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Abstract

We study statistical discrimination in matching, where multiple decision-makers are simul-
taneously facing selection problems from the same pool of candidates. We propose a model
where decision-makers observe different, but correlated estimates of each candidate’s quality.
The candidate population consists of several groups that represent gender, ethnicity, or other
attributes. The correlation differs across groups and may, for example, result from noisy estimates
of candidates’ latent qualities, a weighting of common and decision-maker specific evaluations,
or different admission criteria of each decision maker. We show that lower correlation (e.g.,
resulting from higher estimation noise) for one of the groups worsens the outcome for all groups,
thus leading to efficiency loss. Further, the probability that a candidate is assigned to their first
choice is independent of their group. In contrast, the probability that a candidate is assigned
at all depends on their group, and — against common intuition — the group that is subjected
to lower correlation is better off. The resulting inequality reveals a novel source of statistical
discrimination.

1 Introduction

Outcome inequalities for different demographic or social groups are ubiquitous, for example, in
college admission, job assignment, or investment allocation. Arcidiacono et al. (2022) find that
Asian-American applicants have lower admission chances at Harvard than white applicants for
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a similar academic record, Niessen-Ruenzi and Ruenzi (2019) find significantly lower inflows in
female-managed mutual funds than in male-managed mutual funds, and Bertrand and Mullainathan
(2004) find race-based discrimination in callback decisions by job advertisers. Consequently, the
sources of observed outcome inequalities and whether and how to employ affirmative action policies
remain the subject of frequent and continued controversy and political debate. The US Supreme
Court is currently re-evaluating the lawfulness of affirmative action policies in college admissions, as
ruled in Grutter v. Bollinger in 2003. Students for Fair Admissions Inc. is challenging admissions
programs at Harvard University and the University of North Carolina, which consider race as part
of their efforts to obtain a diverse student body (Howe, 2022). A common thread that emerges from
these debates is that the causes of outcome inequalities in matching markets are not well understood,
making them difficult to address (Longhofer, 1995).

This paper examines how imperfect information that differs across applicants dependent on their
demographic or social groups affects outcomes in matching markets. We study multiple decision-
makers who must select a subset of applicants from an applicant pool. We depart from existing work
by allowing for multiple decision-makers, e.g., multiple schools, companies, or investment funds. We
show that a new source of outcome inequality arises, namely the correlation between the evaluations
of different decision-makers of any given applicant.

The sources of outcome inequalities and discrimination — beyond intrinsic differences — can
be grouped into two categories. On the one hand, taste-based discrimination posits that the
decision-maker’s preferences are based on demographic or social groups, which leads to intentional
discrimination (cf. Becker 1957). On the other hand, statistical discrimination posits that the
decision-maker may be faced with imperfect information (that may vary across groups) and thus
discrimination can arise unintentionally (cf. Phelps 1972; Arrow 1973). Falling in the latter
category, Garg et al. (2021); Emelianov et al. (2020, 2022) study selection problems, where imperfect
information is modeled via differential variance, that is, a decision-maker has a noisy estimate of the
quality of candidates and the noise variance depends on the group of the candidate. They show that
differential variance leads to outcome inequalities and study various affirmative action policies. Our
work extends the latter studies on statistical discrimination from a single decision-maker selection
problem to matching markets and we identify a matching-specific source of discrimination.

We consider the college-admissions problem (Gale and Shapley, 1962) and use the continuous
framework by Azevedo and Leshno (2016). Multiple decision-makers each select applicants from
the same pool. We consider stability as the solution concept. Each decision-maker gives each
applicant a score, and the scores received by an applicant may be correlated, e.g., due to the latent
quality of a student in the case of college admissions or due to similar risk-reward preferences of
investors choosing between different funds. Notably, the effect of a specific form of correlation has
been studied in school choice problems that emerges from tie-breaking (Abdulkadiroğlu et al., 2015;
Ashlagi et al., 2019; Arnosti, 2022b).When students have the same ranking at a given college a
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tie-breaking rule describes who should receive priority. Two natural choices are that each college
breaks ties independently or colleges use a common order to break ties. Intuitively, the former
leads to 0 correlation and the latter to correlation 1 (among those students for whom tie-breaking
is required). We go beyond the latter papers by allowing any correlation level between -1 and 1
and, to our knowledge, are the first to consider different demographic or social groups with different
correlation levels.

1.1 Our contribution

We study the effect of ranking correlation on stable matchings with different groups, and find that it
impacts students’ welfare. Moreover, we show that different correlation levels across groups lead to
outcome inequalities even when the rankings by each college are fair with respect to these groups.

Suppose an infinite population of students divided into groups G1 and G2 apply to colleges A
and B. Groups can, for example, represent protected attributes, such as gender or race. Each college
assigns a priorty score to each student. A given student gets priority scores WA at college A and
WB at college B. We propose an original model for the distributions of these scores, designed to
study the correlation between the rankings made by the different colleges.

Our model allows for any intermediate level of correlation between two extreme cases: a unique
ranking shared by every college, or statistically independent rankings made by each college. To
isolate the effect of correlation from effects of other features of the priority distributions, we focus
on the case where the marginals of (WA, WB) (i.e., the univariate distributions of WA and WB)
are the same for all candidates, but the correlation level depends on a candidate’s group—we term
this differential correlation. Note that the effect of correlation is only present in matching problems,
while it is not present in selection problems with a single decision-maker.

We use techniques from Azevedo and Leshno (2016) to characterize the stable matching (which is
generically unique in the model with a continuum of students). We focus on ordinal welfare, and use
as metrics the probability of a student obtaining the first choice, second choice, or staying unmatched,
conditionally on their group and preferences. Our metric for aggregate efficiency of the matching is
the total amount of students obtaining their first choice, and we measure the inequality between
groups by the difference in their probability of not matching anywhere. We provide a theoretical
justification for the choice of these metrics. Our main results summarize as follows:

1. The probability that a student is assigned to their first choice is independent of the student’s
group.

2. The efficiency of the matching is increasing in the correlation of either group: increasing the
correlation level of one or both groups increases the amount of students getting their first
choice without increasing the amount staying unmatched.
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3. With different correlation levels, inequality arises: students from the high-correlation group
have a higher probability of remaining unmatched.

Note that the second result gives a direct link between correlation and students’ welfare. Building
on this we further show that the probability of staying unmatched increases for the group whose
correlation increases, and that a given global efficiency level can be reached by different pairs of
correlations, yielding different levels of inequality. We also use our results to recover existing results in
matching theory, such as tie-breaking results by Ashlagi et al. (2019), Ashlagi and Nikzad (2020) and
Arnosti (2022b). Note that our results imply that it is — against common intuition — advantageous
to belong to the low-correlation group. An explanation is that with low correlation, the fact that a
student gets rejected from their first choice has a lower impact on their chances at the other college. In
our model, colleges have no preference for either group as each college has the same score distribution
for both groups. Nevertheless, we find inequalities in the matching outcomes, thus identifying a
novel source of statistical discrimination. Note that the correlation difference can have many sources
and our findings thus have a different flavor than prior identified statistical discrimination, which is
usually arising from the varying accuracy of colleges when assessing candidates’ qualities.

Our work is the first to investigate the effect of correlation on outcome inequalities in the
context of matching. We show that group-dependent correlation between colleges’ rankings plays an
important role in leading to unequal outcomes for different demographic groups. This is the case
even as colleges have fair rankings, that is, all demographic groups are represented in each college’s
ranking as they are in the total application population.

Throughout the paper, we use the example of college admission, and use the terminology of
priority scores to denote the value assigned by a college to a student in order to rank them. Our
model and results, however, are generic and apply to any matching problem without transfers, cf.
examples in the introduction. Moreover, since we use a definition of correlation based on rankings,
our results remain valid when colleges assign ordinal rather than cardinal scores.

1.2 Related literature

Matching. The college admission problem, i.e, how a centralized authority can assign prospective
students to colleges given each student’s preferences and colleges’ priorities over students and
capacities such that the outcome is stable, was introduced by Gale and Shapley (1962) and then
studied by many authors, see Roth and Sotomayor (1992) for the standard text book. A variant of
this model where colleges do not have priorities over students is commonly called the school choice
problem, and has been investigated in (Balinski and Sonmez 1999, Abdulkadiroğlu and Sönmez 2003,
Abdulkadiroğlu 2005, Ergin and Sönmez 2006, Yenmez 2013). The idea of considering a continuum
of students and a finite number of colleges has previously been exploited. Chade et al. (2014) use
it for a model of noisy priorities, Abdulkadiroğlu et al. (2015) show the inefficiency of Deferred
Acceptance for cardinal utilities, and Azevedo and Leshno (2016) develop a supply and demand
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framework allowing to easily analyze the quality of a matching and deriving comparative statics. We
shall follow Azevedo and Leshno (2016) in analyzing our model as a supply and demand problem.
Arnosti (2022a) recently proposed a similar framework, giving better approximations when applied
to study finite markets.

Matching with correlated types. We study matching in the presence of correlation between
the priority scores given by each college to a given student. A special case of this problem has been
studied for centralized school choice problems, where a lot of students have the same priority and
therefore ties are broken at random.1 In Ashlagi et al. (2019); Ashlagi and Nikzad (2020); Arnosti
(2022b), the authors compare the welfare of students in two settings: either one common lottery is
used by all colleges, or all colleges draw independent lotteries. In our model, this corresponds to
correlation 1 or 0, respectively, and our results nest these prior papers. Another line of work has
considered correlation between other features, e.g., correlation between students’ preferences and
priorities. In this context, Brilliantova and Hosseini (2022) focus on one-to-one matching and try
to find a matching that does not favor one side over the other, while Che and Tercieux (2019) and
Leshno and Lo (2020) study the stability-efficiency trade-off by comparing Deferred Acceptance and
Top Trading Cycles (see Shapley and Scarf 1974), and how the magnitude of this trade-off depends
on the correlation between agents preferences and priorities.

Fairness. The computer science literature on fairness in selection problems was initiated by
Kleinberg and Raghavan (2018) who study the effect of bias and the efficiency of affirmative action
policies. Emelianov et al. (2020, 2022) and Garg et al. (2021) study statistical discrimination.
Candidates have a latent quality, and a college or company they apply to only has access to a
biased and/or noisy estimator of this quality. We depart from their models by considering several
decision-makers instead of one — that is, we consider the matching problem instead of the selection
problem. Works on fairness in matching have considered various affirmative action policies, including
upper and lower quotas, to reduce discrimination (Abdulkadiroğlu 2005; Kamada and Kojima 2015,
2022; Delacrétaz et al. 2020; Krishnaa et al. 2019; Dur et al. 2020). These works, however, focus
on finding stable matchings under some constraints, accounting for different fairness notions. In
contrast, we aim to explain outcome inequalities that naturally occur in stable matchings without
constraints. Recently, reducing outcome inequalities in ranking rather than in the final selection has
been an emerging way of pursuing fairness (Celis et al. 2020, Yang et al. 2021, Zehlike et al. 2021).
However, Karni et al. (2022) show that a fair ranking does not necessarily lead to a fair matching, a
conclusion that can also be drawn from our results. Finally, Monachou and Ashlagi (2019) and Che
et al. (2020) both study outcome inequality in online markets using ratings based on reviews.2

1The implications of this feature on students’ welfare have been studied by Erdil and Ergin (2008); Abdulkadiroğlu
et al. (2009) and Abdulkadiroğlu et al. (2015).

