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Approximation speed of quantized vs.

unquantized ReLU neural networks and beyond
Antoine Gonon, Nicolas Brisebarre, Rémi Gribonval, Elisa Riccietti

Abstract

We consider general approximation families encompassing ReLU neural networks.
On the one hand, we introduce a new property, that we call ∞-encodability, which lays a framework

that we use (i) to guarantee that ReLU networks can be uniformly quantized and still have approximation
speeds comparable to unquantized ones, and (ii) to prove that ReLU networks share a common limitation
with many other approximation families: the approximation speed of a set C is bounded from above by an
encoding complexity of C (a complexity well-known for many C’s). The property of ∞-encodability allows
us to unify and generalize known results in which it was implicitly used.

On the other hand, we give lower and upper bounds on the Lipschitz constant of the mapping that
associates the weights of a network to the function they represent in Lp. It is given in terms of the width,
the depth of the network and a bound on the weight’s norm, and it is based on well-known upper bounds
on the Lipschitz constants of the functions represented by ReLU networks. This allows us to recover known
results, to establish new bounds on covering numbers, and to characterize the accuracy of naive uniform
quantization of ReLU networks.

Index Terms

Approximation speed, encoding speed, ReLU neural networks, quantization, Lipschitz parameterization,
covering numbers.

I. Introduction

Neural networks are used with success in many applications to approximate functions. In line with the

works [5], [9], [11], we are interested in understanding their approximation power in practice and in theory.

Regarding practical applications, a key question is to be able to compare approximation properties of
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quantized versus unquantized neural networks. Another important question is to better understand non-

trivial situations where neural networks can be expected (or not) to have better approximation properties

than the best known approximation families, quantized or not.

We address these questions by quantitatively characterizing the optimal polynomial speed γ∗approx(C|Σ)

at which all functions of a metric space C can be approximated by a sequence Σ = (ΣM )M∈N∗ (with

N∗ = {1, 2, . . . }) of sets ΣM of "simpler" functions, such as polynomials of degree M , or ReLU neural

networks with M non-zero parameters.

Notion of ∞-encodability. We introduce a new property of the sequence Σ, called ∞-encodability,

which builds a bridge between approximation and encoding speeds. This property forbids degenerate cases

and notably holds for sets ΣM of linear combinations from a basis in a Banach space, under standard

assumptions limiting the growth with M of the coefficients’ magnitude and the number of combined basis

functions. We show that:

(i) if Σ is ∞-encodable, then γ∗approx(C|Σ) is bounded from above by the Kolmogorov-Donoho complexity

γ∗encod(C), which measures the best polynomial speed at which C can be encoded as binary sequences,

and which is known for many classical functions sets such as balls of Sobolev spaces;

(ii) many sequences Σ = (ΣM )M∈N∗ are ∞-encodable: when ΣM contains M -terms linear combinations of

the first poly(M) elements1 of a bounded dictionary, with boundedness conditions on the coefficients,

or when ΣM is Lipschitz-parameterized by some (polynomially) bounded set in finite dimension, (i.e., ,

it is the image of such a set by a Lipschitz map). The latter includes the case of ReLU neural networks

for which we identify "simple" sufficient conditions on the considered architectures for it to hold;

(iii) sequences Σ = (ΣM )M∈N∗ of Lipschitz-parameterized sets ΣM as above are not only∞-encodable: they

can be uniformly quantized, in the sense that they can be covered with balls centered on a uniform

grid, into sequences that reach comparable approximation speeds on every set C to their unquantized

version.

Point (i) is concisely expressed by the following bound on the optimal polynomial approximation speed:

γ∗approx(C|Σ) 6 γ∗encod(C). (1)

In light of point (ii), this bound unifies and generalizes previous results such as [9, Thm. V.3, Thm. VI.4][11,

Thm. 5.24] thanks to the notion of ∞-encodability. Inequality (1) is of particular interest in order to bound

the approximation speed γ∗approx(C|Σ) from above without looking at all at the approximation properties

of the set C by the sequence Σ. Instead, we can study separately Σ and establish at which speed it can be

encoded. This inequality happens to be an equality in various cases, see Example 11. Another consequence

of this inequality is that approximation families based on an ∞-encodable sequence Σ defined with ReLU

neural networks share a common upper bound on approximation rates with other classical approximation

families that we prove to be ∞-encodable. In particular, given C, if an ∞-encodable sequence Σ is known

1poly(M) denotes a positive function that grows at most polynomially in M
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such that γ∗approx(C|Σ) = γ∗encod(C), then no improved approximation rate can be hoped for by using ReLU

networks.

The case of ReLU networks. Given a function Rθ represented by a ReLU neural network with

parameters θ, our results show how θ can be quantized into Q(θ) such that ‖Rθ − RQ(θ)‖p is small in

a given Lp-space. This bounds one of the components of the error that is committed when approximating

a function f by a neural network in practice. Indeed, the error committed can be decomposed into (at

least) three terms: the approximation error (related to the question of finding θ such that Rθ, a ReLU

neural network with continuous real parameters, approximates well f), the quantization error (related to

the need of using an approximation RQ(θ) of Rθ, for instance the representation of the ReLU neural network

with floating-point parameters Q(θ)) and the evaluation error (due to finite-precision computations and

propagation of the errors when evaluating RQ(θ)(x)).

In light of (iii), in order to analyze the quantization error, we use the fact that (as already noticed in the

literature [5, Rmk. 9.1]) the set of functions represented by ReLU neural networks is Lipschitz-parameterized

under conditions on the sparsity, the depth and the weight’s magnitude.

Lipschitz parameterization of ReLU networks.We give an explicit new upper bound for the Lipschitz

constant of this parameterization θ ∈ Θ 7→ Rθ in Proposition 36, for some bounded set Θ in finite dimension.

The bound is based on the Lipschitz constant of the functions Rθ themselves. For instance, for real-valued

functions with input in Rd, d ∈ N∗, given a width W ∈ N∗, a depth L ∈ N∗ and a bound r > 1 on

the Euclidean norm of the matrices and biases vectors of the considered parameters, the associated ReLU

networks define a parameterization θ 7→ Rθ ∈ Lp([0, 1]d), p > 1, such that for every parameters θ, θ′ satisfying

the above conditions:

‖Rθ −Rθ′‖Lp 6 cpWL2rL−1‖θ − θ′‖∞,

where the only term that depends on Lp is the constant cp, defined as the Lp-norm of the function x ∈

[0, 1]d 7→ ‖x‖2 + 1. Conversely, denoting by c′p the Lp-norm of the function x ∈ [0, 1]d 7→ ‖x‖2, then for

every ε > 0, we can exhibit parameters θ, θ′ satisfying the above conditions and such that ‖Rθ − Rθ′‖p >

(1− ε)c′pLrL−1‖θ − θ′‖∞.

This Lipschitz property, combined with (i), (ii) and (iii), yields guarantees on the approximation power

of families of quantized ReLU networks, see Proposition 49. For instance, let p > 1 and d ∈ N∗, and define

(ΣM )M∈N∗ such that ΣM ⊂ Lp([0, 1]d) is the set of functions represented by ReLU networks with at most

OM→∞(M) non-zero parameters, at most2 OM→∞(polylog(M)) layers and with weights bounded in absolute

value by OM→∞(poly(M)). Then for every set C ⊂ Lp([0, 1]d), and for every γ > γ∗approx(C|Σ), the networks

representing the functions in ΣM can be uniformly quantized with a step size of order OM→∞(M−c logM ),

for some c = c(γ) > 0 that does not depend on M (so that OM→∞((logM)2) bits are enough to store each

parameter), and still achieve the same polynomial rate as their unquantized version, see Example 51.

2polylog(M) denotes any positive function of M that grows at most polynomially in logM
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We further use this upper bound on the Lipschitz constant of θ 7→ Rθ to bound from above the covering

numbers of sets of functions represented by ReLU networks, and to characterize the minimax accuracy of

uniformly quantized ReLU networks, see Corollary 39 and Section V-C.

Organization of the paper. The definition of ReLU neural networks is recalled in section II-A. The

definitions of the approximation speed γ∗approx(C|Σ) and the encoding speed γ∗encod(C) are recalled in

section II-B. The notion of ∞-encodability is introduced in section III, it is then proven that being ∞-

encodable implies Inequality (1). Examples of ∞-encodable sequences Σ are then given in section IV. Some

sequences Σ Lipschitz-parameterized discussed in section IV are not only∞-encodable: they can be uniformly

quantized, in the sense that they can be covered with balls centered on a uniform grid, into sequences that

reach comparable approximation speeds on every set C to their unquantized version, see Proposition 24.

In Section V, ReLU neural networks are shown to be Lipschitz-parameterized. As a consequence, results

of section IV apply: explicit conditions on the considered ReLU networks yield sequences Σ that are ∞-

encodable and even uniformly quantizable into sequences that reach approximation speeds comparable to

their unquantized version, see Proposition 49. We recall our main contributions and give some perspectives

in section VI. Some useful definitions, technical results and their proofs are gathered in appendix.

II. Preliminaries

We recall the definition of ReLU neural networks in section II-A. Then, in section II-B we recall the definitions

of (i) the optimal polynomial speed γ∗approx(C|Σ) at which all functions of a set C, subset of a metric space F ,

can be approximated by a sequence Σ, (ii) the Kolmogorov-Donoho complexity γ∗encod(C), which measures

the best polynomial asymptotic speed at which C can be encoded into binary sequences.

A. Neural networks

A ReLU neural network is a parametric description of the alternate composition of affine maps between

finite-dimensional spaces and of a non-linear function. The non-linearity consists of the so-called Rectified

Linear Unit (ReLU) applied coordinate-wise.

Definition 1 (ReLU: Rectified Linear Unit). — The ReLU function ρ is defined by [2]:

∀x ∈ R, ρ(x) := max(0, x).

For d ∈ N∗, its d-dimensional version consists of applying it coordinate-wise:

∀x ∈ Rd, ρ(x) := (ρ(xi))i=1...d.

Definition 2 (Architecture of a neural network). — An architecture of a neural network consists of

a tuple (L,N), with L ∈ N∗ and N = (N0, . . . , NL) ∈ (N∗)L+1. We then say that L is the depth of the

network. A network with such an architecture has L + 1 layers of neurons, indexed from ` = 0 to ` = L.

Layer ` has N` neurons, we call N` the width of layer `. Layer 0 is the input layer while layer L is the output
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Figure 1. A neural network architecture can be seen as a directed graph. Neurons are represented by vertices, grouped by layers.
For each neuron, there are edges going from this neuron to each neuron of the following layer. Coefficient (i, j) of W` can be
seen as the weight of the edge going from neuron j of layer ` − 1 to neuron i of layer `. Coefficient i of b` can be seen as the
weight of neuron i of layer `.

layer. Such an architecture can be represented as a graph, with a vertex for each neuron, and an arrow

between every pair of neurons within consecutive layers, see Figure 1 (thus, in this work, a layer consists of

a set of neurons, not a set of edges).

Definition 3 (Parameters associated to a network architecture). — Let (L,N) be an architecture.

A parameter associated to this architecture consists of a vector θ = (W1, . . . ,WL, b1, . . . , bL), with W` ∈

RN`×N`−1 and b` ∈ RN` . It can be represented graphically: if neurons on layer ` are numbered from 1 to N`,

then (W`)i,j is the weight on the arrow going from neuron j of layer `− 1 to neuron i of layer `, while (b`)i
is the weight bias on neuron i of layer `, see Figure 1. Such a parameter θ lives in the parameter space

ΘL,N := Rd(L,N) ,

d(L,N) :=
L∑
`=1

N`(N`−1 + 1).
(2)

Definition 4 (ReLU neural network and its function representation). — A ReLU neural network

consists of an architecture (L,N) and an associated parameter θ = (W1, . . . ,WL, b1, . . . , bL). It represents

the function denoted Rθ : RN0 → RNL , given by:

∀x ∈ RN0 , Rθ(x) := ỹL(x)

with functions y` and ỹ` defined by induction on ` = 1, . . . , L:

y0(x) = x,

ỹ`+1(x) = W`+1x+ b`+1,

y`+1(x) = ρ(ỹ`(x)).
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In words, the input x goes through each layer sequentially, and when it goes from layer ` to ` + 1, it first

goes through an affine transformation, of linear part W`+1 and constant part b`+1, then it goes through the

ReLU function ρ applied coordinate-wise (except on the last layer where the ReLU function is not applied).

B. Approximation and encoding speeds

In the following, all subsets are non-empty by default. Let Σ := (ΣM )M∈N∗ be a sequence of subsets of a

metric space (F , d) (for example the set of all real-valued continuous functions on [0, 1], with d the uniform

distance). Generally speaking, Σ is chosen so that ΣM approximates functions of F better and better as

M grows, and a typical example consists of a nested sequence Σ1 ⊂ Σ2 ⊂ . . . , where ΣM is a function set

parameterized by OM→∞(M) parameters (for example the set of all polynomial functions of degree M).

However, since quantizing the parameters associated to each ΣM yields a new sequence that has no reason

to remain nested, it is indeed important to deal with arbitrary sequences Σ. Considering a subset C of F (for

example the set of 1-Lipschitz functions on [0, 1]) one can wonder at which polynomial speed the sequence

Σ approximates all functions of C. This is captured by the notion of optimal polynomial speed γ∗approx(C|Σ)

defined as follows [9, Def. V.2, Def. VI.1].

Definition 5 (Approximation theoretic complexity γ∗approx(C|Σ)). — Let Σ := (ΣM )M∈N∗ be an

arbitrary sequence of (non-empty) subsets of F . For any (non-empty) class of functions C ⊂ F , we can

define the error εM (C) of approximation of C by ΣM as follows [9, Def. V.2, Def. VI.1]:

εM (C) := sup
f∈C

inf
Φ∈ΣM

d(f,Φ) ∈ [0,+∞].

