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Approximation speed of quantized vs.

unquantized ReLU neural networks and beyond
Antoine Gonon, Nicolas Brisebarre, Rémi Gribonval, Elisa Riccietti

Abstract

We deal with two complementary questions about approximation properties of ReLU networks. First, we
study how the uniform quantization of ReLU networks with real-valued weights impacts their approximation
properties. We establish an upper-bound on the minimal number of bits per coordinate needed for uniformly
quantized ReLU networks to keep the same polynomial asymptotic approximation speeds as unquantized
ones. We also characterize the error of nearest-neighbour uniform quantization of ReLU networks. This is
achieved using a new lower-bound on the Lipschitz constant of the map that associates the parameters of
ReLU networks to their realization, and an upper-bound generalizing classical results. Second, we investigate
when ReLU networks can be expected, or not, to have better approximation properties than other classical
approximation families. Indeed, several approximation families share the following common limitation: their
polynomial asymptotic approximation speed of any set is bounded from above by the encoding speed of this
set. We introduce a new abstract property of approximation families, called ∞-encodability, which implies
this upper-bound. Many classical approximation families, defined with dictionaries or ReLU networks, are
shown to be ∞-encodable. This unifies and generalizes several situations where this upper-bound is known.

Index Terms

Approximation speed, encoding speed, ReLU neural networks, quantization.

I. Introduction

Neural networks are used with success in many applications to approximate functions. In line with the

works [5], [8], [10], we are interested in understanding their approximation power in practice and in theory.

We deal with two complementary questions. Regarding practical applications, a key question is to be able

to compare approximation properties of unquantized versus quantized neural networks, i.e., networks with

arbitrary real weights versus networks whose weights are constrained to a prescribed finite set (e.g., floats).
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in part by the AllegroAssai ANR-19-CHIA-0009 and NuSCAP ANR-20-CE48-0014 projects of the French Agence Nationale de
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The results obtained in this direction are described below in Contribution 1. A practical type of quantization

on which we will focus is uniform quantization, i.e., when the weights are only allowed to be in a finite

subset of a uniform grid of the real line. Another important question is to better understand non-trivial

situations where neural networks, quantized or not, can be expected (or not) to have better approximation

properties than the best known approximation families1. We lay a framework that can be used to identify

such situations, as described in Contribution 2.

Contribution 1 (approximation with quantized networks). — Consider the parameters θ ∈ Rd of

a ReLU neural network and denote Rθ ∈ Lp the associated function, called its realization, cf. Definition

II.4. We also say that Rθ is realized by the network with parameters θ. Consider a quantization scheme2

Q : Rd → Rd used to quantize θ (e.g., Q(θ) has only float coordinates). We address three main questions.

a) Quantization error: A first question is to study how the quantization error ‖Rθ − RQ(θ)‖p (see

section II-B for the definition of ‖ · ‖p) depends on the quantization scheme Q. The following result goes in

that direction.

Informal Theorem I.1 (see Theorem III.1). — Fix an architecture (see Definition II.2) of feedforward

ReLU networks, i.e., fix the number of layers, denoted by L, and their width. Denote W the maximal width

of the layers. Denote Θ(r) the collection of all parameters of such networks having their Euclidean norm

bounded by r > 1. Consider 1 6 p 6∞. Then, the Lipschitz constant Lips(W,L, r) of the map that associates

the parameters θ ∈ Θ(r) to their realization Rθ ∈ Lp satisfies, with constants c, c′ > 0 only depending on

the Lp space:

c′LrL−1 6 Lips(W,L, r) 6 cWL2rL−1.

To the best of our knowledge, the lower-bound given in this result is new, while the upper-bound generalizes

classical results [2, Thm 2.6][13, Lem. 2] to generic Lp spaces and to more general constraints on the

parameters. Thanks to Informal Theorem I.1, the number of bits used by a quantization scheme can be

related to the error of this scheme. Our second result does so in the case of a nearest-neighbour uniform

quantization scheme.

Informal Theorem I.2 (see Theorem IV.1 and Theorem IV.2). — Consider the same setting as in

Informal Theorem I.1. Fix a stepsize η > 0 and a desired error ε > 0. Consider the uniform quantization

scheme3 Qη(x) = bx/ηcη applied coordinate-wise on the parameters θ of a ReLU network. Then, ‖Rθ −

RQη(θ)‖∞ 6 ε holds for every θ ∈ Θ(r) if, and only if, the number of bits used to store each coordinate of

Qη(θ), which is proportional to ln(1/η), is linear in the depth L.

1An approximation family is any (often non-decreasing) sequence (ΣM )M=1,2,... of subsets of a metric space (F , d).
2A quantization scheme is a function with a finite image.
3b·c is defined as bxc := max{n ∈ Z, n 6 x} for every x ∈ R while d·e is defined as dxe := min{n ∈ Z, n > x} for every x ∈ R.
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The generality of our first result suggests that the second one can be generalized to other settings, this will

be further discussed in Remark IV.2. As a consequence of our first result, we also prove (cf. Proposition IV.1)

that Lemma VI.8 in [8], which controls quantization errors of the type ‖Rθ −RQ(θ)‖p when Q is a nearest-

neighbour uniform quantization scheme, can be improved.

b) Approximation error: Given a function f ∈ Lp, how "well" can f be approximated by quantized

ReLU networks? If the parameters θ of a ReLU network are known to approximate "well" f , then one can

simply quantize θ via a quantization scheme Q and write, using the triangle inequality: ‖f − RQ(θ)‖p 6

‖f −Rθ‖p + ‖Rθ −RQ(θ)‖p. The results above can be used to control the quantization error ‖Rθ −RQ(θ)‖p.

Applying this to functions f in L∞-Sobolev spaces, and using external work [18] to guarantee the existence

of parameters θ approximating f "well", we recover Theorem 2 in [7], see Proposition IV.2. Much more

generic applications can be envisioned, see Remark IV.3.

c) Polynomial asymptotic approximation speed: Consider a function f ∈ Lp and a sequence of param-

eters (θM )M∈N (with N = {1, 2, . . . }). Can we design a sequence (QM ) of quantization schemes such that

the realizations of the networks with quantized parameters (QM (θM ))M∈N approximate the function f at

the same asymptotic polynomial rate, with M , as the unquantized parameters (θM )M∈N? Using the triangle

inequality ‖f−RQM (θM )‖p 6 ‖f−RθM ‖p+‖RθM−RQM (θM )‖p for each integerM , it is sufficient to guarantee

that ‖RθM−RQM (θM )‖p decreases at the same polynomial asymptotic rate as ‖f−RθM ‖p. Given a subset C of

a metric function space (F , d) and an approximation family Σ = (ΣM )M∈N in F , the polynomial asymptotic

approximation speed γ∗approx(C|Σ) of C by Σ [8, Def. V.2, Def. VI.1], called simply approximation speed in

what follows, is the best polynomial rate at which all functions of C are asymptotically approximated by Σ:

γ∗approx(C|Σ) := sup{γ ∈ R, sup
f∈C

inf
Φ∈ΣM

d(f,Φ) = OM→∞
(
M−γ

)
} ∈ [−∞,+∞],

with the convention γ∗approx(C|Σ) = −∞ if the supremum is over an empty set. In the following result, we ex-

hibit a sufficient number of bits per coordinate that guarantees that nearest-neighbour uniform quantization

preserves approximation rates of approximation families defined with ReLU networks.

Informal Theorem I.3 (see Theorem V.1). — Consider the approximation family Σ = (ΣM )M∈N in

an arbitrary Lp space, such that ΣM is the set of functions realized by ReLU networks with depth bounded

by LM ∈ N, with parameters having at most M non-zero coordinates and with Euclidean norm bounded

by rM > 1. For γ > 0, consider the γ-uniformly quantized sequence Q(Σ|γ) := (Q(ΣM |γ))M∈N, where

QM (ΣM |γ) is the set of functions realized by ReLU networks as above, but with parameters uniformly

quantized using the quantization scheme QηM (x) = bx/ηMcηM for a step size ηM = M−γLips(M,LM , rM ).

Then, the γ-uniformly quantized sequence Q(Σ|γ) has, on every set C ⊂ Lp, an approximation speed which

is comparable to its unquantized version Σ:

γ∗approx(C|Q(Σ|γ)) = γ∗approx(C|Σ) if γ > γ∗approx(C|Σ),

γ∗approx(C|Q(Σ|γ)) > γ otherwise.
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This theorem leads to explicit conditions on the number of bits per coordinate that guarantee quantized

ReLU networks to have the same approximation speeds as unquantized ones, see Example V.1. In the

proof, approximation speeds are matched by (i) taking unquantized parameters that (almost) achieve the

unquantized approximation speed and (ii) quantizing these parameters with a sufficiently large number of bits

in order to preserve the approximation speed. Smarter (but computationally more challenging) quantization

schemes can be envisioned, such as directly picking the best quantized parameters to approximate the

function. If the budget for the number of bits per coordinate is larger than the one given in Informal

Theorem I.3, then even the smartest quantization scheme will not beat approach (i) + (ii) in terms of

polynomial approximation speed (but it can still have better constants/log-terms etc.). Indeed, (i) + (ii)

already yields the same approximation speeds for quantized networks as unquantized ones, and quantized

networks cannot do better than unquantized ones. An open question is: what is the minimum number of bits

per coordinate needed to keep the same approximation speeds? We partially answer this question: Informal

Theorem I.3 gives an upper-bound.

Contribution 2 (unified and generic framework for a relation between approximation and

information theory). — We investigate generic settings where the approximation speed of a set C by

an approximation family is bounded from above by the encoding speed of C. The encoding speed is an

informatic theoretic complexity that measures the best polynomial asymptotic rate at which the number of

balls needed to cover the considered set grows as the radius of the balls goes to zero. Given a subset C of a

metric space (F , d) and ε > 0, a finite subset X ⊂ C is called an ε-covering of C if:

C ⊂
⋃
x∈X

Bd(x, ε), (1)

where Bd(x, ε) denotes the closed ball of C, with respect to the metric d, centered in x and with radius ε. The

covering number N(C, d, ε) is the minimal size of an ε-covering of C, with the convention thatN(C, d, ε) = +∞

if there is no such covering. The metric entropy is defined by H(C, d, ε) := log2(N(C, d, ε)). The encoding

speed of C is defined [8, Def. IV.1] as:

γ∗encod(C) := sup
{
γ > 0, H(C, d, ε) = Oε→0(ε−1/γ)

}
, (2)

with the convention that γ∗encod(C) = 0 if the supremum is over an empty set. The encoding speed is

known for many C’s, see [8, Table 1]. Consider an approximation family Σ = (ΣM )M∈N and a set C. If ΣM
approximates "well" C (measured by γ∗approx(C|Σ)), then one can use balls covering ΣM to cover C. This

simple observation is at the origin of the following inequality, known in several situations, for instance when

Σ is defined with dictionaries [8, Thm. V.3][10, Thm. 5.24] or ReLU networks [8, Thm. VI.4]:

γ∗approx(C|Σ) 6 γ∗encod(C). (3)

Inequality (3) happens to be an equality in various cases, see [8, Table 1]. In Definition VI.2, we introduce an

abstract property of approximation families Σ = (ΣM )M∈N, called γ-encodability, for γ > 0, that measures

how well each ΣM can be covered by balls. Roughly speaking, Σ is γ-encodable if asymptotically in M , the
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set ΣM can be covered with nearly of the order of M balls of radius M−γ . We say that it is ∞-encodable if

it is γ-encodable for every γ > 0. Our next result is to show that γ-encodability can be used to understand

several situations where (3) holds.

Informal Theorem I.4 (see Theorem VI.1). — Consider an approximation family Σ and γ > 0. If Σ

is γ-encodable then for every set C:

min(γ∗approx(C|Σ), γ) 6 γ∗encod(C).

Note that when an approximation family is ∞-encodable, this result gives Inequality (3). Inequality (3)

is then of particular interest in order to bound the approximation speed γ∗approx(C|Σ) from above without

having to look at all at the approximation properties of the set C by the sequence Σ. Instead, we can study

separately Σ and establish at which speed it can be encoded. This lays a framework that we use to unify and

generalize several situations where Inequality (3) is known [8, Thm. V.3, Thm. VI.4][10, Thm. 5.24]. Indeed,

we show that many approximation families Σ = (ΣM )M∈N are ∞-encodable: when ΣM contains M -terms

linear combinations of the first poly(M) elements4 of a bounded dictionary, with boundedness conditions

on the coefficients, or when Σ is Lipschitz-parameterized (we say that an approximation family (ΣM )M∈N

is Lipschitz-parameterized if there is a sequence (BM )M∈N of subsets of finite dimensional spaces and a

sequence (ϕM )M∈N of Lipschitz maps such that ΣM = ϕM (BM ) for every M ∈ N), which is the case for

ReLU neural networks for which we identify "simple" sufficient conditions on the considered architectures

for ∞-encodability to hold, see section VII-C. Another consequence is that ∞-encodable approximation

families Σ defined with ReLU neural networks share a common upper bound on approximation rates with

other classical approximation families that we prove to be ∞-encodable. In particular, given C, if an ∞-

encodable sequence Σ is known such that γ∗approx(C|Σ) = γ∗encod(C) (examples of such situations can be

found in [8, Table 1]), then no improved approximation rate using ReLU networks can be hoped for.

Organization of the paper.We recall the definition of feedforward ReLU neural network in section II-A.

In section II-B, we describe the Lp spaces in which approximation is considered. Bounds on the Lipschitz

constants of the map that associates the parameters θ of ReLU networks to their realization Rθ ∈ Lp are

given in section III. The error of nearest-neighbour uniform quantization for ReLU networks is discussed

in section IV. Approximation speeds of quantized ReLU networks are established in section V. The notion

of ∞-encodability is introduced in section VI, before discussing its consequences on the relation between

the approximation speed and the encoding speed. Examples of ∞-encodable sequences (e.g., defined with

dictionaries or ReLU networks) are then given in section VII. Sections VI and VII are essentially independent

of the others. We give some perspectives in section VIII. Some useful definitions, technical results and their

proofs are gathered in the appendices.

