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ABSTRACT
Altered maternal haemoglobin levels during pregnancy are associated with pre-clinical and clinical 
conditions affecting the fetus. Evidence from animal models suggests that these associations may be 
partially explained by differential DNA methylation in the newborn with possible long-term conse-
quences. To test this in humans, we meta-analyzed the epigenome-wide associations of maternal 
haemoglobin levels during pregnancy with offspring DNA methylation in 3,967 newborn cord blood 
and 1,534 children and 1,962 adolescent whole-blood samples derived from 10 cohorts. DNA 
methylation was measured using Illumina Infinium Methylation 450K or MethylationEPIC arrays 
covering 450,000 and 850,000 methylation sites, respectively. There was no statistical support for 
the association of maternal haemoglobin levels with offspring DNA methylation either at individual 
methylation sites or clustered in regions. For most participants, maternal haemoglobin levels were 
within the normal range in the current study, whereas adverse perinatal outcomes often arise at the 
extremes. Thus, this study does not rule out the possibility that associations with offspring DNA 
methylation might be seen in studies with more extreme maternal haemoglobin levels.
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Background

Maternal haemoglobin is routinely monitored 
throughout pregnancy as altered haemoglobin 
levels have been associated with adverse perina-
tal outcomes such as preterm delivery and 
intrauterine growth restriction [1–6]. Low 
maternal haemoglobin is estimated to affect 
38% of all pregnancies worldwide translating to 
32 million mothers annually [7]. During preg-
nancy, maternal haemoglobin levels normally 
decrease until about 20 weeks of gestation, 
mainly due to dilution because of an increase 
in plasma volume. Haemoglobin levels then rise 
to around 30 weeks of gestation due to increased 
red blood cell production; thereafter, they 
remain relatively stable [1]. Low maternal hae-
moglobin levels may relate to insufficient oxygen 
and/or nutrient delivery to the fetus, whilst high 
levels may indicate incomplete haemodilution 
resulting in high blood viscosity which may 
lead to fetal hypoxia due to impairment of 
maternal-fetal exchange [8].

A potential mechanism underlying the associations 
between maternal haemoglobin levels and adverse 
perinatal outcomes could include DNA methylation 
[9,10]. Methylation at cytosine-guanine dinucleotides 
(CpGs) in the DNA is the most widely studied epige-
netic modification and its genome-wide pattern is 
highly determined during intrauterine development, 
partly due to environmental factors [11]. DNA 
methylation has been suggested as a mechanism 
underlying known associations of early-life exposures 
with later-life health outcomes. While associations of 
a number of maternal pregnancy characteristics and 
outcomes, including maternal BMI [12], maternal 
smoking [13], hypertensive disorders of pregnancy 
[14], gestational age [15] and childbirth weight [16], 
with offspring DNA methylation have been explored, 
it is unknown if maternal haemoglobin levels are 
associated with offspring DNA methylation.

Thus, in this epigenome-wide association study 
(EWAS), we meta-analysed harmonized cohort- 
specific associations between maternal haemoglo-
bin level and DNA methylation in the offspring at 
birth, in childhood, andadolescence, using data 

from 10 studies in the Pregnancy And Childhood 
Epigenetics (PACE) Consortium.

Material and methods

Participating cohorts

Ten studies participated in the current meta- 
analyses. Details of cohort-level characteristics and 
methods are shown in the Supplementary Methods. 
We included seven cohorts in the meta-analysis of 
maternal haemoglobin levels and newborn (cord 
blood) DNA methylation: the Avon Longitudinal 
Study of Parents and Children (ALSPAC [17,18]), 
the Mother-child Cohort on the Prenatal and Early 
Postnatal Determinants of Child Health and 
Development (EDEN [19]), the Finnish Gestational 
Diabetes Study (FinnGeDi [20,21]), the Generation 
R Study (Generation R [22]), the Environment and 
Childhood Project (INMA [23]), the Prediction and 
Prevention of Preeclampsia and Intrauterine Growth 
Restriction Study (PREDO [24]), and the 
Programming Research in Obesity, Growth 
Environment, and Social Stress Study (PROGRESS 
[25,26]). Five cohorts participated in the meta- 
analysis of maternal haemoglobin and childhood 
(cohort mean age 4–7 years) DNA methylation: 
ALSPAC, EDEN, Generation R, INMA, and the 
Postpartum Outcomes in Women with Gestational 
Diabetes and Their Offspring Study (POGO [27]) 
and three cohorts in the meta-analysis of maternal 
haemoglobin and adolescent (cohort mean age 
16–17 years) DNA methylation: ALSPAC, the 
Northern Finland Birth Cohort 1986 (NFBC1986 
[28]) and the Raine Study [29]. All cohorts acquired 
ethics approval and informed consent from 
participants.

Maternal haemoglobin level during 
pregnancy

Where studies had more than one pregnancy 
maternal haemoglobin level, the value assessed at 
the oldest gestational age was used because, in 
previous studies, extreme maternal haemoglobin 
level at late pregnancy was more often associated 
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with adverse pregnancy outcomes (reviewed in 
[30]). Measurement methods and units varied 
between cohorts (see Supplementary Methods) so 
standardized maternal haemoglobin (i.e., each 
cohort centered and scaled the variable using 
their own study-specific mean and standard devia-
tion = (maternal haemoglobin – mean (maternal 
haemoglobin)) / SD (maternal haemoglobin)) was 
used. Observations more than five standard devia-
tions from the mean were excluded as outliers. 
According to this threshold, one observation was 
excluded from Generation R newborn analysis and 
one from ALSPAC childhood analysis.

DNA methylation data and quality control

DNA from cord or offspring peripheral blood 
underwent bisulphite conversion using the EZ-96 
DNA Methylation kit (Zymo Research 
Corporation, Irvine, USA). DNA methylation was 
measured either using the Infinium Human 
Methylation 450 K Bead Chip or the Methylation 
EPIC Bead Chip platform (Illumina, San Diego, 
USA). Cohorts performed quality control and nor-
malization using their own-preferred method, 
indicated in Supplementary Methods. 
Untransformed beta values representing the level 
of methylation and ranging from 0 to 1 were used 
in all analyses. We excluded DNA methylation 
values below the 25th percentile minus 3 times 
the interquartile range (IQR) and values above 
the 75th percentile plus 3 time IQR.