Then, we define γ∗approx(C|Σ) to be the supremum of the polynomial speeds at which all functions of C are

approximated by Σ [9, Def. V.2, Def. VI.1]:

γ∗approx(C|Σ) := sup{γ ∈ R, εM (C) = OM→∞
(
M−γ

)
} ∈ [−∞,+∞].

with the convention γ∗approx(C|Σ) = −∞ if the supremum is over an empty set.

Remark 6. — In the following, the considered C will have bounded diameter supf,g∈C d(f, g) < ∞ (when

(F , d) is a normed vector space, this is equivalent to assuming that C is bounded) ensuring that εM (C) is

finite for every M . In the classical case of nested sets ΣM , the error εM (C) is non-increasing with M hence

γ∗approx(C|Σ) > 0. This also holds as soon as the error remains bounded, but examples with γ∗approx(C|Σ) < 0

can be built.

Remark 7. — In [11, Def. 5.23], the following quantity is considered

γ∗(C|Σ) := sup{γ ∈ R,∀f ∈ C,∃c > 0,∀M ∈ N∗, d(f,ΣM ) 6 cM−γ},

which satisfies γ∗(C|Σ) > γ∗approx(C|Σ) but generally differs from γ∗approx(C|Σ) since in the definition of

γ∗approx(C|Σ), the implicit constant c > 0 is not allowed to depend on f ∈ C. However, when C is relatively
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compact (that is, its closure is compact), then c > 0 can be chosen independently of f [11, Proof of Thm

5.24] so that the two quantities coincide.

The speed γ∗approx(C|Σ) is known in some cases, see Example 11. We shall give a general framework

under which γ∗approx(C|Σ) can be bounded from above by another measure of complexity of the set C, which

measures the best polynomial asymptotic speed at which C can be encoded into binary sequences. We first

begin by recalling the notion of covering numbers and metric entropy [8].

Definition 8 (Covering, covering numbers and metric entropy). — Let (C, d) be a metric space.

Consider ε > 0. A finite subset X ⊂ C is called an ε-covering of C if C ⊂
⋃
x∈X Bd(x, ε), where Bd(x, ε)

denotes the closed ball of C, with respect to the metric d, centered in x and with radius ε. The covering

number N(C, d, ε) is the minimal size of an ε-covering of C, with the convention that N(C, d, ε) = +∞ if

there is no such covering. The metric entropy is defined by H(C, d, ε) := log2(N(C, d, ε)).

Definition 9 (Information theoretic complexity γ∗encod(C)). — Consider F a set equipped with a

metric d and C ⊂ F . The Kolmogorov-Donoho complexity is defined [9, Def. IV.1] as:

γ∗encod(C) := sup
{
γ > 0, H(C, d, ε) = Oε→0(ε−1/γ)

}
.

with the convention that γ∗encod(C) = 0 if the supremum is over an empty set.

Remark 10. — The quantity γ∗encod(C) can also be defined in terms of encoder-decoder pairs. Define the

optimal coding length [9, Def. IV.1] of C with accuracy ε by:

L(C, d, ε) := inf
{
` ∈ N,∃E : C → {0, 1}`,∃D : {0, 1}` → F , sup

f∈C
d (f,D(E(f))) 6 ε

}
∈ N ∪ {+∞} (3)

with the convention that L(C, d, ε) = +∞ if the infimum is over an empty set. The metric entropy and the

coding length satifies [8]:

H(C, d, ε) 6 L(C, d, ε) 6 H(C, d, ε) + 1, (4)

but they are not equal in general since the coding length is an integer. Inequality (4) shows that the metric

entropy and the coding length have essentially the same behaviour when ε → 0. Thus, the encoding speed

γ∗encod(C) can also be defined as the supremum over γ > 0 such that L(C, d, ε) = Oε→0
(
ε−1/γ) as it is done

in [9, Def. IV.1].

Example 11. — It is known [9, Table 1] that:

C := unit ball of Σ γ∗approx(C|Σ) = γ∗encod(C)

α-Hölder Cα([0, 1]) Wavelet basis α

Lp-Soboleva Wm
p ([0, 1]d) Wavelet frame m

d

Besovb Bmp,q([0, 1]d) Wavelet frame m
d

awhere p ∈ [1,∞],m > dmax(1/p− 1/2, 0).
bwhere p, q ∈ (0,∞],m > dmax(1/p− 1/2, 0).
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III. Encoding speeds vs approximation speeds

We start by a definition that captures, as shown in Proposition 16 below, the essence of several known results

([9, Thm. V.3, Thm. VI.4][11, Thm. 5.24][13, Prop. 11]).

A. The notion of γ-encodability

Let Σ := (ΣM )M∈N∗ be a sequence of non-empty subsets of a metric space (F , d). Let C ⊂ F and ε > 0. If

γ∗approx(C|Σ) > 0, since Σ approximates C at speed γ∗approx(C|Σ), there exists a positive integer M large

enough such that every element f ∈ C can be ε-approximated (with respect to d) by an element of ΣM .

But ΣM can be ε-covered (with respect to the metric d) with N(ΣM , d, ε) elements. Hence, C can be 2ε-

covered with N(ΣM , d, ε) elements. Instances of this simple reasoning can be found in [9, Thm. V.3, Thm.

VI.4][11, Thm. 5.24][13, Prop. 11]. This suggests the existence of a relation between the approximation

speed γ∗approx(C|Σ) and the encoding speed γ∗encod(C) that depends on the growth with M of the covering

numbers of ΣM .

We claim that a "reasonable" growth of the covering numbers of ΣM consists in a situation where, for

some γ > 0, the set ΣM can be M−γ-covered with "roughly" 2M logM elements. Indeed, this covers the case

where each element of ΣM can be described by M parameters that can be stored with a number of bits per

parameter that grows logarithmically in M . For instance if ΣM is a bounded set in dimension M then it can

be uniformly quantized along each dimension with a size step of order M−γ , so that logM bits is roughly

enough to encode each of the M coordinates. This "reasonable" growth for the covering numbers of ΣM is

formalized in Definition 13, and yields the simple relation min(γ∗approx(C|Σ), γ) 6 γ∗encod(C) for every set

C ⊂ F , as shown in Proposition 16.

Definition 12 ((γ, h)-encoding). — Let (F , d) be a metric space. Let Σ := (ΣM )M∈N∗ be an arbitrary

sequence of (non-empty) subsets of F . Let γ > 0 and h > 0. A sequence (Σ(γ, h)M )M∈N∗ is said to be a

(γ, h)-encoding of Σ if there exists constants c1, c2 > 0 such that for every M ∈ N∗, the set Σ(γ, h)M is a

c1M
−γ-covering of ΣM (recall Definition 8, in particular Σ(γ, h)M must be a subset of ΣM ) of size satisfying

log2(|Σ(γ, h)M |) 6 c2M
1+h.

The following definition captures a "reasonable" growth for the covering numbers of ΣM .

Definition 13 (γ-encodable Σ in (F , d)). — Let (F , d) be a metric space. Let Σ := (ΣM )M∈N∗ be an

arbitrary sequence of (by default, non-empty) subsets of F . Let γ > 0. We say that Σ is γ-encodable in

(F , d) if for every h > 0, there exists a (γ, h)-encoding of Σ. We say that Σ is ∞-encodable in (F , d) if it is

γ-encodable in (F , d) for all γ > 0. When the context is clear, we will omit the mention to (F , d).

Remark 14. — If Σ is γ-encodable then it is γ′-encodable for every γ′ 6 γ.

Example 15. — Several examples of∞-encodable sequences are given in section IV. In particular, consider

sequences (dM )M∈N∗ of positive integers, (rM )M of real numbers at least equal to one, and Σ := (ΣM )M of
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subsets of F := `q(N) with each ΣM defined as the subset of sequences of `q(N) with `q-norm (1 6 q 6∞)

bounded by rM and with support included in the first dM coordinates. It turns out that Σ, as a sequence of

subsets of F , is either∞-encodable or never γ-encodable, whatever γ > 0 is (see Lemma 22 and the discussion

above it). It is ∞-encodable if and only if for every h > 0, dM (log(rM ) + 1) = OM→∞(M1+h). With the

same sequence Σ, if φ := (ϕM )M is a sequence of Lipschitz maps from F = `q(N) to a metric space F ′, then

φ(Σ) := (ϕM (ΣM ))M stays ∞-encodable under some conditions on φ and Σ, given in Proposition 24. This

includes situations with ReLU neural networks, when F ′ is some Lp space, see Proposition 49. Moreover,

when ΣM contains linear combinations of (a polynomial number in) M elements of a fixed dictionary, with

boundedness conditions on the coefficients, then Σ is ∞-encodable, see section IV-C.

B. The encoding speed as a universal upper bound for approximation speeds

It is known that γ∗approx(C|Σ) 6 γ∗encod(C) for various sets C when Σ is defined with neural networks [9,

Thm. VI.4] or dictionaries [9, Thm. V.3][11, Thm. 5.24]. The following proposition shows that∞-encodability

implies γ∗approx(C|Σ) 6 γ∗encod(C). This settles a unified and generalized framework for the aforementioned

known cases that implicitly use, one way or another, the ∞-encodability property, as we will detail in

section IV-C and Example 50.

Proposition 16. — Consider (F , d) a metric space and Σ := (ΣM )M∈N∗ an arbitrary sequence of (non-

empty) subsets of F which is γ-encodable in (F , d), with γ ∈ (0,∞]. Then for every (non-empty) C ⊂ F :

min(γ∗approx(C|Σ), γ) 6 γ∗encod(C).

We also gather in the next lemma a useful result that we use in particular to prove Proposition 16.

Lemma 17. — Let (F , d) be a metric space. Consider γ, h > 0 and two sequences Σ(γ, h) and Σ of subsets

of F . If Σ(γ, h) is a (γ, h)-encoding of Σ then for every (non-empty) C ⊂ F :

γ∗approx(C|Σ(γ, h)) = γ∗approx(C|Σ) if γ > γ∗approx(C|Σ),

γ∗approx(C|Σ(γ, h)) > γ otherwise.

Proof of Lemma 17. For everyM ∈ N∗, it holds the inclusion Σ(γ, h)M ⊂ ΣM (indeed Σ(γ, h)M is a covering

of ΣM ) hence γ∗approx(C|Σ(γ, h)) 6 γ∗approx(C|Σ). This proves the result when γ∗approx(C|Σ) = −∞. From

now on we assume γ∗approx(C|Σ) > −∞. Since Σ(γ, h) is a (γ, h)-encoding of Σ, there exists a constant c > 0

such that for every M ∈ N∗, the set Σ(γ, h)M is a cM−γ-covering of ΣM . Fix an arbitrary −∞ < γ′ <

min(γ∗approx(C|Σ), γ). By definition of the approximation speed, there exists a constant c′ > 0 such that for

every f ∈ C and every M ∈ N∗, there exists a function ΦM (f) ∈ ΣM that satisfies:

d (f,ΦM (f)) 6 c′M−γ
′
.

The triangle inequality guarantees that for every f ∈ C and every M ∈ N∗:

d(f,Σ(γ, h)M )) 6 d(f,ΦM (f)) + d(ΦM (f),Σ(γ, h)M )) 6 c′M−γ
′
+ cM−γ .
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Since γ′ 6 γ (and even if γ′ < 0, which can happen if γ∗approx(C|Σ) < 0) this means that γ∗approx(C|Σ(γ, h)) >

γ′ for every −∞ < γ′ < min(γ∗approx(C|Σ), γ) hence γ∗approx(C|Σ(γ, h)) > min (γ∗approx(C|Σ), γ). Since we

also proved that γ∗approx(C|Σ(γ, h)) 6 γ∗approx(C|Σ), this yields the claim.

Proof of Proposition 16. If γ∗approx(C|Σ) 6 0 then the result is trivial since we always have γ∗encod(C) > 0.

In the rest of the proof we assume γ∗approx(C|Σ) > 0. Fix 0 < γ′ < min(γ∗approx(C|Σ), γ) and h > 0. First,

Σ is γ-encodable so there exists a (γ, h)-encoding of Σ that we denote by Σ(γ, h). This means that there

exists constants c′1, c′2 > 0 such that for every M ∈ N∗, the set Σ(γ, h)M is a c′1M−γ-covering of ΣM of

size |Σ(γ, h)M | 6 2c′2M1+h . Second, since 0 < γ′ < min(γ∗approx(C|Σ), γ), the definition of the approximation

speed guarantees that there exists a constant c′3 > 0 such that for every f ∈ C and every M ∈ N∗, there

exists a function ΦM (f) ∈ ΣM that satisfies:

d (f,ΦM (f)) 6 c′3M
−γ′ .

Since 0 < γ′ < γ, note that for every M ∈ N∗, it holds c′1M−γ + c′3M
−γ′ 6 (c′1 + c′3)M−γ′ . Define

c1 = c′1+c′3 and c2 = c′2. We deduce that for everyM ∈ N∗, the set Σ(γ, h)M is a c1M−γ
′ -covering of C of size

|Σ(γ, h)M | 6 2c2M
1+h . Now, for every ε > 0, the integer3 Mε :=

⌈(
c1
ε

)1/γ′⌉ satisfies ε > c1M
−γ′
ε . By mono-

tonicity of the metric entropy H(C, d, ·) we get H(C, d, ε) 6 H(C, d, c1M−γ
′) 6 c2M

1+h
ε . Note that for 0 <

ε < c1, denoting by c = (2c1/γ
′

1 )1+h it holdsM1+h
ε 6

(
1 +

(
c1
ε

)1/γ′)1+h
=
(
c1
ε

)(1+h)/γ′
(

1 +
(
ε
c1

)1/γ′
)1+h

6

cε−(1+h)/γ′ . Finally for every 0 < ε < c1, it holds

H(C, d, ε) 6 cε−(1+h)/γ′ ,

As a direct consequence of Definition 9, this implies γ∗encod(C) > γ′

1+h for every h > 0 and every 0 < γ′ <

min(γ∗approx(C|Σ), γ), hence the desired result.