4M 7→ poly(M) denotes a positive function that grows at most polynomially in M .



6

II. Preliminaries

We recall the definition of ReLU neural networks, and characterize Lp spaces containing their realizations.

A. ReLU neural networks

A ReLU neural network is a parametric description of the alternate composition of affine maps between

finite-dimensional spaces and of a non-linear function. The non-linearity consists of the so-called Rectified

Linear Unit (ReLU) applied coordinate-wise.

Definition II.1 (ReLU: Rectified Linear Unit). — The ReLU function ρ is defined by [1]:

∀x ∈ R, ρ(x) := max(0, x).

For d ∈ N, its d-dimensional version consists of applying it coordinate-wise:

∀x ∈ Rd, ρ(x) := (ρ(xi))i=1...d.

Figure 1. A neural network architecture can be seen as a directed graph. Neurons are represented by vertices, grouped by layers.
For each neuron, there are edges going from this neuron to each neuron of the following layer. Coefficient (i, j) of W` can be
seen as the weight of the edge going from neuron j of layer ` − 1 to neuron i of layer `. Coefficient i of b` can be seen as the
weight of neuron i of layer `.

Definition II.2 (Architecture of a neural network). — An architecture of a neural network consists of

a tuple (L,N), with L ∈ N and N = (N0, . . . , NL) ∈ NL+1. We then say that L is the depth of the network.

A network with such an architecture has L+ 1 layers of neurons, indexed from ` = 0 to ` = L. Layer ` has

N` neurons, we call N` the width of layer `. The width of the network is W := max
`=0,...,L

N`. Layer 0 is the

input layer while layer L is the output layer.

An architecture can be represented as a graph, with a vertex for each neuron, and an edge between every

pair of neurons within consecutive layers, see Figure 1 (thus, in this work, a layer consists of a set of neurons,

not a set of edges).
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Definition II.3 (Parameters associated to a network architecture). — Let (L,N) be an architecture.

A parameter associated to this architecture consists of a vector θ = (W1, . . . ,WL, b1, . . . , bL), with W` ∈

RN`×N`−1 and b` ∈ RN` . Such a parameter θ lives in the parameter space

ΘL,N := Rd(L,N) ,

d(L,N) :=
L∑
`=1

N`(N`−1 + 1).
(4)

A parameter θ can be represented graphically: if neurons on layer ` are numbered from 1 to N`, then

(W`)i,j is the weight on the edge going from neuron j of layer `− 1 to neuron i of layer `, while (b`)i is the

weight on neuron i of layer `, see Figure 1.

Definition II.4 (ReLU neural network and its realization). — A ReLU neural network consists of an

architecture (L,N) and an associated parameter θ = (W1, . . . ,WL, b1, . . . , bL). Its realization is the function

denoted Rθ : RN0 → RNL , given by:

∀x ∈ RN0 , Rθ(x) := ỹL(x)

with functions y` and ỹ` defined by induction on ` = 1, . . . , L:

y0(x) = x,

ỹ`+1(x) = W`+1y` + b`+1,

y`+1(x) = ρ(ỹ`+1(x)).

In words, the input x goes through each layer sequentially, and when it goes from layer ` to ` + 1, it first

goes through an affine transformation, of linear part W`+1 and constant part b`+1, then it goes through the

ReLU function ρ applied coordinate-wise (except on the last layer where the ReLU function is not applied).

B. Considered functional approximation setting

We consider Lp spaces that contain all functions realized by ReLU networks (or equivalently all piecewise

affine functions). We record the characterization of such spaces in Lemma II.1 (these are the Lp spaces for

which (5) holds true) since we could not find it stated elsewhere. First let us introduce our notations for Lp

spaces. Let din, dout ∈ N be input and output dimensions, p ∈ [1,∞] be an exponent, Ω ⊂ Rdin be the input

domain and µ be a (non-negative) measure on Ω. Given a norm ‖ ·‖ on Rdout , we define for every measurable

function f : Ω→ Rdout :

‖f‖p,‖·‖ :=


(∫
x∈Ω ‖f(x)‖pdµ(x)

) 1
p if p <∞,

ess sup
x∈Ω

‖f(x)‖ if p =∞.

We consider approximation in the space Lp(Ω → (Rdout , ‖ · ‖), µ) consisting of all measurable functions f

from Ω to Rdout such that ‖f‖p,‖·‖ <∞, quotiented by the relation “being equal almost everywhere”. This is

a Banach space with respect to the norm ‖ · ‖p,‖·‖. By the equivalence of norms in Rdout , this Banach space
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is independent of the choice of norm ‖ · ‖ on Rdout , and (for a given p) all norms ‖ · ‖p,‖·‖ are equivalent.

In light of this fact we will simply denote it Lp(Ω→ Rdout , µ), or even abbreviate it as Lp. We also denote

‖ · ‖p := ‖ · ‖p,‖·‖∞ . We will stress the dependence on the norm ‖ · ‖ when it plays a role, such as in

Theorem III.1.

We now state a necessary and sufficient condition on Ω ⊂ Rdin and µ so that all functions realized by a

ReLU neural network with input dimension din and output dimension dout are in Lp(Ω → Rdout , µ). The

proof can be found in appendix B.

Lemma II.1. — Consider an exponent p ∈ [1,∞], a dimension din, a domain Ω ⊂ Rdin , and a measure µ

on Ω. Define

Cp(Ω, µ) :=


(∫
x∈Ω(‖x‖∞ + 1)pdµ(x)

)1/p if p <∞,

ess sup
x∈Ω

‖x‖∞ if p =∞.

The condition

Cp(Ω, µ) <∞ (5)

is equivalent to: for every architecture (L,N) with N0 = din the realizations of ReLU networks satisfy:

∀θ ∈ ΘL,N, Rθ ∈ Lp(Ω→ RNL , µ),

where ΘL,N is defined in Equation (4) and NL is the width of the output layer (Definition II.2).

Note that the condition Cp(Ω, µ) < ∞ holds in particular for every p ∈ [1,∞] when the input domain is

bounded and µ is the Lebesgue measure.

III. Lipschitz parameterization of ReLU neural networks

It is known that some sets of functions realized by ReLU networks are Lipschitz-parameterized5 [5, Rmk.

9.1]. In Theorem III.1, we give lower- and upper-bounds on the Lipschitz constant depending on the depth,

the width and the weight’s magnitude of the considered networks. To the best of our knowledge, the lower-

bound is new, while the upper-bound generalizes similar upper-bounds established in specific cases [2, Thm

2.6][13, Lem. 2] as discussed below. These bounds will be useful in the next sections to understand how

quantization of ReLU networks harms approximation error.

Definition III.1. — (Parameter set Θq
L,N(r)) Given an architecture (L,N) and the set of associated

parameters ΘL,N (see Equation (4)) we define for each r > 0 and q ∈ [1,∞] (the notation |||·||| refers

to the operator norm and is defined in appendix A):

Θq
L,N(r) := {θ = (W1, . . . ,WL, b1, . . . , bL) ∈ ΘL,N : |||W`|||q, ‖b`‖q 6 r, ` = 1, . . . , L}.

5A set is Lipschitz-parameterized if it is the image by a Lipschitz map of a subset of a finite dimensional space.
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Note that what will play a crucial role in what follows is the Lipschitz constant of the functions realized

by the parameters in Θq
L,N(r). This Lipschitz constant is bounded by rL in the setup of Definition III.1. We

do not enforce directly a global constraint on the Lipschitz constant since, to the best of our knowledge,

there is no better practical way to enforce this constraint than by enforcing each W` and b` to have small

norms. A more realistic situation thus corresponds to parameters θ with each W` and b` bounded for some

norms, which is what reflects the definition of the set of parameters Θq
L,N(r) in Definition III.1.

Remark III.1. — Instead of constraints on the operator norms, we may encounter constraints on the

Frobenius or the max-norm. Let r > 0, and let (L,N) be an architecture. Define by W := max
`=0,...,L

N` the

width of the network. Denote ‖M‖F = (
∑
i,jM

2
i,j)1/2 the Frobenius norm of a matrix M and ‖M‖max =

maxi,j |Mi,j | the max-norm (to be distinguished from |||M |||∞ the operator norm defined in appendix A),

and define ΘF
L,N(r) (resp. Θmax

L,N(r)) the set of all θ = (W1, . . . ,WL, b1, . . . , bL) ∈ ΘL,N such that for every

` = 1, . . . , L:

max (‖W`‖F , ‖b`‖2) 6 r (resp. max (‖W`‖max, ‖b`‖∞) 6 r).

By standard results about equivalence of norms (see e.g., (19) in the appendix) it holds for every q ∈ [1,∞]:

ΘF
L,N(r) ⊂ Θ2

L,N(r), Θmax
L,N(r) ⊂ Θq

L,N(Wr) ⊂ Θmax
L,N(Wr).

Given an architecture (L,N), we now give bounds on the Lipschitz constant of the map associating the

parameters to their realization: θ ∈ Θq
L,N(r) 7→ Rθ ∈ Lp . The proof is in appendix D.

Theorem III.1. — Consider din, dout ∈ N, Ω ⊂ Rdin , µ a measure on Ω satisfying (5), ‖ · ‖ a norm on Rdout ,

p, q ∈ [1,∞], and the space F := Lp(Ω→ (Rdout , ‖ · ‖), µ). Then there exists a constant c > 0 such that for

every architecture (L,N) with N0 = din and NL = dout, and every r > 1, denoting by W := max
`=0,...,L

N` the

width of the architecture, the map θ ∈ Θq
L,N(r) 7→ Rθ ∈ Lp for ReLU networks satisfies

‖Rθ −Rθ′‖p,‖·‖ 6 cWL2rL−1‖θ − θ′‖∞ for all θ, θ′ ∈ Θq
L,N(r). (6)

In particular, with µ the Lebesgue measure on Ω = [−D,D]d for some D > 0, this holds with:

• c := Dd1/q + 1 if p =∞ and ‖ · ‖ = ‖ · ‖q;

• c := (D + 1)(2D)d/p if ‖ · ‖ = ‖ · ‖q = ‖ · ‖∞.

Conversely, if Ω ⊆ Rdin
+ (where R+ :=), ‖ · ‖ = ‖ · ‖q and p = ∞ then there exists a constant c′ > 0

independent of the architecture, such that, for every ε > 0, we can exhibit parameters θ, θ′ satisfying

‖Rθ −Rθ′‖p,‖·‖ > (1− ε)c′LrL−1‖θ − θ′‖∞. (7)

This converse result also holds for 1 6 p <∞ under the additional assumption that N0 = min06`6LN`, i.e.,

that all layers are at least as wide as the input layer.

It is an open question whether the extra factor WL in (6) compared to (7) can be improved, and whether

the converse result for p <∞ also holds without the additional assumption. Note that the condition r > 1
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in Theorem III.1 is reasonable since the realization of every parameter θ ∈ Θq
L,N(r) is a function Rθ which

is rL-Lipschitz with respect to the q-norm on the input and output spaces. Constraining r < 1 would lead to

"very" flat functions, essentially constant, when L is large. Vice-versa, the stability of a concrete numerical

implementation of a neural network probably requires it to have a Lipschitz constant somehow bounded by

the format used to represent numbers. Such considerations would probably lead to consider rL 6 C for some

constant C, i.e., 1 6 r 6 C1/L.

Here is a list of immediate extensions of Theorem III.1:

• Arbitrary Lipschitz activation: Theorem III.1 can be extended to the case where the ReLU activation

function is replaced by any Lipschitz activation function.

• Pooling-operation: Theorem III.1 does not change if we add standard (max- or average-) pooling oper-

ations between some layers since they are 1-Lipschitz.

• Arbitrary s-norm on the parameters: since for every exponent s ∈ [1,∞], it holds ‖ · ‖∞ 6 ‖ · ‖s,

Theorem III.1 yields a bound on the Lipschitz constant with arbitrary s-norm on the parameter space.

• Generalization error bound: in the context of learning, for a loss `(ŷ, y) that is a Lipschitz function of ŷ

with respect to some norm ‖ ·‖ on the support of a distribution P, the excess risk E(x,y)∼P(`(Rθ(x), y)−

`(Rθ′(x), y)) can be bounded from above by E(x,y)∼P(‖Rθ(x)−Rθ′(x)‖), which in turn can be bounded

using Theorem III.1. In particular, this is the case when P is supported on a compact set and `(ŷ, y) is

continously differentiable in ŷ.

• Skip connections and convolutional layers: one can also exploit Theorem III.1 to networks with skip

connections and/or convolutional layers, since they can be rewritten as networks with fully-connected

layers. This rewriting can however artificially inflate the widths of the networks and is unlikely to give

sharp bounds. It is left to further work whether an extension of Theorem III.1 with improved tailored

bounds may be obtained in these settings.

Remark III.2 (Related works). — The fact that some sets of functions realized by ReLU neural

networks are Lipschitz-parameterized is already known [5, Rmk. 9.1]. To our knowledge, the lower-bound

in Theorem III.1 is new. However the upper-bound is already known in several specific situations: at least

for dout = 1, L∞([0, 1]din) with the Lebesgue measure, and q = max [2, Thm 2.6] as well as p =∞, q = F ,

and ‖ · ‖ = ‖ · ‖2 [13, Lem. 2]. Theorem III.1 shows that this upper-bound holds true more generally for

general constraints on the parameters (arbitrary q ∈ [1,∞]) and arbitrary p ∈ [1,∞] and (Ω, µ) satisfying

condition (5) i.e., in any Lp space that contains all the functions realized by ReLU neural networks. Let us

also mention that Theorem III.1 is based on Lemma C.1 (appendix C), and this lemma is a straightforward

generalization of a known inequality for q =∞ (see for instance [3, Eq. (3.12)] or [8, Eq. (37)]) to arbitrary

q ∈ [1,∞]. We prove that the inequality established in Lemma C.1 is optimal. To our knowledge, even in

the case q =∞, the optimality has not been discussed yet in the literature.
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IV. Nearest-neighbour uniform quantization of ReLU neural networks

In section IV-A, we characterize the error of nearest-neighbour uniform quantization of ReLU networks in

L∞, recovering and improving Lemma VI.8 in [8]. In section IV-B, we show that controlling the error of

nearest-neighbour uniform quantization schemes leads to recover existing results [7, Thm. 2] on function

approximation by quantized ReLU networks.