Cohort-specific statistical analyses

The association of maternal haemoglobin and off-
spring DNA methylation was analysed using 
robust linear regression separately for each methy-
lation probe. Robust regression with White’s cov-
ariance matrix estimator for calculating standard 
errors was chosen because of possible heterosce-
dasticity in the DNA methylation beta values [31]. 
Association analyses were performed in the follow-
ing age categories: newborns (cord blood), chil-
dren (age 4–7 years), and adolescents (age 
16–17 years). Cohort-specific analyses were per-
formed using the rlm function in the MASS pack-
age [32] for R [33]. P-values and standard errors 
were estimated using coeftest function with the 

function vcovHC from sandwich package [34,35] 
for White’s type of covariance matrix. Newborn 
and childhood initial models were adjusted for 
gestational week at maternal haemoglobin mea-
surement, child sex, DNA methylation batch, and 
white blood cells estimated with a Bakulski et al. 
reference panel [36] for newborn samples and with 
a Houseman et al. reference panel [37] for child-
hood and adolescent samples provided by the 
minfi package [38] for R [33]. Main analyses 
further adjusted for maternal parity, education, 
and smoking and gestational age at birth, and 
child age at the time of DNA methylation mea-
surement (in the analyses of child and adolescent 
DNA methylation). Gestational age at maternal 
hemoglobin measurement was not available in 
the Raine Study and only for a subsample in 
NFBC1986 so this covariate was not included in 
the adolescent models. One case–control study 
(FinnGeDi study) was included in the newborn 
meta-analysis and for this, also selection factor 
(control vs. gestational diabetes case) was included 
in the models to account for the design. Each 
cohort used their own categorization for maternal 
education. Parity was defined as a dichotomous 
variable (nulliparity/multiparity) and maternal 
smoking as a three-level categorical variable 
(never smoked/stopped in early pregnancy/ 
smoked throughout pregnancy). The FinnGeDi 
study only included non-smokers and therefore 
did not adjust for smoking. Only six women in 
PROGRESS reported smoking during pregnancy 
and were removed from the analysis. Non- 
smoking vs. smoking environment was included 
instead in the PROGRESS analysis. Cohort char-
acteristics are presented in Table 1 and detailed 
information of all variables is summarized in 
Supplementary Table 1 and the Supplementary 
Methods.

Meta-analyses

Cohort-specific results were meta-analysed with 
METAL [39], using inverse-variance weighting. 
Multiple testing was accounted for using the 
Bonferroni correction with 0.05/number of ana-
lysed CpG sites as P-value cut off for statistical 
significance. Bonferroni-corrected P-values were 
considered as the primary indicators for statistical 
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significance, but less stringent false discovery rate 
(FDR)-adjusted P-values [40] with 0.05 as cut off 
for statistical significance were also reported for 
comparison. Cross-reactive probes [41,42], as well 
as probes for which results from only one study, 
were available, the sample size was below 20 and 
those mapped to X or Y chromosomes were 
excluded from the meta-analyses and the subse-
quent analyses. Polymorphic CpG sites, i.e., sites 
located near genetic variants were flagged in the 
results because the adjacent variant might affect 
the methylation status of the CpG site [41]. The 
meta-analyses were conducted by two research 
groups independently and the results were 
compared.

Differentially methylated regions

Differentially methylated regions were analysed 
with comb-p [43] and DMRcate [44]. In short, 
comb-p use methylation probes’ P-values to 
define differentially methylated regions. 
Regional P-values are calculated first using the 
Stouffer-Liptak-Kechris correction that 
accounts for autocorrelation and then adjusted 
for multiple testing with a one-step Šidák cor-
rection. DMRcate analysis was performed using 
the t-statistics from meta-analysis results as 

input. The program applies Gaussian kernel 
smoothing for t-statistics using a bandwidth 
lambda. P-values for regions are calculated 
based on the Satterthwaite method and cor-
rected with FDR. Parameter settings for 
DMRcate and comb-p were chosen according 
to the results presented in [45]. In this paper, 
Mallik et al. evaluated power, precision, area 
under the precision-recall curve (AuPR), 
Matthews correlation coefficient, F1 score, and 
type I error rate from four different DMR ana-
lysis methods, including DMRcate and comb-p. 
Settings for best performance were defined as 
the parameters yielding the highest AuPR value 
and were set for comb-p as seed = 0.05, 
dist = 750, and for DMRcate as lambda = 500, 
C = 5. Differentially methylated regions that 
were identified with both programs, were 
accepted to be significant. The partial overlap 
between regions identified by both programs 
was accepted.

Study heterogeneity

Inter-study heterogeneity (I2) statistic was used 
to assess between-study heterogeneity of the 
associations between maternal hemoglobin and 
offspring DNA methylation. I2 represents the 
percentage of total variation across studies due 

Table 1. Characteristics of the cohorts involved in the meta-analyses. N, sample size; SD, standard deviation from mean; mHb, 
maternal haemoglobin; GA, gestational age; DNAm, DNA methylation; NA, not available.

Life-stage Cohort N
Females, 

%
mHb, g/L mean 

(SD)
GA at mHb, weeks 

mean (SD)
GA at birth, weeks 

mean (SD)
Child age at DNAm, years 

mean (SD)

Newborn 
Cord 
blood

ALSPAC 688 52.3 124.5 (9.0) 9.7 (2.4) 39.6 (1.5) 0
EDEN 123 41.5 119.3 (10.5) 27.2 (1.1) 39.4 (1.5) 0

FinnGeDi 484 51.4 123.8 (9.6) 36.6 (3.0) 39.9 (1.3) 0
Generation 
R

1,205 49.5 124.6 (8.7) 14.9 (3.7) 40.2 (1.5) 0

INMA 363 49.0 115.1 (9.9) 32.2 (4.3) 39.8 (1.3) 0
Predo 709 47.7 121 (12.7) 30.3 (7.6) 39.8 (1.6) 0
PROGRESS 395 45.6 128.2 (9.3) 31.6 (1.0) 38.5 (1.5) 0

Childhood 
4 to 
7 years

ALSPAC 749 51.3 124.4 (8.9) 9.7 (2.4) 39.6 (1.5) 7.4 (0.1)
EDEN 121 41.3 119.1 (10.5) 27.2 (1.1) 39.4 (1.5) 5.7 (0.1)

Generation 
R

429 53.4 124.2 (8.7) 14.8 (3.7) 40.2 (1.6) 6.0 (0.4)

INMA 185 48.1 115.0 (10.1) 32.6 (3.7) 39.9 (1.3) 4.4 (0.2)
POGO 71 49.3 123.8 (11.1) 34.7 (4.9) 38.5 (2.0) 7.6 (3.0)

Adolescence 
16 to 
17 years

ALSPAC 750 52.4 124.6 (8.8) 9.7 (2.4) 39.6 (1.5) 17.1 (1.0)
NFBC1986 451 61.9 131.4 (10.2) 10.7 (2.9) 40.1 (1.3) 16.1 (0.4)

Raine Study 761 49.3 122.8 (9.0) NA 39.6 (1.7) 17.1 (0.3)
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to heterogeneity. I2 value of 50% or above indi-
cated high heterogeneity.