Remark 18. — Recall that Σ is γ-encodable in (F , d) if, and only if, for every h > 0, there exists a

"discrete" version ΣD(γ, h) = (ΣDM (γ, h))M∈N∗ of Σ that (γ, h)-encodes Σ. By Lemma 17, this discrete

sequence has approximation speeds comparable to those of Σ on every non-empty subset C ⊂ F . We will see

in Proposition 24 that when each ΣM is Lipschitz-parameterized by a bounded set in finite dimension, with

conditions on the Lipschitz constant, then a discrete version ΣD(γ, h) that (γ, h)-encodes Σ can actually

be defined in a more structured way and independently of h > 0: there is a "uniformly quantized" version

ΣQ(γ) that (γ, h)-encodes Σ for every h > 0, and Lemma 17 will guarantee that it has approximation speeds

comparable to Σ.

We derive from Proposition 16 a generic lower bound on the encoding speed of the set of functions

uniformly approximated at a given speed.

3The notation d·e is defined as dxe := min{n ∈ Z, n > x} for every x ∈ R.
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Corollary 19. — Let (F , d) be a metric space. Consider γ ∈ (0,∞] and Σ := (ΣM )M∈N∗ an arbitrary

sequence of (non-empty) subsets of F which is γ-encodable in (F , d). Consider α, β > 0 and Aα(F ,Σ, β)

the set of all f ∈ F such that supM>1M
αd(f,ΣM ) 6 β. This set satisfies

γ∗encod(Aα(F ,Σ, β)) > min(α, γ).

Proof. By the very definition of Aα(F ,Σ, β), it holds γ∗approx(Aα(F ,Σ, β)|Σ) > α. Proposition 16 then gives

the result.

The reader may wonder about the role of β in the above result, and whether a similar result can be

achieved with Aα(F ,Σ) := ∪β>0Aα(F ,Σ, β). While this is left open, a related discussion after Corollary 30

suggests this may not be possible without additional assumptions on Σ.

As an immediate corollary of Proposition 16 we also obtain the following result.

Corollary 20. — Consider Σ := (ΣM )M∈N∗ an arbitrary sequence of (non-empty) subsets of F and a

(non-empty) set C ⊂ F . If Σ is γ-encodable for every γ < γ∗approx(C|Σ) then:

γ∗approx(C|Σ) 6 γ∗encod(C).

Proof. For every γ < γ∗approx(C|Σ), since Σ is γ-encodable, we have γ = min(γ∗approx(C|Σ), γ) 6 γ∗encod(C)

by Proposition 16. Taking the supremum of such γ, we get the inequality.

As we will see in section IV, applying Corollary 20 to specific ∞-encodable sequences allows one to unify

and generalize different results of the literature [9, Thm. V.3, Thm. VI.4][11, Thm. 5.24]. When Σ is defined

with ReLU feed-forward neural networks, we will explicitly study in Proposition 49 how the property of

∞-encodability depends on (bounds on) the neural network sparsity, depth, and weight magnitudes. In

particular, we will find a "simple" explicit condition under which Corollary 20 generalizes [9, Thm. VI.4] to

other type of constraints.

Remark 21. — The quantity γ∗encod(C) is known in several cases, see Example 11. In the next section,

we discuss concrete examples of ∞-encodable sequences Σ. For such a sequence Σ and an arbitrary set

C, independently of the adequation of Σ and C, Corollary 20 automatically yields an upper bound for the

approximation speed of C by Σ.

IV. The notion of ∞-encodability

We now give several examples of ∞-encodable sequences Σ. According to Corollary 20, these sequences,

when used to approximate a function set C, have automatically their (worst-case) approximation speed

γ∗approx(C|Σ) bounded from above by γ∗encod(C). In Lemma 22, we prove that some sequences of balls (in

the sense of the metric space F) of increasing radius and dimension are ∞-encodable. Quite naturally, the

property of ∞-encodability is preserved under some Lipschitz transformation, as shown in section IV-B

in the specific case of the ∞-encodable sequences of balls of Lemma 22 (this can be generalized to other
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∞-encodable sequences but this is not useful here). In this specific case, the considered sequences can

even be encoded into sequences with approximation speeds comparable to the original ones, using a very

simple uniform quantization scheme, see Proposition 24. This includes situations where Σ is defined with

ReLU neural networks with certain controlled increasing bounds on depth, width and weights’ amplitude, as

shown in the next section. We conclude this section with examples of ∞-encodable sequences in the context

of approximations with dictionaries, see section IV-C, showing that Corollary 20 unifies and generalizes [9,

Thm. V.3][11, Thm. 5.24].

A. First example of ∞-encodable sequences

Let (F , d) be a metric space and c > 0. Let Σ := (ΣM )M∈N∗ be a sequence of sets ΣM ⊂ F that can be

covered with NM = OM→∞(2cMπ(logM)) balls (with respect to the ambient metric space) centered in ΣM of

radius εM = OM→∞(M−γ). Since OM→∞(2cMπ(logM)) = OM→∞(2M1+h) for every h > 0, it is clear from

the definition that Σ is ∞-encodable. This is trivially the case when Σ := (ΣM )M∈N∗ is a sequence of finite

sets ΣM ⊂ F with at most 2cMπ(logM) elements since each ΣM is an exact cover of itself. Another example

consists of some sequences of balls (in the sense of the metric space F) of increasing radius and dimension

as we now describe. Consider q ∈ [1,∞] an exponent, (dM )M∈N∗ a sequence of positive integers, (rM )M∈N∗

a sequence of real numbers rM > 1 and define Σ := (ΣM )M∈N∗ where ΣM ⊂ `q(N) is the set of sequences

bounded in `q-norm by rM and with zero coordinates outside the first dM ones. Each ΣM can be identified

with the closed ball of radius rM in dimension dM with respect to the q-th norm, hence standard bounds

on covering numbers [14, Eq. (5.9)] yield for every 0 < ε 6 rM :

dM log2

(rM
ε

)
6 H(ΣM , ‖ · ‖q, ε) 6 dM log2

(
3rM
ε

)
. (5)

For ε = M−γ(6 1 6 rM ), we get:

dM (log2(rM ) + γ log2(M)) 6 H(ΣM , ‖ · ‖q, ε) 6 dM (log2(3rM ) + γ log2(M)).

Everything is non-negative, so if the right hand-side is OM→∞(M1+h), for every h > 0, then so is the left

hand-side. The converse is also true since both sides only differ by log2(3)dM = OM→∞(dM logM). The

non-negativity of the quantities also implies that the condition dM [log2(rM )+γ log2(M)] = OM→∞(M1+h),

for every h > 0, does not depend on γ. As a consequence, either Σ is∞-encodable or it is never γ-encodable,

whatever γ > 0 is. Finally, note that for every h > 0, dM (log2(rM ) + log2(M)) = OM→∞(M1+h) if and

only if dM (log2(rM ) + 1) = OM→∞(M1+h). The "only if" part is clear since for M > 2, it holds 0 6

dM (log2(rM ) + 1) 6 dM (log2(rM ) + log2(M)). For the "if" part, use that rM > 1 and the assumption

to get 0 6 dM 6 dM (log2(rM ) + 1) = OM→∞(M1+h) so that dM log2(M) = OM→∞(M1+h log2(M)) =

OM→∞(M1+h). The definitive result is recorded in the next lemma.

Lemma 22. — Let q ∈ [1,∞] be an exponent, (dM )M∈N∗ a sequence of positive integers, (rM )M∈N∗ a

sequence of real numbers satisfying rM > 1 and define Σ := (ΣM )M∈N∗ , with ΣM := BdM ,‖·‖q (0, r) being

the closed ball of radius rM in dimension dM with respect to the q-th norm. Then, Σ as a sequence of subsets
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of `q(N), is either ∞-encodable or it is never γ-encodable, whatever γ > 0 is. Moreover, it is ∞-encodable

if, and only if,

dM (log2(rM ) + 1) = OM→∞(M1+h), ∀h > 0.

B. Lipschitz parameterized sequences are ∞-encodable

We’ve just seen in Lemma 22 that some sequences Σ of balls in finite dimension are ∞-encodable. Quite

naturally, this remains true when we consider images of such sequences under Lipschitz maps. Actually,

these sequences are not only ∞-encodable: they can be uniformly quantized, in the sense that they can be

covered with balls centered on a uniform grid, into sequences with comparable approximation speed to the

original ones, as we show in Proposition 24 below. In the next section we will prove that this covers the case

of ReLU neural networks (Proposition 49). In order to prove Proposition 24, the following lemma will be

useful.

Lemma 23. — Consider q ∈ [1,∞] and γ > 0. There exists a constant c(q, γ) > 0 such that the following

holds. Consider arbitrary n ∈ N∗, r > 1 and consider the set Bn,‖·‖q (0, r) ⊂ `q(N) that consists of the

sequences bounded in `q-norm by r, and with zero coordinates outside the first n ones. Consider a metric

space (F , d) and a Lipschitz-map ϕ : (Bn,‖·‖q (0, r), ‖ · ‖q)→ (F , d) with Lipschitz constant Lips(ϕ) > 1:

∀x, y ∈ Bn,‖·‖q (0, r), d(ϕ(x), ϕ(y)) 6 Lips(ϕ)‖x− y‖q.

For everyM ∈ N∗, define the step size ηM := (Mγn1/qLips(ϕ))−1 and the "quantized" setQ(Bn,‖·‖q (0, r), ηM ) :=

Bn,‖·‖q (0, r)∩ (ηMZ)N. Then for every integer M > 2, the set ϕ(Q(Bn,‖·‖q (0, r), ηM )) is an M−γ-covering of

ϕ(Bn,‖·‖q (0, r)) of size satisfying:

log2(|ϕ(Q(Bn,‖·‖q (0, r), ηM ))|) 6 c(q, γ)
(
n

[
log2(n) + log2(r) + log2(Lips(ϕ)) + log2(M)

])
. (6)

Proof. When q = ∞, it is known [14, Examples 5.2 and 5.6] that Q(Bn,‖·‖q (0, r), ηM ) is a ηM -covering

of Bn,‖·‖q (0, r) of size bounded by (2r/ηM )n + 1. Since ϕ is Lips(ϕ)-Lipschitz, we deduce that the set

ϕ(Q(Bn,‖·‖q (0, r), ηM )) is an M−γ-covering of ϕ(Bn,‖·‖q (0, r)) of size satisfying:

log2(|ϕ(Q(Bn,‖·‖q (0, r), ηM ))|) 6 n

[
1 + log2(r) + log2(Lips(ϕ)) + γ log2(M)

]
Since M > 2, it holds 1 + γ log2(M) 6 (1 + γ) log2(M), hence Equation (6) for c(q, γ) = 1 + γ > 1. This

settles the case q =∞.

When q ∈ [1,∞), Hölder’s inequality yields ‖x‖q 6 n1/q‖x‖∞ for every x ∈ Rn. Thus Bn,‖·‖q (0, r) is a

subset of the ball of radius rn1/q of `∞(N), and the Lipschitz constant of ϕ with respect to ‖ ·‖∞ is bounded

by its Lipschitz constant with respect to ‖ ·‖q, up to a factor n1/q. Hence, the case q ∈ [1,∞) can be reduced

to the case q =∞ by replacing r by rn1/q and Lips(ϕ) by n1/qLips(ϕ). We get:

log2(|ϕ(Q(Bn,‖·‖q (0, r), ηM ))|) 6 n

[
1 + 2

q
log2(n) + log2(r) + log2(Lips(ϕ)) + γ log2(M)

]
Hence the desired result with c(q, γ) = max(2

q , 1 + γ).
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Proposition 24. — Let q ∈ [1,∞] be an exponent and (F , d) be a metric space. Consider sequences

(dM )M∈N∗ of positive integers, (rM )M∈N∗ of real numbers satisfying rM > 1, and define the sequence

Σ := (ΣM )M∈N∗ of subsets of `q(N) by ΣM = BdM ,‖·‖q (0, rM ) (with the same notations as in Lemma 22).

Consider also a sequence φ := (ϕM )M∈N∗ of maps ϕM : (ΣM , ‖ · ‖q) → (F , d) that are Lips(ϕM )-Lipschitz

for some constants Lips(ϕM ) > 1. Define φ(Σ) := (ϕM (ΣM ))M . For γ > 0, define the γ-uniformly quantized

version of φ(Σ) as

Q(φ(Σ), γ) := (ϕM (Q(ΣM , ηM (γ))))M∈N∗ ,

with a step size ηM (γ) := (Mγd
1/q
M Lips(ϕM ))−1 and an associated quantized set Q(ΣM , ηM (γ)) := ΣM ∩

(ηM (γ)Z)N for every M ∈ N∗. Assume that for every h > 0:

dM (log2(rM ) + log2(Lips(ϕM )) + 1) = OM→∞(M1+h). (7)

Then for every γ > 0, the γ-uniform quantization scheme yields approximation speeds comparable to those

of the original nonquantized sequence φ(Σ) for every (non-empty) set C ⊂ F :

γ∗approx
(
C|Q(φ(Σ), γ)

)
= γ∗approx(C|φ(Σ)) if γ > γ∗approx(C|φ(Σ)),

γ∗approx
(
C|Q(φ(Σ), γ)

)
> γ otherwise.

(8)

Moreover, φ(Σ) is ∞-encodable.

Remark 25. — Given the link between approximation speed and encoding speed for∞-encodable sequences

(see Corollary 20), the above results guide the choice of γ to define a concrete γ-quantized sequence in the con-

text of Proposition 24. Indeed, considering C ⊂ F a classical function class for which the quantity γ∗encod(C)

is known, see Example 11, choosing γ > γ∗encod(C) is sufficient to ensure that γ > γ∗approx(C|φ(Σ)). Vice-

versa, among all such γ, choosing the smallest one γ = γ∗encod(C) is probably the best choice to yield the

largest possible step size ηM and the best concrete compromise.