A. Control of the L∞ quantization error ‖Rθ −RQ(θ)‖∞

The following lemma is a direct consequence of Theorem III.1.

Lemma IV.1. — Consider a domain [−D,D]d. Fix an architecture (L,N) = (L, (N0, . . . , NL)) with width

W := max
`=0,...,L

N`, a bound r > 1 on the norm of the parameters, and an exponent q ∈ [1,∞]. Given η > 0,

let Q : ΘL,N → ΘL,N (recall that ΘL,N is the set of parameters associated with the architecture (L,N),

see Definition II.2) be such that ‖Q(θ) − θ‖∞ 6 η for every parameter θ ∈ Θq
L,N(r). Consider a subset

Θ ⊂ Θq
L,N(r). Let r′ > 1. Assume that:

Q(θ) ∈ Θq
L,N(r′), ∀θ ∈ Θ. (8)

Consider ε > 0, and 0 < η 6 ε
(
cWL2(r′)L−1)−1, where c := Dd1/q + 1. Then, it holds:

max
θ∈Θ

max
x∈[−D,D]d

‖Rθ(x)−RQ(θ)(x)‖q 6 ε. (9)

Proof of Lemma IV.1. Fix θ ∈ Θ. Under assumption (8), it holds Q(θ) ∈ Θq
L,N(r′). This means that we can

apply Theorem III.1 with p =∞, ‖ · ‖ = ‖ · ‖q and with the specific constant c = Dd1/q + 1. In this situation

the essential supremum over x ∈ [−D,D]d in Theorem III.1 is actually a maximum. This yields (9) when

0 < η 6 ε
(
cWL2(r′)L−1)−1.

Under mild assumptions on the error ε, Property (8) holds for r′ = 2r. This leads to the following theorem.

Theorem IV.1. — In the same setting as in Lemma IV.1, consider 0 < ε < cL2(2r)L−1. If 0 < η 6

ε
(
cWL2(2r)L−1)−1, then (9) holds true.

Proof of Theorem IV.1. Fix θ = (W1, . . . ,WL, b1, . . . , bL) ∈ Θq
L,N(r). Assume that 0 < ε < cL2(2r)L−1

and 0 < η 6 ε
(
cWL2(2r)L−1)−1. We want to prove that Q(θ) ∈ Θq

L,N(2r). By assumption on η and ε,

0 < η 6 ε
(
cWL2(2r)L−1)−1

6 1/W 6 r/W . Note that for a matrix M with input and output dimensions

bounded by W , it holds |||M |||q 6W‖M‖max , see (19). This guarantees that for every layer ` = 1, . . . , L, it

holds |||W` −Q(W`)|||q 6W‖W`−Q(W`)‖max 6Wη 6 r and ‖b`−Q(b`)‖q 6W 1/q‖b`−Q(b`)‖∞ 6Wη 6 r

so that by the triangle inequality Q(θ) ∈ Θq
L,N(2r). Then, (9) follows from Lemma IV.1.

When Q(x) := Qη(x) := bx/ηcη, we now establish a necessary condition for (9) to hold, that almost

matches the sufficient condition of Theorem IV.1. This is obtained thanks to the almost matching lower-

and upper-bounds of Theorem III.1. The proof is in appendix E.
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Theorem IV.2. — In the same setting as in Lemma IV.1, consider the function Q := Qη that acts

coordinatewise on vectors and such that for every x ∈ R, Qη(x) = bx/ηcη. Define Nmin := min
06`6L

N` and

c′ := DN
1/q
min. If ε, η > 0 are such that (9) holds true for Θ := Θq

L,N(r), then min(r, η) 6 ε
c′rL−1 . In particular,

if ε < c′rL then η 6 ε
c′rL−1 .

Note that Theorem IV.1 can be applied for every ε ∈ (0, 1) since cL2(2r)L−1 > 1. Similarly, if the domain

[−D,D]d is large enough (D > 1) then c′rL > 1 and Theorem IV.2 yields that whenever (9) holds true for

some ε ∈ (0, 1) and η > 0 we must have η 6 ε
c′rL−1 .

Remark IV.1. — With η > 0 and Qη the function from Theorem IV.2, the number of bits needed to

store one coordinate of Qη(θ) is proportional to ln(1/η). We just saw that if D > 1 and (9) is satisfied

with ε ∈ (0, 1), η > 0, then η must be exponentially small in L (as soon as r > 1). This means that the

number of bits per coordinate must at least grow linearly with the network depth L to ensure that the

worst-case quantization error over networks in Θq
L,N(r) is controlled. This is essentially due to the fact that

there are realizations of parameters in Θq
L,N(r) that are functions with Lipschitz constant equal to rL. More

optimistic bounds can be envisioned under stronger assumptions on the set of parameters or on the network’s

architecture.

Another direct consequence of Lemma IV.1 is the following proposition, which is proved in appendix E

and yields an improvement of Lemma VI.8 in [8].

Proposition IV.1 (extension of [8, Lem. VI.8]). — Consider (L,N) an architecture with input dimen-

sion din, output dimension dout and L > 2 layers. Consider the space F = L∞([−D,D]din → (Rdout , ‖·‖∞), µ)

with µ the Lebesgue measure.

Consider ε ∈ (0, 1/2) and θ ∈ ΘL,N. Denote W = max`=0,...,LN` the width of the architecture (L,N). Let

k > 0 be the smallest integer such that θ ∈ Θmax
L,N(ε−k) and max(W,L) 6 ε−k, i.e., k = dlog2 max(‖θ‖∞,W,L)

/ log2(1/ε)e. For every integer m > 2kL+k+ 1 + log2(dDe), the weights of θ can be rounded up to a closest

point in ηZ ∩ [−ε−k, ε−k] with η := 2−mdlog2(ε−1)e 6 εm to obtain Qη(θ) ∈ Θmax
L,N(ε−k) ∩ (ηZ)d(L,N) that

satifies:

‖Rθ −RQη(θ)‖∞ 6 ε.

Let us check that Proposition IV.1 indeed implies the result of Elbrächter et al.6 [8, Lem. VI.8]. First, since

max(W,L) > L > 2, it holds k > 1. Thus, for L > 2, we have k(L− 1) > 1 so that 3kL > 2kL+ k+ 1 and it

is thus sufficient to take m > 3kL+log2(dDe) (which is the sufficient condition given in [8, Lem. VI.8]). Note

however the improved (slower) growth of m with L in the sufficient condition of Proposition IV.1 compared

to [8, Lem. VI.8].

6Lemma VI.8 in [8] is stated for networks having at most ε−k non-zero weights. Given such a network, we can always remove
neurons having only zero incoming and outcoming weights. This gives another network, with the same realization, but with a
width W 6 ε−k and a depth L 6 ε−k. Then, Proposition IV.1 applies to this new network. (R1-m20)
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Remark IV.2. — More generally, given bounds on the sparsity (i.e., number of nonzero entries), on the

magnitude of the network weights, and an arbitrary p ∈ [1,∞], Theorem III.1 can be used to find an

appropriate step size that guarantees that a uniform quantization of the considered network is within error

ε > 0 in Lp.

B. Control of the approximation error of a function by quantized networks ‖f −RQ(θ)‖∞

Given a function f , parameters θ, and a quantization function Q, a simple triangle inequality yields ‖f −

RQ(θ)‖∞ 6 ‖f −Rθ‖∞ + ‖Rθ −RQ(θ)‖∞. Theorem III.1 controls the quantization error ‖Rθ −RQ(θ)‖∞ for

nearest-neighbour uniform quantization schemes. If, in addition, information about the approximation error

‖f−Rθ‖∞ is available, then we can deduce a bound on the approximation error of f by quantized networks.

We apply this simple observation in the case of functions f in an L∞-Sobolev space to recover a special

case of Theorem 2 in [7] (the other cases can be recovered by combining this special case with Proposition

3 in [7]). The proof is in appendix E.

Let n ∈ N and consider Wn,∞([0, 1]d), the Sobolev space of real-valued functions on [0, 1]d that are in L∞

as well as their weak derivatives up to order n (given n := (n1, . . . , nd) ∈ Nd, the associated weak-derivative

of a function f is denoted Dnf if it exists). The norm on Wn,∞([0, 1]d) is given by:

‖f‖Wn,∞([0,1]d) := max
n:=(n1,...,nd)∈Nd∑

i
ni6n

ess sup
x∈[0,1]d

|Dnf(x)|.

Proposition IV.2 ([7, Thm. 2]). — Let Cn,d be the unit ball ofWn,∞([0, 1]d). There exists a constant c > 0

depending only on n and d such that for every ε ∈ (0, 1), there exists η > 0 satisfying ln(1/η) 6 c ln2(1/ε) and

a ReLU network architecture that can approximate every function f ∈ Cn,d within error ε > 0 in L∞([0, 1]d)

using weights in ηZ, with depth bounded by c ln(1/ε), a number of weights at most equal to cε−d/n ln(1/ε),

and with a total number of bits (used to store the network weights) bounded by cε−d/n ln3(1/ε).

Remark IV.3. — Compared to Theorem 2 of [7], Theorem III.1 can also be used to establish similar

results, not only for a function f in the unit ball of an L∞-Sobolev space, but for every f ∈ Lp (1 6 p 6∞)

as soon as it is known how to approximate f with unquantized ReLU networks, with explicit bounds on the

growth of their depth, width and weight’s magnitude. For instance, such bounds are known for Hölder spaces

[14], classifier functions in L2 [15] and Besov spaces [16]. The same argument also applies for networks with

arbitrary Lipschitz activation (such as the sigmoid function) for which an analog of Theorem III.1 can be

derived, and for which we know how to approximate "smooth" functions [9, Table 1].

V. Approximation speeds of quantized vs. unquantized ReLU neural networks

Consider a function f and a sequence of parameters (θM )M∈N such that ‖f − RθM ‖p goes to zero as M

goes to infinity. Given a nearest-neighbour uniform quantization scheme QM with a step size that depends

on M , we saw in the previous sections how to control the quantization error ‖RθM − RQ(θM )‖p. We used

the latter to control ‖f −RQ(θM )‖p 6 ‖f −RθM ‖p + ‖RθM −RQ(θM )‖p, in specific situations such as when



14

f is in an L∞-Sobolev space, see section IV-B. In this section, we give sufficient conditions on the step

size used for quantization with QM to guarantee that the quantization error ‖RθM − RQ(θM )‖p decreases,

with M , at the same asymptotic polynomial rate as the approximation error ‖f −RθM ‖p. This leads to an

explicit sufficient number of bits, depending on the growth with M of the architecture of the parameters

θM , that guarantees that quantized ReLU networks have the same approximation speeds as unquantized

ones, see Example V.1. First, we define the considered approximation families and their uniformly quantized

version. Notations are somewhat cumbersome but necessary to introduce the different types of constraints

on the considered architectures (depth and width constraints) and on the parameters (sparsity and norm

constraints).

Definition V.1 (Sequence of sets of architectures). — Consider din, dout ∈ N and (LM )M∈N ∈ NN.

For each M ∈ N define AM , the set of architectures with input dimension din, output dimension dout, depth

bounded by LM and widths of the hidden layers bounded by M :

AM := {(L, (N0, . . . , NL)) : L,N0, . . . , NL ∈ N, L 6 LM , N0 = din, NL = dout, N` 6M, ` = 1, . . . , L− 1}.

For everyM ∈ N and every architecture (L,N) ∈ AM , define SM(L,N) as the set of all supports S ⊂ {0, 1}d(L,N)

of cardinality at most M , used to constrain the non-zero entries of a vector θ with architecture (L,N).

The width constraint N` 6 M in the definition of the architectures in AM is written for clarity but is

superfluous in what follows, given that the realization of a network θ (with arbitrary activation function

and an architecture of arbitrary width) with at most M nonzero coefficients can always be written as the

realization of a parameter θ′ on a “pruned” architecture where every hidden layer has width N` 6M .

Definition V.2 (ReLU networks approximation family). — Consider a sequence (AM )M∈N of sets of

architectures as in Definition V.1. Consider Lp(Ω→ (Rdout , ‖ · ‖), µ) satisfying (5), q ∈ [1,∞]∪ {F,max} (F

and max refer to the Frobenius norm and the max-norm, see Remark III.1), and a sequence (rM )M∈N of

real numbers such that rM > 1. Define the approximation family N := (NM )M∈N of sets NM ⊂ Lp(Ω →

(Rdout , ‖ · ‖), µ) of realizations of ReLU neural networks with an architecture (L,N) ∈ AM and parameters

in Θq
L,N(rM ):

NM :=
⋃

(L,N)∈AM

⋃
S∈SM(L,N)

RΘq
L,N(rM ),S

where for any parameter set Θ and support S we denote RΘ,S := {Rθ, θ ∈ Θ supported on S}.

Definition V.3 (Quantization of parameters on a uniform grid). — Given a set of parameters Θ

associated to an architecture (L,N), we define, for every η > 0 and r ∈ (0,∞], the quantized version

Q(Θ, η, r) of Θ on a bounded uniform grid (ηZ ∩ [−r, r])d(L,N) :

Q(Θ, η, r) := Θ ∩ (ηZ ∩ [−r, r])d(L,N) .

