. I), stationarity of the
total energy and probability distribution of the wave field (Sec. II), wave field images (Sec. III), effects of anisotropy
on the wave spectrum and on the correlations of the wave elevations (Sec. IV), verification of the timescale separation
(Sec. V), and derivation of the phenomenological model of the wave spectrum and nonlinear timescales (Sec. VI).
Notations as in the aforementioned text.

I. NUMERICAL MODEL

We consider a potential flow of an ideal incompressible ferrofluid. The velocity potential Φ(r) satisfies the Laplace
equation ∆Φ = 0, at z < η. Maxwell’s equations are reduced to a static boundary value problem at each moment
in time: magnetic field lines instantly adjust to the curved fluid boundary. This approximation is valid if the typical
velocity of the liquid surface is much less than the speed of light. Such a condition is thus fully fulfilled. We suppose
that the magnetic fluid is dielectric (there are no free electric current), i.e., the magnetic field strength H1,2(r) is
characterized by magnetic scalar potentials H1,2 = −∇ϕ1,2, where the indices “1” and “2” correspond to the regions
inside the liquid and above its free boundary, respectively. The magnetic potentials obey the Laplace equation
∆ϕ1,2 = 0, at z 6= η. The boundary conditions for Maxwell’s equations in terms of the magnetic potential are written
as ϕ1 = ϕ2 and µ∂nϕ1 = ∂nϕ2 at z = η(x, y, t), and ϕ1,2 = −(B/µ0)x at z = ∓∞, where ∂n is normal derivative to
the free surface, and B is the external magnetic field induction. The evolution of the system is described by kinematic
and dynamic boundary conditions at z = η(x, y, t) as

ηt = Φz −∇⊥η · ∇⊥Φ, Φt +
(∇Φ)2

2
− σ∇⊥ · ∇⊥η

√

1 + (∇⊥η)2
=
µ0(µ− 1)

2ρ

(

∇ϕ1 · ∇ϕ2 −
B2

µ2
0

)

. (s1)

The above equations are a closed system describing the fully nonlinear evolution of a magnetic fluid with free surface
taking into accounts the effects of capillary and magnetic forces. The total energy of the system (Hamiltonian) has
the following form

H =
1

2

∫

z≤η

(∇Φ)2dr− µ0µ

2

∫

z≤η

(∇ϕ1)
2 − (B/µ0)

2dr− µ0

2

∫

z≥η

(∇ϕ2)
2 − (B/µ0)

2dr+

∫

σ

ρ

(

√

1 +∇⊥η − 1
)

dxdy.

The equations of boundary motion (s1) can be obtained using the variational derivatives

∂η

∂t
=
δH
δψ

,
∂ψ

∂t
= −δH

δη
, (s2)

the quantities η(x, y, t) and ψ(x, y, t) = Φ(x, y, z = η, t) play the role of canonical variables. The procedure for
obtaining weakly nonlinear equations is well described in the works [1-4, 37-39]. The model used is based on the
quadratically nonlinear equation system initially formulated in the framework of Hamiltonian formalism for the
description of electrohydrodynamic motion of dielectric liquids in [37-39] (the problem is mathematically completely
equivalent to the current study).

We use nondimensional units, i.e., t̃ = t/t0 and r̃ = r/λ0, with t0 = 2π[γ/(ρg3)]1/4 and λ0 = 2π[γ/(ρg)]1/2 (the



2

tilde notation is omitted hereafter for the sake of clarity). The Hamiltonian is expressed in the following form [37]

H =
1

2

∫∫

[

(∇⊥η)
2 + ψk̂ψ − η

(

(k̂ψ)2 − (∇⊥ψ)
2
)

+V 2
A

(

ηxk̂
−1ηx +Aµ

[

ηη2x − ηxk̂
−1ηk̂ηx + ηxk̂

−1(∇⊥η · ∇⊥k̂
−1ηx)

])]

dxdy. (s3)

Taking the variational derivatives from Eq. (s3) and adding to the Eq. (s2) terms responsible for the effects of pumping
and dissipation of energy, we get the governing Eqs. (4)-(5) of the main text.