Sensitivity analyses

Given the influence of gestational age on 
maternal haemoglobin levels and the variation 
in gestational age at which blood for maternal 
haemoglobin was collected, we also repeated the 
meta-analyses in two subgroups: those with 
maternal haemoglobin measured at early preg-
nancy and those who had it measured at late 
pregnancy. Of the seven studies contributing to 
the analysis of newborn DNA methylation, two 
studies, reflecting 48% (1,893/3,967) of partici-
pants, assessed maternal haemoglobin levels at 
a mean gestational age of 15 weeks or less and 
five studies, reflecting 52% (2,074/3,967) of par-
ticipants, assessed maternal haemoglobin levels 
at a mean gestational age of 27 weeks or more 
(Table 1). For childhood DNA methylation, two 
of five studies (77% of the participants, 1,178/ 
1,534) assessed the levels at 15 weeks or less 
and three of them (23% participants, 356/1,534) 
assessed maternal haemoglobin levels at 

27 weeks or more. For the analyses with child-
hood DNA methylation, numbers for late preg-
nancy maternal haemoglobin were too small for 
subgroup analyses, and for the analysis with 
adolescent DNA methylation, only two studies 
had the information about gestational age at 
maternal haemoglobin measurement, and both 
had mean maternal haemoglobin measurement 
at 10 weeks of gestation.

Results

Study characteristics

Total sample sizes were 3,967 for the newborn ana-
lyses, 1,534 for childhood analyses, and 1,962 for 
adolescent analyses. Cohort-specific study character-
istics are presented in Table 1. Detailed information 
on all characteristics used in the models is shown in 
Supplementary Table 1.

Epigenome-wide association studies

Table 2 shows a summary of cohort-specific 
EWAS results. The newborn and childhood 

Table 2. Summary of cohort-specific and meta-analysis results for offspring EWAS on maternal haemoglobin during pregnancy. N, 
sample size; hits, statistically significant CpG sites after Bonferroni correction; probe N, number of CpG sites analysed.

Initial model 1 Main model 2

Life-stage Cohort N Lambda Hits Probe N Lambda Hits Probe N

Newborn Cord blood ALSPAC 688 0.96 0 468,622 0.96 0 468,622
EDEN 123 1.68 33 439,306 1.59 21 439,306
FinnGeDi 484 1.06 0 687,640 1.01 0 687,640
Generation R 1,205 1.04 0 450,068 1.03 0 450,116
INMA 363 1.57 0 465,930 1.62 0 465,930
Predo 709 0.88 0 428,619 0.88 0 428,603
PROGRES 395 1.44 1 846,258 1.49 2 846,257
Meta-analysis 3,967 1.24 0 737,758 1.24 0 738,318

Childhood 4 to 7 years ALSPAC 749 1.06 1 471,078 1.07 0 471,078
EDEN 121 1.83 62 439,306 1.73 47 439,306
Generation R 429 1.02 0 457,863 1.01 0 457,866
INMA 185 0.74 0 465,930 0.80 0 465,929
POGO 50 0.84 0 845,824 0.84 0 845,699
Meta-analysis 1,534 1.12 1 424,780 1.16 1 425,188

Adolescence 16 to 17 years ALSPAC 750 1.10 0 470,334 1.10 0 470,334
NFBC1986 451 0.83 0 466,289 1.28 0 466,284
Raine Study 761 0.82 0 462,927 0.85 0 462,927
Meta-analysis 1,962 0.98 0 418,039 0.98 0 418,438

1 Initial model for newborn and childhood data is adjusted for gestational week at haemoglobin measurement, child sex, DNA methylation batch, 
selection factor in the case of randomized controlled trial and white blood cell estimates. Adolescence model is initial model without adjustment 
for gestational week at maternal haemoglobin measurement.
2 Main model for newborn and childhood data is initial model adjusted for maternal parity, maternal education, maternal smoking, gestational 
age at birth and child age at the time of DNA measurement. Adolescence model is main model without adjustment for gestational week at 
maternal haemoglobin measurement.
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models in the individual studies showed minimal 
inflation of associations with low P-value under 
the global null hypothesis (meta-analysis lambdas 
1.24 and 1.16, respectively), whereas in the 

adolescent analyses there was little evidence of 
departure from the global null (lambda 0.98, 
Table 2, Figure 1 and Supplementary Figure 1). 
The number of analysed CpG sites was 738,318 in 

Figure 1. Maternal haemoglobin during pregnancy and offspring DNA methylation at birth, childhood and adolescence 
main models. Fully adjusted main model for newborn and childhood data is adjusted for gestational week at maternal haemoglobin 
measurement, maternal parity, maternal education, maternal smoking, child sex, gestational age at birth, child age at time of DNA 
methylation measurement, DNA methylation batch and white blood cells estimates. Adolescence model is fully adjusted model 
without adjustment for gestational week at maternal haemoglobin measurement. The grey line in the Manhattan plot corresponds 
the threshold of significant P-value after Bonferroni correction for multiple testing.
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newborn, 425,188 in childhood, and 418,438 in 
adolescent models. I2 values were below 50%, i.e., 
they did not indicate high inter-study heterogene-
ity in 602,276 (81.6%), 371,919 (87.5%) and 
347,638 (83.1%) CpG sites in the newborn, child-
hood, and adolescent models, respectively.

After Bonferroni correction for 738,318 tests 
(P-value <6.77E-08), there were no significant 
associations of maternal haemoglobin levels 
with offspring DNA methylation at any CpG 
sites in newborns. The 40 CpG sites with the 

lowest P-values for the main model are shown 
in Table 3 and for the minimally adjusted 
model in Supplementary Table 2. Similarly, 
there was no statistical support for associations 
of maternal haemoglobin levels and DNA 
methylation in childhood (Bonferroni correc-
tion for 425,188 tests, P-value <1.18E-07) or 
in adolescence (Bonferroni correction for 
418,438 tests, P-value <1.19E-07). Volcano 
plots of the meta-analysis results are in 
Supplementary Figure 2. The 40 CpG sites 

Table 3. CpG sites with the lowest P-values in a meta-analysis of associations between maternal haemoglobin during pregnancy and 
offspring DNA methylation at birth. There are no significant CpG sites after Bonferroni correction (P-value <6.77E-08). A fully 
adjusted model for newborn and childhood data was adjusted for a gestational week at maternal haemoglobin measurement, 
maternal parity, maternal education, maternal smoking, child sex, gestational age at birth, child age at the time of DNA methylation 
measurement, DNA methylation batch, selection factor in the case of randomized controlled trial and white blood cells estimates. 
The adolescence model is a fully adjusted model without adjustment for a gestational week at maternal haemoglobin measurement. 
CpG, cytosine-phosphate-guanine; Chr, chromosome; Regression coefficient, difference in offspring DNA methylation beta value per 
one SE unit increase in maternal haemoglobin; SE, standard error. Polymorphic CpG sites are indicated with an asterisk after the site 
name.