Definition V.3 will essentially be used when Θ is a ball. In that case, Q(Θ, η, r) is not empty provided

that r and Θ are sufficiently large compared to the step size η.
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Definition V.4 (Quantized version of Definition V.2). — Consider an approximation family N :=

(NM )M∈N as in Definition V.2, with the associated sequences (rM )M∈N, (LM )M∈N and q ∈ [1,∞]∪{F,max}.

For every M ∈ N, define

Lips(M, q) :=

max(din, dout,M)L2
Mr

LM−1
M if q ∈ [1,∞] ∪ {F},

Lips(M, 2) max(din, dout,M)LM−1 for q = max,

and observe that Lips(M, q) > 1. Given any γ > 0 define for every M ∈ N the step size ηM = ηM (γ, q) :=

(MγLips(M, q))−1. The γ-uniformly quantized version Q(N|γ) := (QM (NM |γ))M∈N of N is

QM (NM |γ) =
⋃

(L,N)∈AM

⋃
S∈SM(L,N)

RQ(Θq
L,N(rM ),ηM ,rM ),S

with AM and SM(L,N) the families of architectures and supports (cf Definition V.1) associated to NM , see

Definition V.2 where we recall that the notation RΘ,S given a support S is also introduced.

In general, Lipschitz-parameterized approximation families can be uniformly quantized into sequences

having comparable approximations speeds, if a step size sufficiently small is chosen. Theorem V.1 deals only

with the case of Lipschitz-parameterized approximation families we are interested in: ReLU neural networks.

The upper-bound on the Lipschitz constant established in Theorem III.1 yields explicit conditions on the

growth of the depth and the weight’s magnitude, that guarantee that the γ-uniformly quantized sequence

Q(N|γ) has, on every set C ⊂ Lp, an approximation speed which is comparable to its unquantized version

N . The proof of Theorem V.1 is in appendix F.

Theorem V.1. — Consider the context of Definition V.4. Then, for every γ > 0, the γ-uniformly quantized

sequence Q(N|γ) := (QM (NM |γ))M∈N has, on every (non-empty) set C ⊂ Lp, an approximation speed

comparable to the unquantized one N :

γ∗approx(C|Q(N|γ)) = γ∗approx(C|N ) if γ > γ∗approx(C|N ),

γ∗approx(C|Q(N|γ)) > γ otherwise.
(10)

We will see in the following sections that the approximation speed γ∗approx(C|N ) can be bounded from

above by a quantity denoted γ∗encod(C), the latter quantity being known for several classical sets C (see

[8, Table 1]). In such a situation, this guides the choice of γ to define a concrete γ-quantized sequence in

the context of Theorem V.1. Indeed, considering C ⊂ F a classical function class for which the quantity

γ∗encod(C) is known, choosing γ > γ∗encod(C) is sufficient to ensure that γ > γ∗approx(C|N ). Vice-versa,

among all such γ, choosing the smallest one γ = γ∗encod(C) is probably the best choice to yield the largest

possible step sizes ηM and the best concrete compromise.

Example V.1 (Comparable approximation speeds with controlled growth of the number of bits).

— Let q ∈ [1,∞] ∪ {F,max} be an exponent and π be a positive polynomial and consider N π
M the set of

functions parameterized by a ReLU neural network with arbitrary architecture (L,N) with depth bounded by

π(logM), with at most M non-zero parameters and with parameters in Θq
L,N(π(M)). For every γ > 0, there
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exists a constant c(γ) > 0 such that the γ-uniformly quantized sequence Q(N π
M |γ) of N π

M is obtained with

step size ηM = OM→∞(M−c(γ) logM ), i.e., using OM→∞((logM)2) bits per weight. Theorem V.1 guarantees

that this quantized sequence still has approximation speeds comparable to N π
M . In the same setup, if we

assume in addition that the depths LM are uniformly bounded in M , then for every γ > 0, a step size

ηM = OM→∞(M−c(γ)) (i.e., OM→∞(logM) bits per parameter) suffices to get comparable speeds as in

Equation (10).

VI. Encoding speeds vs approximation speeds

We now investigate a fundamental limitation of many approximations families (including ReLU networks):

the approximation speed of a set by an approximation family cannot be greater than the encoding speed

of this set (see (3)). Section VI and section VII are essentially independent from the others. We introduce

an abstract property of approximation families, called "encodability", in Definition VI.2. In Theorem VI.1,

we prove that every approximation family satisfying this encodability property must satisfy Inequality (3).

As we will see in section VII, this lays a unified and generic framework that captures and recovers different

known situations [8, Thm. V.3, Thm. VI.4][10, Thm. 5.24][12, Prop. 11] where (3) holds.

A. The notion of γ-encodability

Let Σ := (ΣM )M∈N be a sequence of non-empty subsets of a metric space (F , d). Let C ⊂ F and ε > 0. If

γ∗approx(C|Σ) > 0, since Σ approximates C at speed γ∗approx(C|Σ), there exists a positive integer M large

enough such that every element f ∈ C can be ε-approximated (with respect to the metric d) by an element

of ΣM . Since ΣM can be ε-covered (with respect to d) with N(ΣM , d, ε) elements, C can be 2ε-covered with

N(ΣM , d, ε) elements. Instances of this simple reasoning can be found in [8, Thm. V.3, Thm. VI.4][10, Thm.

5.24][12, Prop. 11]. This suggests the existence of a relation between the approximation speed γ∗approx(C|Σ)

and the encoding speed γ∗encod(C) that depends on the growth with M of the covering numbers of ΣM .

We claim that a "reasonable" growth of the covering numbers of ΣM consists in a situation where, for

some γ > 0, the set ΣM can be M−γ-covered with "roughly" 2M logM elements. Indeed, this covers the case

where each element of ΣM can be described by M parameters that can be stored with a number of bits per

parameter that grows logarithmically in M . For instance if ΣM is a bounded set in dimension M then it can

be uniformly quantized along each dimension with a size step of order M−γ , so that logM bits is roughly

enough to encode each of the M coordinates. This "reasonable" growth for the covering numbers of ΣM is

formalized in Definition VI.2, and yields the simple relation min(γ∗approx(C|Σ), γ) 6 γ∗encod(C) for every set

C ⊂ F , as shown in Theorem VI.1.

Definition VI.1 ((γ, h)-encoding). — Let (F , d) be a metric space. Let Σ := (ΣM )M∈N be an arbitrary

sequence of (non-empty) subsets of F . Let γ > 0 and h > 0. A sequence (Σ(γ, h)M )M∈N is said to be a

(γ, h)-encoding of Σ if there exist constants c1, c2 > 0 such that for every M ∈ N, the set Σ(γ, h)M is a

c1M
−γ-covering of ΣM (recall Equation (1), in particular Σ(γ, h)M must be a subset of ΣM ) of size satisfying

log2(|Σ(γ, h)M |) 6 c2M
1+h.
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The following definition captures a "reasonable" growth with M of the covering numbers of ΣM .

Definition VI.2 (γ-encodable Σ in (F , d)). — Let (F , d) be a metric space. Let Σ := (ΣM )M∈N be an

arbitrary sequence of (by default, non-empty) subsets of F . Let γ > 0. We say that Σ is γ-encodable in

(F , d) if for every h > 0, there exists a (γ, h)-encoding of Σ. We say that Σ is ∞-encodable in (F , d) if it is

γ-encodable in (F , d) for all γ > 0. When the context is clear, we will omit the mention to (F , d).

Note that if Σ is γ-encodable then it is γ′-encodable for every γ′ 6 γ. Several examples of ∞-encodable

sequences are given in section VII, including classical approximation families defined with dictionaries or

ReLU networks.

B. The encoding speed as a universal upper bound for approximation speeds

It is known that γ∗approx(C|Σ) 6 γ∗encod(C) for various sets C when Σ is defined with neural networks [8,

Thm. VI.4] or dictionaries [8, Thm. V.3][10, Thm. 5.24]. The following proposition shows that∞-encodability

implies γ∗approx(C|Σ) 6 γ∗encod(C). This settles a unified and generalized framework for the aforementioned

known cases that implicitly use, one way or another, the ∞-encodability property, as we will detail in

section VII-B and section VII-C.

Theorem VI.1. — Consider (F , d) a metric space and Σ := (ΣM )M∈N an arbitrary sequence of (non-

empty) subsets of F which is γ-encodable in (F , d), with γ ∈ (0,∞]. Then for every (non-empty) C ⊂ F :

min(γ∗approx(C|Σ), γ) 6 γ∗encod(C).

The proof of Theorem VI.1 is in appendix G. We derive from Theorem VI.1 a generic lower bound on the

encoding speed of the set of functions uniformly approximated at a given speed.

Corollary VI.1. — Let (F , d) be a metric space. Consider γ ∈ (0,∞] and Σ := (ΣM )M∈N an arbitrary

sequence of (non-empty) subsets of F which is γ-encodable in (F , d). Consider α, β > 0 and Aα(F ,Σ, β)

the set of all f ∈ F such that supM>1M
αd(f,ΣM ) 6 β. This set satisfies

γ∗encod(Aα(F ,Σ, β)) > min(α, γ).

Proof. By the very definition of Aα(F ,Σ, β), it holds γ∗approx(Aα(F ,Σ, β)|Σ) > α. Theorem VI.1 then gives

the result.

The reader may wonder about the role of β in the above result, and whether a similar result can be achieved

with Aα(F ,Σ) := ∪β>0Aα(F ,Σ, β). While this is left open, a related discussion after Corollary VII.2 suggests

this may not be possible without additional assumptions on Σ.

As an immediate corollary of Theorem VI.1 we also obtain the following result.
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Corollary VI.2. — Consider Σ := (ΣM )M∈N an arbitrary sequence of (non-empty) subsets of a metric

space F and a (non-empty) set C ⊂ F . If Σ is γ-encodable for every γ < γ∗approx(C|Σ) then:

γ∗approx(C|Σ) 6 γ∗encod(C).

Proof. For every γ < γ∗approx(C|Σ), since Σ is γ-encodable, we have γ = min(γ∗approx(C|Σ), γ) 6 γ∗encod(C)

by Proposition VI.1. Taking the supremum of such γ, we get the inequality.

As we will see in section VII, applying Corollary VI.2 to specific ∞-encodable sequences allows one to

unify and generalize different cases where γ∗approx(C|Σ) 6 γ∗encod(C) is known to hold [8, Thm. V.3, Thm.

VI.4][10, Thm. 5.24].

Note that the quantity γ∗encod(C) is known in several cases, see [8, Table 1]. In the next section, we discuss

concrete examples of∞-encodable sequences Σ. For such a sequence Σ and an arbitrary set C, independently

of the adequation of Σ and C, Corollary VI.2 automatically yields an upper bound for the approximation

speed of C by Σ.

In some situations, the converse of Corollary VI.2 can be established.

Theorem VI.2. — Let C be a (non-empty) subset of a metric space (F , d) and Σ := (ΣM )M∈N a sequence of

(non-empty) subsets of F such that ΣM ⊂ C for every M large enough. If min(γ∗approx(C|Σ), γ∗encod(C)) > 0

then the sequence Σ is γ-encodable for each 0 < γ < min(γ∗approx(C|Σ), γ∗encod(C)).

In particular, if γ∗approx(C|Σ) 6 γ∗encod(C) then Σ is γ-encodable for every 0 < γ < γ∗approx(C|Σ).

Proof. Consider 0 < γ < min(γ∗approx(C|Σ), γ∗encod(C)). By definition of γ∗approx(C|Σ), there exists a

constant c > 0 such that for every f ∈ C and every M ∈ N, there exists ΦM (f) ∈ ΣM such that

d(f,ΦM (f)) 6 cM−γ . Consider γ′ > 0 such that γ < γ′ < min(γ∗approx(C|Σ), γ∗encod(C)). For M ∈ N,

define εM := M−γ . By definition of γ∗encod(C), there is a constant c′ > 0 such that for every ε > 0, there

exists an ε-covering Cε of C of size satisfying log2(|Cε|) 6 c′ε−1/γ′ . For M large enough, ΣM ⊂ C, hence

for every such M and every f ∈ ΣM , there exists fεM ∈ CεM such that d(f, fεM ) 6 εM . Using the triangle

inequality, we obtain that for every M large enough and every f ∈ ΣM : d(f,ΦM (fεM )) 6 (1 + c)M−γ . This

shows that ΦM (CεM ) is a (1 + c)M−γ-covering of ΣM of size satisfying log2(|ΦM (CεM )|) 6 c′Mγ/γ′ , with

γ/γ′ < 1. This shows that Σ is γ-encodable. The rest of the claim follows.

VII. Examples of ∞-encodable approximation families

We now give several examples of∞-encodable sequences Σ. We start with a gentle warmup in section VII-A.

It is proven that some sequences of balls (in the sense of the metric space F) of increasing radius and dimen-

sion are ∞-encodable. Quite naturally, ∞-encodability is preserved under some Lipschitz transformation, as

shown in Theorem VII.1 in the specific case of ∞-encodable sequences of balls (this can be generalized to

other∞-encodable sequences, but this is not useful here). In section VII-B, we give examples of∞-encodable

sequences in the context of approximations with dictionaries, see section VII-B, showing that Theorem VI.1

unifies and generalizes Theorem V.3 in [8] and Theorem 5.24 in [10]. Finally, in section VII-C, we give an



19

example of an ∞-encodable approximation family defined with ReLU networks. Once again, Theorem VI.1

applied to this ∞-encodable sequence recovers a known result, see Example VII.1.

