
HAL Id: hal-03672466
https://hal.science/hal-03672466v1

Submitted on 3 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tissue P Systems with Vesicles of Multisets
Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

To cite this version:
Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan. Tissue P Systems with Vesicles of
Multisets. International Journal of Foundations of Computer Science, 2022, 33 (3-4), pp.179–202.
�10.1142/S0129054122410015�. �hal-03672466�

https://hal.science/hal-03672466v1
https://hal.archives-ouvertes.fr

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

International Journal of Foundations of Computer Science
c⃝ World Scientific Publishing Company

Tissue P Systems with Vesicles of Multisets∗

Artiom Alhazov

Vladimir Andrunachievici Institute of Mathematics and Computer Science

Academiei 5, Chişinău, MD-2028, Moldova
artiom@math.md

Rudolf Freund

Faculty of Informatics, TU Wien
Favoritenstraße 9–11, 1040 Vienna, Austria

rudi@emcc.at

Sergiu Ivanov

IBISC, Université Évry, Paris-Saclay
23, boulevard de France 91034 Évry, France

sergiu.ivanov@ibisc.univ-evry.fr

Sergey Verlan

Univ. Paris Est Creteil, LACL

94010, Creteil, France

verlan@u-pec.fr

We consider tissue P systems working on vesicles of multisets with the very simple oper-
ations of insertion, deletion, and substitution of single objects. With the whole multiset

being enclosed in a vesicle, sending it to a target cell can be indicated in those simple

rules working on the multiset. As derivation modes we consider the sequential mode,
where exactly one rule is applied in a derivation step, and the set maximal mode, where

in each derivation step a non-extendable set of rules is applied. With the set maximal

mode, computational completeness can already be obtained with tissue P systems having
a tree structure, whereas tissue P systems even with an arbitrary communication struc-

ture are not computationally complete when working in the sequential mode. Adding

polarizations – only the three polarizations −1, 0, 1 are sufficient – allows for obtaining
computational completeness even for tissue P systems working in the sequential mode.

1. Introduction

Membrane systems were introduced at the end of last century by Gheorghe Păun,

e.g., see [6] and [16], motivated by the biological interaction of molecules between

cells and their surrounding environment. In the basic model, the membranes are

organized in a hierarchical membrane structure (i.e., the connection structure be-

∗This paper is an extended and improved version of the paper presented at AFL 2017 in Debrecen.

1

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

2 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

tween the compartments/regions within the membranes being representable as a

tree), and the multisets of objects in the membrane regions evolve in a maximally

parallel way, with the resulting objects also being able to pass through the surround-

ing membrane to the parent membrane region or to enter an inner membrane. Since

then, a lot of variants of membrane systems, for obvious reasons mostly called P

systems, have been investigated, most of them being computationally complete, i.e.,

being able to simulate the computations of register machines. If an arbitrary graph

is used as the connection structure between the cells/membranes, the systems are

called tissue P systems, see [13].

Instead of multisets of plain symbols coming from a finite alphabet, P systems

quite often operate on more complex objects (e.g., strings, arrays), too. A compre-

hensive overview of different flavors of (tissue) P systems and their expressive power

is given in the handbook which appeared in 2010, see [17]. For a view on the state

of the art of the domain, we refer the reader to the P systems website [20], as well

as to the Bulletin series of the International Membrane Computing Society [19].

Very simple biologically motivated operations on strings are the so-called point

mutations, i.e., insertion, deletion, and substitution, which mean inserting or delet-

ing one symbol in a string or replacing one symbol by another one. For example,

graph-controlled insertion-deletion systems have been investigated in [8], and P sys-

tems using these operations at the left or right end of string objects were introduced

in [12], where also a short history of using these point mutations in formal language

theory can be found.

When dealing with multisets of objects, the close relation of insertion and dele-

tion with the increment and decrement instructions in register machines looks rather

obvious. The power of changing states in connection with the increment and decre-

ment instructions then has to be mimicked by moving the whole multiset repre-

senting the configuration of a register machine from one cell to another one in the

corresponding tissue system. Yet usually moving the whole multiset of objects in a

cell to another one, besides maximal parallelism, requires target agreement between

all applied rules, i.e., that all results are moved to the same target cell, e.g., see [10].

In this paper we choose a different approach to guarantee that the whole multi-

set is moved even if only some point mutations are applied – the multiset is enclosed

in a vesicle, and this vesicle is moved from one cell to another one as a whole, no

matter how many rules have been applied. One constraint, of course, is that a com-

mon target has been selected by all rules to be applied; in the sequential derivation

mode, this is no restriction at all, whereas in the set maximally parallel derivation

mode this means that the set of rules to be applied must be non-extendable, but

only with respect to all rules having to indicate the same target cell. We also con-

sider the variants of the set maximally parallel derivation mode where the maximal

number of rules has to be applied or where the maximal number of objects has to

be affected by the applied rules. As we will show, with all the variants of the set

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

Tissue P Systems with Vesicles of Multisets 3

maximally parallel derivation mode computational completeness can be obtained,

whereas with the sequential mode we achieve a characterization of the family of sets

of (vectors of) natural numbers defined by partially blind register machines, which

itself corresponds with the family of sets of (vectors of) natural numbers obtained

as number (Parikh) sets of string languages generated by matrix grammars without

appearance checking.

The idea of using vesicles of multisets has already been used in variants of P

systems using the operations drip and mate, corresponding with the operations

cut and paste well-known from the area of DNA computing, see [9]. Yet in that

case, always two vesicles (one of them possibly an axiom available in an unbounded

number) have to interact. In this paper, the rules (bounded in number) are always

applied to the same vesicle.

The point mutations, i.e., insertion, deletion, and substitution, well-known from

biology as operations on DNA, have also widely been used in the variants of networks

of evolutionary processors (NEPs), which consist of cells (processors) each of them

allowing for specific operations on strings. Networks of Evolutionary Processors

(NEPs) were introduced in [5] as a model of string processing devices distributed

over a graph, with the processors carrying out these point mutations. Computations

in such a network consist of alternatingly performing two steps – an evolution step

where in each cell all possible operations on all strings currently present in the cell

are performed, and a communication step in which strings are sent from one cell to

another cell provided specific conditions are fulfilled. Examples of such conditions

are (output and input) filters which have to be passed, and these (output and input)

filters can be specific types of regular languages or permitting and forbidden context

conditions. The set of strings obtained as results of computations by the NEP is

defined as the set of objects which appear in some distinguished node in the course

of a computation.

In hybrid networks of evolutionary processors (HNEPs), each language processor

performs only one of these operations at a certain position of the strings. Further-

more, the filters are defined by some variants of random-context conditions, i.e.,

they check the presence and the absence of certain symbols in the strings. For an

overview on HNEPs and the best results known so far, we refer the reader to [1].