CpG site Chr Gene
Regression 
coefficient

SE for regression 
coefficient P-value

FDR-corrected 
P-value

cg05470963* 5 ARHGAP26 0.0015 0.0003 2.00E-07 0.114
cg18479141 6 HDAC2 −0.0022 0.0004 3.08E-07 0.114
cg04181092 3 0.0013 0.0003 4.88E-07 0.120
cg24953596 1 MEGF6 −0.0043 0.0009 1.03E-06 0.190
cg04365443 15 MPI −0.0005 0.0001 1.34E-06 0.198
cg00736299* 16 MGRN1 0.0027 0.0006 1.83E-06 0.225
cg20169893 1 PRDM16 −0.0018 0.0004 2.51E-06 0.238
cg06928695 17 PITPNM3 −0.0030 0.0006 2.73E-06 0.238
cg09126014 15 SCAMP2 0.0022 0.0005 2.99E-06 0.238
cg23912509 12 MIR135A2 0.0015 0.0003 3.47E-06 0.238
cg05454731 13 −0.0040 0.0009 3.55E-06 0.238
cg04140066 7 −0.0033 0.0007 4.47E-06 0.259
cg14801038 6 TCF21 −0.0023 0.0005 5.13E-06 0.259
cg15753546* 2 0.0015 0.0003 5.13E-06 0.259
cg02935826 2 0.0022 0.0005 5.40E-06 0.259
cg06522562 2 FAM117B 0.0006 0.0001 5.95E-06 0.259
cg08908586 14 FBLN5 −0.0010 0.0002 5.96E-06 0.259
cg13305114 1 VPS13D 0.0009 0.0002 6.94E-06 0.263
cg05924031 16 CACNA1H 0.0026 0.0006 7.38E-06 0.263
cg14500916 18 LOC101927410 0.0009 0.0002 7.92E-06 0.263
cg24542758 16 −0.0023 0.0005 8.67E-06 0.263
cg09364660 1 MYCBP, RP5-864K19.4, RP5-864K19.6, RP5- 

864K19.7
0.0007 0.0002 8.82E-06 0.263

cg02662362 6 HLA-DPB2 −0.0007 0.0002 8.94E-06 0.263
cg24392197 3 RN7SL36P, XXYLT1, XXYLT1-AS2 −0.0032 0.0007 8.97E-06 0.263
cg15520639 6 0.0011 0.0002 9.11E-06 0.263
cg23076906 19 ZNF444 −0.0011 0.0002 9.27E-06 0.263
cg10250335 8 LOC101927040 0.0057 0.0013 1.01E-05 0.275
cg19681474 5 −0.0019 0.0004 1.19E-05 0.289
cg20757478 6 0.0044 0.0010 1.19E-05 0.289
cg20794351* 8 −0.0039 0.0009 1.20E-05 0.289
cg08008938 14 ADSSL1 −0.0017 0.0004 1.21E-05 0.289
cg18878872 1 MAN1C1 0.0052 0.0012 1.34E-05 0.295
cg16815082 7 0.0035 0.0008 1.37E-05 0.295
cg09041485 3 USP13 −0.0009 0.0002 1.49E-05 0.295
cg21961202 1 −0.0006 0.0001 1.53E-05 0.295
cg04342176 4 DCLK2 −0.0007 0.0002 1.54E-05 0.295
cg03927133 15 ITPKA −0.0008 0.0002 1.59E-05 0.295
cg12751042 12 CDKN1B 0.0019 0.0004 1.61E-05 0.295
cg03726569 19 SAFB2 0.0012 0.0003 1.62E-05 0.295
cg26556719 5 AC005609.17, PCDHA1 – PCDHA13 −0.0026 0.0006 1.66E-05 0.295
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with the lowest P-values in the childhood and 
adolescent models are listed in Supplementary 
Table 3–6. CpG sites that were statistically sig-
nificant in individual cohorts are listed in 
Supplementary Table 7. We also corrected for 
multiple testing using the less stringent false 
discovery rate (FDR) threshold by Benjamini 
and Hochberg [40] and found no statistical 
support for association (P < 0.05).

To investigate the effect of maternal haemo-
globin measurement timing on the associations, 
we conducted sensitivity analyses by stratifying 
the newborn studies into those with early (mean 
maternal haemoglobin level measured before or 
at gestational week 15) and late (mean maternal 
haemoglobin level measured after gestational 
week 27) maternal haemoglobin measurements. 
Global P-values were not inflated for the early 
gestational age measurements (meta-analysis 
lambda 0.98) and there was minimal inflation 
for those with late maternal haemoglobin mea-
surements (meta-analysis lambda 1.24). There 
was no statistical support for associations of 
maternal haemoglobin levels with newborn 
DNA methylation when analyses were conducted 
separately for early and late maternal haemoglo-
bin measurement (Supplementary Figure 3).

Differentially methylated regions

Using comb-p [43], we found 12 differentially 
methylated regions in the newborn analyses, 27 
in childhood, and 17 in the adolescence models 
(Table 4). None of the differentially methylated 
regions overlapped between all of the ages, but 
there was an overlap of one differentially methy-
lated region annotated to HOXA2 between new-
born and adolescent models and a region 
annotated to CHRNE between childhood and 
adolescent models. We did not find any differ-
entially methylated regions using DMRcate [44].

Discussion

In the current study, we analysed associations of 
maternal haemoglobin levels during pregnancy 
with offspring DNA methylation at birth, in 
childhood and adolescence. We meta-analysed 
EWAS summary statistics of 10 studies 

comprising 3,967 neonatal, 1,534 childhood, 
and 1,962 adolescent offspring DNA methylation 
samples and their maternal haemoglobin levels 
during pregnancy. We did not find statistical 
support for an association between maternal 
haemoglobin levels during pregnancy and off-
spring DNA methylation at any of the three 
ages.