2For the general question of bias and fairness in algorithms and machine learning, see, for example, Dwork
et al. (2012); Hardt et al. (2016); Zafar et al. (2017); Blum and Stangl (2020); Orwat (2020); Barocas et al. (2019);
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1.3 Outline

The remainder of this paper is organized as follows. Section 2 introduces the model and the concept
of differential correlation, as well as several motivating examples. Section 3 presents the theoretical
tools we use to study matching outcomes. In Section 4 we present our main results. Section 5
treats some special cases and applications: capacity excess, a single group, and tie breaking. Finally,
Section 6 concludes with a discussion on the generality of our findings and future avenues of research.
To improve the flow and readability of the paper, we only include essential elements of long proofs
of our results in the body of the paper and defer longer and more technical details to Appendix A.4.
Further theoretical concepts used only in proofs are presented in Appendices A.1, A.2 and A.3.

We study the effect of ranking correlation on stable matchings with different groups, and find
that it impacts students’ welfare. Moreover, we show that different correlation levels across groups
lead to outcome inequalities even when the rankings by each college are fair with respect to these
groups.

2 Setup

We study the effect of correlation between colleges’ rankings of students on the matching. To isolate
this effect from other sources of inequalities, we assume that each college’s ranking is fair, that is, in
any segment of the ranking, all demographic groups are represented in the same proportion than in
the total applicant population. We formally define correlation in our context in Section 2.2.

A table of notation is provided in Appendix A.1.1 for readers’ convenience.

2.1 Model

The college admission problem (Gale and Shapley 1962) describes a many-to-one matching market
with non-transferable utility. We consider a variant of this model with a continuum of students (cf.
Chade et al. 2014; Azevedo and Leshno 2016).

Students and colleges.

Let A and B be two colleges to which a continuum unit mass of students, S, is to be matched. The
mass of a subset of S is measured with a function η.3 Colleges have maximum capacities of the mass
of students they can admit, (αA, αB) := α ∈ (0, 1]2. The students are divided into two groups G1

and G2, with a fraction γ ∈ [0, 1] of students belonging to G1 and a fraction 1− γ belonging to G2.
We denote the group to which a student s ∈ S belongs by G(s).

Chouldechova and Roth (2020); Finocchiaro et al. (2021); Kleinberg and Raghavan (2021); Mehrabi et al. (2021).
3The formal definition of this measure is deferred to Appendix A.1.2 and uses elements defined later in Section 2.1.
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Preferences.

Students have strict preferences over colleges, and the amount of students preferring college A might
differ between groups: among group G1, a share βG1 ∈ [0, 1] prefer college A to college B, the
remaining 1− βG1 prefer B. When student s prefers college A to college B, we write A ≻s B, and
vice versa. Note that β is a share that is conditional on the group, and not a mass: for instance,
η({s ∈ G1 : A ≻s B} = γβG1 . Similarly in G2 a share βG2 ∈ [0, 1] prefer A and 1− βG2 prefer B.
All students prefer attending some college to remaining unmatched.

Priorities.

Each college assigns a priority score to each student, the higher the better. Each student s thus is
assigned a vector of priority scores (W s

A,W
s
B). This means that college C prefers s ∈ S to s′ if and

only if W s
C > W s′

C .
The (marginal) distribution of scores given by college C is described by a probability density

function (pdf) fC defined over the support IC ⊆ R. Let I = IA × IB. We will sometimes require
IA and IB to be intervals, resulting in I being convex. Denote by IlA and IuA the lower and upper
bounds of IA, IlB and by IuB those of IB. These bounds might be finite or not.

We make two assumption on these marginal distributions: First, that the preferences of a student
are independent from their priority vector, i.e., the score distribution of students who prefer A is the
same as the one of students preferring B. Second, we assume that the distribution fA is the same
for both groups and the distribution fB is also the same for both groups. The joint distribution of
the priority vector may however differ. This implies that each college has a fair ranking: for any
ω ∈ [0, 1], the proportion of students from a given group in the top ω fraction of the ranking is equal
to the proportion of this group in the total population.

Differential correlation.

Further, we assume that the joint distributions of grades belongs to a family of probability density
functions (fθ : I → R)θ∈Θ. Here, θ is a real parameter that we will use to represent the level of
correlation of the distribution, and Θ is the set of possible values for θ; some of our results will
require Θ to be an interval. For consistency with previous definitions and assumptions, we impose
that ∀θ ∈ Θ, the marginals of fθ are fA and fB (i.e., they do not depend on θ). We assume that
all students from group G1 have their priority vectors drawn from fθ1 and students from G2 have
their priority vector drawn from fθ2 , with θ1, θ2 ∈ Θ. We call this feature of the model differential
correlation.4 Finally, we assume that all the distributions in (fθ)θ∈Θ have full support over I.

We denote by Fθ the cumulative density function (cdf) associated to the pdf fθ, and FA, FB the
marginals’ cdfs. We shall refer to the tuple (γ, βG1 , βG2 ,α, fθ1 , fθ2) as a college admission problem.

4This is in spirit of the notion of differential variance studied in Emelianov et al. (2022) and Garg et al. (2021)
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Remark. The assumptions that distributions admit a density and have full support, that the
distribution family is parameterized by a scalar, and that the marginals remain the same for any θ,
are not very restrictive. To support this assertion, and to make the notion of distribution family
more concrete, we present a few examples of classical distributions fitting our model, that we will
refer to throughout the article.

1. Standard bivariate Gaussian: the distribution family is the set of bivariate normal distributions

with covariance matrix

(
1 r

r 1

)
. Here, the parameter is r and controls the covariance.

2. Gaussian copula: given two marginal distributions, define a distribution family by associating
these marginals to a Gaussian copula with the same covariance matrix as above. Once again,
the parameter is r.

3. Archimedean copulas: Archimedean copulas are a broad family of copulas, each element of this
family being itself a parametric family of copulas with parameter θ. Thus, any choice of an
Archimedean copula and a pair of marginals yields a valid distribution family for our model,
with parameter θ. In particular, after fixing a copula, we could choose any marginals as long as
their cdfs are continuous. This includes a very wide range of distributions, with bounded or
unbounded support, light or heavy tail, etc.

2.2 Correlation and the coherence assumption

We use a condition, namely coherence, on the family of distributions and show that whenever (fθ)θ∈Θ
is coherent, there exists a bijection between θ and classical measures of correlation.

Definition 2.1 (Coherence). We say that (fθ)θ∈Θ is coherent if for all (x, y) ∈ I̊, Fθ(x, y) is
increasing in θ on Θ, where I̊ is the interior of I.

The following lemma states that under coherence θ is naturally interpreted as a measure of
correlation.

Lemma 2.2. If (fθ)θ∈Θ is coherent, then ∀(x, y) ∈ I̊, P(WA < x,WB < y) and P(WA > x,WB > y)

are both increasing in θ, while P(WA < x,WB > y) and P(WA > x,WB < y) are decreasing.

The proof of the Lemma relies on the fact that the marginals do not depend on θ. Intuitively,
when scores are highly correlated, when, for example, WA is small, the other grade WB is likely also
small. The proof is provided in Appendix A.4.1.

We now compare θ to classical measures of correlation, namely Spearman’s correlation, denoted
ρ, and Kendall’s correlation, denoted τ . Both these measures are defined on ordinal rankings and
not on cardinal scores and are therefore invariant under monotonic transformations. This is suited to
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Figure 1: Gaussian priority distributions for θ = 0, 0.3, 0.8, and 1.

our model as stability in matching is an ordinal solution concept. For further details about classical
correlation measures and their properties, see Appendix A.2.

Lemma 2.3 (Scarsini 1984, Theorems 4 and 5). If (fθ)θ∈Θ is coherent, then Spearman’s and
Kendall’s correlation coefficients ρ and τ are strictly increasing functions of θ.

Lemma 2.3 shows that, under the coherence assumption, θ is in agreeance with classical measures
of correlation, justifying our choice to use it to describe the correlation of a distribution from (fθ)θ∈Θ.
Figure 1 illustrates the effect of correlation on the joint distribution, displaying bivariate Gaussian
distributions with different values of θ, with θ being the anti-diagonal coefficient of the covariance
matrix.

We finally introduce a technical assumption that will be required for some of our results, especially
when considering comparative statics in θ.

Definition 2.4 (Differentiability). We say that (fθ)θ∈Θ is differentiable if for all (x, y) ∈ I̊ and for
all θ ∈ Θ̊, fθ(x, y) is differentiable in θ.

The coherence and differentiability assumptions are not particularly restrictive: consider the
examples of distribution families in Remark 2.1. The bivariate Gaussian, the Gaussian copula, as
well as most classical Archimedean copulas such as Clayton’s, Gumbel’s or Frank’s, are all coherent
and differentiable.

2.3 Motivating Examples

We consider three motivating examples where differential correlation naturally occurs.

2.3.1 Noisy estimates with normalization.

Assume that all students have a latent quality W , and their score ŴA, ŴB are the sum of the latent
quality and a noise term ε drawn independently at each college, that is,

∀s ∈ S, for C ∈ {A,B}, Ŵ s
C =W s + εsC.
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Further, assume that the latent qualities of all students are drawn from a (group-independent)
normal distribution, and that the noises are also normally distributed and depend on the group:

∀s ∈ S, for C ∈ {A,B},W s ∼ N (0, χ2), εsC ∼ N (0, σ2G(s)).

The fact that the noise’s variance is different for the two groups can be interpreted as colleges having
different accuracies when evaluating students from different groups. Consider two examples: First,
G1 could consist of students from well-known high schools, which colleges can evaluate well since
they have a lot of applicants from there each year; and G2 could consist of students from unknown
high schools, for which colleges do not have a lot of prior information. Second, G1 could consist of
students from a demographic majority group and G2 from a minority groups, defined by sensitive
attributes such as gender, ethnicity, or social class.

Suppose that colleges know each student’s group, and are aware of the difference that exists in
noise variance across groups. Further, assume that colleges implement equal opportunity policies,
that is, ceteris paribus the probability for a student from group G1 to be admitted to the college
is the same as for a student from group G2.5 To do so while maximizing the expected quality of
admitted candidates, it is optimal for a college to not change the order of grades within groups,
but to only fit each group’s grades ŴC to the same, standardized distribution. Thus, suppose that
colleges divide each student’s score by the standard deviation of their group’s scores:

∀s ∈ S, for C ∈ {A,B}, W̃ s
C =

Ŵ s
C√

χ2 + σ2G(s)

.

