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Abstract

Statistical discrimination results when a decision-maker observes an imperfect estimate of
the quality of each candidate dependent on which demographic group they belong to. Prior
literature is limited to simple selection problems with a single decision-maker. In this paper,
we initiate the study of statistical discrimination in matching, where multiple decision-makers
are simultaneously facing selection problems from the same pool of candidates (e.g., colleges
admitting students). We propose a model where two colleges observe noisy estimates of each
candidate’s quality. The estimation noise controls a new key feature of the problem, namely
the correlation between the estimates of the two colleges: if the noise is high, the correlation
is low and vice-versa. We consider stable matchings in an infinite population of students. We
show that a lower correlation (i.e., higher estimation noise) for one of the groups worsens the
outcome for all groups. Further, the probability that a candidate is assigned to their first choice
is independent of their group. In contrast, the probability that a candidate is assigned to a
college at all depends on their group, revealing the presence of discrimination coming from the
correlation effect alone. Somewhat counter-intuitively the group that is subjected to more noise
is better off.

1 Introduction

Discrimination in matching problems such as college admission has been the subject of frequent
and continued controversy over the past decades. On the one hand, there are myriads of news
articles and research papers reporting empirical observations of discrimination in the outcomes of
various college admission procedures [Gersen 2019, Cortes 2019, Bonneau et al. 2021]—that is, the
fact that certain demographic groups defined by sensitive attributes such as race or gender receive
less favorable outcomes. On the other hand, preventive measures such as affirmative actions are
the subject of heated debates in the context of college admission in many countries. In the US for
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instance, they are banned in several states and they are at the center of an upcoming case in the
supreme court Liptak and Hartocollis (2022); and other countries have similar debates Vairet (2021).
A common thread that emerges from those debates is that the precise causes of discrimination in
matching problems are not well understood and clearly identified.

To explain discrimination, economic theory distinguishes between taste-based discrimination and
statistical discrimination. While the former refers to actual preferences being based on demographic
groups, the latter posits that discrimination may occur from the imperfect information a decision-
maker has about individuals’ qualities. Statistical discrimination theory was originally proposed
by Phelps (1972) and Arrow (1973) in the context of employment (where the decision-maker is an
employer attempting to assess the productivity of workers) to explain racial disparities (in particular
in wages); and it was subsequently extended and refined in the economic literature, see e.g., Aigner
and Cain (1977); Lundberg and Startz (1983); Coate and Loury (1993) or a survey in Fang and
Moro (2011). Recently, the computer-science community proposed a similar model in the context of
selection problems, under the term differential variance Emelianov et al. (2020, 2022); Garg et al.
(2021). In this model, a decision-maker has a noisy estimate of the quality of candidates, with a
noise variance that depends on the demographic group of the candidate. Emelianov et al. (2022) and
Garg et al. (2021) show that it leads to some groups being underrepresented and study the effect of
imposing fairness constraints and/or standardized tests on the selection outcome.

The aforementioned works on statistical discrimination and differential variance are limited to the
selection setting with a single decision-maker, and hence a single quality estimate for each candidate.
In a matching problem, there are multiple decision-makers (say, the colleges) who each have their
own imperfect estimate of the candidates’ qualities. The noise therefore has a new effect, beyond
the possible group-dependent variance. For a given candidate, the quality estimates of different
colleges are the same if the noise is zero, i.e., the colleges perfectly observe the candidates quality.
Generally, quality estimates may be more or less correlated depending on the amount of noise: a
small noise would lead to a high correlation of estimates between the different colleges, whereas a
high noise would lead to a low correlation (assuming the noise is independent for each college). How
statistical discrimination, modeled via the described noise and correlation process, affects matching
outcomes for different groups of students is, however, a non-trivial and totally open question, which
we address in this work.

1.1 Our contribution

In this paper, we initiate the study of statistical discrimination in matching. We consider a setting
with a population of students divided in two groups G1 and G2, applying to two colleges A and B.
We first propose a model where the colleges get noisy estimates of each candidate’s quality WA and
WB such that the vector (WA,WB) is a bivariate normal random variable with correlation coefficient
ρ. This model flexibly describes the information on which the matching is based. In particular, it
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describes the case where the quality estimates at each college are equal to a latent quality of the
candidate plus a centered measurement noise drawn independently for each college (all being normal).
If the measurement noise is large, ρ will be close to zero as the quality estimates at each college are
close to independent. On the other hand, if the measurement noise is small, then the estimate is
almost equal to the latent quality, hence both colleges have almost identical estimates and ρ is close
to one. The range of values of ρ ∈ (0, 1) parameterizes all intermediate situations. To isolate the
effect of correlation (which is specific to matching), we focus on the case where the marginals of WA

and WB have the same variance, but the correlation coefficient depends on the demographic group
of the candidate (ρG1 for group G1 and ρG2 for group G2)—we term this differential correlation.

We focus on characterizing the outcome of (centralized) stable matchings. Such procedures
are used in increasingly many countries such as France, Brazil, or Hungary Parcoursup (2021);
Machado and Szerman (2021); Biró (2008) in college admission or other education markets (e.g.,
school assignment).1 For simplicity, we consider an infinite population of students whose preferences
are simply captured by the proportion of students of each group that prefer college A to B, and use
techniques from Azevedo and Leshno (2016) to characterize the stable matching (which is found
to be unique in this model with a continuum of students). Then, we are able to compute welfare
metrics such as the probability that a student gets their first or second choice or remains unmatched;
and we have the following main results:

1. We show that the probability that a student is assigned to their first choice is independent of
the student’s group, but that it decreases when the correlation of either group decreases. This
means that higher measurement noise (inducing lower correlation) on one group hurts not only
the students of that group, but the students of all groups.

2. We show that the probability that a student is assigned to their second choice and the
probability that they remain unassigned both depend on the student’s group, which reveals
the presence of discrimination coming from the correlation effect alone. Specifically, we find
that the probability that a student remains unmatched is decreasing when the correlation of
their group decreases (higher measurement noise) and when the correlation of the other group
increases. In other words, the higher the measurement noise of their own group, the better off
students are with regard to getting assigned a college at all. This may sound counter-intuitive
at first, but is explained by the observation that with high noise (i.e., low correlation) the fact
that a student is rejected from one college gives only little information about the outcome at
the other college. That is, a student has an independent second chance for admission.

These two comparative static results give insights on the effect of correlation on the stable
matching outcome for different demographic groups and show that indeed, statistical discrimination
is an important theory to understand discrimination in matching problems. We also analyze a

1See https://www.matching-in-practice.eu/ for more examples in the European Union.
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number of special cases of our model, in particular the case of a single group, to show that even in
this case the correlation affects the stable matching outcome.

Our work is the first to investigate statistical discrimination in the context of matching. Overall
it shows that group-dependent measurement noises of the candidates quality—and the resulting
group-dependent correlation between the colleges’ estimates—plays an important role in leading
to unequal outcomes for different demographic groups, and in particular underrepresentation of
one of the groups. Of course, we do not argue that statistical discrimination is the only possible
cause of discrimination. In particular, if there is bias in the quality estimates for one group, then it
will naturally also hurt the representation of that group. We do not model bias since our primary
purpose is to isolate in the cleanest possible way the effect of statistical discrimination. Throughout
the paper, we make a number of other simplifying assumptions (e.g., focusing on two colleges) whose
purpose is also to simplify our results and isolate the effect of correlation. Our analysis, however,
can be extended to remove these assumptions—we discuss these extensions in Section 5.

