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Learning Reduced Nonlinear State-Space Models: an Output-Error Based
Canonical Approach

Steeven Jannyl, Quentin Possamai', Laurent Bako?®, Christian Wolf* and Madiha Nadri®

Abstract— The identification of a nonlinear dynamic model
is an open topic in control theory, especially from sparse input-
output measurements. A fundamental challenge of this problem
is that very few to zero prior knowledge is available on both
the state and the nonlinear system model. To cope with this
challenge, we investigate the effectiveness of deep learning in
the modeling of dynamic systems with nonlinear behavior by
advocating an approach which relies on three main ingredients:
(i) we show that under some structural conditions on the to-
be-identified model, the state can be expressed in function of a
sequence of the past inputs and outputs; (ii) this relation which
we call the state map can be modelled by resorting to the well-
documented approximation power of deep neural networks;
(iii) taking then advantage of existing learning schemes, a state-
space model can be finally identified. After the formulation and
analysis of the approach, we show its ability to identify three
different nonlinear systems. The performances are evaluated
in terms of open-loop prediction on test data generated in
simulation as well as a real world data-set of unmanned aerial
vehicle flight measurements.

Keywords: nonlinear system identification, state-space
models, model reduction, deep learning, auto-encoding

I. INTRODUCTION

A large majority of deployed methods from control theory
have as a prerequisite the provision of relatively precise
dynamic model characterizing the temporal evolution of
the state variables at stake. This model generally plays a
central role, since the performance of the control method is
often directly related to the accuracy of the model [2], [8],
[24]. Consequently, modeling and identification of a dynamic
system is an essential preliminary step, since it will serve
as foundation for additional processing, such as controller
or observer design. However, this is not a trivial task: in
the general case, the system is complex, non-linear, and
involves physical phenomena that are often difficult or even
impossible to model correctly without strongly impacting
the required computation time. On the other hand, the
identification of the parameters of a non-linear model is a
non-convex problem, which can require tremendous hours
of calibrations and experiments. Moreover, identification of
a dynamic system often requires the intervention of domain
experts and the ability to freely interact with the system.
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The development of data-driven techniques for the iden-
tification of non-linear systems has provided a promising
response to these issues and has received great interest
over the last decade (see for example [12], [14], [17]).
Specifically, neural networks propose to remove the burden
of modeling by replacing it with the collection of massive
datasets from the system of interest. Modeling methods
based on deep learning constitute an alternative solution to
painstaking physical modeling. The main idea is based on the
use of an extremely versatile model, capable of approaching
most dynamics with a certain degree of precision, that can be
directly identified from pairs of input-output measurements
in the case of dynamic systems, provided that theses mea-
surements gather enough information necessary to approxi-
mate the true dynamic. Nevertheless, the great flexibility of
neural networks comes at the cost of a lack of mathematical
structure making it difficult to perform theoretical analysis
in terms of robustness, precision and stability. Moreover,
learning complex, high-dimensional dynamical systems is
not straightforward. The general formulation leads to latent
dynamic models lacking of meaningful physical structure and
requires large dimensional state spaces.

In this article, we propose a new identification structure
for nonlinear state-space systems from a set of observation
trajectories and associated inputs. We demonstrate the ex-
istence of a regressor inspired by finite impulse response
models allowing to map a series of past observations to
future outputs, and provide bounds derived from the pre-
diction error during deployment. We then deduced a high-
dimensional canonical state-space model discovered using an
output-error based approach and propose to learn an auto-
encoder projecting the dynamics into a smaller state-space.
We evaluate our proposal on different systems in simulation
and in the real world.

II. RELATED WORK

Data-driven dynamic models are widely studied in the com-
munity and get a lot of attention. In particular, [6], [9], [20]
propose to find governing physical equations by performing
a sparse regression from the data. At the junction between
physical model and learning, [13], [15], [23], [25] use neural
networks to model complementary phenomena not described
by the initial physical model. In particular, [2], [18], [22]
extend the dynamic model of a unmanned aerial vehicle
with a neural network in charge of predicting aerodynamic
disturbances, which are often very demanding and intractable
for real time physical simulation.