Proof of Proposition 24. Fix an arbitrary γ > 0. Lemma 23 guarantees that for every integer M > 2, the

set ϕM (Q(ΣM , ηM (γ))) is an M−γ-covering of ϕM (ΣM ) of size satisfying:

log2(|ϕM (Q(ΣM , ηM (γ)))|) 6 c(q, γ)
(
dM

[
log2(dM ) + log2(rM ) + log2(Lips(ϕM )) + log2(M)

])
.

Since 0 6 dM 6 dM (log2(rM ) + log2(Lips(ϕM )) + 1), Assumption (7) guarantees that for every h > 0, it

holds dM = OM→∞(M1+h) so that dM (log2(dM ) + log2(M)) = OM→∞(M1+h (log(M1+h) + log2(M)
)
) =

OM→∞(M1+h). As a consequence, for every h > 0, it holds log2(|ϕM (Q(ΣM , ηM (γ)))|) = OM→∞(M1+h)

so that the sequence Q(φ(Σ), γ) is a (γ, h)-encoding of φ(Σ). This shows that φ(Σ) is γ-encodable for every

γ > 0, hence ∞-encodable and Lemma 17 proves Equality (8).

Remark 26. — For arbitrary γ > 0 and h > 0, the discrete sequence φ(Σ)D(γ, h) of Remark 18 can then

be defined as the sequence Q(φ(Σ), γ), independently of h > 0.
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C. The case of dictionaries

We now consider sequences Σ defined with dictionaries. As detailed below, results of the literature [11,

Thm. 5.24][13, Prop. 11] use arguments that implicitly prove γ-encodability. Let us start with the case of

Banach spaces as in [13]. We only explicit the sequence used in [13] which is γ-encodable and we do not

delve into more details as results of [13] are out of scope of this paper. A part of the proof of [13, Prop. 11]

consists of implicitly showing that some specific sequence Σq is s-encodable, for q and s as described below

in Proposition 27. In particular, the setup of Proposition 27 applies when F is the Lp space on Rd or [0, 1]d,

1 < p < ∞, and the basis B is a compactly supported wavelet basis or associated wavelet-tensor product

basis.

Proposition 27. — Let F be a Banach space with a basis B = (ei)i∈N∗ satisfying supi∈N∗ ‖ei‖F < ∞.

Consider p ∈ (0,∞) and assume that B satisfies the so-called p-Telmyakov property [13, Def. 2], i.e., assume

that there exists c > 0 such that for every finite subset I of N∗:

1
c
|I|1/p min

i∈I
|ci| 6 ‖

∑
i∈I

ciei‖F 6 c|I|1/p max
i∈I
|ci|,∀(ci)i∈I ∈ RI . (9)

Consider 0 < q < p. For every M ∈ N∗, define4:

ΣqM :=
{

M∑
i=1

ciei, ci ∈ R, sup
0<λ<∞

λ|{i, |ci| > λ}|1/q 6 1
}
.

Define s = 1
q −

1
p . Then the sequence Σq := (ΣqM )M∈N∗ is s-encodable in F .

Proof. The fact that Σq is s-encodable is implicitly proven in [13]. It goes as follows. Fix M ∈ N∗ and

f =
∑M
i=1 ciei ∈ ΣqM . Let 0 < λ < 1. Define Qλ(f) :=

∑M
i=1 sign(ci)

⌊
ci
λ

⌋
λei. It is proven in [13, Prop. 6]

that there exists a constant c(p, q) > 0 that only depends on p and q such that:

‖f −Qλ(f)‖F 6 c(p, q)λ1−q/p sup
i∈N∗
‖ei‖F .

Moreover, it is proven in [13, Lem. 4 and proof of Prop. 11] that Qλ(f) can be encoded with at most

λ−q(1− log2(λ) + log2(M)) bits. Setting ε = λ1−q/p, and observing that λ−q = ε−1/s, this proves that every

element of ΣqM can be encoded within accuracy Oε→0(ε) using Oε→0(ε−1/s(log2 1/ε+ log2M)) bits. Setting

ε = (2M)−s (and 0 < λ < 1 accordingly) and translating the result into covering numbers yields that Σq is

s-encodable.

In the case of Hilbert spaces, much more generic sequences than Σq above are in fact ∞-encodable, as we

now discuss. The∞-encodability can be used to recover [11, Thm. 5.24] (see Corollary 29), and to generalize

Corollary 19 (see Corollary 30). Let F be a Hilbert space and d be the metric associated to the norm on F .

A dictionary is, by definition [11, Def. 5.19], a subset D = (φi)i∈N∗ of F indexed by a countable set, which

4In terms of weak-`q-space, the set ΣqM is simply the set of linear combinations of elements of B given by sequences (ci)i∈N

in the closed unit ball of `q,∞(N) with zero coordinates outside the first M ones.
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we assume to be N∗ without loss of generality. The dictionary D can be used to approach elements of F by

linear combinations of a growing number M of its elements.

Theorem 28. — Let F be a Hilbert space. Let D = (φi)i∈N∗ be a dictionary in F , and π : N∗ → N∗ be

a function with at most polynomial growth. For every I ⊂ N∗, define (φ̃Ii )i∈I as any orthonormalization of

(φi)i∈I (for instance we may consider the Gram-Schmidt orthonormalization). Define for every M ∈ N∗ and

c > 0:

ΣπM :=
{∑
i∈I

ciφi, I ⊂ {1, . . . , π(M)}, |I| 6M, (ci)i∈I ∈ RI
}
,

Σ̃π,cM :=
{∑
i∈I

c̃iφ̃
I
i , I ⊂ {1, . . . , π(M)}, |I| 6M, (c̃i)i∈I ∈ [−c, c]I

}
.

The sequence Σ̃π,c := (Σ̃π,cM )M∈N∗ is ∞-encodable in (F , d), and for every bounded set C ⊂ F , it holds:

γ∗approx(C|Σπ) = max
c>0

γ∗approx(C|Σ̃π,c). (10)

Proof. Consider c > 0. We first prove that Σ̃π,c is∞-encodable. ConsiderM ∈ N∗, IM := {I ⊂ {1, . . . , π(M)},

|I| 6M}, and define for each I ∈ IM the set Σ̃π,c(I) := {
∑
i∈I c̃iφ̃

I
i , (c̃i)i∈I ∈ [−c, c]I}. It holds:

Σ̃π,cM =
⋃
I∈IM

Σ̃π,c(I).

Since each I ∈ IM is a set of at most M integers between 1 and π(M), it can be encoded using at most

Mdlog2 π(M)e bits. Moreover, the set Σ̃π,c(I) is the image of ϕM,I : (c̃i)i∈I ∈ ([−c, c]I , ‖ · ‖2) 7→
∑
i∈I c̃iφ̃

I
i ∈

F . This map is 1-Lipschitz (since (φ̃Ii )i∈I is orthonormal). Equation (6) of Lemma 23 with n = |I| 6

M , q = ∞ and r = max(c, 1) proves that Σ̃π,c(I) can be encoded within accuracy M−γ with at most

2c(q, γ)M log2(rM) bits. As a consequence, the elements of the set Σ̃π,cM can be encoded within accuracy

M−γ using at most Mdlog2 π(M)e+ 2c(q, γ)M log2(rM) = OM→∞(M logM) bits, hence (after translation

of this result in terms of covering numbers) the ∞-encodability of Σ̃π,c.

It now remains to prove Equation (10). First, for every c > 0 and every M ∈ N∗, it holds Σ̃π,cM ⊂ ΣπM
so that Σπ approximates C at least as quickly as Σ̃π,c, that is γ∗approx(C|Σπ) > γ∗approx(C|Σ̃π,c). As we

now prove, there is actually equality for c = sup
f∈C

sup
M∈N∗

max
I∈IM

max
i∈I
|〈f, φ̃Ii 〉F | (and thus for any larger c since

γ∗approx(C|Σ̃π,c) is non-decreasing in c). Note that by Cauchy-Schwarz, c 6 supf∈C ‖f‖F which is finite since

C is bounded. If f ∈ C, then for every M ∈ N∗, every I ⊂ {1, . . . , π(M)}, |I| 6 M , and every (ci)i∈I ∈ RI ,

it holds:

d(f, Σ̃π,cM ) 6 ‖f −
∑
i∈I
〈f, φ̃Ii 〉F φ̃Ii ‖F 6 ‖f −

∑
i∈I

ciφi‖F .

This implies that d(f, Σ̃π,cM ) 6 d(f,ΣπM ). As a consequence, Σ̃π,c approximates C at least as quickly as Σπ,

that is γ∗approx(C|Σ̃π,c) > γ∗approx(C|Σπ). Hence equality (10).

As a consequence of Theorem 28, one can recover [11, Thm. 5.24]. The proof below is essentially a rewriting

in our formalism of the original proof of [11, Thm. 5.24]. We explicitly express it using equality (10) and

the ∞-encodability of the sequences Σ̃π,c for c > 0, which are only implicitly used in the original proof.
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Corollary 29 ([11, Thm. 5.24]). — Let (F , d) be a Hilbert space and C ⊂ F . Define γ∗(C|Σπ) as in

Remark 7. Under the assumptions of Theorem 28, the sequence Σπ = (ΣπM )M∈N∗ satisfies for every relatively

compact5 set C:

γ∗(C|Σπ) = γ∗approx(C|Σπ) 6 γ∗encod(C).

Proof. When C is relatively compact, it holds γ∗(C|Σπ) = γ∗approx(C|Σπ), see Remark 7. Since C is relatively

compact, it must be bounded so equation (10) of Theorem 28 holds. For every c > 0, Proposition 16 applied

to Σ̃π,c of Theorem 28, which is ∞-encodable, shows that the right hand-side of equation (10) is bounded

from above by γ∗encod(C). Hence the result.

We also obtain a generic lower bound on the encoding speed of balls of approximation spaces [6, Sec. 7.9]

(also called maxisets [12]) with general dictionaries.

Corollary 30. — Let (F , d) be a Hilbert space. Under the assumptions of Theorem 28, consider α, β > 0

and the set67 Aα(F ,Σπ, β) of all f ∈ F such that ‖f‖ 6 β and supM>1M
αd(f,ΣM ) 6 β. This set satisfies

γ∗encod(Aα(F ,Σπ, β)) > α.

Corollary 30 cannot be generalized to Aα(F ,Σπ) :=
⋃
β>0Aα(F ,Σπ, β): this set is homogeneous (stable

by multiplication by any scalar), hence it cannot be encoded at any positive rate.

Remark 31. — In some situations, the converse inequality γ∗encod(Aα(F ,Σπ, β)) 6 α can typically be

proven by studying the existence of large enough packing sets of Aα(F ,Σπ, β), but this falls out of the scope

of this paper. The reader can refer to [13, Sec. 4] for an example.

Proof of Corollary 30. By the very definition of C := Aα(F ,Σπ, β), this is a bounded set so equation (10)

of Theorem 28 holds. For every c > 0, Proposition 16 applied to Σ̃π,c of Theorem 28, which is ∞-encodable,

shows that the right hand-side of equation (10) is bounded from above by γ∗encod(C), hence

γ∗encod(C) > max
c>0

γ∗approx(C|Σ̃π,c) = γ∗approx(C|Σπ).

Finally, again by definition of C := Aα(F ,Σπ, β), we have γ∗approx(C|Σπ) > α.

Remark 32. — Note that if Σπ was γ-encodable for some γ > 0 large enough then Corollary 29 would

be a special case of Corollary 20 whereas Corollary 30 would be a special case of Corollary 19. But in this

situation, Σπ has no reason to be γ-encodable, whatever γ > 0 is (since the dictionary is arbitrary and the

coefficients of the linear combinations are not bounded). This shows that Corollary 20 and Corollary 19

actually holds more generally for some sequences Σ that are not γ-encodable, whatever γ > 0 is, as soon as

5Recall that a set is relatively compact if its closure is compact. In particular, it must be bounded.
6This is the ball of radius β of an approximation space [6, Sec. 7.9]/maxiset[12].
7Note that compared to the set in Corollary 19, we additionally require that ‖f‖ 6 β so that Aα(F ,Σπ , β) is a bounded set

and equation (10) of Theorem 28 holds.



18

Σ can be recovered as a limit of non-decreasing sequences Σc, c > 0, that are γ-encodable, in the sense that

for every M ∈ N∗, if 0 < c 6 c′ then ΣcM ⊆ Σc′M and ΣM = ∪c>0ΣcM .

V. The case of ReLU neural networks

We now consider sequences Σ defined with ReLU neural networks. After specifying in section V-A the details

needed about the metric space (F , d) in which approximation is considered, we formalize in section V-B the

fact that the parameterization of sets of functions represented by ReLU networks has the Lipschitz property

that makes possible the use of Lemma 23. It has many consequences. First, necessary conditions on the

step size η > 0 used to quantize ReLU networks coordinatewise by Qη(x) = bx/ηcη within error ε > 0 are

established, see Corollary 39. Second, existing results [7, Thm. 2][9, Lem. VI.8] on approximation properties

of quantized ReLU networks are recovered and, sometimes, even improved, see section V-C. Third, bounds on

covering numbers of some sets of functions represented by ReLU networks are also established in section V-C,

and we compare them to classical bounds [1, Lem. 14.8]. Finally, as a direct consequence of Lemma 23, this

leads, in Proposition 49, to a simple explicit condition on the growth with M of the network architectures

to guarantee that the sequence (ΣM )M∈N∗ is ∞-encodable, and even encodable with a very simple uniform

quantization scheme that yields a sequence with comparable approximation speed.

A. Considered functional approximation setting

Let din, dout ∈ N be input and output dimensions, p ∈ [1,∞] be an exponent, Ω ⊂ Rdin be the input domain

and µ be a measure on Ω. Given a norm ‖·‖ on Rdout , we define for every measurable function f : Ω→ Rdout :

‖f‖p,‖·‖ :=


(∫
x∈Ω ‖f(x)‖pdµ(x)

) 1
p if p <∞,

ess sup
x∈Ω

‖f(x)‖ if p =∞.