We found some evidence of an association 
between maternal haemoglobin levels and differ-
entially methylated regions in the offspring DNA 
using comb-p [43]. We identified one shared 
region on chromosome 7 between newborn and 
adolescent models and one on chromosome 17 
between childhood and adolescent models. Of 
these, the specifically interesting locus is the one 
situated in the homeobox A2 (HOXA2) gene, 
which encodes a transcription factor that is impor-
tant during embryonic development. HOXA2 
locates in chromosome 7, has a role in the devel-
opment of the lower and middle part of the face 
and middle ear, and its deficiency have been asso-
ciated with ear microtia (reviewed in [46]). Comb- 
p is a flexible tool specifically for meta-analysed 
EWAS summary statistics as it uses P-values by 
sliding windows and takes into account the corre-
lation between near-by sites; however, comb-p has 
been shown to produce false-positive results, espe-
cially if the signal in the original data was weak 
[47]. As there is no consensus on the best method 
for analysis of differentially methylated regions 
with meta-analysis data, we also analysed the 
results using DMRcate [44] which did not support 
the comb-p results. As the differentially methylated 
regions were identified by one method only, we 
conclude that the highlighted regions may be arti-
facts and should be cautiously interpreted.

The large sample size covering the newborn, 
childhood, and adolescent age periods was 
a major strength of the current study. Nearly 
80% of the meta-analysed CpG sites show only 
a little or moderate evidence for between-study 
heterogeneity suggesting that the observed effects 
were reasonably consistent across cohorts. This is 
another strength, as lower heterogeneity improves 
the interpretability of the results. However, this 
study also had some technical limitations. 
Although the current method for epigenome- 
wide analysis of methylated CpG sites is arguably 
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the best choice for high-throughput studies, the 
450,000 or 850,000 sites analysed by the Illumina 
Infinium Methylation 450K and Methylation EPIC 

arrays, respectively, account for only 2% to 4% of 
the CpG sites in the whole genome. It is possible 
that DNA methylation at sites not covered on 

Table 4. Differentially methylated regions in offspring DNA associated with maternal haemoglobin. Fully adjusted model for 
newborn and childhood data is adjusted for a gestational week at haemoglobin measurement, child sex, DNA methylation batch, 
white blood cell estimates, possible selection factor, gestational age at birth, child age at the time of DNA methylation measure-
ment, maternal smoking, parity, and maternal education. The adolescence model is a fully adjusted model without adjustment for 
a gestational week at maternal haemoglobin measurement. The overlapping region in chromosome 7 between newborn and 
adolescence as well as in chromosome 17 between childhood and adolescence is highlighted. Chr, chromosome; N, number of CpG 
sites; P-value, Sidak-corrected P-value (significant when <0.05).

Life-stage Chr Gene Start End N P-value

Newborn  
Cord blood

1 PLEKHG5 6,471,656 6,471,754 3 1.80E-02
3 MBNL1-AS1, MBNL1 152,268,820 152,269,011 6 4.75E-02
3 XXYLT1 195,147,697 195,147,779 3 7.68E-03
6 LY6G5C 31,682,957 31,683,502 18 1.41E-09
7 HOXA2 27,103,615 27,103,860 7 6.58E-03
7 UPP1 48,090,199 48,090,396 5 2.11E-05

10 MIR378C 130,885,180 130,885,192 2 1.97E-02
12 LOC101593348, DIABLO 122,227,440 122,227,666 8 6.68E-04
15 FOXB1 60,002,198 60,003,114 5 2.46E-07
16 TEPP 57,985,961 57,986,081 3 1.16E-02
17 TBC1D3P5 27,380,401 27,380,510 2 2.87E-02
19 RPS9 54,206,998 54,207,425 4 5.90E-05

Childhood  
4 to 7 years

2 GDF7 20,670,326 20,671,642 8 1.35E-15
3 LRRC15 194,369,747 194,370,002 5 1.59E-06
5 FAM172A 94,111,781 94,111,996 5 2.69E-02
6 PSORS1C3 31,180,554 31,180,881 14 8.39E-03
6 VARS 31,794,631 31,795,000 11 1.64E-02
6 HLA-DQB1 32,664,553 32,665,387 16 9.01E-08
6 TAPBP 33,312,274 33,312,678 12 3.02E-06
6 CRISP2 49,713,464 49,713,679 7 2.03E-02
7 GPR146, C7orf50 1,055,828 1,056,085 5 3.94E-02
7 HOXA-AS3, HOXA6 27,147,752 27,147,942 6 1.60E-03

10 PRXL2A 80,408,000 80,408,019 3 9.96E-05
10 GLRX3 130,191,038 130,191,586 7 5.11E-08
11 PGGHG 289,773 289,967 3 2.84E-02
11 IFITM5 299,389 300,491 11 6.71E-08
11 TNNT3 1,927,702 1,927,884 5 2.06E-02
11 ACY3 67,650,634 67,650,935 11 3.55E-03
12 RIMBP2 130,633,880 130,634,110 4 4.02E-03
12 ADGRD1 131,132,498 131,132,548 3 1.24E-02
14 CDC42BPB 103,058,561 103,058,653 3 5.11E-03
17 C17orf107, CHRNE 4,901,378 4,901,544 2 4.66E-02
17 RAB34 28,718,024 28,718,159 5 2.53E-02
17 NBR2 43,126,117 43,126,364 7 1.64E-02
17 SEC14L1 77,100,119 77,100,301 3 8.71E-03
18 SALL3 78,506,264 78,506,438 3 1.19E-04
19 IZUMO1 48,741,313 48,741,418 3 2.16E-02
20 CDH4 61,773,104 61,773,352 3 4.89E-02
20 RTEL1-TNFRSF6B, TNFRSF6B 63,696,614 63,696,742 3 2.30E-02

Adolescence  
16 to 17 years

1 RNU1-1, RNU1-3, RNVU1-18, RNU1-2, RNU1-4 143,717,589 143,717,820 2 3.90E-05

1 MIR5087 148,328,899 148,329,313 3 3.52E-04
3 CACNA1D 53,495,988 53,496,221 3 2.05E-02
3 COL6A6 130,649,213 130,649,552 6 5.95E-05
4 CTBP1-DT 1,250,060 1,250,299 7 3.57E-07
4 EXOC1L 55,794,161 55,794,295 3 3.75E-03
6 LINC00533 28,633,491 28,633,743 12 6.11E-03
7 HOXA2 27,103,615 27,103,860 7 8.72E-03

10 GLRX3 130,190,896 130,191,293 5 2.37E-04
11 KCNQ1 2,807,294 2,807,549 4 1.50E-03
15 LOC100130111 29,675,827 29,675,992 3 2.22E-02
15 TTC23 99,249,416 99,249,651 5 7.89E-04
17 C17orf107, CHRNE 4,901,378 4,901,544 2 4.89E-05
19 SMIM24 3,480,364 3,480,675 5 1.57E-03
22 RFPL2 32,203,523 32,203,662 4 3.44E-02
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either array could be related to maternal haemo-
globin levels [48].