Throughout the paper, we discuss the matching problem of college admission, and use the
terminology of grade to denote the estimate that a college has about the quality of a candidate. Our
model and results, however, are generic and apply to any matching problem where there is a notion
of quality of candidates on one side that can be represented by a numeric score. This includes for
instance public school choice problems, assignments in hospital residency programs, or labor markets
(see e.g., examples in Abdulkadiroğlu (2005)).2

1.2 Related work

Matching The matching literature is today a cornerstone of the increasing connection between
economic theory and computer science. The college admission problem, i.e., how a centralized
authority can fairly assign prospective students to colleges given each agent’s preferences and
capacity constraints of colleges, was first modeled and studied by Gale and Shapley (1962). It was
then followed by many other works including for instance Roth (1986), and Abdulkadiroğlu et al.
(2009), see also Roth and Sotomayor (1992) for the standard text book.3 The idea of considering a
continuum of students and a finite number of colleges has previously been exploited in Chade et al.
(2014) and Azevedo and Leshno (2016). In particular, we shall follow Azevedo and Leshno (2016) in
analyzing the continuum model as a supply and demand problem.

Matching with incomplete information In our model, we assume that the colleges have
imperfect (noisy) information about their preferences. Similar assumptions are made in Chade
et al. (2014) and Azevedo and Leshno (2016). There are also works on matching under incomplete

2We assume that quality can be mapped to a mono-dimensional grade and that all colleges have the same ordinal
preferences.

3For the variant of the model commonly called school choice problem, see [Balinski and Sonmez 1999, Abdulkadiroğlu
and Sönmez 2003, Abdulkadiroğlu 2005, Ergin and Sönmez 2006, Yenmez 2013].
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information, studying various models. Rastegari et al. (2013) study matching under partially ordered
preferences, Aziz et al. (2020) assume a known distribution of preference profiles, and in Immorlica
et al. (2020); Liu et al. (2020) additional information can be acquired. Some models, e.g., in Liu
et al. (2014), Kloosterman and Troyan (2020), and Liu (2020), suppose that information is partial
only for one side (colleges or students). Finally, Chakraborty et al. (2010) and Bikhchandani (2017)
show that a matching based on incomplete information can be stable if agents do not know to the
full matching. We do not include incomplete information considerations in our study. In Ashlagi
et al. (2019), it is assumed that colleges’ rankings contain ties, that are broken using a lottery. The
authors then compare the welfare of students in two settings: either one common lottery is used by
all colleges, or all colleges draw an independent lottery. The notion of correlation between colleges’
signals and its influence on students’ welfare is quite similar to the results we provide in this paper,
and the results of both papers point in the same direction, even though the models are quite different.
A recent paper by Arnosti (2022) study a very similar model of tie-breaking, that allows students to
choose the size of their preference list and derive the influence of the tie-breaking rule on students’
welfare depending on the size of their preference list.

Fairness Statistical discrimination in selection problems was first studied by Kleinberg and
Raghavan (2018), followed by Emelianov et al. (2020, 2022) and Garg et al. (2021). They suppose
that candidates have a latent quality, and that the college or company they apply to only has access
to a biased and/or noisy estimator of this quality. We depart from their models by considering
several colleges instead of one—that is, we consider the matching problem instead of the selection
problem. Works on fairness in matching have considered various affirmative action policies, including
upper and lower quotas, to reduce discrimination [Abdulkadiroğlu 2005, Kamada and Kojima 2015,
Delacrétaz et al. 2020, Kamada and Kojima 2022, Krishnaa et al. 2019]. These works, however,
focus on finding stable matchings under distributional constraints representing fairness notions; in
contrast, our work intends to explain discrimination that naturally occurs in stable matchings without
constraints. Chade et al. (2014) study a model with application costs for students but without
group-dependent variance which is at the center of our work. Recently, reducing discrimination in
ranking rather than in the final selection has been an emerging way of pursuing fairness [Celis et al.
2020, Yang et al. 2021, Zehlike et al. 2021]. However, Karni et al. (2021) show that fairness of the
ranking does not imply fairness of the matching. Finally, Monachou and Ashlagi (2019) and Che
et al. (2020) both study discrimination in online markets using ratings based on reviews.4

4For the general question of bias and fairness in algorithms and machine learning, see [Dwork et al. 2012, Hardt
et al. 2016, Zafar et al. 2017, Blum and Stangl 2020, Barocas et al. 2019, Chouldechova and Roth 2020, Finocchiaro
et al. 2021, Kleinberg and Raghavan 2021, Mehrabi et al. 2021].
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1.3 Outline

The remainder of this paper is organized as follows. Section 2 presents the model, the matching
mechanism (deferred acceptance for a continuum of students), and the supply and demand framework
for matching. In Section 3 we first introduce welfare metrics to evaluate different outcomes and
then present our main results. Section 4 treats the special cases of capacity excess and a single
group, thus allowing to build further intuition. Finally, Section 5 concludes with a discussion on the
generality of our findings and future avenues of research. To improve the flow and readability of the
paper, we only include essential elements of the proofs of our results in the body of the paper and
defer longer and more technical details to an appendix.

2 Model and preliminaries

Most models of statistical discrimination consider that students have a latent quality, and that the
college only sees a noisy and biased estimate of this quality.5 They also suppose that the population
is partitioned into groups with different bias and variance of estimation. As a consequence, the
distribution of estimated qualities is different for each group. In a matching context, i.e., with several
colleges, it would also lead to different levels of correlation between the estimate of the same student
by each college: without noise the correlation would be 1, but with very high noise it would tend
to 0. We aim to isolate the effect of this difference of correlation from the effects of variance and
bias. This section defines a model that achieves this goal by equalizing the marginal distributions of
estimations for each group at each college, leaving only a difference in correlation.

2.1 Students and colleges

Let there be two colleges, A and B, which are to be matched with a continuum unit mass of students
S. Colleges cannot admit more than a certain mass of students, their respective capacities are αA

and αB, both in (0, 1]. The students are divided into two groups, denoted G1 and G2, a proportion
γ ∈ [0, 1] of students belonging to G1 and 1 − γ belonging to G2. The group to which a student
s ∈ S belongs is denoted by G(s).

Students have a preference over colleges: among group G1, a proportion βG1 ∈ [0, 1] prefers
college A to college B, the remaining 1− βG1 preferring B, similarly in G2 a proportion βG2 ∈ [0, 1]

prefers A and 1− βG2 prefer B. When student s prefers college A to college B, we write A ≻s B,
and vice versa. All students prefer attending any college rather than remaining unmatched. Pref-
erences are assumed to be strict. Note that these quantities are proportions and not masses; for
instance, the subset of students that are in group G1 and prefer college A is therefore of measure γβG1 .

5see Section 1.2
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Figure 1: Grade distributions for ρ = 0, 0.3, 0.8 and 1.

Colleges preferences over students are based on grades and each college assigns grades according
to a standard normal distribution. If both colleges are able to measure a student’s quality accurately,
they will assign the same grade to them. On the other hand, if one (or both) of the colleges is not
able to assess a student’s quality at all the two respective grades will be uncorrelated. More generally,
given a student, the correlation of the grades they receive from each college are an indication of the
(joint) capacity to evaluate a student’s quality.

Colleges have variable accuracies in evaluating students, depending on whether they belong to
group G1 or group G2. Grades of students from G1 have a correlation of ρG1 , grades of students from
G2 have a correlation of ρG2 . We call this feature of the model differential correlation, linked to the
notion of differential variance studied in Emelianov et al. (2022) and Garg et al. (2021). Formally,
for each student s ∈ S, we assume that their grades at colleges A and B form a vector (W s

A,W
s
B)

drawn randomly following the normal bivariate distribution with mean (0, 0) and covariance matrix(
1 ρG(s)

ρG(s) 1

)
.

The obtained grades thus have a correlation of ρG(s), and the marginals, i.e., the grade distribution
of each college, remain standard normal distributions. Figure 1 displays the distributions obtained
for various values of the correlation. The preference of college C ∈ {A,B} over students is then: C
prefers s ∈ S to s′ ∈ S if and only if W s

C > W s′
C .

From now on, γ, βG1 , βG2 , αA, αB, ρG1 and ρG2 will be referred to as the parameters of a given
college admission problem.