We consider approximation in the space Lp(Ω → (Rdout , ‖ · ‖), µ) consisting of all measurable functions f

from Ω to Rdout such that ‖f‖p,‖·‖ <∞, quotiented by the relation “being equal almost everywhere”. This is

a Banach space with respect to the norm ‖ ·‖p,‖·‖. By the equivalence of norms in Rdout , this Banach space is

independent of the choice of norm ‖ · ‖, and (for a given p) all norms ‖ · ‖p,‖·‖ are equivalent. In light of this

fact we will simply denote it Lp(Ω→ Rdout , µ), or even abbreviate it as Lp. We also denote ‖·‖p := ‖·‖p,‖·‖∞ .

We can establish necessary and sufficient conditions on Ω ⊂ Rdin and µ so that all functions represented by

a ReLU neural network with input dimension din and output dimension dout are in Lp(Ω→ Rdout , µ).

Lemma 33. — Consider an exponent p ∈ [1,∞], a dimension din, a domain Ω ⊂ Rdin , and a measure µ on

Ω. Define

Cp(Ω, µ) :=


(∫
x∈Ω(‖x‖∞ + 1)pdµ(x)

)1/p if p <∞,

ess sup
x∈Ω

‖x‖∞ if p =∞.

The condition

Cp(Ω, µ) <∞ (11)
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is equivalent to: for every architecture (L,N) with N0 = din the realizations of ReLU networks satisfy:

∀θ ∈ ΘL,N, Rθ ∈ Lp(Ω→ RNL , µ),

where ΘL,N is defined in Equation (2) and NL is the width of the output layer (Definition 2).

Proof. Assume that Cp(Ω, µ) < ∞ and consider the realization Rθ of an arbitrary ReLU network on an

arbitrary architecture with input dimension N0 = din and arbitrary output dimension NL. It is known [2,

Thm. 2.1] that Rθ is (continuous and) piecewise linear, hence there is a partition of Ω into finitely many

Ωi, 1 6 i 6 n such that Rθ =
∑n
i=1 χΩifi where χE(x) is the characteristic function of the set E and

each fi is an affine function. To prove the result it is thus sufficient to show that χEf ∈ Lp(Ω → RNL , µ)

for each set E ⊂ Ω and each affine function f . Since ‖χEg‖p 6 ‖g‖p for any g it is enough to prove

that any affine function is in the desired space. For this, consider arbitrary A ∈ RNL×N0 , b ∈ RNL , and

f : x 7→ Ax+ b. Denoting c(f) := max(|||A|||∞, ‖b‖∞) (the notation |||·||| is defined in Section A) we observe

that ‖f(x)‖∞ 6 |||A|||∞‖x‖∞+ ‖b‖∞ 6 c(f)(‖x‖∞+ 1) hence ‖f‖p 6 c(f)Cp(Ω, µ) <∞, showing the result.

Conversely, assume that for every architecture (L,N) and parameter θ ∈ ΘL,N we have Rθ ∈ Lp(Ω →

RNL , µ). Specializing to an architecture with L = 1, N1 = N0 = din, consider θ = (W1, b1) with W1 the

identity matrix and b1 the zero vector, θ′ = (W ′1, b′1) with W ′1 the zero matrix and b′1 any vector with

‖b′1‖∞ = 1. We have Rθ(x) = x while Rθ′(x) = b′1. For p <∞ we have
∫
x∈Ω ‖x‖

p
∞dµ(x) = ‖Rθ‖pp <∞ and∫

x∈Ω 1dµ(x) = ‖Rθ′‖pp <∞. By the triangle inequality we get Cp(Ω, µ) <∞. The case p =∞ is similar.

Condition (11) holds for every p ∈ [1,∞] when the input domain is bounded and µ is the Lebesgue measure.

From now on, we fix an input domain Ω ⊂ Rdin , an exponent p, and a measure µ on Ω satisfying (11).

B. On the Lipschitz parameterization of ReLU networks

It is known that some sets of functions represented by ReLU networks are Lipschitz-parameterized [5, Rmk.

9.1]. In what follows, we analyze how the Lipschitz constant depends on the depth, the width and the

weight’s magnitude of the considered networks. Up to our knowledge, this is the first such explicit result.

We deduce (see Proposition 49) sufficient conditions on the depth, sparsity and weight’s magnitude under

which a sequence Σ defined with ReLU networks is ∞-encodable.

Definition 34. — (Parameter set Θq
L,N(r)) Given an architecture (L,N) and the set ΘL,N (see Equation

(2)) we define for each r ∈ R+ and q ∈ [1,∞] (notation |||·||| refers to the operator norm and is defined in

section A):

Θq
L,N(r) := {θ = (W1, . . . ,WL, b1, . . . , bL) ∈ ΘL,N : |||W`|||q, ‖b`‖q 6 r, ` = 1, . . . , L}.

Remark 35. — Instead of constraints on the operator norms, we may encounter constraints on the Frobe-

nius or the max-norm. Let r > 0, and let (L,N) be an architecture. Define by W := max
`=1,...,L

N` the

maximal width of the network. Denote by ‖M‖F = (
∑
i,jM

2
i,j)1/2 the Frobenius norm of a matrix M

and ‖M‖max = maxi,j |Mi,j | the max-norm (to be distinguished from |||M |||∞ the operator norm defined in
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Section A), and define ΘF
L,N(r) (resp. Θmax

L,N(r)) the set of all θ = (W1, . . . ,WL, b1, . . . , bL) ∈ ΘL,N such that

for every ` = 1, . . . , L:

max (‖W`‖F , ‖b`‖2) 6 r (resp. max (‖W`‖max, ‖b`‖∞) 6 r).

By standard results about equivalence of norms (see e.g. (21) in the appendix) it holds for every q ∈ [1,∞]:

ΘF
L,N(r) ⊂ Θ2

L,N(r), Θmax
L,N(r) ⊂ Θq

L,N(Wr) ⊂ Θmax
L,N(Wr).

As we now prove, the set of functions represented by ReLU neural networks with architecture (L,N) and

parameters in Θq
L,N(r) is Lipschitz-parameterized.

Proposition 36. — Consider din, dout ∈ N∗,Ω ⊂ Rdin , µ a measure on Ω satisfying (11), ‖ · ‖ a norm on

Rdin , p, q ∈ [1,∞], and the space F := Lp(Ω→ (Rdout , ‖ · ‖), µ). Then there exists a constant c > 0 such that

for every architecture (L,N) with N0 = din et NL = dout, and every r > 1, denoting by W := max
`=1,...,L

N`

the maximal width of the architecture, the map θ ∈ Θq
L,N(r) 7→ Rθ ∈ Lp for ReLU networks satisfies

‖Rθ −Rθ′‖p,‖·‖ 6 cWL2rL−1‖θ − θ′‖∞ for all θ, θ′ ∈ Θq
L,N(r). (12)

In particular, with µ the Lebesgue measure on Ω = [−D,D]d for some D > 0, this holds with:

• c := Dd1/q + 1 if p =∞, ‖ · ‖ = ‖ · ‖q;

• c := (D + 1)(2D)d/p if ‖ · ‖ = ‖ · ‖q = ‖ · ‖∞.

Conversely, if Ω ⊆ Rdin
+ , ‖ · ‖ = ‖ · ‖q and p = ∞ then there exists a constant c′ > 0 independent of the

architecture such that for every ε > 0, we can exhibit parameters θ, θ′ such that

‖Rθ −Rθ′‖p,‖·‖ > (1− ε)c′LrL−1‖θ − θ′‖∞. (13)

This converse result also holds for 1 6 p <∞ under the additional assumption that N0 = min06`6LN`.

Remark 37. — It is open whether the extra factor WL in (12) compared to (13) can be improved, and

whether the converse result for p <∞ also holds without the additional assumption. Note that the condition

r > 1 in Proposition 36 is reasonable since every parameter θ ∈ Θq
L,N(r) represents a function Rθ which

is rL-Lipschitz with respect to the q-norm on the input and output spaces. Constraining r < 1 would lead

to "very" smooth functions, essentially constant, when L is large. Vice-versa, the stability of a concrete

numerical implementation of a neural network probably requires it to have a Lipschitz constant somehow

bounded by the format used to represent numbers. Such considerations would probably lead to consider

rL 6 C for some constant, i.e., 1 6 r 6 C1/L.

Proof of Proposition 36. See Section C.

Here is a list of immediate extensions of Proposition 36:

• Arbitrary Lipschitz activation: Proposition 36 can be extended to the case where the ReLU activation

function is replaced by any Lipschitz activation function.
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• Pooling-operation: Proposition 36 does not change if we add standard (max- or average-) pooling

operations between some layers since they are 1-Lipschitz.

• Arbitrary s-norm on the parameters: since for every exponent s ∈ [1,∞], it holds ‖ · ‖∞ 6 ‖ · ‖s,

Proposition 36 yields a bound on the Lipschitz constant with arbitrary s-norm on the parameter space.

• Generalization error bound: in the context of learning, for a loss `(ŷ, y) that is a Lipschitz function of ŷ

with respect to some norm ‖ ·‖ on the support of a distribution P, the excess risk E(x,y)∼P(`(Rθ(x), y)−

`(Rθ′(x), y)) can be bounded from above by E(x,y)∼P(‖Rθ(x)−Rθ′(x)‖), which in turn can be bounded

using Proposition 36. In particular, this is the case when P is supported on a compact set and `(ŷ, y)

is continously differentiable in ŷ.

• Skip connections and convolutional layers: one can also exploit Proposition 36 to networks with skip

connections and/or convolutional layers, since they can be rewritten as networks with fully-connected

layers. This rewriting can however artificially inflate the widths of the networks and is unlikely to give

sharp bounds. It is left to further work whether an extension of Proposition 36 with improved taylored

bounds may be obtained in these settings.

Remark 38 (Related works). — The fact that some sets of functions represented by ReLU neural

networks are Lipschitz-parameterized is already known [5, Rmk. 9.1]. To our knowledge, Proposition 36

is however the first result in the literature that explicitly expresses the dependence of the Lipschitz constant

on the width, depth and weight’s magnitude. Proposition 36 is based on Lemma 54 (Section B), and this

lemma is a straightforward generalization of a known inequality for q = ∞ (see for instance [3, Eq. (3.12)]

or [9, Eq. (37)]) to arbitrary q ∈ [1,∞]. Moreover, we prove that the inequality established in Lemma 54

is optimal. To our knowledge, even in the case q = ∞, the optimality has not been discussed yet in the

literature.

Corollary 39. — Consider a dimension d ∈ N∗, a domain [−D,D]d for some D > 0. Fix an architecture

(L,N) = (L, (N0, . . . , NL)) with maximal width W := max
`=0,...,L

N`, a bound r > 1 for the parameters, and

an exponent q ∈ [1,∞].

• For every η > 0, let Qη be a function such that ‖Qη(θ) − θ‖∞ 6 η for every parameter θ ∈ Θq
L,N(r).

Define c := Dd1/q + 1 and consider 0 < ε < cL2(2r)L−1. If 0 < η 6 ε
(
cWL2(2r)L−1)−1, then

max
θ∈Θq

L,N(r)
max

x∈[−D,D]d
‖Rθ(x)−RQη(θ)(x)‖q 6 ε. (14)

• Conversely, consider η > 0 and a function Qη that acts coordinatewise on vectors and such that8 for

every x ∈ R+, Qη(x) = bx/ηcη. Define Nmin := min
06`6L

N` and c′ = DN
1/q
min. If ε, η > 0 are such that (14)

holds true then min(r, η) 6 ε
c′rL−1 . In particular, if ε/c′ < rL then η 6 ε

c′rL−1 .

Proof. By assumption on η and ε, 0 < η 6 ε
(
cWL2(2r)L−1)−1

6 1/W 6 r/W . Note that for a matrix M

with input/output dimension bounded by W , it holds |||M |||q 6W‖M‖max , see (21). This guarantees that

8b·c is defined as bxc := max{n ∈ Z, n 6 x} for every x ∈ R.
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if θ = (W1, . . . ,WL, b1, . . . , bL) ∈ Θq
L,N(r), then for every layer ` = 1, . . . , L, it holds |||W` −Qη(W`)|||q 6

W‖W` − Qη(W`)‖max 6 Wη 6 r and ‖b` − Qη(b`)‖q 6 W 1/q‖b` − Qη(b`)‖∞ 6 Wη 6 r so that by the

triangle inequality Qη(θ) ∈ Θq
L,N(2r).

Fix θ ∈ Θq
L,N(r). Since Qη(θ) ∈ Θq

L,N(2r) we can apply Proposition 36 (replacing r with 2r), with p = ∞,

‖ · ‖ = ‖ · ‖q and with the specific constant c = Dd1/q + 1. In this situation the essential supremum over

x ∈ [−D,D]d in Proposition 36 is actually a maximum. This yields (14) when 0 < η 6 ε
(
cWL2(2r)L−1)−1.

For the converse statement, consider ε, η > 0 such that (14) holds true. We must prove that min(r, η) 6
ε

c′rL−1 . With Im×m the identity matrix in dimension m and 0m×n the m×n matrix full of zeros, we introduce

the following notation for “rectangular identity matrices”: for m < n, we set Im×n = (Im×m; 0m×(n−m)),

while for m > n we set Im×n = I>n×m. Consider 0 < a < η and define θ = (W1, . . . ,WL, b1, . . . , bL) with

b1 = · · · = bL = 0, W1 = λIN1×N0 with λ := min(r, (η − a)), and for every layer ` > 2, W` = rIN`×N`−1 .

Since 0 < λ 6 η − a < η, we have Qη(λ) = 0 so that Qη(W1) = 0. Since b1 = 0, we also have Qη(b1) = 0 so

that RQη(θ) = 0. We deduce that for every x ∈ [0, D]d supported in the first Nmin coordinates:

‖Rθ(x)−RQη(θ)(x)‖q = ‖λrL−1x− 0‖q = λrL−1‖x‖q.