With these new standardized scores, the marginal priority distribution of each group is N (0, 1) at
each college. The priority vectors then follow a centered bivariate normal distribution with variance 1
and a correlation that is different between the two groups: formally, if ∀s ∈ S, for C ∈ {A,B}, W s ∼
N (0, χ2), εsC ∼ N (0, σ2G(s)), Ŵ s

C = W s + εsC and

W̃ s
C =

Ŵ s
C√

χ2+σ2
G(s)

, then

(
W̃ s

A, W̃
s
B

)
∼ N

(
(0, 0),

(
1 rG(s)

rG(s) 1

))
, (1)

with

rG(s) =
χ2

χ2 + σ2G(s)

. (2)

Equation (1) shows that this example is covered by our model. Here, the parameter is the noise
variance, and, from Equation (2), it follows that correlation is a decreasing function of noise. This is
expected: higher noise variance leads to lower correlation, and vice-versa. This also implies that the

5Without the equal opportunity assumption, colleges would compute the expected true qualities based on the
different variances for each group, see Emelianov et al. (2022); Garg et al. (2021).
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group with higher noise is the one with lower correlation.

2.3.2 Common technical test.

Suppose a firm has two branches A and B inside a country, each branch looking to hire new workers
with fixed salaries (e.g., for entry-level positions). Candidates are either local (G1) or foreign (G2),
and apply to the firm, declaring which branch they prefer. To asses candidates’ qualities, the firm asks
them to take part in a technical test, the result W tech of which is used by both branches. Moreover,
candidates are interviewed by each branch separately, leading to a score vector (W inter

A ,W inter
B ) for

their performance at these interviews.6 The final score of a candidate at branch C is a weighted
average of their two scores W tech and W inter

C .
It is natural to assume that foreign candidates are more difficult to evaluate at the interview

stage, due to, for example, language barriers or cultural differences. A firm may thus deem the
technical score more informative for foreign candidates and put a higher weight on it than for local
candidates. Therefore, foreign applicants’ score vectors will be more correlated than local applicants’
ones. Supposing that the final matching of workers to branches is stable and that W tech and W inter

C ’s
distributions have the same marginals for both groups, our model fits.

2.3.3 Different criteria.

Suppose that colleges A and B have different criteria to assess applicants. College A ranks students
by their grade in mathematics, WA, while college B ranks them by their grade in physics, WB.
Further, students come from two high schools. In high school G1, students have similar grades in
mathematics and physics because physics is taught in a theoretical manner. On the other hand, in
high school G2 physics is taught in a more experimental manner, therefore the grades in mathematics
and physics are less correlated. Finally, if the grade distributions are different between the two high
schools, suppose that colleges, as in the first example (Section 2.3.1) normalize them to avoid bias
against one high school. Observe that the marginals are the same for both high schools and only the
difference in correlation remains. Thus our model applies to this setting.

Note that the two latter examples do not feature the “classical” notion of statistical discrimination,
since the scores are not noisy.

3 The Supply and Demand Framework

We now introduce the key elements of matching theory used throughout the paper. A matching µ is
a mapping associating a student to a college (or themselves if they are unmatched) and a college to
a subset of students. We use the common definition of stability: we say that a matching is stable if,

6Another example consists of a centralized college admission exam with a common written test and college-specific
oral interviews.

11



for any student s that would prefer college C to their current match, s has a lower score at C that
all the currently admitted students in that college. For the formal definitions of those notions and of
the Deferred Acceptance Algorithm, see Appendix A.3.

In a model with infinitely many students, a matching problem can be alternatively viewed as a
supply and demand setup, where a stable matching is a Walrasian equilibrium (Azevedo and Leshno
2016).

Definition 3.1 (Cutoffs and demand). If µ is a stable matching, define the cutoff at C ∈ {A,B}
as PC := inf{W s

C : µ(s) = C}. Given P = (PA, PB), we call the demand of student s, denoted
Ds(P) ∈ {A,B} ∪ {s}, the college they prefer among those where their score is above the cutoff, or
themselves if their score does not exceed the cutoff at any college. The aggregate demand at college
C is the mass of students demanding it: DC(P) = η({s : Ds(P) = C}.

The cutoff of a college represents the score above which a student who applies gets admitted.
Recall that I = IA × IB is the support of fθ, IlA and IuA the lower and upper bounds of IA, IlB and
IuB those of IB. If PC = IlC, then college C rejects no one. In our model, the “supply” associated to
this demand is simply the capacity of each college. Now consider the equilibria of this problem:

Definition 3.2 (Market clearing). The cutoff vector P is market clearing if for C ∈ {A,B},
DC(P) ≤ αC, with equality if PC > IlC.

A cutoff vector is therefore market-clearing if it induces a demand that is equal to colleges’
capacities when they reach their capacity constraint, and lower for colleges that are not full. When
the constraint is reached at both colleges, i.e., when αA + αB < 1, the system

D(P) = α (3)

is called the market-clearing equation, and the market-clearing cutoffs PA and PB can be
computed by solving the system.

The following Lemma from Azevedo and Leshno (2016) establishes the link between market-
clearing cutoffs and stable matchings:

Lemma 3.3 (Azevedo and Leshno 2016, Lemma 1).

1. If µ is a stable matching, the associated cutoff vector P is market-clearing;

2. If P is market-clearing, we define µ such that for all s ∈ S, µ(s) = Ds(P). Then µ is stable.

This allows to analyze stable matchings by studying the cutoffs of each college. Figure 2 illustrates
the link between the cutoffs and the matching: students who prefer A get admitted there if and
only if their score WA is higher than the cutoff PA. Otherwise, they get admitted to B if their score
WB is higher than PB, and stay unmatched if it is not. The situation is symmetric for students
preferring college B.
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Figure 2: Illustration of the match of students depending on their preferences. Students in the
hashed area are matched to college A, those in the dotted area to college B, and those in the white
area remain unmatched.

In the continuous college admissions problem the same authors show that there is a unique stable
matching.

Lemma 3.4 (Special case of Azevedo and Leshno 2016, Theorem 1). For any college admission
problem (γ, βG1 , βG2 ,α, fθ1 , fθ2), there exists a unique stable matching.

Note that the original theorem specifies conditions on the distribution of students’ types, such
as being continuous and having full support, which holds in our definition of a college admission
problem. Unlike the finite case where typically several stable matchings exist, in the continuum
model the stable matching is unique and therefore no considerations regarding selection among the
set of stable matchings are necessary. From now on, we will therefore consider the cutoff vector P as
the one uniquely determined by the parameters of the problem and the market-clearing equation.
We shall say student s goes to college C to mean that they are matched to college C in the unique
stable matching.

Azevedo and Leshno (2016) further show that the stable matching varies continuously in the
parameters of the problem and that the set of stable matchings from a college admission problem
with a finite number of students converges to the unique stable matching of the continuum problem
with the same parameters. The latter result justifies the approximation of large finite instances
through their limit.7

7For a better approximation for instances with a small number of students, Arnosti (2022a) proposes a related
framework.
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4 Main results

This section contains our main results on the impact of differential correlation on the properties of
stable matchings.

4.1 Welfare metrics

In selection problems, inequalities between groups are measured by the proportion of admitted
candidates in each groups. In a matching setting, the situation is more complex: on the one hand,
one group might have a higher proportion of unmatched students than the other, but on the other
hand, the proportion of students getting their first choice might also differ. If all students in a
group get their first choice and all students in the other get their second choice, the matching may
be deemed unfair. In this section, we define metrics that allow us to quantify the satisfaction of
students from each group.

Consider an individual’s likelihood of getting their first choice in a stable matching defined by
cutoffs P. Denote the probability for a student to get their first choice, conditionally on belonging
to group G1 and preferring A to B, by V G1,A

1 (P).

Definition 4.1 (Welfare metrics). Under a stable matching µ with cutoffs P, define V G1,A
1 (P),

V G1,B
1 (P), V G2,A

1 (P) and V G2,B
1 (P) as the proportion of students from each group-preference profile

who get their first choice. Formally,

V G1,A
1 (P) :=

1

γβG1

η({s ∈ G1 : A ≻s B, µ(s) = A}),

V G1,B
1 (P) :=

1

γ(1− βG1)
η({s ∈ G1 : B ≻s A, µ(s) = B}),

V G2,A
1 (P) :=

1

(1− γ)βG2

η({s ∈ G2 : A ≻s B, µ(s) = A}),

V G2,B
1 (P) :=

1

(1− γ)(1− βG2)
η({s ∈ G2 : B ≻s A, µ(s) = B}).

Those metrics can be thought of in two ways: they are the relative masses of students getting
their first choice among those with the same group and preferences, or equivalently, they are the
probabilities of a randomly drawn student to get their first choice conditionally on their group and
favorite college.8

We define similarly the proportions of students getting their second choice or staying unmatched,
writing respectively V2 and V∅ instead of V1. For example, V G1,A

2 (θ1, θ2) is the probability of a
8The choice of conditioning over preferences stems from the following observation: if students from group G1 all

prefer college A, but only half of the students from group G2 prefer A, A has a low capacity and B a large one, then
very few students from G1 will get their first choice while half of the students from G2 are likely to get their first
choice since it is a less demanded college. Students’ satisfaction might differ across groups only due to their own
preferences, and not because of differential correlation.
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student from group G1 who prefers college A to get their second choice, i.e., B.
We now provide expressions for these metrics as functions of the cutoffs PA and PB.

Lemma 4.2. Let C ∈ {A,B} be a college, C be the other college, and G ∈ {G1,G2} be a group.
For a stable matching defined by the cutoffs P, we have:

V G,C
1 (P) = PθG(WC ≥ PC) =

∫ ∞

PC

fC(x) dx, (4)

V G,C
2 (P) = PθG(WC < PC,WC ≥ PC) =

∫ PC

−∞

∫ ∞

PC

fθG(x, y) dxdy, (5)

V G,C
∅ (P) = PθG(WC < PC,WC < PC) =

∫ PC

−∞

∫ PC

−∞
fθG(x, y) dxdy. (6)

Lemma 4.2 allows to compare probabilities of admission of different types of students, and derive
comparative statics with respect to differential correlation. The proof is provided in Appendix A.4.2.

Regarding the probability of staying unmatched, we can derive a simple yet important result.

Lemma 4.3. The probability that a student remains unmatched is independent of their preference.
Moreover, the total mass of unmatched students is constant in both groups’ correlation levels. Formally,
let P be associated to a stable matching. Then V G1,A

∅ (P) = V G1,B
∅ (P) and V G2,A

∅ (P) = V G2,B
∅ (P);

and η({s ∈ S : µ(s) = ∅}) = max(0, 1− αA − αB) (which does not depend on θ1 and θ2).

Proof. It is sufficient to notice that Equation (6) is symmetric in C and C̄ to obtain the first part of
the lemma. The second one comes from the fact that either there is excess capacity and everyone is
matched, or both colleges are full and the mass of matched students is the sum of the capacities.

■

Remark. The first part of the lemma could also be derived from the strategy-proofness for students
of student-proposing Deferred Acceptance (Roth 1985). Indeed, the fact that students cannot improve
their outcome by modifying the order of their preferences implies that them being unmatched or not
does not depend on which college they reported to be their first choice.