Remark. The choice of the normal bivariate distribution stems from the following observation. In
order to isolate the effect of noise in a matching setting it is critical that the considered noise process
does not lead to bias, that is, does not change the expectation or any marginal of the resulting grade
distribution. For concreteness, consider the model studied by Emelianov et al. (2022) or Garg et al.
(2021) where the score is a sum of a latent quality and a normally distributed noise term. In this
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model, a group whose noise variance is higher would also have an overall higher grade variance, and
thus the students of this group would be overrepresented among the top grades. Our model could
encompass this one, by allowing the covariance matrix’s diagonal terms to differ from one group to
another (since the sum of two normal random variables is normal too). However, in this paper we
choose to only allow the correlation to differ in order to isolate its effect.

We now formally define the notion of mass for a subset of students. The following definitions
may be omitted to understand the model and the results, but are required in their proofs. We
identify S to Θ = R2 × {G1, G2} × {A,B}. We partition Θ into 4 subsets: ΘG,C = {s ∈ Θ : s =

((x, y), G,C), x, y ∈ R} is the subset of students belonging to group G and preferring college C. A
subset I ⊆ Θ is measurable if and only if {(W s

A,W
s
B) : s ∈ I} is for the Borel σ-algebra of R2. We

can partition I into 4 subsets IG,C = I ∩ΘG,C. On each ΘG,C we define a measure ηG,C as follows:
for I ⊆ Θ measurable,

ηG1,A(IG1,A) = γβG1PρG1
((WA,WB) ∈ {(W s

A,W
s
B) : s ∈ IG1,A}),

ηG1,B(IG1,B) = γ(1− βG1)PρG1
((WA,WB) ∈ {(W s

A,W
s
B) : s ∈ IG1,B}),

ηG2,A(IG2,A) = (1− γ)βG2PρG2
((WA,WB) ∈ {(W s

A,W
s
B) : s ∈ IG2,A}),

ηG2,B(IG2,B) = (1− γ)(1− βG2)PρG2
((WA,WB) ∈ {(W s

A,W
s
B) : s ∈ IG2,B}),

(1)

where Pρ is the probability measure associated to the bivariate normal distribution with correlation
ρ. We define over Θ the probability measure η : S → [0, 1] such that for any measurable subset I of
S,

η(I) = ηG1,A(IG1,A) + ηG1,B(IG1,B) + ηG2,A(IG2,A) + ηG2,B(IG2,B). (2)

This definition is consistent with the definition of the parameters, as it verifies η(G1) = γ, η({s ∈
G1 : A ≻s B})/γ = βG1 and η({s ∈ G2 : A ≻s B})/(1− γ) = βG2 .

2.2 Matching mechanism

To define matching in a continuum context, we follow Azevedo and Leshno (2016).

Definition 2.1. A matching is an assignment of students to colleges, described by a mapping
µ : S ∪ {A,B} → P(S) ∪ C ∪ S, with the following properties:

1. for all s ∈ S, µ(s) ∈ {A,B} ∪ {s};

2. for C ∈ {A,B}, µ(C) ⊆ S is measurable and η(µ(C)) ≤ αC;

3. C = µ(s) if and only if s ∈ µ(C);

4. for C ∈ {A,B}, the set {s ∈ S : µ(s) ⪯s C} is open.
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The first three conditions are common to almost all definitions of matching in discrete or contin-
uous models. Condition (1) ensures that a student is either matched to a college or to themselves,
which means that they remain unmatched. Condition (2) ensures that colleges are assigned to a
subset of students that respects the capacity constraint. Condition (3) ensures that the matching is
consistent, i.e., if a student is matched to a college, then this college is also matched to the student.
Condition (4) was introduced by Azevedo and Leshno (2016) and is necessary to ensure there does
not exist several stable matchings that only differ by a set of measure 0.

We next define the notions of blocking and stability.

Definition 2.2 (Blocking). The pair (s,C) blocks a matching µ if s would prefers C to her current
match, and either C has remaining capacity or it admitted a student with a lower score than s.
Formally, if µ(s) ≺s C and either η(µ(C)) < αC or ∃s′ ∈ µ(C) such that W s′

C < W s
C.

Definition 2.3 (Stability). A matching is stable if it is not blocked by any student-college pair.

To produce a stable matching, one can then extend the classic Deferred Acceptance algorithm
from Gale and Shapley (1962) to the continuum model. This algorithm is described in Algorithm 1.

Algorithm 1 Deferred Acceptance Algorithm
First step: All students apply to their favorite college, they are temporarily accepted. If the mass
of students applying to college C is greater than its capacity αC, then C only keeps the αC best

while A positive mass of students are unmatched and have not yet been rejected from every
college do

Each student who has been rejected at the previous step proposes to her preferred college
among those which have not rejected her yet

Each college C keeps the best αC mass of students among those it had temporarily accepted
and those who just applied, and rejects the others
end while

End: If the mass of students that are either matched or rejected from every college is 1, the
algorithm stops. However it could happen that it takes an infinite number of steps to converge.

If the algorithm stops, the matching it outputs is stable; Abdulkadiroğlu et al. (2015) show that
even when the number of steps is infinite, the algorithm converges to a stable matching.

2.3 Supply and Demand

In a model with infinitely many students, a matching problem can be alternatively viewed as a
supply and demand setup, where a stable matching is a Walrasian equilibrium Azevedo and Leshno
(2016).

9



Definition 2.4 (Cutoffs and demand). If µ is a stable matching, define the cutoffs at A and B as
the quantities PA := inf{W s

A : µ(s) = A} and PB := inf{W s
B : µ(s) = B}. The cutoff of a college

represents the grade above which a student who applies gets admitted.
Given PA and PB, we say that student s’ demand Ds(PA, PB) is the college they prefer among
those where they pass the cutoff, or themselves if they does not pass the cutoff at any college.
The aggregate demand at college C ∈ {A,B} is the mass of students demanding it: DC(PA, PB) =

η({s : Ds(PA, PB) = C}.

In our model, the “supply” associated to this demand is simply the capacity of each college. Now
consider the equilibria of this problem:

Definition 2.5 (Market clearing). The cutoffs are market clearing if for C ∈ {A,B}, DC(PA, PB) ≤
αC, with equality if PC ̸= −∞.

A cutoff vector is therefore market clearing if it induces a demand that is equal to colleges
capacities when they reach their capacity constraint, and lower for colleges that are not full. When
PA, PB ̸= −∞, the system of equations{

DA(PA, PB) = αA

DB(PA, PB) = αB
(3)

is called the market clearing equations, and the cutoffs PA and PB can be computed by solving the
system.

The reason to introduce this notion is that there is a one to one correspondence between stable
matchings and market clearing cutoffs.

Lemma 2.6 ((Azevedo and Leshno, 2016, Lemma 1)).

1. If µ is a stable matching, the associated cutoffs PA ad PB are market clearing;

2. If PA ad PB are market clearing cutoffs, we define µ such that for all s ∈ S, µ(s) = Ds(PA, PB).
Then µ is stable.

We can therefore study stable matchings by studying the cutoffs of each college, which will be
critical to prove our results. The theorem that follows will be of great use:

Theorem 2.7 (Special case of (Azevedo and Leshno, 2016, Theorem 1)). For any college admission
problem (defined by its parameters γ, βG1 , βG2 , αA, αB, ρG2 and ρG2), there exists a unique stable
matching.

The original theorem specifies conditions on the distribution of grades, such as being continuous
and having full support, which our model verifies. Unlike the finite case where several stable
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matchings typically coexist, in the continuum model the stable matching is unique and therefore no
considerations regarding selection among the set of stable matchings are necessary. From now on, we
will therefore consider the cutoffs PA and PB as the ones uniquely determined by the parameters of
the problem and the market clearing equation. We shall say “student s goes to college C” to mean
that they are matched in the unique stable matching.