In networks of evolutionary processors with polarizations, each symbol has as-

signed a fixed integer value; the polarization of a string is computed according to

a given evaluation function, and in the communication step the obtained string

is moved to any of the connected cells having the same polarization. Networks of

polarized evolutionary processors were considered in [4] and [3]), and networks of

evolutionary processors only using the elementary polarizations −1, 0, 1 were inves-

tigated in [15]. The number of processors (cells) needed to obtain computational

completeness has been improved in a considerable way in [11] making these results

already comparable with those obtained in [1] for hybrid networks of evolutionary

processors using permitting and forbidden contexts as filters for the communication

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

4 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

of strings between cells.

Seen from a biological point of view, networks of evolutionary processors are a

collection of cells communicating via membrane channels, which makes them closely

related to tissue-like P systems considered in the area of membrane computing.

Hence, in this paper we will also take over the idea of polarizations; as in [15] and

in [11], we will only consider the elementary polarizations −1, 0, 1 for the symbols

as well as for the cells. Using this variant of tissue P systems, we are going to show

computational completeness even with the sequential derivation mode.

The rest of the paper is structured as follows: In Section 2 we recall some well-

known definitions from formal language theory, and in Section 3 we give the defini-

tions of the model of tissue P systems with vesicles of multisets as well as its variants

to be considered in this paper, especially the variant with elementary polarizations

−1, 0, 1. In Section 4 we show our main results for tissue P systems with vesicles of

multisets using all three operations insertion, deletion, and substitution, but with-

out using polarizations, i.e., that computational completeness can be achieved by

using the set maximally parallel derivation mode, whereas with the sequential mode

we get a characterization of the families of sets of natural numbers and Parikh sets

of natural numbers generated by partially blind register machines. In Section 5 we

show that even with the sequential derivation mode we obtain computational com-

pleteness when using polarizations (only −1, 0, 1 are needed). A summary of the

results and an outlook to future research conclude the paper.

2. Prerequisites

We start by recalling some basic notions of formal language theory. An alphabet is

a non-empty finite set. A finite sequence of symbols from an alphabet V is called

a string over V . The set of all strings over V is denoted by V ∗; the empty string

is denoted by λ; moreover, we define V + = V ∗ \ {λ}. The length of a string x is

denoted by |x|, and by |x|a we denote the number of occurrences of a letter a in a

string x. For a string x, alph(x) denotes the smallest alphabet Σ such that x ∈ Σ∗.

For a finite set M , its cardinality is denoted by card(M) or |M |.
A multiset M with underlying set A is a pair (A, f) where f : A → N is a map-

ping, with N denoting the set of natural numbers (non-negative integers). If M =

(A, f) is a multiset then its support is defined as supp(M) = {x ∈ A | f(x) > 0}. A
multiset is empty (respectively finite) if its support is the empty set (respectively

a finite set). If M = (A, f) is a finite multiset over A and supp(M) = {a1, . . . , ak},
then it can also be represented by the string a

f(a1)
1 . . . a

f(ak)
k over the alphabet

{a1, . . . , ak}; the corresponding vector (f(a1), . . . , f(ak)) of natural numbers is

called Parikh vector of the string a
f(a1)
1 . . . a

f(ak)
k . Moreover, all permutations of

this string a
f(a1)
1 . . . a

f(ak)
k precisely identify the same multiset M (they have the

same Parikh vector). The set of all multisets over the alphabet V is denoted by V ◦.

The family of all recursively enumerable sets of strings is denoted by RE, the

corresponding family of recursively enumerable sets of Parikh sets (vectors of natural

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

Tissue P Systems with Vesicles of Multisets 5

numbers) is denoted by PsRE. In general, for any family of string languages F ,

the corresponding family of Parikh sets is denoted by PsF .

For more details of formal language theory the reader is referred to the mono-

graphs and handbooks in this area, such as [18].

2.1. Insertion, deletion, and substitution

For an alphabet V , let a → b be a rewriting rule with a, b ∈ V ∪{λ}, and ab ̸= λ; we

call such a rule a substitution rule if both a and b are different from λ; such a rule is

called a deletion rule if a ̸= λ and b = λ, and it is called an insertion rule if a = λ

and b ̸= λ. The set of all insertion rules, deletion rules, and substitution rules over an

alphabet V is denoted by InsV , DelV , and SubV , respectively. Whereas an insertion

rule is always applicable, the applicability of a deletion and a substitution rules

depends on the presence of the symbol a. We remark that insertion rules, deletion

rules, and substitution rules can be applied to strings as well as to multisets, too.

Whereas in the string case, the position of the inserted, deleted, and substituted

symbol matters, in the case of a multiset this only means incrementing the number

of symbols b, decrementing the number of symbols a, or decrementing the number

of symbols a and at the same time incrementing the number of symbols b.

2.2. Register machines

Definition 1. A register machine is a construct M = (m,B, l0, lh, P) where

• m is the number of registers,

• B is a set of labels,

• l0 ∈ B is the initial label, and

• lh ∈ B is the final label.

The labeled instructions of M in P can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.

Increase the value of register r by one, and non-deterministically jump to

instruction q or s.

• p : (SUB (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.

If the value of register r is not zero then decrease the value of register r

by one (decrement case) and jump to instruction q, otherwise jump to

instruction s (zero-test case).

• lh : HALT . Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each register

and by the value of the current label, which indicates the next instruction to be

executed.

In the accepting case, a computation starts with the input of a k-vector of natural

numbers in its first k registers and by executing the first instruction of P (labeled

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

6 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

with l0); it terminates with reaching the HALT -instruction. Without loss of gener-

ality, we may assume all registers to be empty at the end of the computation.

In the generating case, a computation starts with all registers being empty and

by executing the first instruction of P (labeled with l0); it terminates with reaching

the HALT -instruction and the output of a k-vector of natural numbers in its first

k registers. Without loss of generality, we may assume all registers > k to be empty

at the end of the computation. The set of vectors of natural numbers computed

by M in this way is denoted by Ps(M). If we want to generate only numbers (1-

dimensional vectors), then we have the result of a computation in register 1 and

the set of numbers computed by M in this way is denoted by N(M). By NRM and

PsRM we denote the families of sets of natural numbers and of sets of vectors of

natural numbers, respectively, generated by register machines.

Register machines are well-known universal devices for computing (generating

or accepting) sets of vectors of natural numbers. It is folklore (e.g., see [14]) that

PsRE = PsRM and NRE = NRM (actually, three registers are sufficient in order

to generate any set from the family NRE, and, in general, k + 2 registers needed

to generate any set of from the family NRE).

2.2.1. Partially blind register machines

In the case when a register machine cannot check whether a register is empty

we say that it is partially blind: the registers are increased and decreased by one

as usual, but if the machine tries to subtract from an empty register, then the

computation aborts without producing any result (that is we may say that the

subtract instructions are of the form p : (SUB (r) , q, abort); instead, we simply

will write p : (SUB (r) , q). Moreover, acceptance or generation now by definition

also requires all registers, except the first k output registers, to be empty (which

means all registers k + 1, ...,m have to be empty at the end of the computation),

i.e., there is an implicit test for zero at the end of a (successful) computation, that

is why we say that the device is partially blind. By NPBRM and PsPBRM we

denote the families of sets of natural numbers and of sets of vectors of natural

numbers, respectively, computed by partially blind register machines. It is known

(e.g., see [7]) that partially blind register machines are strictly less powerful than

general register machines (hence than Turing machines); moreover, NPBRM and

PsPBRM characterize the number sets and Parikh sets, respectively, obtained by

matrix grammars without appearance checking.