A. First examples of ∞-encodable sequences

This subsection is a gentle warmup, where basic examples of ∞-encodable sequences are given in order to

manipulate the notion of encodability. Let (F , d) be a metric space and c > 0. Let Σ := (ΣM )M∈N be

a sequence of sets ΣM ⊂ F that can be covered with NM = OM→∞(2cMπ(logM)) balls (with respect to

the ambient metric space) centered in ΣM of radius εM = OM→∞(M−γ). Since OM→∞(2cMπ(logM)) =

OM→∞(2M1+h) for every h > 0, it is clear from the definition that Σ is ∞-encodable. This is trivially the

case when Σ := (ΣM )M∈N is a sequence of finite sets ΣM ⊂ F with at most 2cMπ(logM) elements since

each ΣM is an exact covering of itself. Another example consists of some sequences of balls (in the sense

of the metric space F) of increasing radius and dimension as described in the next lemma. The proof is in

appendix H.

Lemma VII.1. — Consider q ∈ [1,∞], (dM )M∈N ∈ NN, (rM )M∈N a sequence of real numbers satisfying

rM > 1 and define Σ := (ΣM )M∈N, with ΣM := BdM ,‖·‖q (0, rM ) being the set of sequences of `q(N) bounded

by rM and supported in the first dM coordinates. Then, Σ is either ∞-encodable in `q(N) or it is never

γ-encodable in `q(N), whatever γ > 0 is. Moreover, it is ∞-encodable if, and only if,

dM (log2(rM ) + 1) = OM→∞(M1+h), ∀h > 0.

Quite naturally,∞-encodability can be preserved under Lipschitz maps as shown in the following theorem.

The proof is in appendix H.

Theorem VII.1. — Consider the same setting as in Lemma VII.1. Consider also a sequence ϕ := (ϕM )M∈N

of maps ϕM : (ΣM , ‖ · ‖q) → (F , d) that are Lips(ϕM )-Lipschitz for some constants Lips(ϕM ) > 1. Define

ϕ(Σ) := (ϕM (ΣM ))M∈N. Assume that for every h > 0:

dM (log2(rM ) + log2(Lips(ϕM )) + 1) = OM→∞(M1+h). (11)

Then ϕ(Σ) is ∞-encodable.

B. The case of dictionaries

We now consider sequences Σ defined with dictionaries. As detailed below, results of the literature [10,

Thm. 5.24][12, Prop. 11] use arguments that implicitly prove γ-encodability. Let us start with the case of

approximation in Banach spaces as in [12]. We only explicit the sequence used in [12] which is γ-encodable

and we do not delve into more details as results of [12] are out of scope of this paper. A part of the proof

of [12, Prop. 11] consists of implicitly showing that some specific sequence Σq is s-encodable, for q and s as

described below in Proposition VII.1, as shown in appendix I. In particular, the setup of Proposition VII.1

applies when F is the Lp space on Rd or [0, 1]d, 1 < p < ∞, and the basis B is a compactly supported

wavelet basis or associated wavelet-tensor product basis.
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Proposition VII.1. — Let F be a Banach space with a basis B = (ei)i∈N satisfying supi∈N ‖ei‖F < ∞.

Consider p ∈ (0,∞) and assume that B satisfies the so-called p-Telmyakov property [12, Def. 2], i.e., assume

that there exists c > 0 such that for every finite subset I of N:

1
c
|I|1/p min

i∈I
|ci| 6 ‖

∑
i∈I

ciei‖F 6 c|I|1/p max
i∈I
|ci|, ∀(ci)i∈I ∈ RI . (12)

Consider 0 < q < p. For every M ∈ N, define7:

ΣqM :=
{

M∑
i=1

ciei, ci ∈ R, sup
0<λ<∞

λ|{i, |ci| > λ}|1/q 6 1
}
.

Define s = 1
q −

1
p . Then the sequence Σq := (ΣqM )M∈N is s-encodable in F .

In the case of Hilbert spaces, much more generic sequences than Σq above are in fact ∞-encodable, as

we now discuss. The ∞-encodability can be used to recover [10, Thm. 5.24] (see Corollary VII.1), and to

generalize Corollary VI.1 (see Corollary VII.2). Let F be a Hilbert space and d be the metric associated

to the norm on F . A dictionary is, by definition [10, Def. 5.19], a subset D = (φi)i∈N of F indexed by a

countable set, which we assume to be N without loss of generality. The dictionary D can be used to approach

elements of F by linear combinations of a growing number M of its elements.

Theorem VII.2. — Let F be a Hilbert space. Let D = (φi)i∈N be a dictionary in F , and π : N → N be

a function with at most polynomial growth. For every I ⊂ N, define (φ̃Ii )i∈I as any orthonormalization of

(φi)i∈I (for instance we may consider the Gram-Schmidt orthonormalization). Define for every M ∈ N and

c > 0:

ΣπM :=
{∑
i∈I

ciφi, I ⊂ {1, . . . , π(M)}, |I| 6M, (ci)i∈I ∈ RI
}
,

Σ̃π,cM :=
{∑
i∈I

c̃iφ̃
I
i , I ⊂ {1, . . . , π(M)}, |I| 6M, (c̃i)i∈I ∈ [−c, c]I

}
.

The sequence Σ̃π,c := (Σ̃π,cM )M∈N is ∞-encodable in (F , d), and for every bounded set C ⊂ F , it holds:

γ∗approx(C|Σπ) = max
c>0

γ∗approx(C|Σ̃π,c). (13)

The proof of Theorem VII.2 is in appendix I. As a consequence of Theorem VII.2, one can recover [10,

Thm. 5.24] as we now describe.

Corollary VII.1 ([10, Thm. 5.24]). — Let (F , d) be a Hilbert space and C ⊂ F . Under the assumptions

of Theorem VII.2, the sequence Σπ = (ΣπM )M∈N satisfies for every relatively compact8 set C:

γ∗approx(C|Σπ) 6 γ∗encod(C).

7In terms of weak-`q-space, the set ΣqM is simply the set of linear combinations of elements of B given by sequences (ci)i∈N

in the closed unit ball of `q,∞(N) with zero coordinates outside the first M ones.
8Recall that a set is relatively compact if its closure is compact. In particular, it must be totally bounded, and in particular

bounded.
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Actually, instead of stating the previous result with the approximation speed γ∗approx(C|Σ), Theorem 5.24

in [10] considers the following quantity [10, Def. 5.23]:

γ∗(C|Σ) := sup{γ ∈ R,∀f ∈ C,∃c > 0,∀M ∈ N, d(f,ΣM ) 6 cM−γ},

which satisfies γ∗(C|Σ) > γ∗approx(C|Σ) but generally differs from γ∗approx(C|Σ) since in the definition of

γ∗approx(C|Σ), the implicit constant c > 0 is not allowed to depend on f ∈ C. However, when C is relatively

compact (that is, its closure is compact), then c > 0 can be chosen independently of f [10, Proof of Thm

5.24] so that the two quantities coincide. The proof of Corollary VII.1 that can be found below is essentially

a rewriting in the formalism of section VI of the original proof of Theorem 5.24 in [10]. The rewriting makes

explicit the use of equality (13) and the ∞-encodability of the sequences Σ̃π,c for c > 0, which are only

implicitly used in the original proof.

Proof. Since C is relatively compact, it must be bounded so Equation (13) of Theorem VII.2 holds. For

every c > 0, Theorem VI.1 applied to Σ̃π,c of Theorem VII.2, which is ∞-encodable, shows that the right

hand-side of Equation (13) is bounded from above by γ∗encod(C). This yields the result.

We also obtain a generic lower bound on the encoding speed of balls of approximation spaces [6, Sec. 7.9]

(also called maxisets [11]) with general dictionaries.

Corollary VII.2. — Let (F , d) be a Hilbert space. Under the assumptions of Theorem VII.2, consider

α, β > 0 and the set910 Aα(F ,Σπ, β) of all f ∈ F such that ‖f‖ 6 β and supM>1M
αd(f,ΣM ) 6 β. This

set satisfies

γ∗encod(Aα(F ,Σπ, β)) > α.

Corollary VII.2 cannot be generalized to Aα(F ,Σπ) :=
⋃
β>0Aα(F ,Σπ, β): this set is homogeneous (stable

by multiplication by any scalar), thus it cannot be encoded at any positive rate. Indeed, a positive encoding

rate implies total boundedness of a set, whereas homogeneity implies that the set cannot be totally bounded

(at least under the assumption that the metric is induced by a norm; there should, in general, be metrics

with respect to which a homogeneous set may be totally bounded).

In some situations, the converse inequality γ∗encod(Aα(F ,Σπ, β)) 6 α can typically be proven by studying

the existence of large enough packing sets of Aα(F ,Σπ, β), but this falls out of the scope of this paper. The

reader can refer to [12, Sec. 4] for an example.

Proof of Corollary VII.2. By the very definition of C := Aα(F ,Σπ, β), this is a bounded set so Equation (13)

of Theorem VII.2 holds. For every c > 0, Theorem VI.1 applied to Σ̃π,c of Theorem VII.2, which is ∞-

encodable, shows that the right hand-side of Equation (13) is bounded from above by γ∗encod(C), so that

γ∗encod(C) > max
c>0

γ∗approx(C|Σ̃π,c) = γ∗approx(C|Σπ).

9This is the ball of radius β of an approximation space [6, Sec. 7.9]/maxiset[11].
10Note that compared to the set in Corollary VI.1, we additionally require that ‖f‖ 6 β so that Aα(F ,Σπ , β) is a bounded

set and Equation (13) of Theorem VII.2 holds.
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Finally, again by definition of C := Aα(F ,Σπ, β), we have γ∗approx(C|Σπ) > α.

Note that if Σπ was γ-encodable for some γ > 0 large enough then Corollary VII.1 would be a special case

of Corollary VI.2 whereas Corollary VII.2 would be a special case of Corollary VI.1. But in this situation,

Σπ has no reason to be γ-encodable, whatever γ > 0 is (since the dictionary is arbitrary and the coefficients

of the linear combinations are not bounded). This shows that Corollary VI.2 and Corollary VI.1 actually

holds more generally for some sequences Σ that are not γ-encodable, whatever γ > 0 is, as soon as Σ can

be recovered as a limit of non-decreasing sequences Σc, c > 0, that are γ-encodable, in the sense that for

every M ∈ N, if 0 < c 6 c′ then ΣcM ⊆ Σc′M and ΣM = ∪c>0ΣcM .

C. The case of ReLU networks

When Σ is defined with ReLU feed-forward neural networks, we now explicitly study how the property

of ∞-encodability depends on (bounds on) the neural network sparsity, depth, and weights. In particular,

Proposition VII.2 establishes a "simple" explicit condition under which Theorem VI.1 generalizes Theorem

VI.4 in [8] to other type of constraints. Proposition VII.2 is proven in appendix I.

Proposition VII.2. — Consider the context of Definition V.4 and assume that for every h > 0, it holds:

LMM (1 + log2(rM )) = OM→∞(M1+h). (14)

Then the approximation family N (Definition V.2) defined with ReLU networks is ∞-encodable.

Example VII.1 (∞-encodable sequences of sparse neural networks - [8, Thm. VI.4]). — Let π be

a positive polynomial and consider, as in Definition VI.2 of [8], N π
M the set of functions parameterized by a

ReLU neural network with weights’ amplitude bounded by π(M), depth bounded by π(logM) and at most

M non-zero parameters. Assumption (14) holds since this corresponds to the case where LM 6 π(log(M))

and 1 6 rM 6 max(1, π(M)). Then, Proposition VII.2 guarantees that N π := (N π
M )M∈N is ∞-encodable.

Given Theorem VI.1, the fact that N π is ∞-encodable gives γ∗approx(C|N π) 6 γ∗encod(C) for arbitrary

p ∈ [1,∞] and arbitrary C ⊂ Lp. This is exactly Theorem VI.4 in [8].

VIII. Conclusion

We now summarize our different contributions and discuss perspectives.

Approximation with quantized ReLU networks We characterized the error of simple uniform quan-

tization scheme Qη that acts coordinatewise as Qη(x) = bx/ηcη. We proved in Theorem IV.2 that the

number of bits per coordinate must grow linearly with the depth of the network in order to provide ε-error

in L∞([−D,D]d), uniformly on a bounded set of parameters Θq
L,N(r). The proof exploits a new lower-bound

on the Lipschitz constant of the parameterization of ReLU networks that we established in Theorem III.1.

We also proved a generic upper-bound for this Lipschitz constant, which generalizes upper-bounds known in

specific situations. As a consequence, we gave explicit conditions on the number of bits per coordinate that

guarantees quantized ReLU networks to have the same approximation speeds as unquantized ones in generic
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Lp spaces, see Example V.1. We further used in section IV the upper bound on the Lipschitz constant of

θ 7→ Rθ to recover a known approximation result of quantized ReLU networks in L∞-Sobolev spaces [7,

Thm. 2] and to improve a result on the error of nearest-neighbour uniform quantization [8, Lem. VI.8].

Notion of γ-encodability. This paper introduced in Definition VI.2 a new property of approximation

families: being γ-encodable. As soon as Σ is γ-encodable in a metric space (F , d), Theorem VI.1 shows that

there is a simple relation between the approximation speed of every set C ⊂ F and its encoding speed:

min(γ∗approx(C|Σ), γ) 6 γ∗encod(C). (15)

As seen in section VII, several classical approximation families Σ are γ-encodable for some γ > 0, including

classical families defined with dictionaries (section VII-B) or ReLU neural networks (section VII-C). As a

consequence, γ-encodability lays a generic framework that unifies several situations where Inequality (15) is

known, such as when doing approximation with dictionaries [10, Thm. 5.24][12, Prop. 11] or ReLU neural

networks [8, Thm. VI.4].

Perspectives. In Theorem IV.1 and Theorem IV.2, we saw necessary and sufficient conditions on η > 0

to guarantee that quantizing coordinatewise by Qη(x) = bx/ηcη provides ε-error in L∞([−D,D]d), uniformly

on a bounded set of parameters Θq
L,N(r). In practical applications with post-training quantization, we are

only interested in parameters that can be obtained with learning algorithms such as stochastic gradient

descent. Moreover, we may not be interested in ε > 0 arbitrary small. For instance, quantization aware

training techniques [4] have been successfully applied for ReLU neural networks with three hidden layers

and 1024 neurons per hidden layer [4]. Indeed, the modified learning procedure yields in [4] a network with

quantized weights in {−1, 1} that performs similarly, on the MNIST dataset, as the network that would

have been obtained with the original learning procedure. Is it possible to have better guarantees if we only

care about some prescribed error ε > 0 and a "small set" of parameters, such as parameters than can indeed

be learned in practice?