Since the maximum of ‖x‖q over all x ∈ [0, D]d supported in the first Nmin coordinates is c′ = DN
1/q
min, we

get:

c′λrL−1 6 max
x∈[−D,D]d

‖Rθ(x)−RQη(θ)(x)‖q

As |||W1|||q = λ = min(r, (η − a)) 6 r, for every ` > 2, |||W`|||q = r and for every ` > 1, ‖b`‖q = 0 6 r, we

have θ ∈ Θq
L,N(r) hence (14) applies. This implies c′λrL−1 6 ε, i.e., min(r, (η− a)) 6 ε/(c′rL−1). This holds

for every 0 < a < η: taking the limit a→ 0+ yields the result.

Remark 40. — We just saw that for η > 0 and ε/c′ < rL−1, if a function Qη that acts coordinatewise

as Qη(x) = bx/ηcx for x ∈ R+ is such that (14) is satisfied, then the number of bits needed to store one

coordinate of Qη(θ), which is proportional to ln(1/η), must at least grow linearly with the network depth

L since η is exponential in L. This is essentially due to the fact that parameters in Θq
L,N(r) can represent

functions with Lipschitz constant rL. Less pessimistic bounds can be envisioned under stronger assumptions

on the set of parameters or on the network’s architecture.

C. How to use the Lipschitz constant?

We now give examples of how Proposition 36 can be used to generalize or recover existing results.

a) Quantization in L∞: Proposition 36 allows one to establish the following proposition. As a corollary,

we recover [9, Lem. VI.8] (of which [3, Lem. 3.7] is a special case). We discuss in Remark 42 how the following

proposition, and hence [9, Lem. VI.8], can be generalized to other situations using Proposition 36.
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Proposition 41 (extension of [9, Lem. VI.8]). — Consider din, dout ∈ N∗, D > 0, and (L,N) an

architecture with input dimension din, output dimension dout and L > 2 layers. Consider the space F =

L∞([−D,D]din → (Rdout , ‖ · ‖∞), µ) with µ the Lebesgue measure.

Consider ε ∈ (0, 1/2) and θ ∈ ΘL,N. Let k > 0 be the smallest integer such that θ ∈ Θmax
L,N(ε−k) and

d(L,N) 6 ε−k, i.e., k = dlog2 max(‖θ‖∞, d(L,N))/ log2(1/ε)e. For every integer m > 2kL+ k+ 1 + log2(dDe),

the weights of θ can be rounded up to a closest point in ηZ ∩ [−ε−k, ε−k] with η := 2−mdlog2(ε−1)e 6 εm to

obtain θ′ ∈ Θmax
L,N(ε−k) ∩ (ηZ)d(L,N) that satifies:

‖Rθ −Rθ′‖L∞ 6 ε.

Recall that d(L,N) > 2 is the dimension of the ambient space of θ, see Equation (2), so that k > 1. Our

result thus implies the result of Elbrächter et al. [9, Lem. VI.8]: for L > 2, since k > 1, we have k(L−1) > 1

hence 3kL > 2kL + k + 1 and it is thus sufficient to take m > 3kL + log2(dDe) (which is the sufficient

condition given in [9, Lem. VI.8]). Note however the slower growth of m with L in our sufficient condition

compared to [9, Lem. VI.8].

Proof. Denote byW = max`=0,...,LN` the maximal width of the architecture (L,N). It holds (see Remark 35)

Θmax
L,N(ε−k) ⊂ Θ1

L,N(Wε−k) so we can use Proposition 36 with q = 1 to get:

‖Rθ −Rθ′‖L∞ 6 cWL2(Wε−k)L−1‖θ − θ′‖∞,

with c = 1+D in this situation (see Proposition 36). Since ‖θ−θ′‖∞ 6 η/2 6 εm/2 andW,L 6 d(L,N) 6 ε−k,

it follows:

‖Rθ −Rθ′‖L∞ 6 ((1 +D)/2)ε−k(2L+1)εm.

By assumption m > 2kL+k+1+log2(dDe) so that −k(2L+1)+m > 1+log2(dDe). Hence ‖Rθ−Rθ′‖L∞ 6

((1 +D)/2)ε1+log2(dDe). We are done if ((1 +D)/2)ε1+log2(dDe) 6 ε i.e., if ((1 +D)/2)εlog2(dDe) 6 1. This is

clear when 0 < D 6 1. While forD > 1, ((1+D)/2)εlog2(dDe) 6 1 holds if and only if log2(ε) 6 − log2((1+D)/2)
log2(dDe) .

Since 1 < D, it holds 1+D
2 6 dDe+dDe

2 = dDe so that − log2((1+D)/2)
log2(dDe) > −1. But since ε ∈ (0, 1/2), it holds

−1 > log2(ε), hence − log2((1+D)/2)
log2(dDe) > log2(ε) and the result follows.

Remark 42. — More generally, given bounds on the sparsity and magnitude of network weights, and an

arbitrary p ∈ [1,∞], Proposition 36 can be used to find an appropriate step size that guarantees that a

uniform quantization of the considered network is within accuracy ε > 0 in Lp.

b) Quantization in a ball of an L∞-Sobolev space: Proposition 36 also allows one to recover a special

case of [7, Thm. 2] (the other cases can be recovered by combining this special case with [7, Prop. 3]), which

gives guarantees on the existence of quantized networks approximating functions in an L∞-Sobolev space.

Let n ∈ N∗ and consider Wn,∞([0, 1]d), the Sobolev space of real-valued functions on [0, 1]d that are in L∞
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as well as their weak derivatives up to order n (given n := (n1, . . . , nd) ∈ Nd, the associated weak-derivative

of a function f is denoted Dnf if it exists). The norm on Wn,∞([0, 1]d) is given by:

‖f‖Wn,∞([0,1]d) := max
n:=(n1,...,nd)∈Nd∑

i
ni6n

ess sup
x∈[0,1]d

|Dnf(x)|.

Proposition 43 ([7, Thm. 2]). — Let Cn,d be the unit ball ofWn,∞([0, 1]d). There exists a constant c > 0

depending only on n, d such that for every ε ∈ (0, 1), there exists η > 0 satisfying ln(1/η) 6 c ln2(1/ε) and a

neural network architecture that can approximate every function f ∈ Cn,d within error ε > 0 in L∞([0, 1]d)

using weights in ηZ, with depth bounded by c ln(1/ε), a number of weights at most equal to cε−d/n ln(1/ε),

and a total number of bits to store the network weights bounded by cε−d/n ln3(1/ε).

Proof. Using [15, Thm. 1], there exist constants c(n, d) > 0 and r(n, d) > 1 (for instance, a proof examination

of [15, Thm. 1] shows that we can take r = max(4, d + n)) such that for every ε ∈ (0, 1), there exists a

ReLU network architecture (L,N) with depth L bounded by c ln(1/ε), a number of weights at most equal to

cε−d/n ln(1/ε), and such that for every f ∈ Cn,d, there exists θ ∈ ΘL,N such that ‖f − Rθ‖L∞([0,1]d) 6 ε/2,

and such that θ has weight’s magnitude bounded by r. Proposition 36 can now be used to quantize the

weights of θ, in order to get a quantized ReLU network ε-close to f . Denote by W the maximal width of

this network architecture (L,N). Since Θmax
L,N(r) ⊂ Θ1

L,N(Wr) (see Remark 35) we can use Proposition 36

with q = 1 to get that there exists a constant c′ > 0 that only depends on n, d, such that the weights of

any network θ ∈ Θmax
L,N(r) can be uniformly quantized with a step size η := c′ε(WL2(Wr)L−1)−1 to get a

quantized network θ′ such that ‖Rθ′ − Rθ‖L∞([0,1]d) 6 ε/2. Since the width W is at most the number of

weights, which is at most cε−d/n ln(1/ε), and since the depth L is at most c ln(1/ε) and r is a constant that

only depends on n, d, it is straightforward to check that ln(1/η) 6 c′′ ln2(1/ε) for some constant c′′ that

only depends on n and d. Since the weights are bounded in absolute value by r(n, d), this means that every

quantized weight can be stored using at most c′′′ ln(1/η) 6 c′′′ ln2(1/ε) bits for some constant c′′′(n, d) > 0.

Since there are at most cε−d/n ln(1/ε) such quantized weights, this yields the result using max(c, c′′, c× c′′′)

as the final constant.

Remark 44. — Compared to [7, Thm. 2], Proposition 36 can also be used to establish similar results about

quantized networks, not only for a function f in the unit ball of an L∞-Sobolev space, but for every f ∈ Lp

(1 6 p 6 ∞) as soon as it is known how to approximate f with unquantized ReLU networks, with explicit

bounds on the growth of their depth, width and weight’s magnitude.

c) Bound on covering numbers: Proposition 36 can be used to derive bounds on covering numbers of

classes of functions represented by ReLU neural networks. This is reminiscent of [1, Lem. 14.8] although, as

discussed in Remark 46 below, the assumptions and bounds are different.

Proposition 45. — Consider din, dout ∈ N∗,Ω ⊂ Rdin , µ a measure on Ω satisfying (11), ‖ · ‖ a norm

on Rdin , p ∈ [1,∞], the space F := Lp(Ω → (Rdout , ‖ · ‖), µ), and the corresponding constant c > 0 from
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Proposition 36. Consider q ∈ [1,∞], r > 1, an architecture (L,N) with N0 = din et NL = dout, and

RΘq
L,N(r) := {Rθ, θ ∈ Θq

L,N(r)} ⊆ F

the set of realizations of ReLU neural networks with architecture (L,N) and parameters in Θq
L,N(r) (see

Definition 34). Denote by W := max`=0,...,LN` the maximal width of the architecture and recall that d(`,N)

denotes the dimension of the ambient space of Θq
L,N(r), cf Equation (2).

Then, for every 0 < ε 6 2cWL2rL−1, the covering numbers (see Definition 8) of RΘq
L,N(r), with respect

to the metric ‖ · ‖p,‖·‖ of F , are bounded as follows:

N(RΘq
L,N(r), ‖ · ‖p,‖·‖, ε) 6

(
6c(WL)2rL

ε

)d(`,N)

.

Proof. Proposition 36 guarantees that the mapping ϕ : θ ∈ (Θq
L,N(r), ‖ · ‖∞) 7→ Rθ ∈ (F , ‖ · ‖p,‖·‖) is

Lips(ϕ)-Lipschitz with Lips(ϕ) := cWL2rL−1. Hence, for every ε > 0 (see e.g. [1, Lem. 14.13]):

N(RΘq
L,N(r), ‖ · ‖p,‖·‖, ε) 6 N(Θq

L,N(r), ‖ · ‖∞, ε/Lips(ϕ)).

Recall that if X ⊂ Y are subsets of a metric space (F , d) we do not generally have N(X, d, ε) 6 N(Y, d, ε)

but only the weaker bound N(X, d, ε) 6 N(Y, d, ε/2) (see, e.g., [10, Lem. A.1]). The definition of Θq
L,N(r) as

a cartesian product of closed balls with respect to operator and vector q-norms, and standard equivalence

results on norms (see (21)) yield Θq
L,N(r) ⊂

L∏
`=1

(
BN`N`−1,‖·‖∞(0,Wr)×BN`,‖·‖∞(0,Wr)

)
where Bd,‖·‖(0, r)

is the closed ball of radius r centered in 0 with respect to the norm ‖ · ‖ in dimension d. Hence

N(Θq
L,N(r), ‖ · ‖∞, ε/Lips(ϕ)) 6 N(

L∏
`=1

(
BN`N`−1,‖·‖∞(0,Wr)×BN`,‖·‖∞(0,Wr)

)
, ‖ · ‖∞, ε/(2Lips(ϕ))).

Moreover a covering of a product space X × Y in the uniform norm can be constructed by taking the

cartesian product of coverings of X and Y in the uniform norm, meaning that N(X × Y, ‖ · ‖∞, ε) 6

N(X, ‖ · ‖∞, ε)N(Y, ‖ · ‖∞, ε). Hence, for every 0 < ε 6 2Lips(ϕ), using standard bounds on covering

numbers of balls in finite dimension [14, Eq. (5.9)]:

N(Θq
L,N(r), ‖ · ‖∞, ε/Lips(ϕ)) 6

L∏
`=1

N(BN`N`−1,‖·‖∞(0,Wr), ‖ · ‖∞, ε/(2Lips(ϕ)))

×N(BN`,‖·‖∞(0,Wr), ‖ · ‖∞, ε/(2Lips(ϕ)))

6 (6WrLips(ϕ)/ε)

L∑̀
=1

N`(N`−1+1)
= (6WrLips(ϕ)/ε)d(L,N) .

Remark 46. — Proposition 45 gives covering number bounds for neural networks with `2-norm constraints

on the parameters, but the Lipschitz bound of Proposition 36 can be used to get similar covering number

bounds with more general constraints. It can be compared to the following covering number bound for ReLU

neural networks [1, Lem. 14.8], for ε > 0 small enough:(
2d(`,N)br

L

ε

)d(`,N)

.
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Here are important differences with the bound of Proposition 45. [1, Lem. 14.8] requires that each neuron

output is bounded by some b > 0 while Proposition 45 does not (but if Ω is bounded then each neuron

output in Proposition 45 is implicitly bounded by something of order rL so [1, Lem. 14.8] would yield an

extra rLd(`,N) in the situation of Proposition 45). Proposition 45 has an extra
(

(WL)2

d(L,N)

)d(`,N)
while [1, Lem.

14.8] has an extra bd(`,N) . Notice that in the case of an architecture of constant width (N` = W for every

`) we have d(L,N) = LW (W + 1) hence (WL)2d−1
(L,N) is of the order of L. Finally, Proposition 45 holds for

arbitrary Lp(Ω→ Rdout , µ) while [1, Lem. 14.8] holds only in the special case where Lp(Ω→ Rdout , µ) is such

that p =∞, Ω is bounded and µ is the Lebesgue measure.