Finally, Azevedo and Leshno (2016, Theorem 2) show that the stable matching varies continuously
in the parameters of the problem. Furthermore, they prove that the set of stable matchings from a
college admission problem with a finite number of students converges to the unique stable matching
of the continuum problem with same parameters. This tends to indicate that our results are still
relevant when the number of students is finite but large.

3 Analysis of the Model

This section contains our main results on the impact of noise—and thus correlation between grades—
on the quality of the (unique) stable matching.

3.1 Welfare metrics

To measure students’ satisfaction, we consider an individual’s likelihood of getting their first choice.

Definition 3.1 (Welfare metrics). For correlation levels ρG1 and ρG2 associated to groups G1

and G2, we define V G1,A
1 (ρG1 , ρG2), V

G1,B
1 (ρG1 , ρG2), V

G2,A
1 (ρG1 , ρG2) and V G2,B

1 (ρG1 , ρG2) as the
proportion of students from each group-preference profile who get their first choice. Equivalently, it
is the probability of a student to get their first choice conditionally on their profile. Formally,

V G1,A
1 (ρG1 , ρG2) :=

1

γβG1

η({s ∈ G1 : A ≻s B, µ(s) = A}),

V G1,B
1 (ρG1 , ρG2) :=

1

γ(1− βG1)
η({s ∈ G1 : B ≻s A, µ(s) = B}),

V G2,A
1 (ρG1 , ρG2) :=

1

(1− γ)βG2

η({s ∈ G2 : A ≻s B, µ(s) = A}),

V G2,B
1 (ρG1 , ρG2) :=

1

(1− γ)(1− βG2)
η({s ∈ G2 : B ≻s A, µ(s) = B}).

Consider V G1,A
1 (ρG1 , ρG2); it is the probability of a student from group G1 who prefers A to B to

get their first choice, i.e., A. We also define the following aggregated quantities:

V G1
1 (ρG1 , ρG2) := βG1V

G1,A
1 (ρG1 , ρG2) + (1− βG1)V

G1,B
1 ,

V G2
1 (ρG1 , ρG2) := βG2V

G1,A
1 (ρG1 , ρG2) + (1− βG2)V

G1,B
1 ,
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which represent the probability of a student getting their first choice conditionally on belonging to
group G1 or G2 respectively.

We define similarly the proportions of students getting their second choice or staying unmatched,
using respectively V2 and V∅ instead of V1. For instance, V G1,A

2 (ρG1 , ρG2) is the probability of a
student from group G1 who prefers college A to get their second choice, i.e., B. We now provide
expressions for these metrics as functions of PA and PB.

Lemma 3.2. Given the cutoffs PA, PB, we can compute the quantities V1, V2 and V∅ as follows:
Let C ∈ {A,B} be a college and let C be the other college, let G ∈ {G1, G2}. Then:

V G,C
1 (ρG1 , ρG2) = PρG(WC ≥ PC) =

∫ ∞

PC

ϕ(x) dx, (4)

V G,C
2 (ρG1 , ρG2) = PρG(WC < PC,WC ≥ PC) =

∫ PC

−∞

∫ ∞

PC

ϕ(x, y, ρG) dxdy, (5)

V G,C
∅ (ρG1 , ρG2) = PρG(WC < PC,WC < PC) =

∫ PC

−∞

∫ PC

−∞
ϕ(x, y, ρG) dxdy, (6)

where ϕ(x) is the probability density function of the standard normal distribution and ϕ(x, y, ρ) is
the one of the standard normal bivariate distribution with correlation ρ.

Sketch of Proof. The proof mainly consists in writing the metrics V1, V2 and V∅ in terms of the
measure η(·) of an appropriate set of students, and identifying it with the distribution of the
corresponding set of grades. The details are provided in Appendix A.1. ■

This lemma will allow us to compare chances of admission of different types of students, and
derive comparative statics regarding the differential correlation.

3.2 Impact of differential correlation

Recall that groups are differentiated by the correlation of their grades between the two colleges. We
shall next consider the chances of admission dependent on a student’s group.

Theorem 3.3. The probability that a student gets their first choice is independent from the group
they belong to. Formally, for any γ, βG1, βG2, αA, αB, ρG1, ρG2 ∈ [0, 1], V G1,A

1 (ρG1 , ρG2) =

V G2,A
1 (ρG1 , ρG2) and V G1,B

1 (ρG1 , ρG2) = V G2,B
1 (ρG1 , ρG2). If βG1 = βG2, then V G1

1 (ρG1 , ρG2) =

V G2
1 (ρG1 , ρG2).

Proof. The result follows directly by applying (4) from Lemma 3.2 to both groups, and by observing
that the integral in (4) does not depend on the correlation coefficients and hence does not depend
on the group in our model. ■
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This result, albeit quite simple, is an unexpected property of the model. A student, given the
college they prefer, have the same chances of getting admitted there whatever group they belong to.
Notice that V G1

1 (ρG1 , ρG2) might not be equal to V G2
1 (ρG1 , ρG2), but the difference would only be

due to different proportions of students preferring each college, not to the differential correlation.

From now and until the end of Section 3, we assume αA + αB < 1. This condition is further
discussed in Section 4.1.

In order to further analyze the model, we will make use of the following result by Sibuya (1960):

Lemma 3.4 (Appendix of Sibuya (1960)). Let Φ(x, y, ρ) = Pρ(WA ≤ x,WB ≤ y) the cumulative
distribution function of the normal bivariate distribution, and ϕ(x, y, ρ) its probability density. Then
the partial derivative of Φ(x, y, ρ) with respect to ρ is ϕ(x, y, ρ):

∂Φ(x, y, ρ)

∂ρ
= ϕ(x, y, ρ). (7)

In particular, Φ(x, y, ρ) is strictly increasing in ρ for any x, y ∈ R. Notice that if x = ±∞ or
y = ±∞, Φ becomes constant in ρ rather than increasing.

This lemma allows us to derive qualitative results about the role of differential correlation and
the difference in the outcomes of students depending on their group. Next, consider the difference
between groups regarding students getting their second choice or remaining unmatched.

Theorem 3.5. The proportion of students getting their second choice and remaining unmatched
is not the same across both groups: students from the group with higher correlation coefficient
have a lower probability of getting their second choice and a higher probability of staying unmatched.
Formally, if ρG1 < ρG2 , then V G1,A

2 > V G2,A
2 , V G1,B

2 > V G2,B
2 , V G1,A

∅ < V G2,A
∅ and V G1,B

∅ < V G2,B
∅ .

Proof. Suppose, without loss of generality, that ρG1 < ρG2 . Then, by using Lemma 3.2 to write the
quantities V2 we have

V G1,A
2 = PρG1

(WA < PA,WB ≥ PB) (8)

= PρG1
(WA < PA)− PρG1

(WA < PA,WB < PB)

= PρG1
(WA < PA)− Φ(PA, PB, ρG1)

= PρG2
(WA < PA)− Φ(PA, PB, ρG1)

≥ PρG2
(WA < PA)− Φ(PA, PB, ρG2)

= V G2,A
2 ,

and the same holds for V G1,B
2 and V G2,B

2 . The inequality at the second-to-last line is a direct
application of Lemma 3.4 and it is strict if and only if PA and PB are not infinite. PA = +∞ would

13



happen if and only if αA = 0, which we excluded in the definition of the model (because it would not
be a matching problem anymore); and PA = −∞ would mean that college A accepts all students
applying to it, which we also ruled out by assuming αA + αB < 1. The same arguments hold for PB.
Hence the inequality is strict.

The inequalities between the V∅ quantities are direct consequences of Φ being increasing in ρ by
using the formulation in (6) from Lemma 3.4. ■

This result shows that while the chance of getting their first choice is the same for students of
both groups, it differs for the second choice and staying unmatched. Specifically, the students from
the group with higher correlation have lower chances of getting their second choice and hence higher
chances of not getting matched to any college at all. While this may seem surprising at first since
a higher correlation is associated with a lower noise in the quality estimation, it is in fact quite
intuitive: as the marginals are the same, there are as many good students in each group, but a
student with high correlation that has been rejected from their first choice has a high chance of also
being rejected from the second one. On the other hand, the fact that a student with low correlation
has been rejected from her first choice does not give a lot of information on her chances at the other
college. A possible interpretation of this result is that differential correlation levels will not hurt
good students, but will hurt intermediate students who have high grade correlation and might have
been admitted to their second choice had they been in the other group.