From now on, we will use the notation V G1

∅ and V G2

∅ since these quantities do not depend on the
preference of students. By Lemma 3.4, for a given college admission problem the stable matching is
unique, and so is the vector of market clearing cutoffs. We can therefore, to focus on the influence
of θ and consider all other parameters as exogenous, write V G,C

i (θ1, θ2) instead of V G,C
i (P) for

i ∈ {∅, 1, 2}, G ∈ {G1,G2}, C ∈ {A,B}. When there is no ambiguity, we also omit the dependence
on (θ1, θ2) and write V G,C

i instead.
We now define two global metrics, i.e., metrics that are not conditioned on the groups and

preferences of student, namely efficiency and inequality:
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Definition 4.4 (Efficiency and Inequality). Define the efficiency V1(θ1, θ2) of a matching as the
proportion of students getting their first choice, and the inequality L(θ1, θ2) of a matching as the
difference of the probability of staying unmatched between the two groups:

V1(P) = η
(
{s ∈ S : µ(s) = C and C ≻s C̄}

)
= (γβG1 + (1− γ)βG2)V

A
1 + (γ(1− βG1) + (1− γ)βG2)V

B
1 (7)

L(θ1, θ2) = |V G1

∅ − V G2

∅ |. (8)

By Lemma 4.3 the mass of unmatched students is constant. The mass of matched student is
therefore also constant, and matched students get either their first or second choice, so it is clearly
desirable to maximize the mass of students getting their first choice V1, which is equivalent to
minimizing the amount mass of students getting their second choice. Inequality can be measured by
the difference in unassigned students as we shall see in Theorem 4.5 that the probability to receive
one’s first choice is the same for both groups.

4.2 Impact of differential correlation

We now study the influence of differential correlation on the previously defined metrics. First, we
show that differential correlation has no effect on the probability of getting one’s first choice.

Theorem 4.5. For any college admission problem, in any stable matching P, the probability that
a student gets their first choice is independent of the group they belong to. Formally, V G1,A

1 (P) =

V G2,A
1 (P) and V G1,B

1 (P) = V G2,B
1 (P).

Proof. The result follows directly by applying (4) to both groups, and by observing that the integral
in (4) does not depend on the parameter θ and hence does not depend on the group a student
belongs to. ■

This result, albeit simple, is an important property of the model, and a direct consequence of
our choice to keep the marginals identical for both groups. A student, given the college they prefer,
has the same probability of getting admitted there independently of the group they belong to — so
differential correlation has no effect on this metric. From now on we may refer to the first choice
probabilities as V A

1 and V B
1 , since they are the same for both groups.

Theorem 4.5 also justifies the choice of L as a measure of inequality: the proportion of students
getting their first choice is the same in both groups, so students who do not get their first choice
either get their second one or remain unmatched. Consequently, when the proportion of unmatched
students is higher in one group than the other then the matching is unequal.9

9Another choice could have been to compare the proportions of students getting their second choice in each group,
however Theorem 4.5 implies that this quantity is equal to L.
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From now until the end of Section 4, we assume that the colleges joint capacity is constrained,
i.e., αA +αB < 1. The unique stable matching is then given by solving the market clearing equation
(3).

Consider a student’s probability of staying unmatched, depending on their group.

Theorem 4.6. For any college admission problem, suppose that (fθ)θ∈Θ is coherent and capacity
is constrained, αA + αB < 1. The stable matching exhibits inequality, L(θ1, θ2) > 0, if and only if
θ1 ≠ θ2. Students from the group with higher correlation have a lower probability of getting their
second choice and a higher probability of staying unmatched. Formally, if θ1 < θ2, for C ∈ {A,B},
then V G1,C

2 > V G2,C
2 and V G1

∅ < V G2

∅ .

Proof. Suppose, without loss of generality, that θ1 < θ2. Then, using Lemma 4.2 to express V2 and
applying Lemma 2.2 we have

V G1,A
2 = Pθ1(WA < PA,WB ≥ PB)

≥ Pθ2(WA < PA,WB ≥ PB) (9)

= V G2,A
2

and the same holds for V G1,B
2 and V G2,B

2 . The inequality in (9) is strict if and only if PA and
PB are in the interior of the support I. PA = IuA would happen if and only if αA = 0, which we
excluded in the definition of the model (as it would no longer be a matching model); and PA = IlA
would mean that college A accepts all students applying to it, which we also ruled out by assuming
αA + αB < 1. The same arguments hold for PB. Hence the inequality is strict.

The inequalities between the V∅ quantities are direct consequences of Fθ being increasing in θ by
the definition of coherence. ■

The probability of staying unmatched is different for students from different groups. This is
in contrast to Theorem 4.5. Different levels of correlation lead to an unequal matching, and this
inequality benefits students from the low correlation group who are at risk of staying unmatched
due to a low score at one or both colleges. This happens at the expense of similar students from the
other group. This may seem surprising, for example, when considering the motivating example from
Section 2.3.1, where a higher correlation is associated with a lower noise in the quality estimation.
However, as the marginals are the same, there are as many good students in each group, but a
student with high correlation that has been rejected from their first choice has a high probability
of also being rejected from their second choice. On the other hand, a student with low correlation
who has been rejected from their first choice has a “more independent" second chance at the other
college. Theorem 4.6 also shows that a fair ranking (each college’s ranking is fair since the marginals
are the same for both groups) does not imply an equitable — or fair — matching.
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4.3 Comparative statics

With the understanding of the effect of differential correlation on the inequality between students of
each group, we next analyze how correlation influences the overall quality of the matching. We first
consider how the efficiency of the matching, i.e., the probability of getting one’s first choice, varies
when changing the correlation for one group (recall from Theorem 4.5 that this probability is the
same for both groups).

Theorem 4.7. Suppose that (fθ)θ∈Θ is coherent and differentiable, and that αA + αB < 1. Then
the efficiency V1(θ1, θ2) of the matching is increasing in both arguments. More precisely, suppose
that Θ, IA and IB are intervals, and θ1, θ2 ∈ Θ̊. Then V A

1 (θ1, θ2) and V B
1 (θ1, θ2) are differentiable

and for any C ∈ {A,B}, for any G ∈ {G1,G2},

∂V C
1

∂θG
> 0.

Proof sketch. The proof follows several steps. First, we rewrite the market-clearing equation (3)
using Lemma 4.2. We obtain a system of two equations, where the variables are the cutoffs PA and
PB, parameterized by θ1, θ2. We then apply the Implicit Function Theorem to a mapping whose
roots are the solution of this system of equations. We next compute the partial derivatives. To
characterize the sign of the derivatives with respect to θ, we use the coherence assumption. Through
analytical derivations, we can conclude. The details are provided in Appendix A.4.3. ■

Theorem 4.7 implies that, if the correlation decreases for the priorities of one of the groups,
then both groups suffer the same decrease in first-choice admittance. Conversely, increasing the
correlation for one group leads to an increase in first-choice admittance for both groups. Thus, both
groups may benefit (at least as far as the probability of first choice assignment is concerned) from
colleges working on increasing the correlation for either group. Consider the example presented in
Section 2.3.1. If there is a majority group with low estimation noise (i.e., high correlation) and a
minority group with high estimation noise (i.e., low correlation), then also the majority group will
benefit from colleges reducing the estimation noise of the minority group.

When the correlation increases, students’ score vectors accumulate close to the diagonal, and
therefore in the lower-left and upper-right quadrants, while the other two quadrants are increasingly
empty. This phenomenon is illustrated in Figure 3 with a bivariate normal distribution. If the cutoffs
did not change, then the amount of unmatched students would increase, which is not possible as
the capacities are constant and the matching would become unstable. Therefore, at least one of the
cutoffs decreases (in fact, Theorem 4.7 implies that both are decreasing). As a consequence, the
mass of matched students remains the same but more of them get their first choice. Notice that, as
predicted by Theorem 4.5, the amount of students on the right of the red vertical line in the left
figure is equal to the amount of students on the right of the green line in the right figure. Same goes
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for the horizontal lines.

Remark. The formal statement of Theorem 4.7 excludes the extremities of Θ. This assumption is
made only to avoid the case where rankings are fully correlated, which would mean that f does not
have full support. However, since V A

1 and V B
1 are continuous in θ, they are increasing on the whole

interval Θ.

Figure 3: Illustration of the cutoffs decrease when correlation increases. PA is represented as a
vertical line and PB as an horizontal one. Correlation of group G1 varies from θ1 = 0.3 (left, with
cutoffs in red) to θ′1 = 0.8 (right, cutoffs in green). In each figure, the cutoffs corresponding to the
other figure are plotted in dashes for comparison.

Theorem 4.7 allows us to derive the following corollary regarding a student’s probability of
remaining unmatched.

Corollary 4.8. Suppose that (fθ)θ∈Θ is coherent and differentiable, assume Θ, IA and IB are
intervals, θ1, θ2 ∈ Θ̊ and αA + αB < 1. Then the proportion of students from a given group
remaining unmatched is increasing in its own correlation level and decreasing in the correlation level
of the other group: for G ∈ {G1,G2},

∂V G
∅

∂θG
> 0 and

∂V G
∅

∂θG
< 0,

where G is the other group. Moreover, the inequality of the matching is increasing in the high-
correlation group’s correlation level and decreasing in the low-correlation group’s correlation level.
Formally, assume θ1 < θ2. Then

∂L(θ1, θ2)

∂θ1
< 0 and

∂L(θ1, θ2)

∂θ2
> 0.
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Proof sketch. The proof leverages the partial derivatives with respect to the correlation coefficient
computed in the proof of Theorem 4.7 and relies on the mass conservation to derive the sign of the
partial derivatives of the V∅ terms. The details are provided in Appendix A.4.4. ■

This result helps understand the influence of correlation on inequality. Recall that Theorem
4.6 states that the low-correlation group is advantaged compared to the other group; Corollary 4.8
completes it by showing that the extent of this advantage increases as the gap between correlation
levels widens. Linking this to Theorem 4.5, we conclude that increasing the correlation level of a
group hurts the intermediate students of this group while benefiting all good students (those who
get either their first or second choice due to high grades at both colleges) as well as intermediate
students of the other group.

In a situation with only one group, Theorem 4.7 states that the efficiency of the matching, i.e.,
the proportion of students getting their first choice, is increasing in the correlation of the rankings.
This phenomenon is consistent with results from the tie-breaking literature (Abdulkadiroğlu et al.,
2015; Ashlagi et al., 2019; Arnosti, 2022b), that we further discuss in Section 5.3. However, when
there are several groups, our results reveal an additional insight. The following corollary shows that
when holding the level of efficiency of the stable matching constant, different correlation pairs exist
for which the stable matching achieves this efficiency but favors one of the groups. Thus, the effect
we find goes beyond the efficiency loss of stable matchings when preferences are less correlated.

Corollary 4.9. There exist infinitely many correlation pairs achieving a given efficiency. Formally,
suppose that Θ, IA and IB are intervals, and (fθ)θ∈Θ is coherent and differentiable. Fix γ, βG1 , βG2 ∈
[0, 1], αA, αB ∈ (0, 1) such that αA + αB < 1, and let (θ1, θ2) vary. Then the possible values for
the efficiency of the matching form an interval [V min

1 , V max
1 ]. Moreover, for any efficiency level V

inside the open interval (V min
1 , V max

1 ), there exists an interval U ⊂ Θ and a decreasing function ϕ

such that for any θ1 ∈ U , V1(θ1, ϕ(θ1)) = V . There exists θ̄1 ∈ U such that ϕ(θ̄1) = θ̄1, leading to
L(θ̄1, ϕ(θ̄1)) = 0, and L(θ1, ϕ(θ1)) is maximal on the extremities of U .