3. Tissue P Systems Working on Vesicles of Multisets

We first define our basic model of tissue P systems working on vesicles of multisets

in the maximally parallel set derivation mode:

Definition 2. A tissue P systems working on vesicles of multisets (a tPV system

for short) is a tuple Π = (L, V, T,R, (i0, w0), h) where

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

Tissue P Systems with Vesicles of Multisets 7

• L is a set of labels identifying in a one-to-one manner the |L| cells of the

tissue P system Π;

• V is the alphabet of the system,

• T is the terminal alphabet of the system,

• R is a set of rules of the form (i, p, j) where i, j ∈ L and p ∈ InsV ∪
DelV ∪ SubV , i.e., p is an insertion, deletion or substitution rule over the

alphabet V ; we may collect all rules from cell i in one set and then write

Ri = {(i, p, j) | (i, p, j) ∈ R}, so that R =
∪

i∈L Ri; moreover, for the sake

of conciseness, we may simply write Ri = {(p, j) | (i, p, j) ∈ R}, too;
• (i0, w0) describes the initial vesicle containing the multiset w0 in cell i0
• h is the (label of the) output cell.

As in the case of NEPs and HNEPs, we call Π a hybrid tPV system if every

cell is “specialized” in one type of evolution rules from (at most) one of the sets

InsV , DelV , and SubV , respectively.

The tPV system can work with different derivation modes for applying the rules

in R. The simplest case is the sequential mode (abbreviated sequ), where in each

derivation step, with the vesicle enclosing the multiset w being in cell i, exactly

one rule (i, p, j) from Ri is applied, which in fact means that p is applied to w

and the resulting multiset in its vesicle is moved to cell j. Using the set maximally

parallel derivation mode (abbreviated smax), with the vesicle enclosing the multiset

w being in cell i, we apply a set of rules from Ri which has to obey the condition

that all the evolution rules (i, p, j) in this multiset of rules specify the same target

cell j and is non-extendable with respect to this condition. We also consider the

variants of the set maximally parallel derivation mode where with respect to this

condition the maximal number of rules has to be applied (this mode is abbreviated

by smaxrules) or where the maximal number of objects has to be affected by the

applied rules (this mode is abbreviated by smaxobjects). In all cases, we first non-

deterministically choose a non-empty set of rules where all the rules indicate the

same target and then check the maximality condition.

In any case, the computation of Π starts with a vesicle containing the multiset

w0 in cell i0, and the computation proceeds in the underlying derivation mode until

an output condition is fulfilled, which in all possible cases means that the vesicle

has arrived in the output cell h. As we are dealing with membrane systems, the

classic additional condition may be that the computation halts, i.e., in cell h no

rule can be applied any more to the multiset in the vesicle which has arrived there.

As we have also specified a terminal alphabet, another condition – for its own or in

combination with halting – is that the multiset in the vesicle which has arrived in

cell h only contains terminal symbols. Hence, we may specify one of the following

output strategies:

• halt: the only condition is that the system halts, the result is the multiset

contained in the vesicle to be found in cell h (which in fact means that

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

8 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

specifying the terminal alphabet is obsolete);

• term: the resulting multiset contained in the vesicle to be found in cell h

consists of terminal symbols only (yet the system need not have reached a

halting configuration).

• (halt, term): both conditions must be fulfilled, i.e., the system halts and

the resulting multiset contained in the vesicle to be found in cell h consists

of terminal symbols only.

The set of all multisets obtained as results of computations in Π working in the

derivation mode α ∈ {sequ, smax, smaxrules, smaxobjects} with the output being

obtained by taking the output condition β ∈ {halt, term, (halt, term)} is denoted by

Ps(Π, α, β); if we are only interested in the number of symbols in the resulting multi-

set, the corresponding set of natural numbers is denoted by N(Π, α, β). The families

of sets of (k-dimensional) vectors of natural numbers and sets of natural numbers

generated by tPV systems with at most n cells working in the derivation mode α

and using the output strategy β are denoted by Ps(tPVn, α, β) (Psk(tPVn, α, β))

and N(tPVn, α, β), respectively. If n is not bounded, we simply omit the subscript

in these notations.

We should like to mention that the communication structure between the cells

in a tPV system is implicitly given by the rules in R, i.e., the underlying (directed!)

graph G = (N,E) with N being the set of nodes and E being the set of (directed)

edges is given by N = L and E = {(i, j) | (i, p, j) ∈ R}.
In general, we do not forbid G to have loops. Now consider the corresponding

undirected graph Gu = (N,Eu) with Eu = {{i, j} | (i, j) ∈ E or (j, i) ∈ E}. Then
we may have the special situation that Eu is a tree; in this case, we call the tPV

system Π a hierarchical P system working on vesicles of multisets (abbreviated

PV system); in all definitions given above for the families of sets of (vectors of)

natural numbers we then write PV instead of tPV .

4. Results for Tissue P Systems with Vesicles of Multisets

Our first result shows that with one of the set maximally parallel derivation modes

α ∈ {smax, smaxrules, smaxobjects} and using all three types of point mutation

rules computational completeness can even be obtained with PV systems:

Theorem 3. PsRE ⊆ Ps(PV, α, β),

for any set maximally parallel derivation mode α ∈ {smax, smaxrules, smaxobjects}
and any halting strategy β ∈ {(halt, term), halt, term}.

Proof. Let K be an arbitrary recursively enumerable set of k-dimensional vectors

of natural numbers. Then K can be generated by a register machine M with two

working registers also using decrement instructions and k output registers. In order

to have a general construction, we do not restrict the number of working registers

in the following. Let M = (m,B, l0, lh, P) be a register machine generating K.

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

Tissue P Systems with Vesicles of Multisets 9

We now define a PV system Π generating K, i.e., Ps(Π, smax, β) = K:

Π = (L, V, T,R, (i0, w0) = (0, l0), h) ,

L = {r | 1 ≤ r ≤ k} ∪ {r, r−, r0 | k + 1 ≤ r ≤ m} ∪ {0, h},
V = L ∪ {ar | 1 ≤ r ≤ m} ∪B ∪ {#},
T = {ar | 1 ≤ r ≤ k},
R = {(0, p → q, r), (0, p → s, r), (r, λ → ar, 0) | p : (ADD (r) , q, s) ∈ P},

∪ {(0, p → q, r−), (0, p → s, r0) | p : (SUB (r) , q, s) ∈ P}
∪ {(r−, ar → λ, 0), (r0, s → s, 0), (r0, ar → #, 0) | p : (SUB (r) , q, s) ∈ P},
∪ {(0, lh → λ, h), (h,# → #, 0), (0,# → #, h)}.