Furtermore, there is a large and ongoing prolif-
eration of published methods for quality control, 
processing, and analysis of DNA methylation data. 
The optimal method may vary between cohorts 
based on technical issues prior to data analysis, 
such as bisulphite conversion efficiency, sample 
distribution on the chip, and the chip reading 
efficiency. In addition, the multitude of methods 
are often published with an insufficient evaluation 
of how these alter results or compare with other 
methods. Thus, we allowed each cohort, with their 
familiarity with how the samples were processed in 
their study, to assess the normalization method 
and apply their own correction. This might have 
influenced the downstream analysis. However, we 
have previously shown, that there are no large 
differences between a meta-analysis of cohorts 
that all used their own preferred normalization 
method and a meta-analysis of the non- 
normalized data of those same cohorts [13]. Due 
to the restrictions in data transfer permissions, we 
used a meta-analysis of summary statistics of indi-
vidual studies, which is a standard practice in the 
PACE Consortium. Thus, the participating cohorts 
conducted their own EWAS locally and sent the 
summary statistics to the meta-analysis team, 
which then conducted the meta-analysis. This 
may also lessen the effect of differing normaliza-
tion as the same normalization was always used 
within the cohort. That is, we would expect any 
true associations to be identified within the indi-
vidual cohorts, regardless of the normalization 
method, and then to also come up in the meta- 
analysis.

Although the sample size in the current study was 
relatively large, it might have been insufficient to 
detect weak associations that might exist between 
the variation of maternal haemoglobin levels within 
the normal range and the offspring DNA methylation. 
Furthermore, maternal haemoglobin levels are routi-
nely monitored during pregnancy, and if low haemo-
globin was detected, it is likely that measures were 
taken in an attempt to increase levels by administra-
tion of iron supplements. This may have lowered the 
number of individuals with low maternal haemoglo-
bin level in our analysis. In addition, we have used 
linear models in the current analyses, while the fact 

that both high and low maternal haemoglobin levels 
have been shown to associate with adverse pregnancy 
outcomes would support a nonlinear approach. There 
were not enough individuals in the cohort-specific 
strata of low/high maternal haemoglobin levels to 
make analyses in categories of low, normal, and high 
haemoglobin levels feasible. Future studies in popula-
tions with a higher prevalence of high or low maternal 
haemoglobin levels, such as those living at high alti-
tudes [4] or in low-income countries [49], respec-
tively, will provide insight into potential associations 
at more extreme maternal haemoglobin levels. The 
mean gestational age at which maternal haemoglobin 
levels were measured varied substantially between 
cohorts, from 9.7 to 36.6 weeks. During pregnancy, 
maternal haemoglobin levels normally decrease due 
to haemodilution until 20 weeks of gestation and 
begin to increase at around 30 weeks. We adjusted 
the models for gestational age at maternal haemoglo-
bin measurement; however, this might not account 
for inter-cohort differences. To investigate this 
further, we conducted sensitivity analyses separately 
for studies that measured maternal haemoglobin 
levels during early and late pregnancy in newborn 
models and found no strong statistical support for 
associations in either of this strata.

One mechanism by which maternal haemoglo-
bin levels could influence the DNA methylation of 
the offspring is through non-physiological intrau-
terine hypoxia [9]. Both low and high maternal 
haemoglobin levels may expose the fetus to 
hypoxia; low levels via insufficient oxygen avail-
ability and high levels via increased blood viscosity 
[8]. Hypoxia has been shown to increase methyla-
tion of approximately half of CpG sites that would 
in normoxic conditions become hypomethylated 
in the placental trophoblasts [10]. 
Nonphysiological hypoxia may affect the develop-
ing fetus either in a pre-placental, uteroplacental 
or post-placental manner [50]. From these, only 
pre-placental hypoxia influences both mother and 
fetus whereas uteroplacental and post-placental 
hypoxia may not be reflected in the maternal hae-
moglobin levels. Thus, the maternal haemoglobin 
levels investigated in the current study may repre-
sent only pre-placental hypoxia. Further mechan-
istic studies are warranted to fully understand the 
relationship between non-physiological intrauter-
ine hypoxia and the offspring DNA methylation.
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Conclusions

This study is the first to date to ascertain 
a possible association between maternal haemo-
globin levels and DNA methylation in the off-
spring at three age ranges from newborns to 
adolescence. We did not find evidence to sup-
port epigenetic programming by physiological 
variations of maternal haemoglobin levels dur-
ing pregnancy.

Acknowledgments

Study-specific acknowledgments can be found in the 
Supplementary Methods.

Disclosure of interest

The authors report no conflict of interest.

Authors’ contributions

AH, FV, EL, JR, JF, and SS designed, analysed, and inter-
preted the data. JR and AH were major contributors in 
writing the manuscript. All authors read and approved the 
final manuscript.

Disclosure statement

No, potential conflict of interest was reported by the authors.

Funding

Study-specific funding information can be found in the 
Supplementary Methods. JR, AH, EL, and SS were supported 
by the European Union’s Horizon 2020 research and innova-
tion program [grant numbers 633595 (DynaHEALTH) and 
733206 (LifeCycle)], Academy of Finland [grant number 
285547 (EGEA)] and the Biocenter Oulu. ACJ was funded 
by the National Institute of Environmental Health Sciences 
[grant number R00ES023450]. AK was supported by the 
National Institute of Environmental Health Sciences [grant 
number R01ES021357]. DCa was funded by the UK Medical 
Research Council [grant number MC_UU_00011/7]. EKa 
received funding from the Horizon2020 grant for RECAP 
Research on Children and Adults Born Preterm [grant num-
ber 733280], Academy of Finland [grant number 315690], 
Foundation for Pediatric Research, Novo Nordisk 
Foundation, Signe and Ane Gyllenberg Foundation and 
Sigrid Jusélius Foundation. EKe received funding from the 
Finnish Medical Association. MG was supported by Miguel 
Servet fellowship from the Institute of Health Carlos III 
[grant numbers MS13/00054, CP18/00018]. MVä received 

funding from the Research Funds of Oulu University 
Hospital, Juho Vainio Foundation and Signe and Ane 
Gyllenberg Foundation. RCH was supported by the 
National Health and Medical Research Council Fellowship 
Grants [grant number 1053384]. SJL was supported by the 
intramural research program of the National Institutes of 
Health, National Institute of Environmental Health 
Sciences. SM received funding from the University of Oulu 
Graduate School. SR was supported by National Health and 
Medical Research Council EU [grant number 1142858] and 
the Department of Health, Western Australia FutureHealth 
fund in connection with the European Union’s Horizon 2020 
[grant number 733206].