II. TOTAL ENERGY AND WAVE PROBABILITY DISTRIBUTIONS

The total energy of the system is shown in Fig. S1 as a function of time for different magnetic fields. It shows that
the system reaches a quasi-stationary state from t ≈ 50. The probability density functions (PDF) of the rescaled
wave elevations in this stationary regime are shown in the inset for different magnetic fields. The PDF asymmetry is
weak (skewness S = 〈η3〉/〈η2〉3/2 < 0.02) regardless of the field value. Its flatness (kurtosis K = 〈η4〉/〈η2〉2) is found
to decrease with an increasing magnetic field: close to 3 (Gaussian) for weak B down to 2.45 at the maximum field.
The PDF departs from Gaussian and becomes narrower with increasing magnetic field.
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Figure S1: Total energy of the system versus time for the different values of the magnetic parameter VA and of the resulting
energy dissipation fluxes, P , for each series of simulations. Inset: PDF of the wave elevations rescaled by the standard deviation
η/ση (colored dots). Black-dashed line corresponds to a Gaussian fit.

III. FREE SURFACE ELEVATION

The free-surface elevation in the stationary regime is shown in Fig. S2 for different magnetic fields and evidence
similar results on the anisotropy effects discussed in the main text.

IV. ANISOTROPY

The anisotropy is observed in the cross sections of the spectrum of wave elevations, S(kx, ky, ω
⋆), for fixed ω⋆ [see

Fig. 2 (g)-(h) of the main text for ω⋆ = 600]. This anisotropy is valid regardless of ω∗ as shown in Fig. S3(a)-(d).
Anisotropy is also observable looking at the three-wave resonant interactions which read

ω(k1) + ω(k2)− ω(k1 + k2) = 0 . (s4)
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B

Figure S2: The free-surface elevations at t = 250 in the stationary regime for different values of the magnetic parameter: (a)-(d)
correspond to V 2

A = 0, 25, 100, and 300, respectively.

Figure S3: Cross sections S(kx, ky, ω
⋆) of the power spectrum for a fixed frequency ω⋆ = (a) 50, (b) 100, (c) 300, and (d) 800,

for V 2

A = 300. Black-dashed lines correspond to |k(ω⋆)|. Only the first quadrant is plotted. Log colorbar.

with ω(k) the dispersion relation of Eq. (1). Such three-wave resonant interactions are quantified by computing the
normalized third-order correlations in k of wave elevations (called bicoherence) as

B(k1, k2) =
|〈ηk1

ηk2
η∗k1+k2

〉|
√

〈|ηk1
ηk2

|2〉〈|ηk1+k2
|2〉

. (s5)

where ∗ denotes the complex conjugate, the normalization being chosen to bound B between 0 (no correlation) and
1 (perfect correlation). B[k1, k2(kx, ky)] is plotted in Fig. S4 for a fixed k1, at different magnetic fields. The triad of
interactions are closer to kx = 0 at high magnetic field, which evidences again the anisotropic effects.
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Figure S4: Bicoherences B[k1, k2(kx, ky)] for a given wave vector k1 = (kx = 0, ky = 50), and different V 2

a = (a) 0, (b) 25, (c)
100, and (d) 300. Dashed lines: theoretical solutions obtained solving Eq. (s4) for fixed k1 = (0, 50) using Eq. (1). A resonant
triad [k1(0, 50), k2(30.68, 30), k3(−30.68,−80)] is displayed in (d) with wave vectors of same order of magnitude (|k1| = 50,
|k2| = 43, |k3| = 86) as expected for local interactions. Log colorbar.

V. TIMESCALES OF WAVE TURBULENCE

Weak turbulence theory assumes a scale separation which can be evaluated using timescales [30] as

τl(k) ≪ τnl(k), (s6)

where τl is the linear timescale and τnl the nonlinear timescale. Equation (s6) requires that nonlinear interactions are
much slower than fast linear oscillations of the waves, to let the energy cascade of wave turbulence to occur. τl(k) is
directly linked to the dispersion relation as τl(k) = 1/ω(k) whereas τnl(k) is estimated using the spectrum broadening
of Fig. (2). This broadening δω(k) is estimated, for each k, by fitting the corresponding spectrum Sη(k, ω) by a
Gaussian function of ω, the standard deviation of this fit gives δω. This broadening being due to nonlinear effects,
τnl is usually estimated as τnl = 1/δω [30]. The timescales found are then plotted in Fig. S5 as a function of ky, i.e.,
in the direction perpendicular to the field. Figure S5 hence shows that Eq. (s6) is well verified over the inertial range
where wave turbulence is observed (see Fig. 3), and regardless of the magnetic field value. The critical balance (i.e.,
τl ∼ τnl) is not achieved here [2,16,21,36].
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Figure S5: Linear and nonlinear timescales, (−) τl and (•) τnl, versus ky for three values of the magnetic field. Solid line: best
fit in k−0.91±0.1

y for V 2

A = 300 and high ky. Dashed line: best fit in k−1.20±0.2
y for V 2

A = 0 and high ky .
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VI. PHENOMENOLOGICAL DERIVATIONS OF THE SPECTRUM AND NONLINEAR TIMESCALE

Using the phenomenology method described in Refs. [16,36], we obtain below the theoretical expressions of the
energy spectrum and magnetic nonlinear timescale.