0

r h

r− r0
ADD(r)

SUB(r)

halting

and trap

Fig. 1. Communication structure of the two-level hierarchical PV system. Each node with a dashed

contour is replicated for every register r.

The root of the communication tree is cell 0. From there, all simulations of

register machine instructions are initiated:

(ADD (r) , q, s) is simulated by moving the vesicle from the root cell to cell r by

applying one of the rules from {(0, p → q, r), (0, p → s, r)}; in cell r the

number of symbols ar representing the contents of register r is incremented

by the insertion rule (r, λ → ar, 0), which also sends back the vesicle to the

root cell.

(SUB (r) , q, s) is simulated by first choosing one of the rules from {(0, p →
s, r0), (0, p → q, r−)} in a non-deterministic way, guessing whether the

number of symbols ar representing the contents of register r is zero or

not. If the number is not zero, then in cell r− the deletion operation in

the rule (r−, ar → λ, 0) can be carried out and the vesicle is sent back to

cell 0, whereas otherwise the vesicle gets stuck in cell r− and therefore no

result can be obtained in the output cell h. If the number of symbols ar
has been assumed to be zero and the vesicle is in cell r0, then there the

rule (r0, s → s, 0) can be applied in any case, and the vesicle is sent back

to cell 0. Yet if the assumption has been wrong, then in parallel the rule

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

10 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

(r0, ar → #, 0) must be applied, thus introducing the trap symbol #. This

is the only case in the whole construction where the possibility of applying

(at least) two rules in parallel is used for appearance checking. We point

out that both rules have the same target 0.

Any halting computation in M finally reaches the halting instruction labeled by

lh, and thus in Π, by applying the rule (0, lh → λ, h), the vesicle obtained so far is

moved to the final cell h. Provided no trap symbol # has been generated during

the simulation of the computation in M by the tPV system Π, the multiset in this

vesicle only contains terminal symbols and the computation in Π halts as well.

In sum, we conclude that Ps(Π, smax, β) = K for any halting strategy β ∈
{(halt, term), halt, term}. Yet our construction (in fact, we only have to check the

situation in cell r0) also yields K = Ps(Π, smaxrules, β) = Ps(Π, smaxobjects, β),

which observation completes the proof

The following corollary is immediate consequence of the preceding theorem:

Corollary 4. PsRE = Ps(PV, α, β) = Ps(tPV, α, β),

for any set maximally parallel derivation mode α ∈ {smax, smaxrules, smaxobjects}
and any halting strategy β ∈ {(halt, term), halt, term}.

Proof. By definition, any PV system is a tPV system, too. Hence, it only remains

to show that Ps(tPV, smax, β) ⊆ PsRE, yet we omit a direct construction as the

result can be inferred from the Turing-Church thesis.

The construction given in the proof of Theorem 3 offers some additional nice

features:

• The PV system Π is a hybrid one, as in each cell only one kind of rules is

employed: substitution in cells 0 and h and in cells r0, insertion in cells r,

deletion in cells r−.

• The trap rules (h,# → #, 0), (0,# → #, h), guaranteeing a non-halting

computation as soon as the introduction of the trap symbol # has been

enforced by a wrong guess, are only needed in the case of the output strategy

halt.

• The vesicle always leaves the current cell whenever a rule can be applied.

• The number of cells in the PV system Π only depends on the number of

registers in the register machine M . Suppose M has k output registers and

2 working registers. Since the output registers are never decremented, we

only need one cell r for each such register. We need 3 cells (r, r−, and r0)

for each of the two working (decrementable) registers. Finally, we need the

cells 0 and h, which amounts in a total of k + 2 · 3 + 2 = k + 8 cells to

simulate M . This also means that only 9 cells are needed for generating

number sets.

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

Tissue P Systems with Vesicles of Multisets 11

If the underlying register machine is partially blind, we only have to consider the

decrement case, which then still works correctly, whereas we can omit the zero test

case, and thus can omit the parallelism. Hence, we immediately infer the following

result:

Theorem 5. For any β ∈ {(halt, term), halt, term},
PsPBRM ⊆ Ps(PV, sequ, β).

Proof. Let K ∈ PsPBRM , i.e., the vector set K can be generated by a par-

tially blind register machine M = (m,B, l0, lh, P). As in the preceding proof, we

now define a PV system Π generating K in the sequential derivation mode, i.e.,

Ps(Π, sequ, β) = K:

Π = (L, V, T,R, (i0, w0) = (0, l0), h) ,

L = {r | 1 ≤ r ≤ k} ∪B ∪ {r, r− | k + 1 ≤ r ≤ m} ∪ {h},
V = L ∪ {ar | 1 ≤ r ≤ m} ∪ {#},
T = {ar | 1 ≤ r ≤ k},
R = {(0, p → q, r), (0, p → s, r), (r, λ → ar, 0) | p : (ADD (r) , q, s) ∈ P},

∪ {(0, p → q, r−), (r−, ar → λ, 0) | p : (SUB (r) , q) ∈ P},
∪ {(0, lh → λ, h), (h,# → #, 0), (0,# → #, h)}
∪ {(h, ar → #, 0) | k + 1 ≤ r ≤ m}.

The simulation of the computations in M by Π works in a similar way as in the

preceding proof, with the main reduction that no zero test case has to be simulated,

hence, everything can be carried out in a sequential way.

Any halting computation in M finally reaches the halting instruction labeled by

lh, and thus in Π, by applying the rule (0, lh → λ, h), the vesicle obtained so far is

moved to the final cell h. Provided no non-terminal symbol ar with k + 1 ≤ r ≤ m

is still present, the computation in Π will halt, but otherwise the trap symbol #

will be introduced by (one of) the rules from {(h, ar → #, 0) | k + 1 ≤ r ≤ m},
thus causing an infinite loop. In sum, we conclude that Ps(Π, sequ, β) = K for any

β ∈ {(halt, term), halt, term}.

We now also show that the computations of a sequential tPV system using the

output strategy term can be simulated by a partially blind register machine.

Theorem 6. Ps(tPV, sequ, term) ⊆ PsPBRM .

Proof. Let Π = (L, V, T,R, (i0, w0), h) be an arbitrary tPV system working in

the sequential derivation mode yielding an output in the output cell provided the

multiset in the vesicle having arrived there contains only terminal symbols; without

loss of generality we assume L = {i | 1 ≤ i ≤ l}.

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

12 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

We now construct a register machine M = (m,B, l0, lh, P) generating

Ps(Π, sequ, term), yet using a more relaxed definition for the labeling of instruc-

tions in M , i.e., one label may be used for different instructions, which does not

affect the computational power of the register machine as shown in [7]. For exam-

ple, instead of a nondeterministic ADD-instruction p : (ADD (r) , q, s) we use the

two ADD-instructions p : (ADD (r) , q) and p : (ADD (r) , s). Moreover, we omit

the sequence of instructions for generating the representation of w0 in the initial

vesicle i0 by a sequence of ADD-instructions starting with the instruction labeled

by l0 and finally ending up with the label i0 and the correct values in registers r

representing the numbers of symbols ar in the initial vesicle in cell i0. We denote

the set of labels used for this initialization procedure by L0 and the corresponding

set of labeled instructions by P0.