D. Application: ∞-encodability of ReLU neural networks

The explicit upper bound for the Lipschitz constant established in Proposition 36, together with Lemma 23,

implies that some sequences defined with ReLU neural networks are∞-encodable, and can even be uniformly

quantized to keep comparable approximation speeds, with a step size depending on the growth of the

architecture. We first defined the quantization scheme considered, before deriving Proposition 49 that gives

explicit conditions on the architectures and weights growth that guarantee that the quantized sequence has

an approximation speed comparable to the original one.

Definition 47. — Consider positive integers din, dout, a sequence (LM )M∈N∗ of positive integers, and a

sequence (rM )M of real numbers such that rM > 1. For each M ∈ N∗ define AM , the set of architectures

with input dimension din, output dimension dout, depth bounded by LM and widths of the hidden layers

bounded by M :

AM := {(L,N0, . . . , NL) : L,N0, . . . , NL ∈ N∗, L 6 LM , N0 = din, NL = dout, N` 6M, ` = 1, . . . , L− 1}.

For everyM ∈ N∗ and every architecture (L,N) ∈ AM , consider the set SM(L,N) of all supports S ⊂ {0, 1}d(L,N)

of cardinality at most M , used to constrain the non-zero entries of a vector θ with architecture (L,N).

Consider Ω ⊂ Rdin , µ a measure on Ω satisfying (11), ‖ · ‖ a norm on Rdin , q ∈ [1,∞]∪{F,max} (F and max

refers to the Frobenius norm and the max-norm, see Remark 35), and define the sequence N := (NM )M of

sets NM ⊂ Lp(Ω→ (Rdout , ‖·‖), µ) of realizations of ReLU neural networks with an architecture (L,N) ∈ AM

and parameters in Θq
L,N(rM ):

NM :=
⋃

(L,N)∈AM

⋃
S∈SM(L,N)

RΘq
L,N(rM ),S

where for any parameter set Θ and support S we denote RΘ,S := {Rθ, θ ∈ Θ supported on S}.

For any γ > 0, the γ-uniformly quantized version Q(NM , γ) of NM is defined as follows: for every M ∈

N∗, consider the step size ηM = ηM (γ, q) := (MγLips(M, q))−1, with Lips(M, q) := ML2
Mr

LM−1
M > 1 if

q ∈ [1,∞] ∪ {F}, and Lips(M,max) = Lips(M, 2)MLM−1, and set

Q(Θq
L,N(rM ), γ) := Θq

L,N(rM ) ∩ (ηMZ ∩ [−rM , rM ])d(L,N) ,∀(L,N) ∈ AM ,

Q(NM , γ) :=
⋃

(L,N)∈AM

⋃
S∈SM(L,N)

RQ(Θq
L,N(rM ),γ),S .
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Remark 48. — The constraint N` 6M in the definition of the architectures in AM is written for clarity but

is indeed superfluous, given that the realization of a network θ (with arbitrary activation function and an

architecture of arbitrary width) with at mostM nonzero coefficients can always be written as the realization

of a parameter θ′ on a “pruned” architecture where N` 6M for every hidden layer.

We can now give explicit conditions on the constraints on the depth, the width and the weight’s magnitude,

that guarantee that the γ-uniformly quantized sequence has an approximation speed comparable to the

original one on every set C ⊂ Lp.

Proposition 49. — In the context of Definition 47, assume that for every h > 0, it holds:

LMM (1 + log2(rM )) = OM→∞(M1+h). (15)

ThenN is∞-encodable in F := Lp(Ω→ (Rdout , ‖·‖), µ). Moreover, for every γ > 0, the γ-uniformly quantized

sequence Q(N , γ) := (Q(NM , γ))M∈N∗ has comparable approximation speeds to N on every (non-empty)

set C ⊂ F :
γ∗approx(C|Q(N , γ)) = γ∗approx(C|N ) if γ > γ∗approx(C|N ),

γ∗approx(C|Q(N , γ)) > γ otherwise.
(16)

Proof. By Proposition 36 there is a constant c > 0 such that for each M ∈ N∗, each architecture (L,N) ∈

AM and each support S ∈ SM(L,N), the set RΘq
L,N(rM ),S is the image under a Lipschitz map of ({θ ∈

Θq
L,N(rM ) supported on S}, ‖ · ‖∞) with a Lipschitz constant bounded by LipsM (q) := cML2

Mr
LM−1
M for

q ∈ [1,∞] ∪ {F} and by LipsM (q) := MLM−1LipsM (1) for q = max (for q ∈ {F,max}, this is due to

Remark 35). Fix h > 0. By assumption (15), we deduce that there exists c1 = c1(h) > 0 such that for every

M ∈ N∗, and every architecture (L,N) ∈ AM

M (log2(rM ) + log2(LipsM (q)) + log2(M)) 6 c1M
1+h.

Fix γ > 0. Lemma 23 shows that there is a constant c2 = c2(q, γ) > 0 such that for each M ∈ N∗, each

architecture (L,N) ∈ AM and each support S ∈ SM(L,N), using the lemma with n = |S| 6 M the cardinality

of the support, r = rM , and the same q as here, the quantized set RQ(Θq
L,N(rM ),γ),S is a c2M−γ-covering of

RΘq
L,N(rM ),S and its number of elements satisfies:

log2(|RQ(Θq
L,N(rM ),γ),S |) 6 c2M (log2(M) + log2(rM ) + log2(LipsM (q)) + log2(M)) 6 2c1c2M1+h.

Thus, the quantized set Q(NM , γ) is a c1M−γ-covering of NM and its cardinality satisfies

|Q(NM , γ)| 6
∑

(L,N)∈AM

∑
S∈SM(L,N)

|RQ(Θq
L,N(rM ),γ),S | 6 |AM | · |SM(L,N)| · 22c1c2M

1+h
.

Note that for every M ∈ N∗, |AM | 6 LMM
LM−1 (at most LM possibilities for the depth and then, M

possibilities for each of the potential LM − 1 intermediary layers, the size of the input and output being

fixed to din and dout). Similarly, since SM(L,N) consists at most of all the supports of size M in dimension

d(L,N) 6 2M2LM , its cardinality is bounded by (2M2LM )M . Overall, we obtain that

log2(|Q(NM , γ)|) 6 log2(LM ) + LM log2(M) +M log2(2M2LM ) + 2c1c2M1+h.
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Using assumption (15) again, we obtain that there exists c3 > 0 such that log2(|Q(NM , γ)|) 6 c3M
1+h for

everyM ∈ N∗. We deduce that for every γ > 0 and for every h > 0, the sequence Q(N , γ) is a (γ, h)-encoding

of N so that N is ∞-encodable and Lemma 17 gives Equality (16).

Example 50 (∞-encodable sequences of sparse neural networks - [9, Thm. VI.4]). — Let π be

a positive polynomial and consider, as in [9, Def. VI.2], N π
M the set of functions parameterized by a ReLU

neural network with weight’s amplitude bounded by π(M), depth bounded by π(logM) and at mostM non-

zero parameters. Proposition 49 shows that N π := (N π
M )M∈N∗ is ∞-encodable. Indeed, this corresponds to

the case where q = max, LM 6 π(log(M)), 1 6 rM 6 max(1, π(M)), and SM(L,N) consists of all the supports

of size M in dimension d(L,N) 6 2M2LM . Given Proposition 16, the fact that N π is ∞-encodable gives the

relation between approximation speed and encoding speed stated in [9, Thm. VI.4].

Example 51 (Growth of the step size). — Let q ∈ [1,∞] ∪ {F,max} be an exponent and π be a

positive polynomial and consider N π
M the set of functions parameterized by a ReLU neural network with

arbitrary architecture (L,N) with depth bounded by π(logM), with at most M non-zero parameters and

with parameters in Θq
L,N(π(M)). As in Example 50, Assumption (15) holds. Consequently, for every γ > 0,

there exists a constant c(γ) > 0 such that the γ-uniformly quantized sequence Q(N , γ) of N defined in

Proposition 49 is obtained with step size ηM = OM→∞(M−c(γ) logM ) (hence OM→∞((logM)2) bits are

used to store each parameter), and still has approximation speeds comparable to N . In the same setup,

if we assume in addition that LM is uniformly bounded in M , then for every γ > 0, a step size ηM =

OM→∞(M−c(γ)) (hence OM→∞(logM) bits per parameter) suffices to get:

γ∗approx(C|Q(N , γ)) = γ∗approx(C|N ) if γ > γ∗approx(C|N ),

γ∗approx(C|Q(N , γ)) > γ otherwise.

VI. Conclusion

Notion of γ-encodability. This paper introduced in Definition 13 a new property of approximation families:

being γ-encodable. As soon as Σ is γ-encodable in a metric space (F , d), Proposition 16 shows that there is

a simple relation between the approximation speed of every set C ⊂ F and its encoding speed:

min(γ∗approx(C|Σ), γ) 6 γ∗encod(C). (17)

As seen in Section IV, several classical approximation families Σ are γ-encodable for some γ > 0, including

classical families defined with dictionaries (section IV-C) or ReLU neural networks (Example 50). As a

consequence, γ-encodability lays a generic framework that unifies several situations where Inequality (17)

was known, such as when doing approximation with dictionaries [11, Thm. 5.24][13, Prop. 11] or ReLU

neural networks [9, Thm. VI.4]. Moreover, some γ-encodable sequences obtained as images of Lipschitz

maps can be uniformly quantized while still keeping approximation speeds comparable to the original ones,

see Proposition 24.

Lipschitz parameterization of ReLU neural networks. This paper also proves a generic bound on

the Lipschitz constant of the mapping that associates the weights of a ReLU architecture to the function
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they represent in some Lp space (Proposition 36). As a consequence, our general results on γ-encodability

and uniform quantization apply to ReLU networks, see section V-D.

Other consequences of the Lipschitz parameterization. We further used in Section V-C the upper

bound on the Lipschitz constant of θ 7→ Rθ to recover and generalize known approximation results on

quantized ReLU networks [7, Thm. 2][9, Lem. VI.8]. Moreover, as seen in Corollary 39 and Remark 40, if

η > 0 and ε/c′ < rL−1 are such that a function Qη that acts coordinatewise as Qη(x) = bx/ηcx for x ∈ R+

provides ε-accuracy in L∞([−D,D]d) uniformly on a bounded set of parameters Θq
L,N(r) for an architecture

(L,N), then the number of bits per coordinates must be linear in the depth L of the considered architecture.

Positioning. From a practical side, our result helps to bound one of the components of the error that is

committed when approximating a function f by a neural network in the quantized setting. However to fully

deal with this problem one should also bound the distance between the prediction of the quantized network

and its numerical evaluation. Indeed, when propagating the input x in the ReLU network with parameters

Q(θ), some state-of-the-art schemes also use very low precision to represent and compute the results of the

intermediate layers [16].

Perspectives. In Corollary 39, we saw necessary and sufficient conditions on η > 0 to guarantee that

quantizing coordinatewise by Qη(x) = bx/ηcx provides ε-accuracy in L∞([−D,D]d), uniformly on a bounded

set of parameters Θq
L,N(r). In practical applications with post-training quantization, we are only interested

in parameters that can be obtained with learning algorithms such as stochastic gradient descent. Moreover,

we may not be interested in ε > 0 arbitrary small. For instance, quantization aware training techniques [4]

have been successfully applied for ReLU neural networks with three hidden layers and 1024 neurons per

hidden layer [4]. Indeed, the modified learning procedure yields in [4] a network with quantized weights in

{−1, 1} that performs similarly, on the MNIST dataset, as the network that would have been obtained with

the original learning procedure. Is it possible to have better guarantees if we only care about some prescribed

accuracy ε > 0 and a "small set" of parameters, such as parameters than can indeed be learned in practice?

Another question would be to design schemes to quantize network parameters, in a way that adapts

to the architecture. In the quantization schemes covered by Corollary 39, the sufficient value of η > 0 to

ensure a prescribed accuracy ε > 0 only takes into account the depth and the width of the architecture.

However, in practice the network architecture is carefully designed to meet some criterion, such as reducing

the inference cost (references can be found in the paragraph "Compact network design" of [16]). Specificities

of the architecture could be taken into consideration when designing the quantization scheme.

Another perspective is to take into account functionally equivalent parameters when designing a quantiza-

tion scheme, as we now detail. Given parameters θ of a ReLU neural network (and possibly a finite dataset),

we say that θ′ is functionally equivalent to θ, denoted θ′ ∼ θ, if Rθ = Rθ′ (resp. equality on the considered

dataset). Due to the positive homogeneity of the ReLU function, there are uncountably many equivalent

parameters to θ that can be obtained by rescaling the coordinates of θ (but these are not the only ones since

permuting coordinates can also lead to functionally equivalent parameters). When quantizing θ, it would be

interesting to take these equivalent parameters into account.
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Appendix A

Norms

Definition 52 (p-th norm). — Let d ∈ N∗. For an exponent p ∈ [1,∞], the p-th norm on Rd is defined

by:

∀x = (xi)i=1,...,d ∈ Rd, ‖x‖p :=


(∑d

i=1 |xi|p
) 1
p if p <∞,

sup
i=1,...,d

|xi| if p =∞.
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Definition 53. — (|||·|||p) Let d1, d2 ∈ N∗. The operator norm |||·|||p on Rd2×d1 associated with the exponent

p ∈ [1,∞] is defined by:

∀M ∈ Rd2×d1 , |||M |||p := sup
x∈Rd1
x6=0

‖Mx‖p
‖x‖p

.

Appendix B

Optimality of a bound on ‖Rθ(x)−Rθ′(x)‖q

We generalize a known inequality established for q = ∞ [9, Eq. (37)][3, Eq. (3.12)] to arbitrary q-th norm

q ∈ [1,∞]. Moreover, we prove its optimality. This inequality is used in Section C to bound the Lipschitz

constant of the parameterization of ReLU networks. With Im×m the identity matrix in dimension m and

0m×n the m×n matrix full of zeros, we introduce the following notation for “rectangular identity matrices”:

for m < n, we set Im×n = (Im×m; 0m×(n−m)), while for m > n we set Im×n = I>n×m.