A. Energy spectrum

Let us assumed a strong magnetic field (VAkx ≫ k
3/2
y ) and anisotropy (ky ≫ kx). From Eq. (5), we get

T c
nl ∼

1

ψk2y
and Tm

nl ∼
ψ

V 2
Ak

2
xη

2
(s7)

where T c
nl and Tm

nl are the capillary and magnetic nonlinear times obtained from the equation of motion of Eq. (5),
and ψ the velocity potential. We assume now that the magnetic nonlinear effects dominate and that an energy
equipartition exists between the magnetic potential energy and the capillary kinetic energy. Magnetic kinetic energy
is negligible since no wave travels in the x direction and the potential surface energy is supposed to be dominated by
magnetic effects. This leads to

V 2
Akxη

2 ∼ ψ2ky, (s8)

and thus inserting Eq. (s8) into Eq. (s7) gives

Tm
nl ∼

1

ψkykx
. (s9)

Using the power budget, the energy flux P reads

P ∼ kxkyE
(2D)

τnl
, (s10)

with τnl the nonlinear time involved in the kinetic equation (also called the transfer time of the energy flux in
Refs. [16,36]). Tnl and τnl are linked by τnl ∼ ωT 2

nl since for three-wave interactions [2]. Using ψ2 ∼ kE(2D) leads to
the two-dimensional (2D) energy spectrum:

E(2D) ∼ P 1/2V
1/2
A k−2

y k−1
x . (s11)

The scaling in kx being irrelevant in anisotropic system and after an integration over kx, i.e., E(1D) ∼ kxE
(2D), we

get the unidimensional (1D) energy spectrum

E(1D) ∼ P 1/2V
1/2
A k−2

y , (s12)

Finally, using the relationship E(1D)(k) = V 2
AkS

m(k) between the magnetic energy spectrum, E(1D)(k), and the power

spectrum of wave elevation, Sm(k), and k =
√

k2x + k2y ≃ ky (since ky ≫ kx), we obtain phenomenologically,

Sm(k) ∼ P 1/2V
−3/2
A k−3

y , (s13)

in agreement with the spectra observed numerically [see Eq. (6)] and derived theoretically [see Eq. (3)] for anisotropic
Alfvén wave turbulence [16-18]. The strong hypotheses used above are not fully true numerically for every k, and
could explain the reduced inertial range where this spectrum is numerically observed.

B. Magnetic nonlinear timescale

From Eq. (s9), ψ2 ∼ kyE
(2D), and Eq. (s11), we get the full scaling of the magnetic nonlinear time of the equations

of motion as

Tm
nl ∼ P−1/4V

−1/4
A k−1/2

x k−1/2
y , (s14)
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and of the magnetic nonlinear time of the kinetic wave equation as

τmnl ∼ P−1/2V
1/2
A k−1

y . (s15)

Figure S5 shows that the magnetic nonlinear timescale found numerically for strong magnetic field (V 2
A = 300) scales

as τnl ∼ k−0.93±0.1
y for high ky, and is thus very close to the expected scaling in k−1

y of Eq. (s15).

For pure capillary waves (V 2
A = 0), a similar phenomenology leads to τcnl ∼ P−1/2(γ/ρ)1/4k−3/4 [36]. Note that τcnl

could be obtained using dimensional analysis [30]. Figure S5 shows that the capillary nonlinear time found numerically
for zero magnetic field (V 2

A = 0) scales as τnl ∼ k−1.25±0.2
y for high ky, which departs from the k−3/4 prediction.

C. Timescale separation

Wave turbulence is expected to occur if the timescale separation hypothesis, τl(k) ≪ τnl(k), is verified. Using
Eq. (s15) and the numerical values obtained for V 2

A = 300 [i.e., P = 2.7 × 10−3 and the most probable values of
(kx, ky) = (14, 65) inferred from Fig. 2(h)], we indeed obtain a very weak timescale ratio

τl
τmnl

∼ P 1/2V
−3/2
A k−1

x ky ∼ 3.3 10−3 ≪ 1. (s16)
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