For all the rules in cell i of the tPV system Π we use the same label i in the

partially blind register machine M ; the rules of Π then can be simulated by register

machine instructions in M as follows:

(i, λ → b, j) is simulated by i : (ADD(b), j);

(i, a → λ, j) is simulated by i : (SUB(a), j);

(i, a → b, j) is simulated by the sequence of two instructions i : (SUB(a), lb,j)

and lb,j : (ADD(b), j) using an intermediate label lb,j ; hence, for these

simulations we may need card(V)× card(L) additional labels.

If a vesicle reaches the final cell h with the multiset inside only consisting of terminal

symbols, we also have to allow M to have this multiset as a result: this goal can be

accomplished by using the final sequence

h : (ADD (1) , h̃), h̃ : (SUB (1) , ĥ), ĥ : HALT.

We observe that h̃, ĥ are labels different from h. Since lh = ĥ now is the only halting

instruction of M , it must reset to zero all its working registers before reaching ĥ to

satisfy the final zero check, which corresponds to Π producing a multiset consisting

exclusively of terminal symbols, i.e., the output strategy term.

According to the construction described above, for the register machine M =

(m = card(V), B, l0, lh = ĥ, P) we have obtained the following constituents:

B = L0 ∪ L ∪ {lb,j | b ∈ V, j ∈ L},
P = P0 ∪ {i : (ADD(b), j) | (i, λ → b, j) ∈ R}

∪ {i : (SUB(a), j) | (i, a → λ, j) ∈ R}
∪ {i : (SUB(a), lb,j) | (i, a → b, j) ∈ R}
∪ {lb,j : (ADD(b), j) | b ∈ V, j ∈ L}
∪ {h : (ADD (1) , h̃), h̃ : (SUB (1) , ĥ), ĥ : HALT}.

In sum, we conclude that Ps(M) = Ps(Π, sequ, term).

As a consequence of Theorems 5 and 6 we obtain:

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

Tissue P Systems with Vesicles of Multisets 13

Corollary 7. PsPBRM = Ps(PV, sequ, term) = Ps(tPV, sequ, term).

Proof. Summarizing the results obtained above, we shown:

• PsPBRM ⊆ Ps(PV, sequ, term) according to Theorem 5;

• Ps(PV, sequ, term) ⊆ Ps(tPV, sequ, term) by definition; and

• Ps(tPV, sequ, term) ⊆ PsPBRM according to Theorem 6;

hence, in sum, we conclude

PsPBRM = Ps(PV, sequ, term) = Ps(tPV, sequ, term).

5. Polarized Tissue P Systems with Vesicles of Multisets

In a polarized tissue P system Π working on vesicles of multisets, each cell gets

assigned an elementary polarization from {−1, 0, 1}; each symbol from the alphabet

V also has an integer polarization but every terminal symbol from the terminal

alphabet has polarization 0. As we shall see later, we can even restrict ourselves to

elementary polarizations from {−1, 0, 1} for each symbol, too.

Given a multiset, we need an evaluation function computing the polarization

of the whole multiset from the polarizations of the symbols it contains. Given the

result m of this evaluation of the multiset in the vesicle, we apply the sign function

sign(m), which returns one of the values +1/0/− 1, provided that m is a positive

integer / is 0 / is a negative integer, respectively.

The main difference between polarized tPV systems and normal tPV systems,

besides the polarizations assigned to symbols and multisets as well as to the cells, is

the way the resulting vesicles are moved from one cell to another one: although in the

rules themselves still a target is specified, the vesicle can only move to a cell having

the same polarization as the multiset contained in it. As a special additional feature

we require that the vesicle must not stay in the current cell even if its polarization

would fit (if there is no other cell with a fitting polarization, the vesicle is eliminated

from the system). As by the convention mentioned above we assume every terminal

symbol from the terminal alphabet to have polarization 0, it is necessary that the

output cell itself also has to have polarization 0.

Definition 8. A polarized tissue P systems working on vesicles of multisets (a

ptPV system for short) is a tuple

Π = (L, V, T,R, (i0, w0), h, πL, πV , φ)

where

• L is a set of labels identifying in a one-to-one manner the |L| cells of the

tissue P system Π;

• V is the polarized alphabet of the system,

• T is the terminal alphabet of the system (the terminal symbols have no

polarization, i.e., polarization 0),

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

14 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

• R is a set of rules of the form (i, p, j) where i, j ∈ L and p ∈ InsV ∪DelV ∪
SubV , i.e., p is an insertion, deletion or substitution rule over the alphabet

V ; collecting all rules from cell i in one set, we write Ri = {(i, p, j) |
(i, p, j) ∈ R}, i.e., R =

∪
i∈L Ri; moreover, for the sake of conciseness, we

also write Ri = {(p, j) | (i, p, j) ∈ R}, too;
• (i0, w0) describes the initial vesicle containing the multiset w0 in cell i0;

• πL is the function assigning an integer polarization to each cell (as already

mentioned above, we here restrict ourselves to the elementary polarizations

from {−1, 0, 1});
• πV is the function assigning an integer polarization to each symbol in V

(as already mentioned above, we here restrict ourselves to the elementary

polarizations from {−1, 0, 1});
• φ is the evaluation function yielding an integer value for each multiset.

As in the case of NEPs and HNEPs, we call Π a hybrid ptPV system if a

cell is “specialized” in one type of evolution rules from (at most) one of the sets

InsV , DelV , and SubV , respectively.

The ptPV system again can work with different derivation modes for applying

the rules in R, e.g., the sequential mode sequ or the set maximally parallel derivation

modes smax, smaxrules, smaxobjects. Yet a derivation step now consists of two

substeps – the evolutionary step with applying the rule(s) fromR in the way required

by the derivation mode and the communication step with sending the vesicle to a

cell with the same polarization as the multiset in it.

In the following, we will only use the specific evaluation function φ which com-

putes the value of a multiset as the sum of the values of the symbols contained in

it; we write φs for this function.

In any case, the computation of Π starts with a vesicle containing the multiset

w0 in cell i0 (obviously, the initial multiset w0 must have the same polarization as

the initial cell i0), and the computation proceeds using the underlying derivation

mode for the evolutionary steps until an output condition is fulfilled, which in all

possible cases means that the vesicle has arrived in the output cell h. Again we use

one of the output strategies halt, term and (halt, term).