ORCID

Justiina Ronkainen http://orcid.org/0000-0001-7375-8099
Florianne O.L. Vehmeijer http://orcid.org/0000-0002- 
1858-3430
Doretta Caramaschi http://orcid.org/0000-0002-9740- 
871X
Guadalupe Estrada Gutierrez http://orcid.org/0000-0001- 
9551-9021
Jonathan A. Heiss http://orcid.org/0000-0003-1448-2509
Elina Keikkala http://orcid.org/0000-0002-4401-213X
Allison Kupsco http://orcid.org/0000-0001-8760-2730
Phillip E. Melton http://orcid.org/0000-0003-4026-2964
Giancarlo Pesce http://orcid.org/0000-0003-4925-6325
Munawar H. Soomro http://orcid.org/0000-0002-9573- 
2591
Nour Baiz http://orcid.org/0000-0001-6165-3935
Darina Czamara http://orcid.org/0000-0001-7381-904X
Mònica Guxens http://orcid.org/0000-0002-8624-0333
Sanna Mustaniemi http://orcid.org/0000-0003-4483-830X
Stephanie J. London http://orcid.org/0000-0003-4911-5290
Marja Vääräsmäki http://orcid.org/0000-0002-8234-4434
Martine Vrijheid http://orcid.org/0000-0002-7090-1758
Isabella Annesi-Maesano http://orcid.org/0000-0002-6340- 
9300
Mariona Bustamante http://orcid.org/0000-0003-0127- 
2860
Rae-Chi Huang http://orcid.org/0000-0002-8464-6639
Sandra Hummel http://orcid.org/0000-0001-6554-5974
Allan C. Just http://orcid.org/0000-0003-4312-5957
Eero Kajantie http://orcid.org/0000-0001-7081-8391
Jari Lahti http://orcid.org/0000-0002-4310-5297
Janine F. Felix http://orcid.org/0000-0002-9801-5774

References

[1] Steer PJ. Maternal hemoglobin concentration and birth 
weight. Am J Clin Nutr. 2000;71(5):1285S–1287S.

[2] Jwa SC, Fujiwara T, Yamanobe Y, et al. Changes in 
maternal hemoglobin during pregnancy and birth 
outcomes. BMC Pregnancy Childbirth. 2015;15(1):80.

EPIGENETICS 29



[3] Cordina M, Bhatti S, Fernandez M, et al. Association 
between maternal haemoglobin at 27-29weeks gesta-
tion and intrauterine growth restriction. Pregnancy 
Hypertens. 2015;5(4):339–345.

[4] Gonzales GF, Steenland K, Tapia V. Maternal hemo-
globin level and fetal outcome at low and high 
altitudes. Am J Physiol Integr Comp Physiol. 
2009;297(5):R1477–R1485.

[5] Tandu-Umba B, Mbangama AM. Association of maternal 
anemia with other risk factors in occurrence of great 
obstetrical syndromes at university clinics, Kinshasa, DR 
Congo. BMC Pregnancy Childbirth. 2015;15(1):183.

[6] Ronkainen J, Lowry E, Heiskala A, et al. Maternal 
hemoglobin associates with preterm delivery and 
small for gestational age in two finnish birth 
cohorts. Eur J Obstet Gynecol Reprod Biol. 
2019;238:44–48.

[7] WHO (2015) WHO | the global prevalence of anaemia 
in 2011. WHO.

[8] Allen LH. Biological mechanisms that might underlie 
iron’s effects on fetal growth and preterm birth. J Nutr. 
2001;131(2):581S–589S.

[9] Ducsay CA, Goyal R, Pearce WJ, et al. Gestational 
hypoxia and developmental plasticity. Physiol Rev. 
2018;98:1241–1334.

[10] Yuen RKC, Chen B, Blair JD, et al. Hypoxia alters the 
epigenetic profile in cultured human placental 
trophoblasts. Epigenetics. 2013;8(2):192–202.

[11] Marsit CJ. Influence of environmental exposure on 
human epigenetic regulation. J Exp Biol. 2015;218 
(1):71–79.

[12] Sharp GC, Salas LA, Monnereau C, et al. Maternal BMI 
at the start of pregnancy and offspring epigenome-wide 
DNA methylation: findings from the pregnancy and 
childhood epigenetics (PACE) consortium. Hum Mol 
Genet. 2017;26(20):4067–4085.

[13] Joubert BR, Felix JF, Yousefi P, et al. DNA Methylation 
in newborns and maternal smoking in pregnancy: 
genome-wide consortium meta-analysis. Am J Hum 
Genet. 2016;98(4):680–696.

[14] Kazmi N, Sharp GC, Reese SE, et al. Hypertensive 
disorders of pregnancy and DNA methylation in 
newborns. Hypertens (Dallas, Tex 1979). 2019;74 
(2):375–383.

[15] Merid SK, Novoloaca A, Sharp GC, et al. 
Epigenome-wide meta-analysis of blood DNA 
methylation in newborns and children identifies 
numerous loci related to gestational age. Genome 
Med. 2020;12(1):25.

[16] Kupers LK, Monnereau C, Sharp GC, et al. Meta-analysis 
of epigenome-wide association studies in neonates reveals 
widespread differential DNA methylation associated with 
birthweight. Nat Commun. 2019;10(1):1893.

[17] Boyd A, Golding J, Macleod J, et al. Cohort profile: the 
’children of the 90s’–the index offspring of the avon 
longitudinal study of parents and children. 
Int J Epidemiol. 2013;42(1):111–127.

[18] Fraser A, Macdonald-Wallis C, Tilling K, et al. Cohort 
profile: the avon longitudinal study of parents and 
children: ALSPAC mothers cohort. Int J Epidemiol. 
2013;42(1):97–110.

[19] Heude B, Forhan A, Slama R, et al. Cohort profile: the 
EDEN mother-child cohort on the prenatal and early 
postnatal determinants of child health and 
development. Int J Epidemiol. 2016;45(2):353–363.

[20] Mustaniemi S, Vääräsmäki M, Eriksson JG, et al. 
Polycystic ovary syndrome and risk factors for gestational 
diabetes. Endocr Connect. 2018;7(7):859–869.