3.3 Comparative statics

With the understanding of the effect of differential correlation on students of each group, we now
turn to analyze how noise—that is correlation—influences the overall quality of the matching. We
first consider how the probability of getting one’s first choice varies when changing the correlation
for one group (recall that this probability is the same for both groups).

Theorem 3.6. The probability that a student of either group gets their first choice is increasing in
both ρG1 and ρG2. Formally, let γ, βG1 , βG2 ∈ [0, 1], αA, αB ∈ (0, 1) such that αA + αB < 1, and
ρG1 , ρG2 ∈ [0, 1). Then for C ∈ {A,B}, G ∈ {G1, G2},

∂V G,C
1

∂ρG1

> 0 and
∂V G,C

1

∂ρG2

> 0

Sketch of Proof. The proof works in multiple steps. First, we rewrite the market clearing equation
(3) using Lemma 3.2. We obtain a system of two equations, where the variables are the cutoffs
PA and PB, parameterized by the correlation coefficients. We then apply the implicit function
theorem to a mapping whose roots are the solution of this system of equations. We first check that
its Jacobian has a positive determinant, and then compute the partial derivatives. To characterize
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the sign of the derivatives with respect to ρ, we use Lemma 3.4. Through analytical derivations, we
then arrive at the conclusion of Theorem 3.6. The details are provided in Appendix A.2. ■

Note that the formal statement of the positivity of partial derivatives in Theorem 3.6 excludes
the cases where ρG1 = 1 or ρG2 = 1. That is because for these values some demand functions are not
differentiable. As the first choice functions are continuous, however, they are increasing nonetheless
on the whole interval [0, 1].

Theorem 3.6 implies that, if the estimation noise increases (i.e., the correlation decreases) for the
grades of one of the groups, then both groups suffer the same decrease in first-choice admittance.
By contrast, decreasing the noise (i.e., increasing the correlation) for one group leads to an increase
in first-choice admittance for all groups. This means that both groups may benefit (at least as far
as the probability of first choice assignment is concerned) from colleges reducing the estimation
noise on either group. In particular, if there is a majority group with low estimation noise (i.e., high
correlation) and a minority group with high estimation noise (i.e., low correlation), then also the
majority group will benefit from colleges reducing the estimation noise on the minority group.

Consider the increase of the proportion of students getting their first choice when the correlation
of either group increases. This maps to a decrease of the cutoffs of both colleges. How do both
cutoffs decrease, while the colleges capacities remain the same? We offer a geometric intuition:
consider the real plane divided into 4 areas by the lines x = PA and y = PB. Students in the
upper-right quadrant get their favorite college. Students in upper-left quadrant who prefer B and
students in the lower-right quadrant preferring A also get their first choice. However, students from
these quadrants who have the opposite preference get their second choice. Finally, students from the
lower-left quadrant are rejected from both colleges. When the correlation increases, students grade
vectors accumulate close to the diagonal, and therefore in the lower-left and upper-right quadrants,
while the other two quadrants are increasingly empty. This phenomenon is illustrated in Figure 2. If
the cutoffs did not change, then the amount of unmatched students would increase, which is not
feasible as the capacities are constant. Therefore, at least one of the cutoffs needs to decrease to
compensate this (in fact, Theorem 3.6 implies that both are decreasing). As a consequence, some
students who would previously get their second choice now get their first one.

Theoreom 3.6 allows us to derive the following corollary:

Corollary 3.7. The proportion of students from a given group remaining unmatched is increasing
in its own correlation level and decreasing in the correlation level of the other group:
for C ∈ {A,B}, G ∈ {G1, G2},

∂V G,C
∅
∂ρG

> 0 and
∂V G,C

∅
∂ρG

< 0,
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Figure 2: Illustration of the proportions of students in each quadrant for different correlations. The
red lines correspond to a vertical line at PA and a horizontal line at PB. On the left ρ = 0.3, on the
right ρ = 0.8. We can see that the amount of points in the bottom-left quadrant increases with the
correlation.

where G is the other group.

Sketch of Proof. The proof reuses some of the partial derivatives with respect to the correlation
coefficient computed in the proof of Thereom 3.6 and relies and the mass conservation to derive the
sign of the partial derivatives of the V∅ terms. The details are provided in Appendix A.3. ■

This corollary is enlightening to understand what happens when the correlation of a given group
varies unilaterally: while it benefits good students from both groups equally, it hurts the intermediate
students from this group to the benefit of those from the other group.

4 Special Cases

In our model, the exact solutions of the market clearing equation, and thus the metrics, are in general
intractable because the probability density function of the normal distribution has no primitive. In
this section, we focus on some notable special cases for which these calculations are nonetheless
possible and which thus allow us to gain further intuition for the mechanisms at work.

4.1 Capacity excess

In the previous section we assumed that the total capacity of colleges was smaller than the number
of students, i.e., αA + αB < 1. The following proposition shows that if the total capacity exceeds
the number of students, the noise no longer has any influence on the matching.
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Proposition 4.1. If there is sufficient capacity to admit all students, i.e., αA + αB ≥ 1, then
correlation has no effect on the matching, and students from both groups have the exact same outcome
distributions. In other words, for k ∈ {1, 2}, C ∈ {A,B}, we have V G1,C

k = V G2,C
k . Moreover, for

G ∈ {G1, G2}, C ∈ {A,B}, V G,C
∅ = 0. Finally, these quantities are constant in ρG1 and ρG2.

Sketch of Proof. The relations between the V1 are from Theorem 3.3 (which did not assume αA+αB <

1). To prove the relations between the V2, we write them as in Lemma 3.2 and use the fact that
αA + αB ≥ 1 implies that at least one of the cutoff PA or PB is −∞. The details are provided in
Appendix A.4. ■

In fact, when αA + αB ≥ 1, it is possible to compute explicitly the proportions of students
getting their first or second choice by analyzing Algorithm 1. We consider three (partitioning) cases:

(1) There is not enough room in A for all students preferring it to B, i.e., γβG1 + (1− γ)βG2 ≥ αA.
In this case, there is necessarily enough room in B for all students preferring it, since αA + αB ≥ 1.
Therefore, following the steps of Algorithm 1, we find:

(i) At step one, γβG1 + (1 − γ)βG2 students preferring A apply there and αA are temporarily
admitted, and γ(1 − βG1) + (1 − γ)(1 − βG1) students preferring B apply there and are all
temporarily admitted.

(ii) At step two, the γβG1 +(1−γ)βG2−αA students rejected from A apply to B, and are admitted
since there is enough room for them (considering the students previously admitted).

This results in the following chances of a student to get their first or second choice:

V G1,A
1 = V G2,A

1 =
αA

γβG1 + (1− γ)βG2

, V G1,B
1 = V G2,B

1 = 1, (9)

V G1,A
2 = V G2,A

2 = 1− αA

γβG1 + (1− γ)βG2

, V G1,B
2 = V G2,B

2 = 0. (10)

Finally, as every student is admitted somewhere, V G,C
∅ = 0 for G ∈ {G1, G2} and C ∈ {A,B}.

(2) There is not enough room in B for all students preferring it to A, i.e., γ(1−βG1)+(1−γ)(1−βG1) ≥
αB This implies that γβG1 + (1− γ)βG2 ≤ αA and, by symmetry, we obtain the same results as in
(9) and (10) with A and B exchanging roles, βG1 becoming 1− βG1 and βG2 becoming 1− βG2 .