The set of all multisets obtained as results of computations in Π working in the

derivation mode α ∈ {sequ, smax, smaxrules, smaxobjects}, using the evaluation

function φs and the output condition β ∈ {halt, term, (halt, term)}, is denoted by

Ps(Π, α, β); if we are only interested in the number of symbols in the resulting multi-

set, the corresponding set of natural numbers is denoted by N(Π, α, β). The families

of sets of (k-dimensional) vectors of natural numbers and sets of natural numbers

generated by ptPV systems with at most n cells working in the derivation mode α

and using the output strategy β are denoted by Ps(ptPVn, α, β) (Psk(ptPVn, α, β))

and N(ptPVn, α, β), respectively. If n is not bounded, we simply omit the subscript

in these notations.

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

Tissue P Systems with Vesicles of Multisets 15

Again we mention that the possible communication structure between the cells

in a ptPV system is implicitly given by the rules in R, i.e., the underlying (directed)

graph G = (N,E) with N being the set of nodes and E being the set of (directed)

edges is given by N = L and E = {(i, j) | (i, p, j) ∈ R}.
Moreover, in general, again we do not forbid G to have loops. Now

consider the corresponding undirected graph Gu = (N,Eu) with Eu =

{{i, j} | (i, j) ∈ E or (j, i) ∈ E}. Then we may have the special situation that Eu is

a tree; in this case, we call the ptPV system Π a hierarchical polarized P system

working on vesicles of multisets (abbreviated pPV system); in all definitions given

above for the families of sets of (vectors of) natural numbers we then write pPV

instead of ptPV .

Remark 9. In all variants for polarized P systems working on vesicles of multisets

defined above, a computation step consists of the following phases:

• choose a non-empty set of rules R′ applicable to the vesicle with all rules

having the same target t;

• check that R′ cannot be extended any more with another rule from R with

target t;

• check if the polarization of the resulting vesicle after the application of R′

is the same as the polarization of the target cell t;

• if the polarization of the resulting vesicle is the same as the polarization

of the target cell t, then move the vesicle to cell t, otherwise try to apply

another set of rules.

Finally, we may even consider the variant whereG is interpreted as an undirected

graph (L, {{i, j} | (i, p, j) ∈ R}). Then we may adopt the way of communication

from polarized HNEPs and instead of specifying the set of rules as given above,

change the definition in the following way:

Π = (L, V, T,R, (i0, w0), h, πL, πV , φ,G)

where G now is an undirected graph defining the communication structure between

the cells, and the rules in R are specified without targets, i.e., they are written as

(i, p) instead of (i, p, j) as the targets now are specified by the communication graph

G. We now also write Ri = {p | (i, p) ∈ R}, i ∈ L. As G is an undirected graph this

makes a big difference as we cannot enforce the direction of the movement of the

vesicle anymore. We call such a system with an undirected communication graph a

uptPV system (with u specifying that the communication structure is an undirected

graph).

Remark 10. The notion uptPV system is justified because uptPV systems are a

special case of ptPV systems. In fact, if

Π = (L, V, T,R, (i0, w0), h, πL, πV , φ,G) ,

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

16 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

is a uptPV system and p ∈ Ri for i ∈ L, i.e., (i, p) ∈ R, then this can be captured

in a corresponding ptPV system

Π′ = (L, V, T,R′, (i0, w0), h, πL, πV , φ)

by defining

R′
i = {(i, p, j) | p ∈ Ri, j ∈ L}, i ∈ L.

Even with uptPV systems we can obtain computational completeness with the

sequential derivation mode:

Theorem 11. For any β ∈ {(halt, term), halt, term},
PsRE ⊆ Ps(uptPV, sequ, β).

Proof. Let M = (m,B, l0, lh, P) be an arbitrary register machine generating k-

dimensional vectors. We now construct a uptPV system Π generating the same set

of multisets as M , i.e., Ps(Π, sequ, β) = Ps(M).

Π =
(
L, V, T,R, (0, l0), l̂h, πL, πV , φs, G

)
,

L = {0, lh, l̃h, l̂h} ∪ {r, r+, r̂+, r0, r̃0, r̂0, r−, r̃−, r̄−, r̂− | 1 ≤ r ≤ m},
V = {ar, ar−, ar+ | 1 ≤ r ≤ m} ∪ {p, p+, p−, p̃+, p̃− | p ∈ B},
T = {ar | 1 ≤ r ≤ k}.

The evaluation πV for the symbols in V corresponds to the superscript of the

symbol, i.e., for αz ∈ V with z ∈ {+, 0,−} we define πV (α
0) = 0 (we usually omit

the superscript 0), πV (α
+) = +1, and πV (α

−) = −1.

The connection structure, i.e., the undirected graph G, as well as the polariza-

tions of the cells given by πL can directly be derived from the graph depicted in

Figure 2. The rules from R are grouped in five different groups; R is the union of

all the sets Ru, u ∈ L as defined below.

The set of rules in the central cell 0 is defined as follows:

R0 = {p → p | p : (ADD (r) , q, s) ∈ P}
∪ {p → p+, p → p− | p : (SUB (r) , q, s) ∈ P}
∪ {lh → l+h }

For the three cells in the increment group used for simulating the ADD-

instructions we define the following sets of rules:

Rr = {p → p+ | p : (ADD (r) , q, s) ∈ P}
Rr+ = {λ → ar}
Rr̂+ = {p+ → q, p+ → s | p : (ADD (r) , q, s) ∈ P}

For simulating SUB-instructions we have two paths, one of which has to be

chosen in a non-deterministic way, one assuming the underlying register to be empty

(zero check group), the other one assuming it to be non-empty (decrement group):

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

Tissue P Systems with Vesicles of Multisets 17

0

⟨0⟩
r

⟨0⟩

r+
⟨+⟩

r̂+
⟨+⟩

r−
⟨+⟩

r0

⟨−⟩

r̃−
⟨+⟩

r̄−
⟨0⟩

r̂−
⟨−⟩

r̃0

⟨−⟩
r̂0

⟨0⟩

ADD(r)

SUB(r), empty register r

SUB(r), successful decrement of r
lh

⟨+⟩

l̃h
⟨+⟩

l̂h
⟨0⟩

halting

Fig. 2. The communication graph G of the computationally complete uptPV system Π. We also

represent the polarizations of the nodes in angular brackets. Each node with a dashed contour is
replicated for every register r.

zero check group

Rr0 = {p− → p̃− | p : (SUB (r) , q, s) ∈ P}
Rr̃0 = {p̃− → s | p : (SUB (r) , q, s) ∈ P}
Rr̂0 = {ar → ar

+}

decrement group

Rr− = {p+ → p̃+ | p : (SUB (r) , q, s) ∈ P}
Rr̃− = {ar → ar

− | p : (SUB (r) , q, s) ∈ P}
Rr̄− = {p̃+ → s | p : (SUB (r) , q, s) ∈ P}
Rr̂− = {ar− → λ}

halting group

Rlh = {l+h → l̃+h }
Rl̃h

= {l̃+h → λ}
Rl̂h

= ∅

We now explain in more detail how the simulations work and, moreover, also

argue that no erroneous computations can end with the vesicle arriving in the final

cell l̂h.