A substantial part of recent publications in system iden-
tification has therefore naturally turned to the use of deep
learning. The most common approach consists in learning
an auto-encoder structure that projects observations of the
dynamical system into a higher-dimensional latent space in
which the dynamics can be identified. The form of the latent
dynamics can then take different forms: Koopman operator
[5], [19], KKL observer [7], [11], [16], or, more generally,
any sufficiently expressive neural network [3], [4], [14], [26].

Our proposal differs from this line of works in three main
points: (1) we provide theoretical results and conditions for
the existence of the dynamical system that we identify, (2) we
propose to use a high-dimensional regressor structure without
explicit state representation, which will be deduced from a
dimensionality reduction operation and (3) we evaluate our
approach on challenging and unstable systems.

Notation. R and N denote the sets of reals and natural
numbers respectively. ||-|| refers to a generic norm on some
appropriate space.

III. PROBLEM STATEMENT AND PRELIMINARY RESULTS

A. Problem statement

We consider a nonlinear discrete-time system of the general

form
Tt41 = fo(:bt,ut)
Yy =

he (¢, ut) 4wy,
with z; € X C R", uy e U C R™, yp € Y C R™
being the state, the input and the output of the system at
discrete time ¢ € N respectively. f° : R% x R" — R"»
and h° : R™ xR"™» — R™ are some nonlinear vector-valued
functions. As to wy € YW C R™v, it represents measurement
noise. We will make the following important assumptions:

)

1) The external signals v and w take values in compact
sets U and W respectively with W being such that
0ew.

2) The state-space X is a compact set containing the
initial state xg.

3) (X,U,W,Y)and (f°, h°) satisfy the following invari-
ance conditions:

V(z,u) € X xU, f°(z,u) € X
V(z,u,w) € X xU X W, h®(z,u) +w €Y

4) f° (and h°) are uniformly Lipschitz continuous on X’ X
U C R™ x R™ with respect to U, i.e., there exists
a constant ¢ > 0 such that || f°(z,u) — f°(2',u)| <
Yellz — || for all (z,2',u) € X x X x U.
The assumptions 1-4 are required essentially to theoretically
ensure the well-definedness of optimization problems that
will be expressed later in the paper. Of course, in the context
of system identification, such types of assumptions are not
intended to be checked prior to applying the method to be
developed.
The problem of interest in this paper can be stated as
follows: given a finite number N of input-output data pairs
{(u¢,y¢) : t =1,..., N} generated by a nonlinear system of

the form (1), find an appropriate dimension n, of a state-
space representation along with estimates of the associated
functions f° and h°. Here, the number n, of outputs and
the number n, of inputs are known a priori. However the
dimension n, of the state is a parameter of the model which
needs to be estimated along with the maps (f°, h°).

We develop a solution in three steps: first, a nonlinear
regression model is derived from the data-generating system
equations in (1). The underlying nonlinear map is then
modelled by a deep neural network structure and trained
with the available data following an output-error framework.
Given this map, one can readily form an equivalent canonical
state-space representation of (1) with, however, the drawback
that its dimension may be high. Hence, the third and last
step of the proposed procedure consists in model reduction,
! an objective which is achieved through the design of an
appropriate encoder-decoder.