(3) There is enough room in each college to admit all students who prefer attending it, i.e., γβG1 +

(1− γ)βG2 ≤ αA and γ(1− βG1) + (1− γ)(1− βG1) ≤ αB. It follows that everyone gets their first
choice: for G ∈ {G1, G2} and C ∈ {A,B},

V G,C
1 = 1, (11)

V G,C
2 = V G,C

∅ = 0. (12)
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Note that Equations (9) to (12) are consistent with Proposition 4.1.

4.2 One group

Suppose now that there is only one group of students (i.e., γ = 1) and therefore all students
have the same correlation coefficient ρ. In this section we consider the two boundary cases, where
the colleges are either able to perfectly assess qualities—the correlation is 1—or are not able to
assess qualities at all—the correlation is 0. These cases will allow us to understand the match-
ing’s dependencies on the capacities and preferences of students. We assume that there is no
excess of capacity, i.e., αA + αB < 1. Since there is only one group, there is only one parameter β
for the proportion of students preferring A, and the metrics V1, V2 and V∅ do not depend on the group.

4.2.1 Full correlation

We first study the case ρ = 1, i.e., students have the same grade in both colleges.

Proposition 4.2. When ρ = 1, we have:

(i) If β ≤ αA
αA+αB

,

V A
1 = αA + αB, V B

1 =
αB

1− β
,

V A
2 = 0, V B

2 = αA − β

1− β
αB,

V A
∅ = 1− αA − αB, V B

∅ = 1− αA − αB;

(ii) If β ≥ αA
αA+αB

V A
1 =

αA

β
, V B

1 = αA + αB,

V A
2 = αB − 1− β

β
αA, V B

2 = 0

V A
∅ = 1− αA − αB, V B

∅ = 1− αA − αB.

Sketch of Proof. The proof amounts to solving the market clearing equation, the details are provided
in Appendix A.5. ■

To illustrate this result, Figure 3 shows V1 for particular values of the parameters. For the top
row, β = 0.3 and V A

1 and V B
1 are computed for αA = αB varying from 0 to 1. Unsurprisingly,

the chances of getting one’s first choice is increasing in the capacity. We can notice a change of
expression of the function when the capacity becomes excessive, and on the right plot we also see a
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change happening when αB becomes greater than 1− β, as predicted in Proposition 4.1. For the
bottom row, αA = αB := α = 0.25 and we computed V A

1 and V B
1 for β varying from 0 to 1. We

observe that students who prefer the least popular college have higher chances of getting their first
choice.

(a) V A
1 and V A

2 as a function of α (b) V B
1 and V B

2 as a function of α

(c) V A
1 and V A

2 as a function of β (d) V B
1 and V B

2 as a function of β

Figure 3: Proportion of students getting their first and second choice with ρ = 1, and αA = αB := α.

4.2.2 No correlation

Now, consider the case ρ = 0, i.e., the grades a student gets at A and B are independent random
variables.

Proposition 4.3. When ρ = 0, we have:

V A
1 = 1− 1− β

2β
(∆− ζ), V B

1 = 1− 1

2
(∆ + ζ),

V A
2 =

1− β

2β
(∆− ζ)− 1− β

4β
(∆2 − ζ2), V B

2 =
1

2
(∆ + ζ)− 1− β

4β
(∆2 − ζ2),

V A
∅ =

1− β

4β
(∆2 − ζ2), V B

∅ =
1− β

4β
(∆2 − ζ2);

with ζ = 1−2β
1−β + β

1−βαA − αB and ∆ =
√
ζ2 + 4β

1−β (1− αA − αB)
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(a) V A
1 and V A

2 as a function of α (b) V B
1 and V B

2 as a function of α

(c) V A
1 and V A

2 as a function of β (d) V B
1 and V B

2 as a function of β

Figure 4: Proportion of students getting their first and second choice with ρ = 0, and αA = αB := α.

Sketch of Proof. Once again, the proof amounts to solving the market clearing equation, the details
are provided in Appendix A.6. ■

We illustrate this result in Figure 4 by plotting the same quantities as in Figure 3, but with
ρ = 0 this time. A quick comparison between these plots and those displayed in Figure 3 shows
that the first choice curves of Figure 4 are always below those of Figure 3. This was expected, as
Theorem 3.6 states that V1 is increasing in the correlation, for any values of the parameters. As a
consequence, the proportion of students getting their first choice is always higher for ρ = 1 than for
ρ = 0. For intermediate values of ρ, the curves would be contained between the ones for ρ = 0 and
ρ = 1. Computing these two extreme cases therefore provides a good intuition of the dynamics even
for intermediate values of the correlation.

5 Conclusion

In this work, we introduced a model for the college admission problem that accounts for statistical
discrimination, i.e., when colleges’ grading accuracy differs across different groups of the population.
Statistical discrimination results in noisy estimates of students’ qualities, and, in particular, may lead
to varying assessments across colleges. Our model isolates the effect of this differential correlation
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by equalizing the marginal grade distributions of each group at each college. We can therefore study
the difference in outcomes for students based on their group caused by differential correlation.

We first showed that students of all groups have the same probability of getting their first choice
and this probability is decreasing as quality estimates become noisier. This implies, that ‘good’
students—i.e., students who should have gotten their first choice—from both groups are equally
suffering from noisy quality estimates. Moreover, we show that students from the group with high
correlation have a lower probability of getting their second choice and a higher probability of being
rejected from both colleges compared to the other group. That is, students from the group whose true
qualities are more accurately estimated by colleges in fact suffer more from differential correlation.
Overall, differential correlation does not induce statistical discrimination for good students, but does
for all the others. Thus, perfect accuracy in estimating students’ qualities would be optimal for all
students, and a drop in accuracy for one group not only hurts both groups, but hurts the other
group even more.

Several assumptions made for clarity can be relaxed, while preserving results qualitatively.
First, we chose to consider only two colleges, as it is sufficient to exhibit the effects of differential
correlation while keeping the calculations reasonably simple, but the proof techniques allow for
straightforward–albeit cumbersome–extensions. Second, we assumed that the marginals, i.e., the
grade distribution of each college, are normal distributions. As the matching procedure is solely
based on ordinal comparisons, this assumption is not restrictive and other distributions could be
used without altering the results. Third, we also assumed the marginals to be the same at each
college and for each group. As long as they are equal for all groups, the marginals being different for
each college would not change anything since the ranking would stay the same. If we allow marginals
to be different across groups, then the effects of differential correlation we described in this paper
would be mixed with the effects of differential bias and variance studied by Emelianov et al. (2022)
and Garg et al. (2021). The resulting model would be a very general framework to study statistical
discrimination, encompassing models from the aforementioned authors as well as ours.

Our work is, to our knowledge, the first to consider differential correlation as a process of
statistical discrimination in matching. Several avenues for future research present themselves, both
theoretical and applied. We have assumed that students have no influence on the capability of a
college to evaluate their quality. A natural extension would be to allow student’s to invest in accurate
assessment, e.g., via acquiring certifications or doing in-person interviews. From an empirical point of
view one key testable prediction of our model is that it is in fact the group which is more accurately
assessed that suffers more from noise than the one subjected to the noise. This finding appears
counter-intuitive and merits study.
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A Omitted proofs

A.1 Proof of Lemma 3.2

Proof of Lemma 3.2. Consider student s ∈ G1 who prefers A to B. By Lemma 2.6, s is admitted to
A if and only if s ∈ DA(PA, PB), i.e., if and only if their grade at A is greater than PA. Then by
definition of η,

V G1,A
1 (ρG1 , ρG2) =

η({s ∈ G1 : A ≻s B, µ(s) = A})
γβG1

= PρG1
((WA,WB) ∈ [PA,+∞)× R).