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

18 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

root cell 0 All simulations start from cell 0 and again end there. The correct

simulation of any instruction from P starts with the suitably chosen rule

from R0.

increment group Any ADD-instruction p : (ADD (r) , q, s) is simulated by pass-

ing from cell 0 to the suitable cell r, from where only the correct path

through r+ and then r̂+ for the suitable r will lead back to cell 0. If at the

beginning of this path the wrong r is chosen, i.e., the vesicle arrives in the

wrong cell r, then the vesicle gets stuck there, as no rule can be applied. If

the vesicle goes to a cell r̂0, then it can gets stuck there if the rule ar → ar
+

there cannot be applied or otherwise, after the application of this rule the

polarization has changed to +1 and cell r̂0 has no connection to any cell

with polarization +1.

In order to guarantee that in the next step of the simulation the rule

λ → ar in cell r+ is applied only once in cell r+, we need the condition

that after the application of a rule the vesicle has to leave the cell, which

here means that the vesicle has to pass from cell r+ to cell r̂+ where the

polarization is changed so that the vesicle will not be able to immediately

return to cell r+. We observe that a rule from Rr̂+ must be applicable, as

otherwise the vesicle could not have arrived in cell r̂+.

We also observe that no vesicle with a p+ can go from cell 0 to cell r̂+
without the vesicle then immediately being caught there in cells r̂+ and r+,

as the p+ from cell 0 is for a SUB-instruction or the HALT-instruction and

the rules in r̂+ are for labels of ADD-instructions.

zero check group Cell 0 sends the vesicle to r0 by non-deterministically applying

the rule p → p− and thus setting the polarization of the multiset to −1 and

remains −1 if the vesicle moves to cell r̃0. Only in case the vesicle has moved

to the cell r0 with the correct r, the corresponding rule p− → p̃− can be

applied in cell r0 and then in r̃0 the suitable rule p̃− → s can be applied,

which is the only way to get back to polarization 0 and thus to come back

to cell 0 via cell r̂0. If the rule ar → ar
+ in cell r̃0 is applicable, then the

polarization goes to +1, and therefore the correct continuation in cell 0 –

without having applied a rule in cell r̂0 – is blocked.

decrement group Cell 0 sends the vesicle to r− by non-deterministically apply-

ing a rule p → p+ and by setting the polarization of the multiset to +1.

Now, in total, passing the sequence of cells 0–r−–r̃−–r̄−–r̂− allows for decre-

menting the number of symbols ar. As already explained in the increment

group, the computation gets stuck if the vesicle moves to cell lh or to a cell

r̂0, as in these cells no rule can be applied to change the polarization again.

If the rule ar → ar
− in cell r̄− cannot be applied, the polarization cannot

go to 0 in order to allow the vesicle to move to cell r̄−, so the continuation

is blocked. If we go into cell r− with a label p+ which is for another register

r′ ̸= r or for the HALT-instruction, then the vesicle might continue its way

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

Tissue P Systems with Vesicles of Multisets 19

to cell r̃− without applying a rule and then applying the rule ar → ar
−

in cell r̃− thus reaching cell r̄−, but there the vesicle is blocked as no rule

from Rr̄− then will be applicable, hence, no change of polarization allowing

the vesicle to reach cell r̂− and then cell 0 again is possible.

halting group As soon as M has reached the HALT -label lh, we may pass to

cell lh containing the rule l+h → l̃+h sending the rule to cell l̃h; there the

rule l̃+h → λ has to be applied; the resulting vesicle then can go to the

output cell l̂h to yield the terminal result of the computation. Moreover,

the computation also will halt there.

In the way described above Π can simulate the computations of M . If the vesi-

cle reaches the output cell l̂h, only terminal symbols from {ar | 1 ≤ r ≤ k} are

contained in its multiset which represents the k-dimensional vector computed by

M by the number of symbols ar for the number contained in register r, and, more-

over, the computation halts, i.e., for any β ∈ {(halt, term), halt, term}, we obtain

Ps(Π, sequ, β) = Ps(M).

The first construction given above has the advantage that it can clearly be

argued how the simulations work and why an erroneous computation never can be

successful yielding a terminal result in cell l̂h. On the other hand, we can reduce the

number of cells in a significant way with only needing a few additional arguments.

The main idea is to collect cells needed for every r in just one cell, which yields the

structure depicted in Figure 3.

0

⟨0⟩
r

⟨0⟩

r+
⟨+⟩

0̂+
⟨+⟩

r−
⟨+⟩

r0

⟨−⟩

r̃−
⟨+⟩

0̄−
⟨0⟩

0̂−
⟨−⟩

r̃0

⟨−⟩
r̂0

⟨0⟩

ADD(r)

SUB(r), empty register r

SUB(r), successful decrement of r
lh

⟨+⟩

l̂h
⟨0⟩

halting

Fig. 3. The communication graph G′ of the computationally complete uptPV system Π′. We also

represent the polarizations of the nodes in angular brackets. Each node with a dashed contour is

replicated for every register r.

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

20 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

The cells r̂+ are replaced by the one cell 0̂+; all the cells r̄− and r̂− are replaced

by the two cells 0̄− and 0̂−, respectively. All the information needed in the preceding

cells about the register r is not needed any more in these new cells. Moreover, we

can omit cell l̃h: if the vesicle goes back to cell 0 instead of ending up in cell l̂h, the

vesicle might move to cells r or r̂0, yet either no polarization changes (cells r) are

possible there or polarization changes (r̂0) will lead the computation to get stuck.

Summing up, the new system Π′ is defined as follows:

Π′ =
(
L′, V, T,R′, (0, l0), l̂h, πL, πV , φs, G

′
)
,

L′ = {0, 0̂+, 0̃−, 0̄−, lh, l̂h} ∪ {r, r+, r0, r̃0, r̂0, r−, r̃− | 1 ≤ r ≤ m},
V = {ar, ar−, ar+ | 1 ≤ r ≤ m} ∪ {p, p+, p−, p̃+, p̃− | p ∈ B},
T = {ar | 1 ≤ r ≤ k},
R′ = R0 ∪R′

lh
∪R′

0̂+
∪R′

0̄−
∪R′

0̂−

∪
∪

1≤r≤m

(
Rr ∪Rr+ ∪Rr− ∪Rr̃− ∪Rr0 ∪Rr̃0 ∪Rr̂0

)
,

R′
lh

= {l+h → λ},

R′
0̂+

=
∪

1≤r≤m

Rr̂+ ,

R′
0̄−

=
∪

1≤r≤m

Rr̄− ,

R′
0̂−

=
∪

1≤r≤m

R′
r̂− .

As already explained for the uptPV system Π, a computation in the register

machine M yields a multiset represented as the numbers in the output registers as

a result if and only if there is a halting computation in the uptPV system Π′ yielding

a terminal vesicle in cell l̂h containing this multiset. Hence, also for the new uptPV

system Π′ we get Ps(Π′, sequ, β) = Ps(M) for any β ∈ {(halt, term), halt, term}.