The proof is provided in Appendix A.4.5. This corollary shows that a given global efficiency level
can hide different admission levels across groups, leading to inequalities. For any reachable efficiency
V , there exists a continuous line of correlation couples achieving it, each extremity being optimal
for one group and pessimal for the other. Moreover, it is always possible to reach this efficiency
level while maintaining L = 0. The reach of Theorem 4.7 therefore goes beyond the intuition
that correlation favors efficiency, it provides a precise insight to the relation between efficiency and
inequality and shows that there is no inherent trade-off between them.
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5 Special Cases

In our model, the exact solutions of the market-clearing equation, and thus the metrics, usually do
not admit closed-form expressions. In this section, we focus on some notable special cases for which
these calculations are possible and allow us to have a quantitative view of the effects of correlation.
In particular, since Theorem 4.7 and 4.8 state that the metrics are monotonic, we are able to compute
them for correlation levels of 0 and 1 which provides bounds for all correlation values in between.
We also discuss the link between our model and the tie-breaking problem in school choice, and show
how our model nests some existing results on this subject.

5.1 Excess capacity

In the previous section we mostly assumed that the total capacity of colleges was smaller than the
number of students, i.e., αA + αB < 1. The following proposition shows that if the total capacity
exceeds the number of students, correlation no longer has any influence on the matching.

Proposition 5.1. If capacity is not constrained, i.e., αA + αB ≥ 1, then correlation has no effect
on the stable matching, and students from both groups have the exact same outcome probabilities.
Formally, for C ∈ {A,B} V G1,C

1 = V G2,C
1 and V G1,C

2 = V G2,C
2 . Moreover, V G1

∅ = V G2

∅ = 0.
Finally, these quantities are constant in θ1 and θ2.

Proof sketch. The relations between the V1 are from Theorem 4.5 (which did not assume αA+αB < 1).
To prove the relations between the V2, we write them as in Lemma 4.2 and use the fact that
αA + αB ≥ 1 implies that at least one of the two colleges does not reject any student. The details
are provided in Appendix A.4.6. ■

In fact, when αA + αB ≥ 1, we can explicitly compute the proportions of students getting their
first or second choice by analyzing the steps of the Deferred Acceptance Algorithm (see Algorithm 1
in the Appendix). We consider three (partitioning) cases:

(1) There is not enough room in college A for all students preferring it to college B, i.e., γβG1 + (1−
γ)βG2 ≥ αA. In this case, there is necessarily enough room in college B for all students preferring
it, since αA + αB ≥ 1. Therefore, following the steps of DA, we find:

(i) At step one, γβG1 + (1 − γ)βG2 students preferring A apply there and the best αA are
temporarily admitted, and γ(1− βG1) + (1− γ)(1− βG2) students preferring B apply there
and are all temporarily admitted.

(ii) At step two, the γβG1 + (1 − γ)βG2 − αA students rejected from A apply to B, and are
admitted since there is enough room for them (considering the students previously admitted).
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This results in the following probabilities of a student to get their first or second choice:

V G1,A
1 = V G2,A

1 =
αA

γβG1 + (1− γ)βG2

, V G1,B
1 = V G2,B

1 = 1, (10)

V G1,A
2 = V G2,A

2 = 1− αA

γβG1 + (1− γ)βG2

, V G1,B
2 = V G2,B

2 = 0. (11)

Finally, as every student is admitted somewhere, V G,C
∅ = 0 for G ∈ {G1,G2} and C ∈ {A,B}.

(2) There is not enough room in college B for all students preferring it to A, i.e., γ(1− βG1) + (1−
γ)(1− βG1) ≥ αB. This case is symmetric to the previous case and is omitted for brevity.

(3) There is enough room in each college to admit all students who prefer attending it, i.e., γβG1 +

(1− γ)βG2 ≤ αA and γ(1− βG1) + (1− γ)(1− βG1) ≤ αB. It follows that everyone gets their first
choice: for G ∈ {G1,G2} and C ∈ {A,B},

V G,C
1 = 1, (12)

V G,C
2 = V G,C

∅ = 0. (13)

Note that Equations (10) to (13) are consistent with Proposition 5.1.

5.2 One group

Suppose that there is only one group of students (i.e., γ = 1) and therefore all students have the
same correlation parameter θ. In this section we consider two boundary cases, where the colleges
have either full correlation (they use the same ranking of students) or no correlation at all (their
rankings are statistically independent). These special cases will allow us to understand the matching’s
dependencies on the capacities and preferences of students. We assume that there is no capacity
excess, i.e., αA + αB < 1. Since there is only one group, there is only one parameter β for the
proportion of students preferring A, and the metrics V1, V2 and V∅ do not depend on the group.

Full correlation.

We first study the case where students have the same rank in both colleges.

Proposition 5.2. When both colleges use the same ranking, the metrics V1, V2, V∅ can be computed
exactly, and their expressions are:

(i) If β ≤ αA
αA+αB

(College A is under-demanded):

V A
1 = αA + αB, V A

2 = 0, V A
∅ = 1− αA − αB,

V B
1 =

αB

1− β
, V B

2 = αA − β

1− β
αB, V B

∅ = 1− αA − αB;
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(ii) If β ≥ αA
αA+αB

(College A is over-demanded):

V A
1 =

αA

β
, V A

2 = αB − 1− β

β
αA, V A

∅ = 1− αA − αB,

V B
1 = αA + αB, V B

2 = 0, V B
∅ = 1− αA − αB.

Proof sketch. The proof amounts to solving the market-clearing equation, the details are provided
in Appendix A.4.7. ■

This result is illustrated by the blue and orange lines in Figure 4. For the top row, β = 0.3, and
V A
1 and V B

1 are computed for αA = αB := α varying from 0 to 1. The probability of getting one’s
first choice is increasing in the capacity. Students preferring college A get either their first choice
or nothing, as shown in Proposition 5.2. Indeed, college A is easier to get in than college B since
β ≤ αA

αA+αB
, so a student rejected from college A is necessarily rejected from college B. For α > 0.5,

Proposition 5.2 does not apply anymore because there is capacity excess, and we need to refer to
Equations (10) and (11). For the bottom row, αA = αB = 0.25 and V A

1 and V B
1 are shown for β

varying from 0 to 1. The two figures are mirrored images of each other, which is natural as the
problem is symmetric in A and B. Observe that students who prefer the least popular college have
a higher probability of getting their first choice (the blue line is higher on the left plot than on the
right for β < 0.5, and lower for β > 0.5).

Remark. The full correlation case does not fit our model’s assumptions, since the distribution does
not have full support. The consequence is that uniqueness of the stable matching is not guaranteed.
However, by solving the market clearing equation, we showed that there is indeed only one solution,
so the stable matching is still unique.

No correlation.

Now, consider the case where the ranks of a student at A and B are not correlated at all.

Proposition 5.3. When colleges’ rankings are independent, the metrics V1, V2, V∅ can be computed
exactly, and their expressions are:

V A
1 = 1− 1− β

2β
(∆− ζ), V A

2 =
1− β

2β
(∆− ζ)− 1− β

4β
(∆2 − ζ2), V A

∅ = 1− αA − αB,

V B
1 = 1− 1

2
(∆ + ζ), V B

2 =
1

2
(∆ + ζ)− 1− β

4β
(∆2 − ζ2), V B

∅ = 1− αA − αB;

with ζ = 1−2β
1−β + β

1−βαA − αB and ∆ =
√
ζ2 + 4β

1−β (1− αA − αB).
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Proof sketch. Again, the proof amounts to solving the market-clearing equation, the details are
provided in Appendix A.4.8. ■

These results are illustrated by the dashed green and red lines in Figure 4. For the top row, once
again, Proposition 5.3 applies only for α < 0.5. Note that V A

2 and V B
2 are both strictly positive,

because even though college A is easier to get in than college B, students rejected from college A
still have an independent second chance at B.

(a) V A
1 and V A

2 as a function of α, β = 0.3 (b) V B
1 and V B

2 as a function of α, β = 0.3

(c) V A
1 and V A

2 as a function of β, α = 0.25 (d) V B
1 and V B

2 as a function of β, α = 0.25

Figure 4: Proportion of students getting their first and second choice with one group, and αA =
αB = α. The solid blue and orange lines are for the full-correlation case, the dashed green and
red ones for the no-correlation case. As the blue and green lines represent the same metric in two
different settings, the gap between them is hashed to highlight the welfare increase when switching
from one to the other. The same applies to the orange and red lines, where the gap is dotted.

Comparing the blue and green lines, note that the amount of students getting their first choice
is always larger with full correlation. This follows from Theorem 4.7 as V1 is increasing in the
correlation, for any values of the parameters. Correspondingly, the amount of students getting their
second choice is always lower with full correlation. For values of θ for which the correlation is between
0 and 1, it is generally not possible to obtain closed-form expressions for these metrics. However,
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Theorem 4.7 implies that their graphs have to be contained between the two extreme cases, i.e., in
the colored area highlighted in Figure 4. These areas show the extent of the influence of correlation
on students’ welfare. It appears that for intermediate values of the problem’s fundamentals, the gap
is substantial. For instance, looking at the bottom row, we see that for β = 0.5 and αA = αB = 0.25,
increasing the correlation can make the number of students getting their first choice grow from 30%

to 50%.

5.3 Tie-Breaking

Some recent papers have studied the impact of tie-breaking rules on school choice problems, which
has a strong link with correlation. In this section, we apply our model to this setting and recover a
result similar to several existing results from this literature.

Assume there is only one group, and each school C has nC priority classes, i.e., there exists a
partition of S = K1

C
⊔
· · ·
⊔
KnC

C such that for i, j ∈ {1, . . . , nC}, s ∈ Ki
C, s′ ∈ Kj

C, s has higher
priority than s′ at C if i < j. Students belonging to the same priority class at a school are assumed
to have the same priority at this school, but due to limited capacity the school might need to choose
between them. To achieve this, schools use a random ranking of students to which they refer each
time they need to choose between students from the same priority class; this random ranking is
called a tie-breaker.

A natural question that has been actively studied in recent years is whether there is a difference
in students’ welfare if schools use the same tie-breaker (called single tie-breaker, or STB), instead of
each producing an independent one (multiple tie-breakers, or MTB)? Ashlagi et al. (2019); Ashlagi
and Nikzad (2020); Arnosti (2022b) show — with slightly different models and assumptions (and
among other results) — that when the total capacity of schools is lower than the number of students,
then students are better off under STB than MTB. To ease the comparison, we restate their results
here in a simplified form:

Proposition 5.4 (Ashlagi et al. 2019; Ashlagi and Nikzad 2020; Arnosti 2022b). Given n students
and m schools:

• Suppose that there is capacity shortage, students’ preferences are drawn uniformly at random
and there is only one priority class (the whole ranking is random), then for any k < m

the fraction of students matched to one of their top k choices approaches 0 under MTB but
approaches a positive constant under STB (Ashlagi et al. 2019, Main Theorem)

• Suppose there is one slot per school, only one priority class, and schools are divided into
two tiers (top and bottom) with students’ preferences inside a given tier drawn uniformly at
random and a capacity shortage at top schools, then, with high probability, STB stochastically
Pareto-dominates MTB (Ashlagi and Nikzad 2020, Theorem 3.2).
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• Suppose there is only one priority class and students only list l < m schools in a uniform
random order, then the number of students matched to their first choice is greater under STB
than under MTB (Arnosti 2022b, Theorem 2).