Lemma 54. — Let (L,N) be an architecture with any depth L > 1 and θ = (W1, . . . ,WL, b1, . . . , bL),

θ′ = (W ′1, . . . ,W ′L, b′1, . . . , b′L) ∈ ΘL,N (see Equation (2) for the definition of ΘL,N) be parameters associated

to this architecture. For every ` = 1, . . . , L − 1, define θ′` as the parameter deduced from θ′, associated to

the architecture (`, (N0, . . . , N`)):

θ′` = (W ′1, . . . ,W ′` , b′1, . . . , b′`).

Then for every exponent q ∈ [1,∞] and for every x ∈ RN0 , the realization of neural networks with any

1-Lipschitz activation function % satisfy:

‖Rθ(x)−Rθ′(x)‖q 6
L∑
`=1

(
L∏

k=`+1
|||Wk|||q

)
× |||W` −W ′` |||q × ‖Rθ′`−1

(x)‖q (18)

+
L∑
`=1

(
L∏

k=`+1
|||Wk|||q

)
‖b` − b′`‖q,

where the definition of the q-th norm and the operator norm of a matrix are recalled in appendix A, and

where we set by convention Rθ′
`−1

(x) = x if ` = 1, and
∏L
k=`+1 |||Wk|||q = 1 if ` = L.

Let λ1, . . . , λL > 0 and ε > 0 and consider an input vector x ∈ Rdin with nonnegative entries and supported

on the first s := min`N` coordinates. There is equality in (18) for the parameters θ = (W1, . . . ,WL, b1, . . . , bL)

and θ′ = (W ′1, . . . ,W ′L, b′1, . . . , b′L) defined by, for every ` = 1, . . . , L:

W` = λ`IN`×N`−1 , W ′` = (1 + ε)W`, b` = b′` = 0. (19)

Proof. The proof of Inequality (18) follows by induction on L ∈ N∗ in a similar way as in the case q = ∞

[9, Eq. (37)][3, Eq. (3.12)]. For L = 1, this is just saying that

‖Rθ(x)−Rθ′(x)‖q = ‖W1x+ b1 −W ′1x− b′1‖q

6 |||W1 −W ′1|||q‖x‖q + ‖b1 − b′1‖q.
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Assume that the property holds true for L > 1. Then at rank L + 1 (using in the last inequality that the

activation function ρ is 1-Lipschitz):

‖Rθ(x)−Rθ′(x)‖q = ‖WL+1ρ(RθL(x)) + bL+1 −W ′L+1ρ(Rθ′
L

(x))− b′L+1‖q

= ‖WL+1

(
ρ(RθL(x))− ρ(Rθ′

L
(x))

)
+ (WL+1 −W ′L+1)ρ(Rθ′

L
(x)) + bL+1 − b′L+1‖q

6 |||WL+1|||q‖ρ(RθL(x))− ρ(Rθ′
L

(x))‖q

+
∣∣∣∣∣∣WL+1 −W ′L+1

∣∣∣∣∣∣
q
‖ρ(Rθ′

L
(x))‖q + ‖bL+1 − b′L+1‖q

6 |||WL+1|||q‖RθL(x)−Rθ′
L

(x)‖q

+
∣∣∣∣∣∣WL+1 −W ′L+1

∣∣∣∣∣∣
q
‖ρ(Rθ′

L
(x))‖q + ‖bL+1 − b′L+1‖q.

Using the induction hypothesis gives the desired result.

For the equality case, recall the definition of the parameters θ and θ′ in Equation (19). Let λ =
∏L
`=1 λ`.

Since x = (y>, 01×(din−s))> with y ∈ Rs+ we have %(W1x + b1) = λ1(y>, 01×(N1−s))>. By induction on

` = 1, . . . , L, we can show Rθ(x) = λ(y>, 01×(NL−s))>, and similarly Rθ′(x) = (1 + ε)Lλ(y>, 01×(NL−s))>.

Hence:

‖Rθ(x)−Rθ′(x)‖q = ‖λy − (1 + ε)Lλy‖q

= ((1 + ε)L − 1)λ‖x‖q.

Moreover, for every ` = 1, . . . , L, it is easy to check that |||W`|||q = λ` and |||W` −W ′` |||q = ελ` so that:(
L∏

k=`+1
|||Wk|||q

)
× |||W` −W ′` |||q × ‖Rθ′`−1

(x)‖q

=
(

L∏
k=`+1

λk

)
× ελ` ×

(
`−1∏
k=1

(1 + ε)λk

)
‖x‖q

= (1 + ε)`−1ελ‖x‖q,

and: (
L∏

k=`+1
|||W`|||q

)
‖b` − b′`‖q = 0.

Hence the equality case, since:

L∑
`=1

(
L∏

k=`+1
|||Wk|||q

)
× |||W` −W ′` |||q × ‖Rθ′`−1

(x)‖q +
L∑
`=1

(
L∏

k=`+1
|||W`|||q

)
‖b` − b′`‖q

=
L∑
`=1

(1 + ε)`−1ελ‖x‖q = (1 + ε)L − 1
1 + ε− 1 ελ‖x‖q = ((1 + ε)L − 1)λ‖x‖q.
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Appendix C

Lipschitz-parameterization of ReLU networks (Proof of Proposition 36)

Recall that we fixed a set Lp(Ω → Rdout , µ) containing all functions represented by ReLU neural networks

with input dimension din and output dimension dout. The parameter set Θq
L,N(r) is defined in Definition 34.

First, Lemma 54 applied to any architecture (L,N), any θ ∈ ΘL,N, and θ′ = (0, . . . , 0) ∈ ΘL,N yields for

every x ∈ Ω:

‖Rθ(x)‖q 6
L∏
k=1
|||Wk|||q‖x‖q +

L∑
`=1

(
L∏

k=`+1
|||Wk|||q

)
‖b`‖q, (20)

using that ‖Rθ′
`−1

(x)‖q = ‖x‖q for ` = 1 (by convention) and ‖Rθ′
`−1

(x)‖q = 0 for each ` > 2 (since θ′ = 0).

Let θ, θ′ ∈ Θq
L,N(r). We are going to bound ‖Rθ−Rθ′‖p,‖·‖ from above using Inequality (18) of Lemma 54.

First, we introduce useful notations to write things compactly. Define for every i, j ∈ N:

Πi,j :=
j∏
k=i
|||Wk|||q and Π′i,j :=

j∏
k=i
|||W ′k|||q if i 6 j,

Πi,j := Π′i,j := 1 otherwise.

For ` = 2, . . . , L, we start by bounding ‖Rθ′
`−1

(x)‖q by a simple function of x ∈ Ω, since this term appears

on the right-handside of Inequality (18). Using (20) for the architecture (`− 1, (N0, . . . , N`−1)) we have:

‖Rθ′
`−1

(x)‖q 6
`−1∏
k=1
|||W ′k|||q‖x‖q +

`−1∑
k=1

 `−1∏
j=k+1

∣∣∣∣∣∣W ′j∣∣∣∣∣∣q
 ‖b′k‖q

= Π′1,`−1‖x‖q +
`−1∑
k=1

Π′k+1,`−1‖b′k‖q.

If Ω ⊆ Rdin
+ and N0 = min06`6LN` then for every x ∈ Ω, the parameters defined in Equation (19) are such

that the previous inequality is an equality.

Denote by c0 a constant such that for every y ∈ Rdout , ‖y‖ 6 c0‖y‖q. Note that if ‖ · ‖ = ‖ · ‖s for

s ∈ [1,∞], then we can take c0 = d
max(0, 1

s−
1
q )

out . Now, using the previous inequality and integrating both

sides of Inequality (18) of Lemma 54, we get for 1 6 p <∞:(∫
x∈Ω
‖Rθ(x)−Rθ′(x)‖pdµ(x)

) 1
p

6 c0

(∫
x∈Ω
‖Rθ(x)−Rθ′(x)‖pqdµ(x)

) 1
p

6 c0

(∫
x∈Ω

[ L∑
`=1

Π`+1,L

(
Π′1,`−1‖x‖q +

`−1∑
k=1

Π′k+1,`−1‖b′k‖q

)

× |||W` −W ′` |||q +
L∑
`=1

Π`+1,L × ‖b` − b′`‖q
]p

dµ(x)
) 1
p

.

A trivial adaptation yields a similar result for p =∞.

If Ω ⊆ Rdin
+ , N0 = min06`6LN`, and if ‖·‖ = ‖·‖q so that we can take c0 := 1, then the previous inequality

is an equality for the parameters defined in Equation (19).
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Note that in the special case p = ∞, if we only assume that Ω ⊆ Rdin
+ and ‖ · ‖ = ‖ · ‖q (but not that

N0 = min06`6LN`), denoting by Nmin := min06`6LN`, then it holds for the parameters of Equation (19)

and for every x ∈ Ω supported on the first Nmin coordinates:

‖Rθ(x)−Rθ′(x)‖ =
L∑
`=1

Π`+1,L

(
Π′1,`−1‖x‖q +

`−1∑
k=1

Π′k+1,`−1‖b′k‖q

)
× |||W` −W ′` |||q +

L∑
`=1

Π`+1,L×‖b`− b′`‖q.

Recall that W = max
`=1,...L

N` is the maximal width of the network. For every matrix M with input/output

dimension bounded by W and every vector b with dimension bounded by W , denoting by ‖M‖max :=

maxi,j |Mi,j |, standard results on equivalence of norms guarantees that for every 1 6 q 6 ∞, it holds

‖b‖q 6W 1/q‖b‖∞ 6W‖b‖∞ and max(|||M |||1, |||M |||∞) 6W‖M‖max. The latter, with Riesz-Thorin theorem

[6, Chap.2, Thm 4.3], guarantee that for every 1 6 q 6∞:

|||M |||q 6W‖M‖max and ‖b‖q 6W‖b‖∞. (21)

We deduce that for every ` = 1, . . . , L:

max
(
|||W` −W ′` |||q, ‖b` − b

′
`‖q
)
6W‖θ − θ′‖∞.

This time, this is not an equality for the parameters defined in Equation (19). For them it holds instead,

assuming that all λ` are equal:

|||W` −W ′` |||q = ελ` = ‖W` −W ′`‖max = ‖θ − θ′‖∞, ‖b` − b′`‖q = 0.

Using the previous inequalities, we get for 1 6 p <∞:

‖Rθ −Rθ′‖p,‖·‖ 6
(∫

x∈Ω

[ L∑
`=1

Π`+1,L

(
Π′1,`−1‖x‖q +

`−1∑
k=1

Π′k+1,`−1‖b′k‖q

)

+
L∑
`=1

Π`+1,L

]p
dµ(x)

) 1
p

c0W‖θ − θ′‖∞

with a trivial adaptation for p = ∞. Since θ, θ′ ∈ Θq
L,N(r), it holds max(Πi,j ,Π′i,j) 6 rj−i+1 for i 6 j, and

the same also holds for i = j + 1 by definition of Πi,j . Thus:
L∑
`=1

Π`+1,L

(
1 + Π′1,`−1‖x‖q +

`−1∑
k=1

Π′k+1,`−1‖b′k‖q

)

6
L∑
`=1

rL−`

(
1 + r`−1‖x‖q +

`−1∑
k=1

r`−k

)
since θ, θ′ ∈ Θq

L,N(r)

= LrL−1‖x‖q +
L∑
`=1

rL−` +
L∑
`=1

`−1∑
k=1

rL−k

6 LrL−1‖x‖q + LrL−1 + L(L− 1)rL−1 since r > 1

6 L2rL−1(‖x‖q + 1) since L > 1.

If we define:

c :=


c0
(∫
x∈Ω(‖x‖q + 1)pdµ(x)

)1/p if p <∞,

c0 ess sup
x∈Ω

‖x‖q + 1 if p =∞.
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where we recognize in the second factor the constant Cp(Ω, µ) from Lemma 33 when q =∞, then we finally

get (12). Let us now explicit c in specific situations where Ω = [−D,D]d for some D > 0, µ is the Lebesgue

measure and ‖ · ‖ = ‖ · ‖q so that we can take c0 = 1. If q = ∞ we get c = Cp(Ω, µ) 6 (D + 1)(2D)d/p. If

p =∞, then

c = ess sup
x∈Ω

‖x‖q + 1 = Dd1/q + 1.

Indeed, the essential supremum is actually a maximum in this case and ‖x‖q 6 d1/q‖x‖∞ 6 d1/qD for every

x ∈ [−D,D]d with equality for x = (D, . . . ,D)T .

Let us now discuss the optimality of (12). It can be checked that if Ω ⊆ Rdin
+ , ‖·‖ = ‖·‖q, so that we can take

c0 := 1, and if N0 = min06`6LN`, then the parameters θ, θ′ defined in Equation (19) with λ1 = . . . = λL =
r

1+ε > 0 are in Θq
L,N(r) and satisfy ‖Rθ −Rθ′‖p = c0

(∫
x∈Ω ‖x‖

p
qdµ(x))

) 1
p rL−1∑L

`=1

(
1

1+ε

)L−`
‖θ − θ′‖∞.

In the special case where p =∞, if we only assume that Ω ⊆ Rdin
+ and ‖ · ‖ = ‖ · ‖q then the parameters

θ, θ′ defined in Equation (19) with λ1 = . . . = λL = r
1+ε > 0 are in Θq

L,N(r) and if we denote by Nmin :=

min06`6LN` and by Ωmin the set of x ∈ Ω supported on the first Nmin coordinates:

ess sup
x∈Ωmin

‖Rθ(x)−Rθ′(x)‖ >
(

ess sup
x∈Ωmin

‖x‖q
)
rL−1

L∑
`=1

(
1

1 + ε

)L−`
‖θ − θ′‖∞.

This yields the conclusion.
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