At the end, we now describe the descriptional complexity of the uptPV system Π′

based on the constituents of the underlying register machine M : let rADD denote

the number of registers on which only ADD-instructions are carried out and let

rSUB denote the number of registers for which also SUB-instructions are found in

R; moreover, let nADD denote the number of ADD-instructions and let nSUB denote

the number of SUB-instructions in R. Only counting the relevant constituents of

Π′, we obtain the following for the number of cells and the number of rules in R′:

number of cells in Π′ = 2 · rADD + 7 · rSUB + 6,

number of rules in R′ = 4 · nADD + 4 · nSUB + 1 · rADD + 5 · rSUB + 1.

Finally, we also mention that the uptPV system Π′ constructed for simulating

the computations of the register machine M still fulfills its task for the more general

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

Tissue P Systems with Vesicles of Multisets 21

task when the register machine computes an output multiset for a given input

multiset, which then has to be added in the initial vesicle. A special variant of

a register machine computing an output multiset for a given input multiset is an

accepting register machine where the simulating uptPV system Π′ accepts the input

multiset given in the initial vesicle by an empty vesicle appearing in the final cell

l̂h (in fact, any final multiset could be allowed provided the computation halts with

the vesicle appearing in the final cell l̂h).

6. Conclusion and Future Research

In this paper, we have investigated tissue P systems operating on vesicles of mul-

tisets with point mutations, i.e., with insertion, deletion, and substitution of single

symbols, working either in one of the set maximally parallel derivation modes or in

the sequential derivation mode. Without any additional control features, when using

the sequential derivation mode, we obtain a characterization of the sets of (vectors

of) natural numbers generated by partially blind register machines, whereas when

using all three operations insertion, deletion, and substitution on the vesicle of

multisets we can generate every recursively enumerable set of (vectors of) natural

numbers. If we add the feature of elementary polarizations −1, 0, 1 to the multi-

sets and to the cells of the tissue P systems, even sequential tissue P systems are

computationally complete.

An interesting topic for future research is to investigate the influence of the un-

derlying communication structure on the generative power, especially in the case of

polarized tissue P systems. Moreover, complexity issues like the number of polar-

izations and the number of cells remain to be investigated further in the future, for

example, also with respect to find small universal devices, e.g., see [2].

We may also consider tissue P systems with more than one vesicle moving

around, which, for example, offers the possibility to require the whole system to

halt in order to obtain a result. Finally, using different evaluation functions may

have an influence on the descriptional complexity of polarized tissue P systems.

Acknowledgements

The authors gratefully thank the two referees for their useful comments.

References

[1] A. Alhazov, R. Freund, V. Rogozhin and Yu. Rogozhin, Computational completeness
of complete, star-like, and linear hybrid networks of evolutionary processors with a
small number of processors, Natural Computing 15(1) (2016) 51–68.

[2] A. Alhazov, R. Freund and S. Verlan, P systems working in maximal variants of the
set derivation mode, Membrane Computing - 17th International Conference, CMC
2016, Milan, Italy, July 25-29, 2016, Revised Selected Papers, (2016), pp. 83–102.

[3] F. Arroyo, S. Canaval, V. Mitrana and Ş. Popescu, On the computational power of
networks of polarized evolutionary processors, Information and Computation 253(3)
(2017) 371–380.

September 9, 2021 3:52 WSPC/INSTRUCTION FILE
AFL2017AFIVjournal

22 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

[4] F. Arroyo, S. G. Canaval, V. Mitrana and Ş. Popescu, Networks of polarized evolution-
ary processors are computationally complete, International Conference on Language
and Automata Theory and Applications, Springer (2014), pp. 101–112.

[5] J. Castellanos, C. Mart́ın-Vide, V. Mitrana and J. M. Sempere, Networks of evolu-
tionary processors, Acta informatica 39(6-7) (2003) 517–529.

[6] J. Dassow and G. Păun, On the power of membrane computing, J. UCS 5(2) (1999)
33–49.

[7] R. Freund, O. Ibarra, Gh. Păun and H.-C. Yen, Matrix languages, register machines,
vector addition systems, Third Brainstorming Week on Membrane Computing (2005)
155–167.

[8] R. Freund, M. Kogler, Y. Rogozhin and S. Verlan, Graph-controlled insertion-deletion
systems, Proceedings Twelfth Annual Workshop on Descriptional Complexity of For-
mal Systems, DCFS 2010, Saskatoon, Canada, 8-10th August 2010., (2010), pp. 88–
98.

[9] R. Freund and M. Oswald, Tissue P systems and (mem)brane systems with mate and
drip operations working on strings, Electr. Notes Theor. Comput. Sci. 171(2) (2007)
105–115.

[10] R. Freund and G. Păun, How to obtain computational completeness in P systems
with one catalyst, Proceedings Machines, Computations and Universality 2013, MCU
2013, Zürich, Switzerland, September 9-11, 2013., (2013), pp. 47–61.

[11] R. Freund, V. Rogojin and S. Verlan, Computational completeness of networks of evo-
lutionary processors with elementary polarizations and a small number of processors,
Proceedings DCFS 2017 , (Springer, 2017).

[12] R. Freund, Yu. Rogozhin and S. Verlan, Generating and accepting P systems with
minimal left and right insertion and deletion, Natural Computing 13(2) (2014) 257–
268.

[13] C. Mart́ın-Vide, J. Pazos, Gh. Păun and A. Rodŕıguez-Patón, A new class of symbolic
abstract neural nets: Tissue P systems, Computing and Combinatorics, (Springer,
2002), pp. 290–299.

[14] M. L. Minsky, Computation. Finite and Infinite Machines (Prentice Hall, Englewood
Cliffs, NJ, 1967).

[15] S. Popescu, Networks of polarized evolutionary processors with elementary polariza-
tion of symbols, NCMA 2016 , (2016), pp. 275–285.

[16] G. Păun, Computing with membranes, J. Comput. Syst. Sci. 61(1) (2000) 108–143.
[17] Gh. Păun, G. Rozenberg and A. Salomaa (eds.), The Oxford Handbook of Membrane

Computing (Oxford University Press, Oxford, England, 2010).
[18] G. Rozenberg and A. Salomaa (eds.), Handbook of Formal Languages (Springer, 1997).
[19] Bulletin of the International Membrane Computing Society (IMCS) http://

membranecomputing.net/IMCSBulletin/index.php.
[20] The P Systems Website http://ppage.psystems.eu/.

http://membranecomputing.net/IMCSBulletin/index.php
http://membranecomputing.net/IMCSBulletin/index.php
http://ppage.psystems.eu/

	Introduction
	Prerequisites
	Insertion, deletion, and substitution
	Register machines
	Partially blind register machines

	Tissue P Systems Working on Vesicles of Multisets
	Results for Tissue P Systems with Vesicles of Multisets
	Polarized Tissue P Systems with Vesicles of Multisets
	Conclusion and Future Research