Another question would be to design schemes to quantize network parameters, in a way that adapts

to the architecture. In the quantization schemes covered by Theorem IV.1, the sufficient value of η > 0

to ensure a prescribed error ε > 0 only takes into account the depth and the width of the architecture.

However, in practice the network architecture is carefully designed to meet some criterion, such as reducing

the inference cost (references can be found in the paragraph "Compact network design" of [19]). Specificities

of the architecture could be taken into consideration when designing the quantization scheme.

Another perspective is to take into account functionally equivalent parameters when designing a quantiza-

tion scheme, as we now detail. Given parameters θ of a ReLU neural network (and possibly a finite dataset),

we say that θ′ is functionally equivalent to θ, denoted θ′ ∼ θ, if Rθ = Rθ′ (resp. equality on the considered

dataset). Due to the positive homogeneity of the ReLU function, there are uncountably many equivalent

parameters to θ that can be obtained by rescaling the coordinates of θ (but these are not the only ones since

permuting coordinates can also lead to functionally equivalent parameters). When quantizing θ, it would be

interesting to take these equivalent parameters into account.
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Finally, what is the minimum number of bits per coordinate needed to keep the same approximation

speeds? While the question remains open, Theorem V.1 makes a first step in that direction by giving an

upper-bound.
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Appendix A

Norms

Definition A.1 (p-norm). — Let d ∈ N. For an exponent p ∈ [1,∞], the p-norm on Rd is defined by:

∀x = (xi)i=1,...,d ∈ Rd, ‖x‖p :=


(∑d

i=1 |xi|p
) 1
p if p <∞,

sup
i=1,...,d

|xi| if p =∞.

Definition A.2. — (|||·|||p) Let d1, d2 ∈ N. The operator norm |||·|||p on Rd2×d1 associated with the exponent

p ∈ [1,∞] is defined by:

∀M ∈ Rd2×d1 , |||M |||p := sup
x∈Rd1
x 6=0

‖Mx‖p
‖x‖p

.

Appendix B

Characterization of the Lp spaces containing all the functions realized by ReLU

networks

Proof of of Lemma II.1. Assume that Cp(Ω, µ) < ∞ and consider the realization Rθ of an arbitrary ReLU

network on an arbitrary architecture with input dimension N0 = din and arbitrary output dimension NL. It is

known [1, Thm. 2.1] that Rθ is (continuous and) piecewise linear, so that there is a partition of Ω into finitely

many Ωi, 1 6 i 6 n such that Rθ =
∑n
i=1 χΩifi where χE(x) is the characteristic function of the set E and

each fi is an affine function. To prove the result it is thus sufficient to show that χEf ∈ Lp(Ω → RNL , µ)

for each set E ⊂ Ω and each affine function f . Since ‖χEg‖p 6 ‖g‖p for any g it is enough to prove

that any affine function is in the desired space. For this, consider arbitrary A ∈ RNL×N0 , b ∈ RNL , and

f : x 7→ Ax+ b. Denoting c(f) := max(|||A|||∞, ‖b‖∞) (the notation |||·||| is defined in appendix A) we observe

that ‖f(x)‖∞ 6 |||A|||∞‖x‖∞ + ‖b‖∞ 6 c(f)(‖x‖∞ + 1) so that ‖f‖p 6 c(f)Cp(Ω, µ) < ∞, showing the

result.

Conversely, assume that for every architecture (L,N) and parameter θ ∈ ΘL,N we have Rθ ∈ Lp(Ω →

RNL , µ). Specializing to an architecture with L = 1, N1 = N0 = din, consider θ = (W1, b1) with W1 the

identity matrix and b1 the zero vector, θ′ = (W ′1, b′1) with W ′1 the zero matrix and b′1 any vector with

‖b′1‖∞ = 1. We have Rθ(x) = x while Rθ′(x) = b′1. For p <∞ we have
∫
x∈Ω ‖x‖

p
∞dµ(x) = ‖Rθ‖pp <∞ and∫

x∈Ω 1dµ(x) = ‖Rθ′‖pp <∞. By the triangle inequality we get Cp(Ω, µ) <∞. The case p =∞ is similar.

Appendix C

Optimality of a bound on ‖Rθ(x)−Rθ′(x)‖q

We generalize a known inequality established for q = ∞ [8, Eq. (37)][3, Eq. (3.12)] to arbitrary q-th norm

q ∈ [1,∞]. Moreover, we prove its optimality. This inequality is used in appendix D to bound the Lipschitz

constant of the parameterization of ReLU networks. With Im×m the identity matrix in dimension m and

0m×n the m×n matrix full of zeros, we introduce the following notation for “rectangular identity matrices”:

for m < n, we set Im×n = (Im×m; 0m×(n−m)), while for m > n we set Im×n = I>n×m.
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Lemma C.1. — Let (L,N) be an architecture with any depth L > 1 and θ = (W1, . . . ,WL, b1, . . . , bL),

θ′ = (W ′1, . . . ,W ′L, b′1, . . . , b′L) ∈ ΘL,N (see Equation (4) for the definition of ΘL,N) be parameters associated

to this architecture. For every ` = 1, . . . , L − 1, define θ′` as the parameter deduced from θ′, associated to

the architecture (`, (N0, . . . , N`)):

θ′` = (W ′1, . . . ,W ′` , b′1, . . . , b′`).

Then for every exponent q ∈ [1,∞] and for every x ∈ RN0 , the realization of neural networks with any

1-Lipschitz activation function % such that %(0) = 0 satisfy:

‖Rθ(x)−Rθ′(x)‖q 6
L∑
`=1

(
L∏

k=`+1
|||Wk|||q

)
× |||W` −W ′` |||q × ‖Rθ′`−1

(x)‖q (16)

+
L∑
`=1

(
L∏

k=`+1
|||Wk|||q

)
‖b` − b′`‖q,

where the definition of the q-th norm and the operator norm of a matrix are recalled in appendix A, and

where we set by convention Rθ′
`−1

(x) = x if ` = 1, and
∏L
k=`+1 |||Wk|||q = 1 if ` = L.

Let λ1, . . . , λL > 0 and ε > 0 and consider an input vector x ∈ Rdin with nonnegative entries and supported

on the first s := min`N` coordinates. There is equality in (16) for the parameters θ = (W1, . . . ,WL, b1, . . . , bL)

and θ′ = (W ′1, . . . ,W ′L, b′1, . . . , b′L) defined by, for every ` = 1, . . . , L:

W` = λ`IN`×N`−1 , W ′` = (1 + ε)W`, b` = b′` = 0. (17)

Proof. The proof of Inequality (16) follows by induction on L ∈ N in a similar way as in the case q =∞ [8,

Eq. (37)][3, Eq. (3.12)]. For L = 1, this is just saying that

‖Rθ(x)−Rθ′(x)‖q = ‖W1x+ b1 −W ′1x− b′1‖q

6 |||W1 −W ′1|||q‖x‖q + ‖b1 − b′1‖q.

Assume that the property holds true for L > 1. Then at rank L + 1 (using in the last inequality that the

activation function ρ is 1-Lipschitz and %(0) = 0):

‖Rθ(x)−Rθ′(x)‖q = ‖WL+1ρ(RθL(x)) + bL+1 −W ′L+1ρ(Rθ′
L

(x))− b′L+1‖q

= ‖WL+1

(
ρ(RθL(x))− ρ(Rθ′

L
(x))

)
+ (WL+1 −W ′L+1)ρ(Rθ′

L
(x)) + bL+1 − b′L+1‖q

6 |||WL+1|||q‖ρ(RθL(x))− ρ(Rθ′
L

(x))‖q

+
∣∣∣∣∣∣WL+1 −W ′L+1

∣∣∣∣∣∣
q
‖ρ(Rθ′

L
(x))‖q + ‖bL+1 − b′L+1‖q

6 |||WL+1|||q‖RθL(x)−Rθ′
L

(x)‖q

+
∣∣∣∣∣∣WL+1 −W ′L+1

∣∣∣∣∣∣
q
‖Rθ′

L
(x)‖q + ‖bL+1 − b′L+1‖q.

Using the induction hypothesis gives the desired result.
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For the equality case, recall the definition of the parameters θ and θ′ in Equation (17). Let λ =
∏L
`=1 λ`.

Since x = (y>, 01×(din−s))> with y ∈ Rs+ we have %(W1x + b1) = λ1(y>, 01×(N1−s))>. By induction on

` = 1, . . . , L, we can show Rθ(x) = λ(y>, 01×(NL−s))>, and similarly Rθ′(x) = (1 + ε)Lλ(y>, 01×(NL−s))>.

This means that:

‖Rθ(x)−Rθ′(x)‖q = ‖λy − (1 + ε)Lλy‖q

= ((1 + ε)L − 1)λ‖x‖q.

Moreover, for every ` = 1, . . . , L, it is easy to check that |||W`|||q = λ`, |||W ′` |||q = (1+ε)λ` and |||W` −W ′` |||q =

ελ` so that: (
L∏

k=`+1
|||Wk|||q

)
× |||W` −W ′` |||q × ‖Rθ′`−1

(x)‖q

=
(

L∏
k=`+1

λk

)
× ελ` ×

(
`−1∏
k=1

(1 + ε)λk

)
‖x‖q

= (1 + ε)`−1ελ‖x‖q,

and: (
L∏

k=`+1
|||W`|||q

)
‖b` − b′`‖q = 0.

This yields the equality case, since:

L∑
`=1

(
L∏

k=`+1
|||Wk|||q

)
× |||W` −W ′` |||q × ‖Rθ′`−1

(x)‖q +
L∑
`=1

(
L∏

k=`+1
|||W`|||q

)
‖b` − b′`‖q

=
L∑
`=1

(1 + ε)`−1ελ‖x‖q = (1 + ε)L − 1
1 + ε− 1 ελ‖x‖q = ((1 + ε)L − 1)λ‖x‖q.

Appendix D

Lipschitz parameterization of ReLU networks (Proof of Theorem III.1)

Recall that we fixed a set Lp(Ω→ Rdout , µ) containing all functions realized by ReLU neural networks with

input dimension din and output dimension dout. The parameter set Θq
L,N(r) is defined in Definition III.1.

First, Lemma C.1 applied to any θ ∈ ΘL,N, and θ′ = (0, . . . , 0) ∈ ΘL,N yields for every x ∈ Ω:

‖Rθ(x)‖q 6
L∏
k=1
|||Wk|||q‖x‖q +

L∑
`=1

(
L∏

k=`+1
|||Wk|||q

)
‖b`‖q, (18)

using that ‖Rθ′
`−1

(x)‖q = ‖x‖q for ` = 1 (by convention) and ‖Rθ′
`−1

(x)‖q = 0 for each ` > 2 (since θ′ = 0).

Let θ, θ′ ∈ ΘL,N. We are going to bound ‖Rθ −Rθ′‖p,‖·‖ from above using Inequality (16) of Lemma C.1.

First, we introduce useful notations to write things compactly. Define for every i, j ∈ N:

Πi,j :=
j∏
k=i
|||Wk|||q and Π′i,j :=

j∏
k=i
|||W ′k|||q if i 6 j,

Πi,j := Π′i,j := 1 otherwise.
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For ` = 2, . . . , L, we start by bounding ‖Rθ′
`−1

(x)‖q by a simple function of x ∈ Ω, since this term appears

on the right-handside of Inequality (16). Using (18) for the architecture (`− 1, (N0, . . . , N`−1)) we have:

‖Rθ′
`−1

(x)‖q 6
`−1∏
k=1
|||W ′k|||q‖x‖q +

`−1∑
k=1

 `−1∏
j=k+1

∣∣∣∣∣∣W ′j∣∣∣∣∣∣q
 ‖b′k‖q

= Π′1,`−1‖x‖q +
`−1∑
k=1

Π′k+1,`−1‖b′k‖q.

If Ω ⊆ Rdin
+ and N0 = min06`6LN` then for every x ∈ Ω, the parameters defined in Equation (17) are such

that the previous inequality is an equality.

Denote c0 a constant such that for every y ∈ Rdout , ‖y‖ 6 c0‖y‖q. Note that if ‖·‖ = ‖·‖s for s ∈ [1,∞], then

we can take c0 = d
max(0, 1

s−
1
q )

out . Now, using the previous inequality and integrating both sides of Inequality

(16) of Lemma C.1, we get for 1 6 p <∞:(∫
x∈Ω
‖Rθ(x)−Rθ′(x)‖pdµ(x)

) 1
p

6 c0

(∫
x∈Ω
‖Rθ(x)−Rθ′(x)‖pqdµ(x)

) 1
p

6 c0

(∫
x∈Ω

[ L∑
`=1

Π`+1,L

(
Π′1,`−1‖x‖q +

`−1∑
k=1

Π′k+1,`−1‖b′k‖q

)

× |||W` −W ′` |||q +
L∑
`=1

Π`+1,L × ‖b` − b′`‖q
]p

dµ(x)
) 1
p

.

A trivial adaptation yields a similar result for p =∞.

If Ω ⊆ Rdin
+ , N0 = min06`6LN`, and if ‖·‖ = ‖·‖q so that we can take c0 := 1, then the previous inequality

is an equality for the parameters defined in Equation (17).