The same reasoning applies to all quantities of type V1, which proves (4).
The same student s is admitted to B if and only if s ∈ DB(PA, PB), i.e., if and only if W s

B ≥ PB

and W s
A < PA. Then we have

V G1,A
2 (ρG1 , ρG2) =

η({s ∈ G1 : A ≻s B, µ(s) = B})
γβG1

= PρG1
((WA,WB) ∈ (−∞, PA)× [PB,+∞)).
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The same reasoning applies to all quantities of type V2, which proves (5).
Students s remains unmatched if and only if W s

A < PA and W s
B < PB. Then we have

V G1,A
∅ (ρG1 , ρG2) =

η({s ∈ G1 : A ≻s B, µ(s) = s})
γβG1

= PρG1
((WA,WB) ∈ (−∞, PA)× (−∞, PB)).

which proves (6). ■

A.2 Proof of Theorem 3.6

Proof of theorem 3.6. Let γ, βG1 , βG2 ∈ [0, 1], αA, αB ∈ (0, 1) such that αA+αB < 1, and ρG1 , ρG2 ∈
[0, 1). Let PA, PB ∈ R be the cutoffs of colleges A and B.

By definition of the quantities V1 and V2, the market clearing equation (3) can be written as{
γβG1V

G1,A
1 + γ(1− βG1)V

G1,B
2 + (1− γ)βG2V

G2,A
1 + (1− γ)(1− βG2)V

G2,B
2 = αA,

γβG1V
G1,A
2 + γ(1− βG1)V

G1,B
1 + (1− γ)βG2V

G2,A
2 + (1− γ)(1− βG2)V

G2,B
1 = αB.

Then, using Lemma 3.2, we can rewrite is as
(γβG1 + (1− γ)βG2)P(WA ≥ PA) + γ(1− βG1)PρG1

(WA ≥ PA,WB < PB)

+(1− γ)(1− βG2)PρG2
(WA ≥ PA,WB < PB) = αA,

γβG1PρG1
(WA < PA,WB ≥ PB) + (1− γ)βG2PρG2

(WA < PA,WB ≥ PB)

+(γ(1− βG1) + (1− γ)(1− βG2))P(WB ≥ PB) = αB,

which is finally equivalent to

(γβG1 + (1− γ)βG2)

∫ ∞

PA

ϕ(x) dx+ γ(1− βG1)

∫ ∞

PA

∫ PB

−∞
ϕ(x, y, ρG1) dxdy

+(1− γ)(1− βG2)

∫ ∞

PA

∫ PB

−∞
ϕ(x, y, ρG2) dxdy = αA,

γβG1

∫ PA

−∞

∫ ∞

PB

ϕ(x, y, ρG1) dxdy + (1− γ)βG2

∫ PA

−∞

∫ ∞

PB

ϕ(x, y, ρG2) dxdy

+(γ(1− βG1) + (1− γ)(1− βG2))

∫ ∞

PB

ϕ(x) dx = αB.

(13)

We fix ρG2 , and we want to study how the solution (PA, PB) of the above equation vary
as a function of ρG1 . Let us define f : R2 × [0, 1) → R2, (PA, PB, ρG1) 7→ (DA(PA, PB) −
αA, DB(PA, PB) − αB). (We will denote by f1 and f2 its two components.) Then for each
ρG1 ∈ [0, 1), (PA, PB) is the solution of the equation f(PA, PB, ρG1) = 0R2 . In order to show that
PA and PB are decreasing in ρG1 , we apply the implicit function theorem. Let PA, PB ∈ R and
ρG1 ∈ [0, 1) such that f(PA, PB, ρG1) = 0. Function f is of class C1. We first verify that the partial
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Jacobian Jf,(PA,PB)(PA, PB, ρG1) is invertible, where

Jf,(PA,PB)(PA, PB, ρG1) =


∂f1
∂PA

∂f1
∂PB

∂f2
∂PA

∂f2
∂PB

 . (14)

To show that the determinant ∂f1
∂PA

∂f2
∂PB

− ∂f1
∂PB

∂f2
∂PA

̸= 0, we will show that it is in fact (strictly)
positive. From (13), it is clear that f1 is decreasing in PA and increasing in PB, and that f2 is
increasing in PA and decreasing in PB. Therefore, to prove that ∂f1

∂PA
∂f2
∂PB

− ∂f1
∂PB

∂f2
∂PA

> 0, we only

need to prove that
∣∣∣ ∂f1∂PA

∣∣∣ > ∂f2
∂PA

and
∣∣∣ ∂f2∂PB

∣∣∣ > ∂f1
∂PB

.
By symmetry, we will only prove the first one. We can compute each term separately:

∂f1
∂PA

=(γβG1 + (1− γ)βG2)
∂ P(WA ≥ PA)

∂PA
+ γ(1− βG1)

∂ PρG1
(WA ≥ PA,WB < PB)

∂PA

+ (1− γ)(1− βG2)
∂ PρG2

(WA ≥ PA,WB < PB)

∂PA
,

∂f2
∂PA

=γβG1

∂ PρG1
(WA < PA,WB ≥ PB)

∂PA
+ (1− γ)βG2

∂ PρG2
(WA < PA,WB ≥ PB)

∂PA
.

All terms of f1 are decreasing in PA and all terms of f2 are increasing in PA, therefore we can
proceed term by term:∣∣∣∣γβG1

∂ P(WA ≥ PA)

∂PA

∣∣∣∣ = γβG1

∂ P(WA < PA)

∂PA
,

= γβG1

(
∂ PρG1

(WA < PA,WB < PB)

∂PA
+
∂ P(WA < PA,WB ≥ PB)

∂PA

)
,

(15)

> γβG1

∂ PρG1
(WA < PA,WB ≥ PB)

∂PA
.

The same reasoning, when replacing ρG1 by ρG2 in the (15) shows that∣∣∣∣(1− γ)βG2

∂ PρG2
(WA ≥ PA)

∂PA

∣∣∣∣ > (1− γ)βG2

∂ PρG2
(WA < PA,WB ≥ PB)

∂PA
.

We conclude that
∣∣∣ ∂f1∂PA

∣∣∣ > ∂f2
∂PA

, and similarly
∣∣∣ ∂f2∂PB

∣∣∣ > ∂f1
∂PB

. Therefore the Jacobian in (14) has
positive determinant and is invertible.

By the implicit function theorem, there exists a neighborhood U of (PA, PB), a neighborhood V
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of ρG1 , and a function ψ : V → U such that for all (x, y) ∈ R2, ρ ∈ [0, 1),

( (x, y, ρ) ∈ U × V and f(x, y, ρ) = 0 ) ⇔ ( ρ ∈ V and (x, y) = ψ(ρ) ).

In particular, (PA, PB) = ψ(ρG1), and we can compute the derivative of ψ:

Jψ(ρG1) = −Jf,(PA,PB)(PA, PB, ρG1)
−1 Jf,ρG1

(PA, PB, ρG1),

=
−1

∂f1
∂PA

∂f2
∂PB

− ∂f1
∂PB

∂f2
∂PA


∂f2
∂PB

− ∂f1
∂PB

− ∂f2
∂PA

∂f1
∂PA




∂f1
∂ρG1

∂f2
∂ρG1

 ,

=
−1

∂f1
∂PA

∂f2
∂PB

− ∂f1
∂PB

∂f2
∂PA


∂f2
∂PB

∂f1
∂ρG1

− ∂f1
∂PB

∂f2
∂ρG1

− ∂f2
∂PA

∂f1
∂ρG1

+ ∂f1
∂PA

∂f2
∂ρG1

 . (16)

We only need to know the sign of each term to conclude about the variations of ψ. We already know
the sign of the derivatives in PA and PB, so we one need those in ρG1 . The only term in f1 that
depends on ρG1 is γ(1− βG1)PρG1

(WA ≥ PA,WB < PB). Therefore,

∂f1
∂ ρG1

= γ(1− βG1)
∂ PρG1

(WA ≥ PA,WB < PB)

∂ρG1

= γ(1− βG1)

(
∂ P(WB < PB)

∂ρG1

−
∂ PρG1

(WA < PA,WB < PB)

∂ρG1

)
= − γ(1− βG1)

∂ Φ(PA, PB, ρ)

∂ρG1

.

and ∂f1
∂ρG1

< 0 by Lemma 3.4. By the same argument, ∂f2
∂ρG1

is also negative. (Note that here the
implicit functions theorem requires that we compute the partial derivatives of f as if PA and PB

were not functions of ρG1 .)