A similar result can also be proven using our model.

Proposition 5.5. Let there be a continuum mass of students. Let A,B be two schools with priority
classes, capacities αA and αB such that αA +αB < 1. Assume that students prefer any school rather
than staying unmatched. Then:

1. If there is only one priority class, the mass of students getting their first choice is greater with
STB than MTB.

2. If there are several priority classes, assume that all products of priority classes Ki
A × Kj

B

contain a positive mass of students. Then the mass of students getting their first choice with
STB is greater or equal compared to MTB. Further assume that students’ preferences or schools’
capacities are randomly drawn from a distribution that admits a density. Then the mass of
students getting their first choice is almost surely strictly greater with STB than MTB.

Proof sketch. We build a distribution family (fθ)θ∈Θ that describes the priorities of students at
each school taking into account priority classes as well as tie-breakers, such that MTB and STB
correspond to values of θ = 0 and θ = 1. To achieve this, we consider the unit square. We divide the
segment [0, 1] on the x axis in nA parts (the number of classes at A), and we do the same for the y
axis with nB. Each box inside the unit square defined by those divisions corresponds to a product of
priority classes, and we impose that a student’s score vector belongs to the box corresponding to
their priority classes. To incorporate the tie-breaking, inside each box we draw the grades of the
corresponding students from a Gaussian copula with correlation θ contained inside the box. The
obtained distribution, while being complex, still satisfies most of the assumptions required by our
model, and with some adjustments we are able to apply Theorem 4.7 and conclude. Details are
provided in Appendix A.4.9. ■

Proposition 5.5 is in some regards more restrictive than the results presented in Proposition 5.4,
because it only applies to two schools and assumes students list both schools. On the other hand, it
is more general in that it applies to cases with several priority classes and does not require students
preferences to be uniform (in our model, we can have any fraction β of students preferring school
A). Finally, Proposition 5.5 can also be extended to intermediary tie-breaking rules between MTB
and STB—that is, any level of correlation between tie-breakers—and to two groups of students with
different tie-breaking rules, with all results from Section 4 remaining valid.
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6 Discussion

Selection problems are ubiquitous, and consequently, researchers and practitioners have focused
on understanding and mitigating sources of discrimination in these settings. However, in prior
work a single decision-maker is considered, which is in contrast to many situations where several
decision-makers compete over the same pool of candidates.

Our work is the first to consider a matching model where differential correlation is the source of
outcome inequalities between different groups. Our results appear counter-intuitive for the model
where differential correlation comes from noisy estimates of students’ qualities: the group with higher
noise is overrepresented. This contrasts the intuition that the group with higher noise is the minority
group and is often underrepresented in practice. To fully capture real-life situations one would need
to consider other sources of differences, including varying noise variance, taste-based discrimination,
and risk averse decision-makers. However, the aim of our work was to isolate the effect of differential
correlation.

From a technical point of view, to isolate the effect of correlation from other distributional effects,
we assumed that the marginals are the same for both groups. When the marginals are different,
Theorem 4.7, and Corollaries 4.8 and 4.9 remain valid, while Theorems 4.5 and 4.6 no longer apply.
This means that estimating which group is advantaged is more difficult when marginals are different,
and it might depend on colleges’ capacities, but the comparative statics still apply. Therefore, our
results can be used to compare settings with different levels of correlation. We also focus on a setting
with two colleges. When there are more colleges, Theorems 4.5 and 4.6 are still valid, allowing
us to determine which group is advantaged. The proof of Theorem 4.7, however, does not extend
straightforwardly. An open question is then whether the result is still valid or if stronger assumptions
are required.

We encourage researchers to take the matching context as the basis and inquire themes that
have already been considered in the single decision-maker setting. This includes, allowing applicants
to invest in accurate assessment, e.g., via acquiring certifications or doing in-person interviews, or
considering the effects of risk aversion. Other possible directions could include allowing applicants to
not list all colleges in their preferences, making applications costly, or adding a correlation between
an applicant’s preferences and their rank at each decision-maker.
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A Omitted proofs and definitions

A.1 Definitions

A.1.1 Table of notation.

Table 1 provides a summary of the notation used throughout the paper.
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Table 1: Notation

Agents:
A,B Colleges (generic: C)
s An arbitrary student
S Students set
G1,G2 Groups of students, partition of S (generic: G)
η Measure for student masses

Agents’ features:
αA, αB Colleges’ capacities (∈ (0, 1))
γ Mass of students in group G1 (∈ [0, 1])
βG Share of students in group G preferring college A (∈ [0, 1])

Priority scores:
W s

C Score at C of student s (generic: W )
f Score vectors’ joint probability distribution function
F Joint cumulative distribution function
fC, FC Marginal pdf and cdf of college C
θ Parameter for a distribution family
Θ Set of possible values for θ
I, IA, IB Support of f , fA and fB respectively. I = IA × IB
IlC, IuC Lower and upper bounds of C’s component of I

Correlation:
r Pearson’s correlation
ρ Spearman’s correlation
τ Kendall’s correlation

Matching:
µ Matching
V G,C
1 Share of students of group G and preferring C who get their first choice
V G,C
2 Share of students of group G and preferring C who get their second

choice
V G,C
∅ Share of students of group G and preferring C who are unassigned

A.1.2 Definition of the mass η.

Here we formally define the notion of mass for a subset of students. This section is quite technical
and is not necessary to understand the results, and the notations introduced here are not used
anywhere else in the paper. We identify S to Σ := R2 × {G1,G2} × {A,B}. We partition Σ into 4
subsets: ΣG,C := {s ∈ Σ : s = ((x, y),G,C), x, y ∈ R} is the subset of students belonging to group
G and preferring college C. Given θ1, θ2 and priorities WA,WB distributed according to fθ1 for G1

and fθ2 for G2, we say that a subset K ⊆ Σ is measurable if and only if {(W s
A,W

s
B) : s ∈ K} is
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Borel-measurable in R2. We can partition K into 4 subsets KG,C := K ∩ ΣG,C. On each ΣG,C we
define a measure ηG,C as follows: for K ⊆ Σ measurable,

ηG1,A(KG1,A) = γβG1Pθ1((WA,WB) ∈ {(W s
A,W

s
B) : s ∈ KG1,A}),

ηG1,B(KG1,B) = γ(1− βG1)Pθ1((WA,WB) ∈ {(W s
A,W

s
B) : s ∈ KG1,B}),

ηG2,A(KG2,A) = (1− γ)βG2Pθ2((WA,WB) ∈ {(W s
A,W

s
B) : s ∈ KG2,A}),

ηG2,B(KG2,B) = (1− γ)(1− βG2)Pθ2((WA,WB) ∈ {(W s
A,W

s
B) : s ∈ KG2,B}),

(14)

Let B(S) be the set of measurable subsets of S. We define over B(S) the probability measure
η : B(S) → [0, 1] such that for any measurable subset K of S,

η(K) = ηG1,A(KG1,A) + ηG1,B(KG1,B) + ηG2,A(KG2,A) + ηG2,B(KG2,B). (15)

This definition is consistent with the definition of the parameters, as it verifies η(G1) = γ, η({s ∈
G1 : A ≻s B}) = γβG1 and η({s ∈ G2 : A ≻s B}) = (1− γ)βG2 .

A.2 Elements of correlation theory

In this section, we present common measures of correlation used in the literature, and some of their
properties.

Definition A.1 (Common measures of correlation). Let (X,Y ) be two random variables with
respective cdfs FX , FY . Define:

1. Pearson’s correlation: Assume X,Y have finite standard deviations σX and σY . Then rX,Y =
Cov(X,Y )
σXσY

.

2. Spearman’s correlation: let rkX = FX(X) and rkY = FY (Y ). We can think of rkX as
describing the ranking of X inside a sample. Then Spearman’s correlation is ρX,Y = rrkX ,rkY .

3. Kendall’s correlation: let (X1, Y1) and (X2, Y2) be two independent pairs of random variables
with the same joint distribution as (X,Y ). Then Kendall’s correlation is

τX,Y = P [(X1 > X2 ∩ Y1 > Y2) ∪ (X1 < X2 ∩ Y1 < Y2)]−
P [(X1 > X2 ∩ Y1 < Y2) ∪ (X1 < X2 ∩ Y1 > Y2)] .

We use the same letter r for the covariance of the standard bivariate Gaussian and for Pearson’s
correlation as they are equal. Moreover, for this distribution simple expressions exist for the two
other correlation coefficients:

ρ =
6

π
arcsin(r/2), τ =

2

π
arcsin(r).
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A correlation measure should be zero when variables are independent, and reach its maximaum
when the variables are totally dependent on each other. The following lemma provides these
properties for the measures we just introduced.

Lemma A.2 (Scarsini 1984, Theorems 1, 4, and 5). Let X,Y be two real random variables.

1. rX,Y , ρX,Y , τX,Y ∈ [−1, 1].

2. ρX,Y = 1 if and only if Y = g(X) with g : R → R increasing. The same holds for τX,Y .
rX,Y = 1 if and only if the relation is affine.

3. If X and Y are independent, then rX,Y = ρX,Y = τX,Y = 0.

In stable matchings, the crucial information is the rank of each student, not directly their score.
Therefore, we are mostly interested in Spearman’s and Kendall’s coefficients as they are more
informative of the correlation between rankings. Indeed, two variables yield the same ranking if
there is an increasing relation between them, but it does not need to be affine.

A.3 Stable matching

We now introduce some elements of matching theory used throughout the paper.
To define matching in a continuum context, we follow Azevedo and Leshno (2016).

Definition A.3. A matching is an assignment of students to colleges, described by a mapping
µ : S ∪ {A,B} → 2S ∪ C ∪ S, with the following properties:

1. for all s ∈ S, µ(s) ∈ {A,B} ∪ {s};

2. for C ∈ {A,B}, µ(C) ⊆ S is measurable and η(µ(C)) ≤ αC;

3. C = µ(s) if and only if s ∈ µ(C);

4. for C ∈ {A,B}, the set {s ∈ S : µ(s) ⪯s C} is open.

The first three conditions are common to almost all definitions of matching in discrete or
continuous models. Condition (1) ensures that a student is either matched to a college or to
themselves, which means that they remain unmatched. Condition (2) ensures that colleges are
assigned to a subset of students that respects the capacity constraints. Condition (3) ensures that the
matching is consistent, i.e., if a student is matched to a college, then this college is also matched to
the student. Condition (4) was introduced by Azevedo and Leshno (2016) and is necessary to ensure
that there do not exist several stable matchings that only differ by a set of students of measure 0.

We next define the notions of blocking and stability.
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Definition A.4 (Stability). The pair (s,C) blocks a matching µ if s would prefer C to her current
match, and either C has remaining capacity or it admitted a student with a lower score than s;
formally, if µ(s) ≺s C and either η(µ(C)) < αC or ∃s′ ∈ µ(C) such that W s′

C < W s
C. A matching is

stable if it is not blocked by any student-college pair.