Note that in the special case p = ∞, if we only assume that Ω ⊆ Rdin
+ and ‖ · ‖ = ‖ · ‖q (but not that

N0 = min06`6LN`), denoting by Nmin := min06`6LN`, then it holds for the parameters of Equation (17)

and for every x ∈ Ω supported on the first Nmin coordinates:

‖Rθ(x)−Rθ′(x)‖ =
L∑
`=1

Π`+1,L

(
Π′1,`−1‖x‖q +

`−1∑
k=1

Π′k+1,`−1‖b′k‖q

)
× |||W` −W ′` |||q +

L∑
`=1

Π`+1,L×‖b`− b′`‖q.

Recall that W = max
`=0,...L

N` is the width of the network. For every matrix M with input/output dimension

bounded by W and every vector b with dimension bounded by W , denoting by ‖M‖max := maxi,j |Mi,j |,

standard results on equivalence of norms guarantees that for every 1 6 q 6∞, it holds ‖b‖q 6W 1/q‖b‖∞ 6

W‖b‖∞ and max(|||M |||1, |||M |||∞) 6 W‖M‖max. The latter, with Riesz-Thorin theorem [6, Chap.2, Thm

4.3], guarantee that for every 1 6 q 6∞:

|||M |||q 6W‖M‖max and ‖b‖q 6W‖b‖∞. (19)

We deduce that for every ` = 1, . . . , L:

max
(
|||W` −W ′` |||q, ‖b` − b

′
`‖q
)
6W‖θ − θ′‖∞.
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This time, this is not an equality for the parameters defined in Equation (17). For them it holds instead,

assuming that all λ` are equal:

|||W` −W ′` |||q = ελ` = ‖W` −W ′`‖max = ‖θ − θ′‖∞, ‖b` − b′`‖q = 0.

Using the previous inequalities, we get for 1 6 p <∞:

‖Rθ −Rθ′‖p,‖·‖ 6
(∫

x∈Ω

[ L∑
`=1

Π`+1,L

(
Π′1,`−1‖x‖q +

`−1∑
k=1

Π′k+1,`−1‖b′k‖q

)

+
L∑
`=1

Π`+1,L

]p
dµ(x)

) 1
p

c0W‖θ − θ′‖∞

with a trivial adaptation for p =∞. Now, let’s specialize this for θ, θ′ ∈ Θq
L,N(r). It holds max(Πi,j ,Π′i,j) 6

rj−i+1 for i 6 j, and the same also holds for i = j + 1 by definition of Πi,j . Thus:
L∑
`=1

Π`+1,L

(
1 + Π′1,`−1‖x‖q +

`−1∑
k=1

Π′k+1,`−1‖b′k‖q

)

6
L∑
`=1

rL−`

(
1 + r`−1‖x‖q +

`−1∑
k=1

r`−k

)
since θ, θ′ ∈ Θq

L,N(r)

= LrL−1‖x‖q +
L∑
`=1

rL−` +
L∑
`=1

`−1∑
k=1

rL−k

6 LrL−1‖x‖q + LrL−1 + L(L− 1)rL−1 since r > 1

6 L2rL−1(‖x‖q + 1) since L > 1.

If we define:

c :=


c0
(∫
x∈Ω(‖x‖q + 1)pdµ(x)

)1/p if p <∞,

c0 ess sup
x∈Ω

‖x‖q + 1 if p =∞.

where we recognize in the second factor the constant Cp(Ω, µ) from Lemma II.1 when q =∞, then we finally

get (6). Let us now explicit c in specific situations where Ω = [−D,D]d for some D > 0, µ is the Lebesgue

measure and ‖ · ‖ = ‖ · ‖q so that we can take c0 = 1. If q = ∞ we get c = Cp(Ω, µ) 6 (D + 1)(2D)d/p. If

p =∞, then

c = ess sup
x∈Ω

‖x‖q + 1 = Dd1/q + 1.

Indeed, the essential supremum is actually a maximum in this case and ‖x‖q 6 d1/q‖x‖∞ 6 d1/qD for every

x ∈ [−D,D]d with equality for x = (D, . . . ,D)T .

Let us now discuss the optimality of (6). It can be checked that if Ω ⊆ Rdin
+ , ‖·‖ = ‖·‖q, so that we can take

c0 := 1, and if N0 = min06`6LN`, then the parameters θ, θ′ defined in Equation (17) with λ1 = . . . = λL =
r

1+ε > 0 are in Θq
L,N(r) and satisfy ‖Rθ −Rθ′‖p = c0

(∫
x∈Ω ‖x‖

p
qdµ(x))

) 1
p rL−1∑L

`=1

(
1

1+ε

)L−`
‖θ − θ′‖∞.
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In the special case where p =∞, if we only assume that Ω ⊆ Rdin
+ and ‖·‖ = ‖·‖q then the parameters θ, θ′

defined in Equation (17) with λ1 = . . . = λL = r
1+ε > 0 are in Θq

L,N(r) and if we denoteNmin := min06`6LN`

and Ωmin the set of x ∈ Ω supported on the first Nmin coordinates:

ess sup
x∈Ωmin

‖Rθ(x)−Rθ′(x)‖ >
(

ess sup
x∈Ωmin

‖x‖q
)
rL−1

L∑
`=1

(
1

1 + ε

)L−`
‖θ − θ′‖∞.

This yields the conclusion.

Appendix E

Nearest-neighbour uniform quantization on ReLU networks

Proof of Theorem IV.2. Consider ε, η > 0 such that (9) holds true. We must prove that min(r, η) 6 ε
c′rL−1 .

With Im×m the identity matrix in dimension m and 0m×n the m × n matrix full of zeros, we introduce

the following notation for “rectangular identity matrices”: for m < n, we set Im×n = (Im×m; 0m×(n−m)),

while for m > n we set Im×n = I>n×m. Consider 0 < a < η and define θ = (W1, . . . ,WL, b1, . . . , bL) with

b1 = · · · = bL = 0, W1 = λIN1×N0 with λ := min(r, (η − a)), and for every layer ` > 2, W` = rIN`×N`−1 .

Since 0 < λ 6 η − a < η, we have Qη(λ) = 0 so that Qη(W1) = 0. Since b1 = 0, we also have Qη(b1) = 0 so

that RQη(θ) = 0. We deduce that for every x ∈ [0, D]d supported in the first Nmin coordinates:

‖Rθ(x)−RQη(θ)(x)‖q = ‖λrL−1x− 0‖q = λrL−1‖x‖q.

Since the maximum of ‖x‖q over all x ∈ [0, D]d supported in the first Nmin coordinates is c′ = DN
1/q
min, we

get:

c′λrL−1 6 max
x∈[−D,D]d

‖Rθ(x)−RQη(θ)(x)‖q

As |||W1|||q = λ = min(r, (η − a)) 6 r, for every ` > 2, |||W`|||q = r and for every ` > 1, ‖b`‖q = 0 6 r, we

have θ ∈ Θq
L,N(r) so (9) applies. This implies c′λrL−1 6 ε, i.e., min(r, (η − a)) 6 ε/(c′rL−1). This holds for

every 0 < a < η: taking the limit a→ 0+ yields the result.

Proof of Proposition IV.1. Let us see that Lemma IV.1 applies with Θ = Θmax
L,N(ε−k), q =∞ and r = Wε−k.

First, it holds Θmax
L,N(ε−k) ⊂ Θ∞L,N(Wε−k) (see Remark III.1). Since ‖θ − θ′‖∞ 6 η/2 6 εm/2, the η to use

for Lemma IV.1 is η := εm/2 > 0. Lemma IV.1 then gives the result if εm/2 6 ε
(
cWL2rL−1)−1, where

c := 1+Dd1/q
in = 1+D. The latter condition is equivalent to cWL2rL−1/2 6 εm−1. Recall that r = Wε−k and

max(W,L) 6 ε−k. Thus the left hand-side satisfies: cWL2rL−1/2 6 ((1+D)/2)ε−2kL−2k. We can conclude if

((1+D)/2)ε−2kL−2k 6 εm−1. By definition ofm, this is true as soon as ((1+D)/2)εlog2(dDe) 6 1. This is clear

when 0 < D 6 1. While for D > 1, ((1 + D)/2)εlog2(dDe) 6 1 holds if and only if log2(ε) 6 − log2((1+D)/2)
log2(dDe) .

Since 1 < D, it holds 1+D
2 6 dDe+dDe

2 = dDe so that − log2((1+D)/2)
log2(dDe) > −1. Since ε ∈ (0, 1/2), it holds

−1 > log2(ε), hence − log2((1+D)/2)
log2(dDe) > log2(ε) and the result follows.

Proof of Proposition IV.2. Using [18, Thm. 1], there exist constants c(n, d) > 0 and r(n, d) > 1 (for instance,

a proof examination of [18, Thm. 1] shows that we can take r = max(4, d + n)) such that for every ε ∈

(0, 1), there exists a ReLU network architecture (L,N) with depth L bounded by c ln(1/ε), a number of
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weights at most equal to cε−d/n ln(1/ε), and such that for every f ∈ Cn,d, there exists θ ∈ ΘL,N such that

‖f − Rθ‖L∞([0,1]d) 6 ε/2, and such that θ has weight’s magnitude bounded by r. Theorem III.1 can now

be used to quantize the weights of θ, in order to get a quantized ReLU network ε-close to f . Denote W

the width of this network architecture (L,N). Since Θmax
L,N(r) ⊂ Θ1

L,N(Wr) (see Remark III.1) we can use

Theorem III.1 with q = 1 to get that there exists a constant c′ > 0 that only depends on n, d, such that the

weights of any network θ ∈ Θmax
L,N(r) can be uniformly quantized with a step size η := c′ε(WL2(Wr)L−1)−1

to get a quantized network θ′ such that ‖Rθ′−Rθ‖L∞([0,1]d) 6 ε/2. Since the widthW is at most the number

of weights, which is at most cε−d/n ln(1/ε), and since the depth L is at most c ln(1/ε) and r is a constant

that only depends on n, d, it is straightforward to check that ln(1/η) 6 c′′ ln2(1/ε) for some constant c′′ that

only depends on n and d. Since the weights are bounded in absolute value by r(n, d), this means that every

quantized weight can be stored using at most c′′′ ln(1/η) 6 c′′′ ln2(1/ε) bits for some constant c′′′(n, d) > 0.

Since there are at most cε−d/n ln(1/ε) such quantized weights, this yields the result using max(c, c′′, c× c′′′)

as the final constant.

Appendix F

Approximation speeds of quantized versus unquantized ReLU networks

We first establish two lemmas that will be useful to prove Theorem V.1. Along the way, we also give bounds

on the size of the coverings we encounter. These bounds will prove useful in appendix I.

Lemma F.1. — Let (F , d) be a metric space. Consider γ and two sequences Σ(γ) and Σ of subsets of F .

Assume that there exists a constant c > 0 such that for every M ∈ N, the set Σ(γ)M is a cM−γ-covering of

ΣM . Then for every (non-empty) C ⊂ F :

γ∗approx(C|Σ(γ)) = γ∗approx(C|Σ) if γ > γ∗approx(C|Σ),

γ∗approx(C|Σ(γ)) > γ otherwise.

Proof of Lemma F.1. For every M ∈ N, the inclusion Σ(γ)M ⊂ ΣM holds (indeed Σ(γ)M is a covering of

ΣM ) so that γ∗approx(C|Σ(γ)) 6 γ∗approx(C|Σ). This proves the result when γ∗approx(C|Σ) = −∞. From now

on we assume γ∗approx(C|Σ) > −∞. Fix an arbitrary −∞ < γ′ < min(γ∗approx(C|Σ), γ). By definition of the

approximation speed, there exists a constant c′ > 0 such that for every f ∈ C and every M ∈ N, there exists

a function ΦM (f) ∈ ΣM that satisfies:

d (f,ΦM (f)) 6 c′M−γ
′
.

The triangle inequality guarantees that for every f ∈ C and every M ∈ N:

d(f,Σ(γ)M ) 6 d(f,ΦM (f)) + d(ΦM (f),Σ(γ)M ) 6 c′M−γ
′
+ cM−γ .

Since γ′ 6 γ (and even if γ′ < 0, which can happen if γ∗approx(C|Σ) < 0) this means that γ∗approx(C|Σ(γ)) >

γ′ for every −∞ < γ′ < min(γ∗approx(C|Σ), γ) so γ∗approx(C|Σ(γ)) > min (γ∗approx(C|Σ), γ). Since we also

proved that γ∗approx(C|Σ(γ)) 6 γ∗approx(C|Σ), this yields the claim.
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Lemma F.2. — Consider q ∈ [1,∞] and γ > 0. There exists a constant c(q, γ) > 0 such that the following

holds. Consider arbitrary n ∈ N, r > 1 and consider the set Bn,‖·‖q (0, r) ⊂ `q(N) that consists of the sequences

bounded in `q-norm by r, and with zero coordinates outside the first n ones. Consider a metric space (F , d)

and a Lipschitz-map ϕ : (Bn,‖·‖q (0, r), ‖ · ‖q) → (F , d) with Lipschitz constant Lips(ϕ) > 1. For every

M ∈ N, define the step size ηM := (Mγn1/qLips(ϕ))−1 and the "quantized" set Q(Bn,‖·‖q (0, r), ηM ,∞) :=

Bn,‖·‖q (0, r)∩ (ηMZ)N. Then for every integer M > 2, the set ϕ(Q(Bn,‖·‖q (0, r), ηM ,∞)) is an M−γ-covering

of ϕ(Bn,‖·‖q (0, r)) of size satisfying:

log2(|ϕ(Q(Bn,‖·‖q (0, r), ηM ,∞))|) 6 c(q, γ)
(
n

[
log2(n) + log2(r) + log2(Lips(ϕ)) + log2(M)

])
. (20)

Proof. When q = ∞, it is known [17, Examples 5.2 and 5.6] that Q(Bn,‖·‖q (0, r), ηM ,∞) is a ηM -covering

of Bn,‖·‖q (0, r) of size bounded by (2r/ηM )n + 1. Since ϕ is Lips(ϕ)-Lipschitz, we deduce that the set

ϕ(Q(Bn,‖·‖q (0, r), ηM ,∞)) is an M−γ-covering of ϕ(Bn,‖·‖q (0, r)) of size satisfying:

log2(|ϕ(Q(Bn,‖·‖q (0, r), ηM ,∞))|) 6 n

[
1 + log2(r) + log2(Lips(ϕ)) + γ log2(M)

]
Since M > 2, it holds 1 + γ log2(M) 6 (1 + γ) log2(M), hence Equation (20) for c(q, γ) = 1 + γ > 1. This

settles the case q =∞.