If we replace each term of the last line of (16) by its sign, we get

− 1

+

(
(−×−) − (+×−)

− (+×−) + (−×−)

)
=

(
−
−

)
.

We conclude that ψ and therefore PA and PB are decreasing in ρG1 , and finally:

∂V G1,A
1

∂ρG1

,
∂V G1,B

1

∂ρG1

,
∂V G2,A

1

∂ρG1

,
∂V G2,B

1

∂ρG1

> 0.
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The problem being symmetric between ρG1 and ρG2 , we also conclude that

∂V G1,A
1

∂ρG2

,
∂V G1,B

1

∂ρG2

,
∂V G2,A

1

∂ρG2

,
∂V G2,B

1

∂ρG2

> 0,

which concludes the proof of the theorem. ■

A.3 Proof of Corollary 3.7

Proof of corollary 3.7. We showed in the proof of Theorem 3.6 that PA and PB are decreasing in
both ρG1 and ρG2 . By using this, we have:

∂V G2,A
∅
∂ρG1

=
∂V G2,B

∅
∂ρG1

=
∂ PρG2

(WA < PA,WB < PB)

∂ρG1

< 0.

Since the total capacity (of the two colleges) is constant, the mass of unmatched student must
also be constant. Therefore, we have

γβG1V
G1,A
∅ + γ(1− βG1)V

G1,B
∅ + (1− γ)βG2V

G2,A
∅ + (1− γ)(1− βG1)V

G2,B
∅ = 1− αA − αB.

Rearranging the terms gives

γβG1

∂V G1,A
∅
∂ρG1

+ γ(1− βG1)
∂V G1,B

∅
∂ρG1

= −((1− γ)βG2

∂V G2,A
∅
∂ρG1

+ (1− γ)(1− βG1),
∂V G2,B

∅
∂ρG1

).

> 0

Since V G1,A
∅ = V G1,B

∅ , we conclude that both
∂V

G1,A
∅
∂ρG1

and
∂V

G1,B
∅
∂ρG1

are positive.

The same argument shows that
∂V

G1,A
∅
∂ρG2

=
∂V

G1,B
∅
∂ρG2

< 0 and
∂V

G1,A
∅
∂ρG1

=
∂V

G1,B
∅
∂ρG1

> 0, which concludes
the proof. ■

A.4 Proof of Proposition 4.1

Proof of Proposition 4.1. The relations between the V1 are from Theorem 3.3. If αA +αB ≥ 1, then
all students are admitted to some college, therefore either PA = −∞ or PB = −∞. Let us suppose
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it is PA. Then we have

V G1,A
2 (ρG1 , ρG2) = PρG1

(WA < −∞,WB ≥ PB),

= 0,

= PρG2
(WA < −∞,WB ≥ PB),

= V G1,A
2 (ρG1 , ρG2),

and

V G1,B
2 (ρG1 , ρG2) = PρG1

(WA ≥ −∞,WB < PB),

= PρG1
(WB < PB),

= PρG2
(WB < PB),

= V G2,B
2 (ρG1 , ρG2).

Since every student is matched, all the V∅ are 0. We assumed PA = −∞, if it is PB instead that is
−∞ we obtain the same result as the problem is symmetric in A and B. Finally, all these quantities
are constant in ρG1 and ρG2 : the only ones that are non-zero are of the type Pρ(WC < PC) and
therefore constant in the correlation. ■

A.5 Proof of Proposition 4.2

Proof of Proposition 4.2. For this proof, to simplify computations, assume without loss of generality
that grades follow a uniform distribution on [0, 1]. Since the Deferred Acceptance algorithm only
depends on ordinal comparisons, this assumption is indeed not restrictive and switching to a uniform
distribution will greatly solving the solution of the market clearing equation. The students’ grade
vectors are therefore uniformly distributed along the diagonal of the square [0, 1]2. The cutoffs PA

and PB belong to [0, 1], and the metrics are given by:

V A
1 = 1− PA, V B

1 = 1− PB,

V A
2 = max(PA − PB, 0), V B

2 = max(PB − PA, 0),

V A
∅ = min(PA, PB), V B

∅ = min(PA, PB).

(17)

Therefore, the market clearing equation is{
β(1− PA) + (1− β)max(PB − PA, 0) = αA,

βmax(PA − PB, 0) + (1− β)(1− PB) = αB.
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Assume that PB ≥ PA. Then we have{
β(1− PA) + (1− β)(PB − PA) = αA,

(1− β)(1− PB) = αB,
(18)

which is equivalent to {
PA = 1− αA − αB,

PB = 1− αB
1−β .

Moreover, the assumption PB ≥ PA implies that β ≤ αA
αA+αB

. PA and PB are well-defined, that is,
they are in [0, 1]. For PA, this follows from the assumption αA + αB < 1, and for PB it is implied
by the relation β ≤ αA

αA+αB
. If PA ≥ PB instead, we have:{

PA = 1− αA
β ,

PB = 1− αA − αB.
(19)

Similarly, this implies that β ≥ αA
αA+αB

, and using this we can verify that PA, PB ∈ [0, 1].

We can then conclude that if β ≤ αA
αA+αB

, then

V A
1 = αA + αB, V B

1 = αB
1−β ,

V A
2 = 0, V B

2 = αA − β
1−βαB,

V A
∅ = 1− αA − αB, V B

∅ = 1− αA − αB;

and if β ≥ αA
αA+αB

, then

V A
1 = αA

β , V B
1 = αA + αB,

V A
2 = αB − 1−β

β αA, V B
2 = 0,

V A
∅ = 1− αA − αB, V B

∅ = 1− αA − αB.

This is obtained by replacing in (17) the values of PA and PB found in (18) and (19). ■

A.6 Proof of Proposition 4.3

Proof of Proposition 4.3. As in the proof of Proposition 4.2, we assume for this proof that the grades
follow a uniform distribution on [0, 1]; which is without loss of generality. Then the grades at colleges
A and B are independent random variables with a uniform distribution over [0, 1]. Students grade
vectors are thus uniformly distributed on the whole area of the square [0, 1]2. Therefore the metrics
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as functions of PA and PB are:

V A
1 = 1− PA, V B

1 = 1− PB,

V A
2 = PA(1− PB), V B

2 = PB(1− PA),

V A
∅ = PAPB, V B

∅ = PAPB.

(20)

The market clearing equation is:{
β(1− PA) + (1− β)PB(1− PA) = αA,

βPA(1− PB) + (1− β)(1− PB) = αB,

⇔

{
PB = 1− αB − β

1−β (1− PA − αA),

PAPB = 1− αA − αB,

⇔

{
PB = 1− αB − β

1−β (1− PA − αA),
β

1−βP
2
A + (1−2β

1−β + β
1−βαA − αB)PA − (1− αA − αB) = 0.

(21)

Let ζ = 1−2β
1−β + β

1−βαA − αB and ∆ =
√
ζ2 + 4β

1−β (1− αA − αB). From (21) and the fact that
PA ≥ 0 we deduce that {

PA = 1−β
2β (∆− ζ),

PB = 1
2(∆ + ζ).

Injecting this in equation (20) finally gives

V A
1 = 1− 1−β

2β (∆− ζ), V B
1 = 1− 1

2(∆ + ζ),

V A
2 = 1−β

2β (∆− ζ)− 1−β
4β (∆2 − ζ2), V B

2 = 1
2(∆ + ζ)− 1−β

4β (∆2 − ζ2),

V A
∅ = 1−β

4β (∆2 − ζ2), V B
∅ = 1−β

4β (∆2 − ζ2),

which concludes the proof of the proposition. ■
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