To produce a stable matching, one can extend the classic Deferred Acceptance algorithm from
Gale and Shapley (1962) to the continuum model. This algorithm is described in Algorithm 1.

Algorithm 1 Deferred Acceptance Algorithm
First step: All students apply to their favorite college, they are temporarily accepted. If the mass
of students applying to college C is greater than its capacity αC, then C only keeps the αC best
while A positive mass of students are unmatched and have not yet been rejected from every
college do

Each student who has been rejected at the previous step proposes to her preferred college
among those which have not rejected them yet

Each college C keeps the best αC mass of students among those it had temporarily accepted
and those who just applied, and rejects the others
end while
End: If the mass of students that are either matched or rejected from every college is 1, the
algorithm stops. However it could happen that it takes an infinite number of steps to converge.

If the algorithm stops, the matching it outputs is stable; Abdulkadiroğlu et al. (2015) show that
even when the number of steps is infinite, the algorithm converges to a stable matching.

Remark. Note that stable matchings do not only result from centralized algorithms but are often the
result of a decentralized process (see, e.g., Roth and Vande Vate 1990).

A.4 Proofs

A.4.1 Proof of Lemma 2.2.

Since F (x, y) = P(WA < x,WB < y) by definition, then the first part of the lemma is just a rewriting
of the definition of coherence. For the second part, we have

P(WA > x,WB > y) = P(WB > y)− P(WA < x,WB > y)

= P(WB > y)− P(WA < x) + P(WA < x,WB < y)

and P(WB > y),P(WA < x) are constant in θ by assumption while P(WA < x,WB < y) is increasing,
so P(WA > x,WB > y) is also increasing. Finally, we also get that

P(WA > x,WB < y) = P(WB < y)− P(WA < x,WB < y)
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and
P(WA < x,WB > y) = P(WA < x)− P(WA < x,WB < y)

and both are therefore decreasing.

A.4.2 Proof of Lemma 4.2.

Consider student s ∈ G1 who prefers A to B. By Lemma 3.3, s is admitted to A if and only if
s ∈ DA(PA, PB), i.e., if and only if their score at A is greater than PA. Then by definition of η,

V G1,A
1 (θ1, θ2) =

η({s ∈ G1 : A ≻s B, µ(s) = A})
γβG1

= Pθ1((WA,WB) ∈ [PA,+∞)×R) = P(WA > PA).

The same reasoning applies to all quantities of type V1, which proves (4).
The same student s is admitted to B if and only if s ∈ DB(PA, PB), i.e., if and only if W s

B ≥ PB

and W s
A < PA. Then we have

V G1,A
2 (θ1, θ2) =

η({s ∈ G1 : A ≻s B, µ(s) = B})
γβG1

= Pθ1((WA,WB) ∈ (−∞, PA)× [PB,+∞)).

The same reasoning applies to all quantities of type V2, which proves (5).
Students s remains unmatched if and only if W s

A < PA and W s
B < PB. Then we have

V G1,A
∅ (θ1, θ2) =

η({s ∈ G1 : A ≻s B, µ(s) = s})
γβG1

= Pθ1((WA,WB) ∈ (−∞, PA)× (−∞, PB)).

which proves (6).

A.4.3 Proof of Theorem 4.7.

Let γ, βG1 , βG2 ∈ [0, 1], αA, αB ∈ (0, 1) such that αA + αB < 1, and θ1, θ2 ∈ Θ̊. Let PA, PB ∈ R be
the cutoffs of colleges A and B.

By definition of the quantities V1 and V2, the market-clearing equation (3) can be written as{
γβG1V

G1,A
1 + γ(1− βG1)V

G1,B
2 + (1− γ)βG2V

G2,A
1 + (1− γ)(1− βG2)V

G2,B
2 = αA,

γβG1V
G1,A
2 + γ(1− βG1)V

G1,B
1 + (1− γ)βG2V

G2,A
2 + (1− γ)(1− βG2)V

G2,B
1 = αB.
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Then, using Lemma 4.2, we can rewrite is as
(γβG1 + (1− γ)βG2)P(WA ≥ PA) + γ(1− βG1)Pθ1(WA ≥ PA,WB < PB)

+(1− γ)(1− βG2)Pθ2(WA ≥ PA,WB < PB) = αA,

γβG1Pθ1(WA < PA,WB ≥ PB) + (1− γ)βG2Pθ2(WA < PA,WB ≥ PB)

+(γ(1− βG1) + (1− γ)(1− βG2))P(WB ≥ PB) = αB,

which is finally equivalent to

(γβG1 + (1− γ)βG2)

∫ ∞

PA

fA(x) dx+ γ(1− βG1)

∫ ∞

PA

∫ PB

−∞
fθ1(x, y) dxdy

+(1− γ)(1− βG2)

∫ ∞

PA

∫ PB

−∞
fθ2(x, y) dxdy = αA,

γβG1

∫ PA

−∞

∫ ∞

PB

fθ1(x, y) dxdy + (1− γ)βG2

∫ PA

−∞

∫ ∞

PB

fθ2(x, y) dxdy

+(γ(1− βG1) + (1− γ)(1− βG2))

∫ ∞

PB

fB(x) dx = αB.

(16)

We fix θ2, and we want to study how the solution (PA, PB) of the above equation varies as a
function of θ1. Let us define h : R2× [0, 1) → R2, (PA, PB, θ1) 7→ (DA(PA, PB)−αA, DB(PA, PB)−
αB). (We will denote by h1 and h2 its two components.) Then for each θ1 ∈ Θ, (PA, PB)

is the solution of the equation h(PA, PB, θ1) = (0, 0). In order to show that PA and PB are
decreasing in θ1, we wish to apply the implicit function theorem. Let PA, PB ∈ R and θ1 ∈ Θ

such that h(PA, PB, θ1) = 0. Function h is of class C1. We first verify that the partial Jacobian
Jh,(PA,PB)(PA, PB, θ1) is invertible, where

Jh,(PA,PB)(PA, PB, θ1) =


∂h1
∂PA

∂h1
∂PB

∂h2
∂PA

∂h2
∂PB

 . (17)

To show that the determinant ∂h1
∂PA

∂h2
∂PB

− ∂h1
∂PB

∂h2
∂PA

̸= 0, we will show that it is in fact (strictly)
positive. From (16), it is clear that h1 is decreasing in PA and increasing in PB, and that h2 is
increasing in PA and decreasing in PB. Therefore, to prove that ∂h1

∂PA
∂h2
∂PB

− ∂h1
∂PB

∂h2
∂PA

> 0, we only

need to prove that
∣∣∣ ∂h1∂PA

∣∣∣ > ∂h2
∂PA

and
∣∣∣ ∂h2∂PB

∣∣∣ > ∂h1
∂PB

.
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By symmetry, we will only prove the first one. We can compute each term separately:

∂h1
∂PA

=(γβG1 + (1− γ)βG2)
∂ P(WA ≥ PA)

∂PA
+ γ(1− βG1)

∂ Pθ1(WA ≥ PA,WB < PB)

∂PA

+ (1− γ)(1− βG2)
∂ Pθ2(WA ≥ PA,WB < PB)

∂PA
,

∂h2
∂PA

=γβG1

∂ Pθ1(WA < PA,WB ≥ PB)

∂PA
+ (1− γ)βG2

∂ Pθ2(WA < PA,WB ≥ PB)

∂PA
.

All terms of h1 are decreasing in PA and all terms of h2 are increasing in PA, therefore we can
proceed term by term:∣∣∣∣γβG1

∂ P(WA ≥ PA)

∂PA

∣∣∣∣ = γβG1

∂ P(WA < PA)

∂PA
,

= γβG1

(
∂ Pθ1(WA < PA,WB < PB)

∂PA
+
∂ Pθ1(WA < PA,WB ≥ PB)

∂PA

)
,

(18)

> γβG1

∂ Pθ1(WA < PA,WB ≥ PB)

∂PA
.

The same reasoning, when replacing θ1 by θ2 in the (18) shows that∣∣∣∣(1− γ)βG2

∂ Pθ2(WA ≥ PA)

∂PA

∣∣∣∣ > (1− γ)βG2

∂ Pθ2(WA < PA,WB ≥ PB)

∂PA
.

We conclude that
∣∣∣ ∂h1∂PA

∣∣∣ > ∂h2
∂PA

, and similarly
∣∣∣ ∂h2∂PB

∣∣∣ > ∂h1
∂PB

. Therefore the Jacobian in (17) has
positive determinant and is invertible.

By the implicit function theorem, there exists a neighborhood U of (PA, PB), a neighborhood V
of θ1, and a function ψ : V → U such that for all (x, y) ∈ R2, θ ∈ Θ,

( (x, y, θ) ∈ U × V and h(x, y, θ) = 0 ) ⇔ ( θ ∈ V and (x, y) = ψ(θ) ).
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In particular, (PA, PB) = ψ(θ1), and we can compute the derivative of ψ:

Jψ(θ1) = −Jh,(PA,PB)(PA, PB, θ1)
−1 Jh,θ1(PA, PB, θ1),

=
−1

∂h1
∂PA

∂h2
∂PB

− ∂h1
∂PB

∂h2
∂PA


∂h2
∂PB

− ∂h1
∂PB

− ∂h2
∂PA

∂h1
∂PA



∂h1
∂θ1

∂h2
∂θ1

 ,

=
−1

∂h1
∂PA

∂h2
∂PB

− ∂h1
∂PB

∂h2
∂PA


∂h2
∂PB

∂h1
∂θ1

− ∂h1
∂PB

∂h2
∂θ1

− ∂h2
∂PA

∂h1
∂θ1

+ ∂h1
∂PA

∂h2
∂θ1

 . (19)

We only need to know the sign of each term to conclude about the variations of ψ. We already know
the sign of the derivatives in PA and PB, so we only need those in θ1. The only term in h1 that
depends on θ1 is γ(1− βG1)Pθ1(WA ≥ PA,WB < PB). By Lemma 2.2, Pθ1(WA ≥ PA,WB < PB)

is decreasing in θ1, and thus ∂h1
∂θ1

< 0. By the same argument, ∂h2
∂θ1

is also negative. (Note that here
the implicit functions theorem requires that we compute the partial derivatives of h as if PA and PB

were not functions of θ1.)

If we replace each term of the last line of (19) by its signs, we get

− 1

+

(
(−×−) − (+×−)

− (+×−) + (−×−)

)
=

(
−
−

)
.

We conclude that ψ and therefore PA and PB are decreasing in θ1, and finally:

∂V G1,A
1

∂θ1
,
∂V G1,B

1

∂θ1
,
∂V G2,A

1

∂θ1
,
∂V G2,B

1

∂θ1
> 0.

The problem being symmetric between θ1 and θ2, we also conclude that

∂V G1,A
1

∂θ2
,
∂V G1,B

1

∂θ2
,
∂V G2,A

1

∂θ2
,
∂V G2,B

1

∂θ2
> 0,

which concludes the proof of the theorem.
Notice that we require θ1, θ2 ∈ Θ̊ because if, when one of the θ is maximal, the distribution is

fully correlated (i.e., WB is a deterministic function of WA), then the V1 metrics are not differentiable
at this point. However, they are continuous, therefore they are increasing on the whole interval Θ.
Moreover, if the distribution is not fully correlated when θ is maximal, then we can replace Θ̊ by Θ

in the statement of the theorem.
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A.4.4 Proof of Corollary 4.8.