[21] Keikkala E, Mustaniemi S, Koivunen S, et al. Cohort 
profile: the finnish gestational diabetes (FinnGeDi) 
study. Int J Epidemiol. 2020;49(3):762–763g.

[22] Kooijman MN, Kruithof CJ, van Duijn CM, et al. The 
generation R study: design and cohort update 2017. 
Eur J Epidemiol. 2016;31(12):1243–1264.

[23] Guxens M, Ballester F, Espada M, et al. Cohort profile: the 
INMA–INfancia y medio ambiente–(environment and 
childhood) project. Int J Epidemiol. 2012;41(4):930–940.

[24] Girchenko P, Lahti M, Tuovinen S, et al. Cohort 
Profile: prediction and prevention of preeclampsia 
and intrauterine growth restriction (PREDO) study. 
Int J Epidemiol. 2017;46(5):1380–1381g.

[25] Braun JM, Wright RJ, Just AC, et al. Relationships 
between lead biomarkers and diurnal salivary cortisol 
indices in pregnant women from Mexico City: a 
cross-sectional study. Environ Health. 2014;13(1):50.

[26] Burris HH, Braun JM, Byun H-M, et al. Association 
between birth weight and DNA methylation of IGF2, 
glucocorticoid receptor and repetitive elements LINE-1 
and Alu. Epigenomics. 2013;5(3):271–281.

[27] Hummel S, Much D, Rossbauer M, et al. Postpartum 
outcomes in women with gestational diabetes and their 
offspring: POGO study design and first-year results. 
Rev Diabet Stud. 2013;10(1):49–57.

[28] Rantakallio P. The longitudinal study of the northern 
Finland birth cohort of 1966. Paediatr Perinat 
Epidemiol. 1988;2(1):59–88.

[29] Straker L, Mountain J, Jacques A, et al. Cohort profile: the 
Western Australian pregnancy cohort (raine) study- gen-
eration 2. Int J Epidemiol. 2017;46(5):1384–1385j.

[30] Kumar A, Rai AK, Basu S, et al. Cord blood and breast 
milk iron status in maternal anemia. Pediatrics. 
2008;121(3):e673–7.

[31] White H. A heteroskedasticity-consistent covariance 
matrix estimator and a direct test for 
heteroskedasticity. Econometrica. 1980;48(4):817.

[32] Venables WN, Ripley BD. Modern applied statistics 
with s. modern applied statistics with s; fourth. 
New York: Springer; 2002.

[33] Core Team R (2019) R: A language and environment 
for statistical computing. R: A Language and 
Environment for Statistical Computing (2019).

[34] Zeileis A, Köll S, Graham N. Various versatile var-
iances: an object-oriented implementation of clustered 
covariances in R. J Stat Softw. 2020;95(1):1–36.

30 J. RONKAINEN ET AL.



[35] Zeileis A. Object-oriented computation of sandwich 
estimators. J Stat Softw. 2006;16(9):1–16.

[36] Bakulski KM, Feinberg JI, Andrews SV, et al. DNA 
methylation of cord blood cell types: applications for 
mixed cell birth studies. Epigenetics. 2016;11(5):354–362.

[37] Houseman EA, Accomando WP, Koestler DC, et al. 
DNA methylation arrays as surrogate measures of cell 
mixture distribution. BMC Bioinformatics. 2012;13(1):86.

[38] Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: 
a flexible and comprehensive bioconductor package 
for the analysis of Infinium DNA methylation 
microarrays. Bioinformatics. 2014;30(10):1363–1369.

[39] Willer CJ, Li Y, Abecasis GR. METAL: fast and 
efficient meta-analysis of genomewide association 
scans. Bioinformatics. 2010;26(17):2190–2191.

[40] Benjamini Y, Hochberg Y. Controlling the false discovery 
rate: a practical and powerful approach to multiple 
testing. J R Stat Soc Ser B. 1995;57:289–300.

[41] Chen Y, Lemire M, Choufani S, et al. Discovery of 
cross-reactive probes and polymorphic CpGs in the 
illumina infinium humanMethylation450 microarray. 
Epigenetics. 2013;8(2):203–209.

[42] Naeem H, Wong NC, Chatterton Z, et al. Reducing 
the risk of false discovery enabling identification of 
biologically significant genome-wide methylation 
status using the HumanMethylation450 array. 
BMC Genomics. 2014;15(1):51.

[43] Pedersen BS, Schwartz DA, Yang IV, et al. Comb-p: 
software for combining, analyzing, grouping and 

correcting spatially correlated P-values. Bioinformatics. 
2012;28(22):2986–2988.

[44] Peters TJ, Buckley MJ, Statham AL, et al. De novo 
identification of differentially methylated regions in 
the human genome. Epigenetics Chromatin. 2015;8 
(1):6.

[45] Mallik S, Odom GJ, Gao Z, et al. An evaluation of 
supervised methods for identifying differentially 
methylated regions in Illumina methylation 
arrays. Brief Bioinform. 2019;20(6):2224-2235.

[46] Si N, Meng X, Lu X, et al. Identification of loss-of-function 
HOXA2 mutations in Chinese families with dominant 
bilateral microtia. Gene. 2020;757:144945.

[47] Kolde R, Martens K, Lokk K, et al. seqlm: an MDL 
based method for identifying differentially methy-
lated regions in high density methylation array data. 
Bioinformatics. 2016;32(17):2604–2610.

[48] Michels KB, Binder AM, Dedeurwaerder S, et al. 
Recommendations for the design and analysis of 
epigenome-wide association studies. Nat Methods. 
2013;10(10):949–955.

[49] Rahman MM, Abe SK, Rahman MS, et al. Maternal 
anemia and risk of adverse birth and health out-
comes in low- and middle-income countries: sys-
tematic review and meta-analysis. Am J Clin Nutr. 
2016;103(2):495–504.

[50] Kingdom JC, Kaufmann P. Oxygen and placental 
villous development: origins of fetal hypoxia. 
Placenta. 1997;18(8):613–616.

EPIGENETICS 31


	Abstract
	Background
	Material and methods
	Participating cohorts

	Maternal haemoglobin level during pregnancy
	DNA methylation data and quality control
	Cohort-specific statistical analyses
	Meta-analyses
	Differentially methylated regions
	Study heterogeneity
	Sensitivity analyses
	Results
	Study characteristics

	Epigenome-wide association studies
	Differentially methylated regions
	Discussion
	Conclusions
	Acknowledgments
	Disclosure of interest
	Authors’ contributions
	Disclosure statement
	Funding
	References