When q ∈ [1,∞), Hölder’s inequality yields ‖x‖q 6 n1/q‖x‖∞ for every x ∈ Rn. Thus Bn,‖·‖q (0, r) is a

subset of the ball of radius rn1/q of `∞(N), and the Lipschitz constant of ϕ with respect to ‖ ·‖∞ is bounded

by its Lipschitz constant with respect to ‖ · ‖q, up to a factor n1/q. Thus, the case q ∈ [1,∞) can be reduced

to the case q =∞ by replacing r by rn1/q and Lips(ϕ) by n1/qLips(ϕ). We get:

log2(|ϕ(Q(Bn,‖·‖q (0, r), ηM ,∞))|) 6 n

[
1 + 2

q
log2(n) + log2(r) + log2(Lips(ϕ)) + γ log2(M)

]
This yields the desired result with c(q, γ) = max(2

q , 1 + γ).

Lemma F.3. — In the setting of Theorem V.1, for every γ > 0, there exists a constant c > 0 such that for

every M ∈ N, the set Q(N|γ)M is a cM−γ-covering of N . Moreover, for every M ∈ N, every architecture

(L,N) ∈ AM and every support S ∈ SM(L,N):

log2(|RQ(Θq
L,N(rM ),ηM ,rM ),S |) 6 cM (log2(M) + log2(rM ) + log2(Lips(M, q))) .

Proof. According to Theorem III.1, there is a constant c′ > 0 such that for each M ∈ N, each architecture

(L,N) ∈ AM and each support S ∈ SM(L,N), the set RΘq
L,N(rM ),S is the image under a Lipschitz map of

({θ ∈ Θq
L,N(rM ) supported on S}, ‖ · ‖∞) with a Lipschitz constant bounded by c′Lips(M, q).

Let us now use Lemma F.2 with a Lipschitz constant bounded by c′Lips(M, q), n = |S| 6M the cardinality

of the support, r = rM , and the same q as here. This yields the result with c := max(1/c′, 2c(q, γ)).

Proof of Theorem V.1. Combining Lemma F.1 and Lemma F.3 gives Equality (10).
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Appendix G

Encodability implies a relation between approximation and encoding speeds

Proof of Theorem VI.1. If γ∗approx(C|Σ) 6 0 then the result is trivial since we always have γ∗encod(C) > 0.

In the rest of the proof we assume γ∗approx(C|Σ) > 0. Fix 0 < γ′ < min(γ∗approx(C|Σ), γ) and h > 0.

First, Σ is γ-encodable so there exists a (γ, h)-encoding of Σ that we denote Σ(γ, h). This means that there

exist constants c′1, c′2 > 0 such that for every M ∈ N, the set Σ(γ, h)M is a c′1M−γ-covering of ΣM of size

|Σ(γ, h)M | 6 2c′2M1+h . Second, since 0 < γ′ < min(γ∗approx(C|Σ), γ), the definition of the approximation

speed guarantees that there exists a constant c′3 > 0 such that for every f ∈ C and every M ∈ N, there

exists a function ΦM (f) ∈ ΣM that satisfies:

d (f,ΦM (f)) 6 c′3M
−γ′ .

Since 0 < γ′ < γ, note that for every M ∈ N, it holds c′1M−γ + c′3M
−γ′ 6 (c′1 + c′3)M−γ′ . Define c1 = c′1 + c′3

and c2 = c′2. We deduce that for everyM ∈ N, the set Σ(γ, h)M is a c1M−γ
′ -covering of C of size |Σ(γ, h)M | 6

2c2M
1+h . Now, for every ε > 0, the integer Mε :=

⌈(
c1
ε

)1/γ′⌉ satisfies ε > c1M
−γ′
ε . By monotonicity of the

metric entropy H(C, d, ·) we get H(C, d, ε) 6 H(C, d, c1M−γ
′

ε ) 6 c2M
1+h
ε . Note that for 0 < ε < c1, denoting

by c = (2c1/γ
′

1 )1+h it holds M1+h
ε 6

(
1 +

(
c1
ε

)1/γ′)1+h
=
(
c1
ε

)(1+h)/γ′
(

1 +
(
ε
c1

)1/γ′
)1+h

6 cε−(1+h)/γ′ .

Finally for every 0 < ε < c1, it holds

H(C, d, ε) 6 cε−(1+h)/γ′ ,

As a direct consequence of Equation (2), this implies γ∗encod(C) > γ′

1+h for every h > 0 and every 0 < γ′ <

min(γ∗approx(C|Σ), γ), hence the desired result.

Appendix H

First examples of ∞-encodable approximation families

Proof of Lemma VII.1. Each ΣM can be identified with the closed ball of radius rM in dimension dM with

respect to the q-th norm, so that standard bounds on covering numbers [17, Eq. (5.9)] yield for every

0 < ε 6 rM :

dM log2

(rM
ε

)
6 H(ΣM , ‖ · ‖q, ε) 6 dM log2

(
3rM
ε

)
. (21)

For ε = M−γ(6 1 6 rM ), we get:

dM (log2(rM ) + γ log2(M)) 6 H(ΣM , ‖ · ‖q, ε) 6 dM (log2(3rM ) + γ log2(M)).

Everything is non-negative, so if the right hand-side is OM→∞(M1+h), for every h > 0, then so is the left

hand-side. The converse is also true since both sides only differ by log2(3)dM = OM→∞(dM logM). The

non-negativity of the quantities also implies that the condition dM [log2(rM )+γ log2(M)] = OM→∞(M1+h),

for every h > 0, does not depend on γ. As a consequence, either Σ is∞-encodable or it is never γ-encodable,

whatever γ > 0 is. Finally, note that for every h > 0, dM (log2(rM ) + log2(M)) = OM→∞(M1+h) if and

only if dM (log2(rM ) + 1) = OM→∞(M1+h). The "only if" part is clear since for M > 2, it holds 0 6
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dM (log2(rM ) + 1) 6 dM (log2(rM ) + log2(M)). For the "if" part, use that rM > 1 and the assumption

to get 0 6 dM 6 dM (log2(rM ) + 1) = OM→∞(M1+h) so that dM log2(M) = OM→∞(M1+h log2(M)) =

OM→∞(M1+h).

Proof of Theorem VII.1. Fix an arbitrary γ > 0. Lemma F.2 guarantees that for every integer M > 2, the

set ϕM (Q(ΣM , ηM (γ),∞)) is an M−γ-covering of ϕM (ΣM ) of size satisfying:

log2(|ϕM (Q(ΣM , ηM (γ),∞))|) 6 c(q, γ)
(
dM

[
log2(dM ) + log2(rM ) + log2(Lips(ϕM )) + log2(M)

])
.

Since 0 6 dM 6 dM (log2(rM ) + log2(Lips(ϕM )) + 1), Assumption (11) guarantees that for every h > 0, it

holds dM = OM→∞(M1+h) so that dM (log2(dM ) + log2(M)) = OM→∞(M1+h (log(M1+h) + log2(M)
)
) =

OM→∞(M1+h). As a consequence, for every h > 0, it holds log2(|ϕM (Q(ΣM , ηM (γ),∞))|) = OM→∞(M1+h)

so that the sequence Q(ϕ(Σ)|γ) is a (γ, h)-encoding of ϕ(Σ). This shows that ϕ(Σ) is γ-encodable for every

γ > 0, so it is ∞-encodable.

Appendix I

Encodability of approximation families defined with dictionaries and ReLU networks

Proof of Proposition VII.1. Fix M ∈ N and f =
∑M
i=1 ciei ∈ ΣqM . Let 0 < λ < 1. Define Qλ(f) :=∑M

i=1 sign(ci)
⌊
ci
λ

⌋
λei with sign(x) = 1 if x > 0, −1 otherwise. It is proven in [12, Prop. 6] that there

exists a constant c(p, q) > 0 that only depends on p and q such that:

‖f −Qλ(f)‖F 6 c(p, q)λ1−q/p sup
i∈N
‖ei‖F .

Moreover, it is proven in [12, Lem. 4 and proof of Prop. 11] that the family (Qλ(f))f∈Σq
M

has at most

2λ−q(1−log2(λ)+log2(M)) elements. Setting ε = λ1−q/p, and observing that λ−q = ε−1/s, this proves that

the family (Qλ(f))f∈Σq
M

is a Oε→0(ε)-covering of ΣqM of size Oε→0(2ε−1/s(log2 1/ε+log2 M)), with constants

independent ofM . For everyM ∈ N, using the above result with ε = M−s proves that Σq is s-encodable.

Proof of Theorem VII.2. Consider c > 0. We first prove that Σ̃π,c is ∞-encodable. Consider M ∈ N, IM :=

{I ⊂ {1, . . . , π(M)}, |I| 6M}, and define for each I ∈ IM the set Σ̃π,c(I) := {
∑
i∈I c̃iφ̃

I
i , (c̃i)i∈I ∈ [−c, c]I}.

It holds:

Σ̃π,cM =
⋃
I∈IM

Σ̃π,c(I).

Since each I ∈ IM is a set of at most M integers between 1 and π(M), one can describe each such set by M

sequences of at most log2(π(M)) bits so that there are at most 2Mπ(M) such sets. Moreover, the set Σ̃π,c(I)

is the image of ϕM,I : (c̃i)i∈I ∈ ([−c, c]I , ‖ · ‖2) 7→
∑
i∈I c̃iφ̃

I
i ∈ F . This map is 1-Lipschitz (since (φ̃Ii )i∈I is

orthonormal). Equation (20) of Lemma F.2 with n = |I| 6M , q =∞ and r = max(c, 1) proves that Σ̃π,c(I)

has an M−γ-covering with at most 22c(q,γ)M log2(rM) elements. Taking the union of such covers for each

I ∈ IM , we end up with an M−γ-covering of the whole set Σ̃π,cM with at most 2Mπ(M)22c(q,γ)M log2(rM) =

OM→∞(2M logM ) elements. This proves the ∞-encodability of Σ̃π,c.
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It now remains to prove Equation (13). First, for every c > 0 and every M ∈ N, it holds Σ̃π,cM ⊂ ΣπM
so that Σπ approximates C at least as quickly as Σ̃π,c, that is γ∗approx(C|Σπ) > γ∗approx(C|Σ̃π,c). As we

now prove, there is actually equality for c = sup
f∈C

sup
M∈N

max
I∈IM

max
i∈I
|〈f, φ̃Ii 〉F | (and thus for any larger c since

γ∗approx(C|Σ̃π,c) is non-decreasing in c). Note that by Cauchy-Schwarz, c 6 supf∈C ‖f‖F which is finite since

C is bounded. If f ∈ C, then for every M ∈ N, every I ⊂ {1, . . . , π(M)}, |I| 6M , and every (ci)i∈I ∈ RI , it

holds:

d(f, Σ̃π,cM ) 6 ‖f −
∑
i∈I
〈f, φ̃Ii 〉F φ̃Ii ‖F 6 ‖f −

∑
i∈I

ciφi‖F .

This implies that d(f, Σ̃π,cM ) 6 d(f,ΣπM ). As a consequence, Σ̃π,c approximates C at least as quickly as Σπ,

that is γ∗approx(C|Σ̃π,c) > γ∗approx(C|Σπ). This yields equality (13).

Proof of Proposition VII.2. By definition of ∞-encodability, we have to prove that for every γ > 0 and for

every h > 0, the quantized sequence Q(N|γ) is a (γ, h)-encoding of N . Fix γ > 0. Lemma F.3 proves

that there exists a constant c > 0 such that for every M ∈ N, the set Q(NM |γ) is a cM−γ-covering of

NM , and for each M ∈ N, each architecture (L,N) ∈ AM and each support S ∈ SM(L,N), the quantized set

RQ(Θq
L,N(rM ),ηM ,rM ),S has a number of elements that satisfies:

log2(|RQ(Θq
L,N(rM ),ηM ,rM ),S |) 6 cM (log2(rM ) + log2(Lips(M, q)) + log2(M)) .

Fix h > 0. By assumption (14) of Proposition VII.2 , we deduce that there exists c′ = c′(h) > 0 such that

for every M ∈ N, and every architecture (L,N) ∈ AM , we have

M (log2(rM ) + log2(Lips(M, q)) + log2(M)) 6 c′M1+h.

Thus, the quantized set Q(NM |γ) is a cM−γ-covering of NM and its cardinality satisfies

|Q(NM |γ)| 6
∑

(L,N)∈AM

∑
S∈SM(L,N)

|RQ(Θq
L,N(rM ),ηM ,rM ),S | 6 |AM | · |SM(L,N)| · 2cc

′M1+h
.

Note that for every M ∈ N, |AM | 6 LMM
LM−1 (at most LM possibilities for the depth and then, M

possibilities for each of the potential LM − 1 intermediary layers, the size of the input and output being

fixed to din and dout). Similarly, since SM(L,N) consists at most of all the supports of size M in dimension

d(L,N) 6 2M2LM , its cardinality is bounded by (2M2LM )M . Overall, we obtain that

log2(|Q(NM |γ)|) 6 log2(LM ) + LM log2(M) +M log2(2M2LM ) + cc′M1+h.

Using assumption (14) again, we obtain that there exists c′′ > 0 such that log2(|Q(NM |γ)|) 6 c′′M1+h for

everyM ∈ N∗. We deduce that for every γ > 0 and for every h > 0, the sequence Q(N|γ) is a (γ, h)-encoding

of N . This yields the result.
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