We showed in the proof of Theorem 4.7 that PA and PB are decreasing in both θ1 and θ2. By using
this, we have:

∂V G2,A
∅
∂θ1

=
∂V G2,B

∅
∂θ1

=
∂ Pθ2(WA < PA,WB < PB)

∂θ1
< 0.

Since the total capacity (of the two colleges) is constant, the mass of unmatched student must
also be constant. Therefore, we have

γβG1V
G1,A
∅ + γ(1− βG1)V

G1,B
∅ + (1− γ)βG2V

G2,A
∅ + (1− γ)(1− βG1)V

G2,B
∅ = 1− αA − αB.

Rearranging the terms gives

γβG1

∂V G1,A
∅
∂θ1

+ γ(1− βG1)
∂V G1,B

∅
∂θ1

= −((1− γ)βG2

∂V G2,A
∅
∂θ1

+ (1− γ)(1− βG1),
∂V G2,B

∅
∂θ1

).

> 0

Since V G1,A
∅ = V G1,B

∅ , we conclude that both
∂V

G1,A
∅
∂θ1

and
∂V

G1,B
∅
∂θ1

are positive.

The same argument shows that
∂V

G1,A
∅
∂θ2

=
∂V

G1,B
∅
∂θ2

< 0 and
∂V

G1,A
∅
∂θ1

=
∂V

G1,B
∅
∂θ1

> 0. From there, it
is trivial that L, which is the distance between V G1

∅ and V G2

∅ is increasing in the correlation level of
the high correlation group and decreasing in that of the low-correlation group.

A.4.5 Proof of Corollary 4.9.

V1 is a convex combination of the first choice functions that are increasing in both θ1 and θ2, so it
is increasing in those two parameters too. Moreover it is continuous, and we assumed Θ to be an
interval, so the set of possible values for V1 is an interval. Let us fix V ∈ (V min

1 , V max), and consider
the solutions of the equation V (θ1, θ2) = V . By continuity, this equation has a solution, and the
implicit function theorem immediately shows that there exists an interval (θVmin, θ

V
max) and a function

ϕ such that ∀θ1 ∈ (θxmin, θ
x
max), V (θ1, ϕ(θ1)) = V . Since V (θ1, θ2) is increasing in both arguments,

ϕ is necessarily decreasing. Finally, since by Theorem 4.7 V min
1 is achieved for θ1 = θ2 = min(Θ)

and V max
1 for θ1 = θ2 = max(Θ), then any V ∈ [V min

1 , V max] can be achieved with θ1 = θ2, which
implies L = 0.
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A.4.6 Proof of Proposition 5.1.

The relations between the V1 come from Theorem 4.5. If αA+αB ≥ 1, then all students are admitted
to some college, therefore either PA = IlA or PB = IlB. Let us suppose it is PA. Then we have

V G1,A
2 (θ1, θ2) = Pθ1(WA < IlA,WB ≥ PB),

= 0,

= Pθ2(WA < IlA,WB ≥ PB),

= V G1,A
2 (θ1, θ2),

and

V G1,B
2 (θ1, θ2) = Pθ1(WA ≥ IlA,WB < PB)

= P(WB < PB)

= Pθ2(WA ≥ IlA,WB < PB)

= V G2,B
2 (θ1, θ2).

Since every student is matched, all the V∅ are 0. We assumed PA = IlA, if it was PB instead we
would obtain the same result as the problem is symmetric between A and B. Finally, all these
quantities are constant in θ1 and θ2: the only ones that are non-zero are of the type P(WC < PC)

and therefore constant in the correlation.

A.4.7 Proof of Proposition 5.2

For this proof, to simplify computations, assume without loss of generality that marginals follow a
uniform distribution on [0, 1]. Since the Deferred Acceptance algorithm only depends on ordinal
comparisons, this assumption is indeed not restrictive and switching to a uniform distribution will
greatly help solving the market-clearing equation 16. The students’ score vectors are therefore
uniformly distributed along the diagonal of the square [0, 1]2. The cutoffs PA and PB belong to
[0, 1], and the metrics are given by:

V A
1 = 1− PA, V B

1 = 1− PB,

V A
2 = max(PA − PB, 0), V B

2 = max(PB − PA, 0),

V A
∅ = min(PA, PB), V B

∅ = min(PA, PB).

(20)

Therefore, the market-clearing equation is{
β(1− PA) + (1− β)max(PB − PA, 0) = αA,

βmax(PA − PB, 0) + (1− β)(1− PB) = αB.
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Assume that PB ≥ PA. Then we have{
β(1− PA) + (1− β)(PB − PA) = αA,

(1− β)(1− PB) = αB,
(21)

which is equivalent to {
PA = 1− αA − αB,

PB = 1− αB
1−β .

Moreover, the assumption PB ≥ PA implies that β ≤ αA
αA+αB

. PA and PB are well-defined, that is,
they are in [0, 1]. For PA, this follows from the assumption αA + αB < 1, and for PB it is implied
by the relation β ≤ αA

αA+αB
. If PA ≥ PB instead, we have:{

PA = 1− αA
β ,

PB = 1− αA − αB.
(22)

Similarly, this implies that β ≥ αA
αA+αB

, and using this we can verify that PA, PB ∈ [0, 1].

We can then conclude that if β ≤ αA
αA+αB

, then

V A
1 = αA + αB, V B

1 = αB
1−β ,

V A
2 = 0, V B

2 = αA − β
1−βαB,

V A
∅ = 1− αA − αB, V B

∅ = 1− αA − αB;

and if β ≥ αA
αA+αB

, then

V A
1 = αA

β , V B
1 = αA + αB,

V A
2 = αB − 1−β

β αA, V B
2 = 0,

V A
∅ = 1− αA − αB, V B

∅ = 1− αA − αB.

This is obtained by replacing in (20) the values of PA and PB found in (21) and (22).

A.4.8 Proof of Proposition 5.3

As in the proof of Proposition 5.2, we assume without loss of generality for this proof that the
marginals are uniform over [0, 1]. Then the grades at colleges A and B are independent random
variables with a uniform distribution over [0, 1]. Students’ score vectors are thus uniformly distributed
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on the whole area of the square [0, 1]2. Therefore the metrics as functions of PA and PB are:

V A
1 = 1− PA, V B

1 = 1− PB,

V A
2 = PA(1− PB), V B

2 = PB(1− PA),

V A
∅ = PAPB, V B

∅ = PAPB.

(23)

The market-clearing equation is:{
β(1− PA) + (1− β)PB(1− PA) = αA,

βPA(1− PB) + (1− β)(1− PB) = αB,

⇔

{
PB = 1− αB − β

1−β (1− PA − αA),

PAPB = 1− αA − αB,

⇔

{
PB = 1− αB − β

1−β (1− PA − αA),
β

1−βP
2
A + (1−2β

1−β + β
1−βαA − αB)PA − (1− αA − αB) = 0.

(24)

Let ζ = 1−2β
1−β + β

1−βαA − αB and ∆ =
√
ζ2 + 4β

1−β (1− αA − αB). From (24) and the fact that
PA ≥ 0 we deduce that {

PA = 1−β
2β (∆− ζ),

PB = 1
2(∆ + ζ).

Injecting this in Equation (23) finally gives

V A
1 = 1− 1−β

2β (∆− ζ), V B
1 = 1− 1

2(∆ + ζ),

V A
2 = 1−β

2β (∆− ζ)− 1−β
4β (∆2 − ζ2), V B

2 = 1
2(∆ + ζ)− 1−β

4β (∆2 − ζ2),

V A
∅ = 1−β

4β (∆2 − ζ2), V B
∅ = 1−β

4β (∆2 − ζ2),

which concludes the proof of the proposition.

A.4.9 Proof of Proposition 5.5.

We start by building a distribution family that can represent both STB and MTB for two values of
the parameter. The priority classes are K1

A, . . .K
nA
A and K1

B, . . .K
nB
B , and we denote by κjC = η(Kj

C)

the mass of students inside class j of college C. Let a0 = 0, a1 = κ1A, a2 = κ1A + κ2A, . . . , anA = 1,
such that they form a partition of [0, 1] with the j-th segment having length κjA. Define b0, . . . , bnB

similarly. Finally, for any i ≤ nA, j ≤ nB, let κi,j = η(Ki
A ×Kj

B) be the mass of students belonging
to class i for A and class j for B.

Let ϕr be the pdf of the Gaussian copula with uniform marginals on [0, 1]2 and covariance r. For
any r ∈ [0, 1], let fr : [0, 1]2 → R be defined as:

fr(x, y) = κi,jϕr(
x− ai−1

κiA
,
y − bj−1

κjB
) with ai−1 ≤ x ≤ ai, bj−1 ≤ y ≤ bj
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Figure 5: Example of the distribution fr with three classes at A, two at B, and r = 0.8.

Defined this way, fr is a pdf since it is non-negative and has integral 1. The marginals are
uniform and do not depend on r. Moreover, the integral of fr over each rectangle Ki

A ×Kj
B is κi,j ,

and each rectangle contains a “copy” of the Gaussian copula adjusted to its dimensions. There is no
“spill” between classes: if student s is in a higher priority class at college C than student s′, then s
will have a higher score with probability 1. If for all i, j, κi,j > 0, and r /∈ {−1, 1}, then fr has full
support. This distribution is depicted in Figure 5.

When r = 0, this distribution represents MTB: if two students are in the same priority class for
a college, they each have an ex-ante probability of 0.5 of winning the tie-breaking, and if they also
are in the same priority class for the other college (i.e., they are in the same rectangle Ki

A ×Kj
B),

the result of this second tie-breaking is independent from the first one.
When r = 1, this distribution represents STB: if two students are in the same priority class for a

college, they once again each have an ex-ante probability of 0.5 of winning the tie-breaking. But
if they also are in the same priority class for the other college (i.e., they are in the same rectangle
Ki

A ×Kj
B), the winner of the tie-breaking is the same as for the first college since scores inside the

rectangle are perfectly correlated. In that case, the correlation does not have full support but this is
not an issue as explained in Remark 4.3.

The family (fr)r∈[0,1] is differentiable by differentiability of the Gaussian copula. It is also
coherent (except for the (x, y) such that x = ai or y = bj , i.e., on the sides of rectangles, in that
case the cdf is constant and not increasing). Therefore we can apply Theorem 4.7 and deduce the
first part of the proposition.

Suppose that ∃θ ∈ Θ such that PA(θ) ̸= ai and PB(θ) ̸= bj for all i, j. We can then apply
Theorem 4.7, and deduce that V A

1 and V B
1 are increasing they are greater for r = 1 than for r = 0.

If there exists no such θ, it implies that PA, PB are constant in θ and so are V A
1 and V B

1 , and

44



thus STB and MTB are equivalent. However, if we assume that students’ preferences or colleges’
capacities are drawn from distributions that admit densities, the probability of this event is zero,
which gives the second part of the proposition.
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