B. Preliminary results

An important challenge concerning the identification of the
system (1) is the fact that the state x; is not entirely mea-
sured. We therefore need to express it first as a function of the
available past input-output measurements {(u,,y,) : 7 < t}.
Indeed, if the noise wy in (1) is assumed to be identically
equal to zero, then under appropriate observability conditions
on the system, there exists a time horizon ¢ and a map
¢ : RY — R, with L = £(n, + ny), such that the state x;
can be written as

Ty = ¢(Zt) 2

with z; = (u/_, y/., u_y oyl 1)T being the so-
called regressor vector. To show the existence of such a
map ¢, some observability conditions on the system to be
identified (1) are needed. For this purpose let us start by
introducing some notations. For a positive integer ¢, let
F; : R% x R« 1 R"™ be the map defined recursively
from the function f° in (1) as follows: for x € R™* and
(ug,...,u;) € R, Fy(z,uy) = f°(z,uy) and Vi > 2,

Fi(z,ur,...u) = fO(Foi(m,u, .. uio1),u). (3)

Before proceeding further, let us mention a useful property
of the maps F;.

Lemma 1: Under Assumption 3, if f° : R%» x R"* —
R"™= is uniformly 7;-Lipschitz on X x U{ with respect to U,
then the map F; defined in (3) is uniformly 7} —Lipschitz
on X x U* with respect to U* C R*"=.

Proof: The proof of this lemma is straightforward and
is therefore omitted. u

For notational simplicity, let us pose u; = (u1,. .., u;).

Now consider the function O; : R™* x R — R'"* given

By state-space model reduction, we mean the reduction of the state
dimension. The process aims at finding another state-space model which is
as close as possible to the primary one but with a compressed state.



ho(za ul)
he (Fy(z,uy),
o= | " o S I

he (Fi1 (2, uypi—1), u)

Definition 1: The system (1) is said to be finite-time
observable over a time horizon » € N if for each uw € U",
the function O,.(-, u), with O, defined as in (4), is injective.

Note that if the observability property in Definition 1 holds
for some r € N then it holds as well for any ¢ > 7.

Proposition 1 (Existence of the map ¢): If the nonlin-
ear system (1) (considered under the assumption that w = 0)
is finite-time observable in the sense of Definition 1, then
there exist £ € N and a (nonlinear) map ¢ : R* — R"+ such
that (2) holds for all time ¢ > ¢, any initial state in X and
any input signal taking values in U.

Proof: For discrete time indices (4,7) with ¢ < j, let
Yilj = (y;r y]T)T be a vector of outputs from time
i to time j. Likewise define u;; = (u; uJT)T By
iterating the system equations, it is easy to see that

Gt—t)t—1 = Op(By—g, Up_gjt—1)- %)

By the finite-time observability assumption on the system,
Oy(-,w) admits an inverse for any given % € U*. Denote
with O} (-, 1) : Y* — X the inverse map of Oy(-, @) which
is such that O} (O¢(x, u),u) = x. It hence follows from (5)
that

it = OF (Yr—tt—1, Up—rt—1) (6)

which, by recursively applying the first equation of (1), gives

2y = Fy (OF (Ge—tft—1, Ue—rt—1) » Ue—t—1) = ¢(21). (7)

|

Consider now the more realistic scenario where the (un-

known) measurement noise sequence {w;} is nonzero. Then
Eq. (5) becomes

Ut—tjt—1 = Ou(Te—p, Up—gjp—1) + W—gj—1- (3

As a consequence, the state can no longer be obtained exactly
by Eq. (6) or (7) since %;_s;—1 does not lie in the range of
Og(+, Uy—g¢—1). Let in this case the state z;_, and z; be
estimated by

fft—e € arg minweX Hgtfﬂtfl - Oé(x7at7€|t71)” (9)
Ty = Fy (Tg—0, Ug—ge—1)

for some norm ||-|| on R‘™v. The optimization problem in (9)
is well-defined since, by Assumptions 1-4, the function x —
||§t,g‘t,1 — Oy(x, at,m,l)” is defined on a compact set X’
and is continuous. These, by the extreme value theorem, are
sufficient conditions for the existence of a minimum and for
the existence of the minimizer Z;_, as defined above.

In contrast, the estimates Z;_, and &; need not be uniquely
defined in a general setting. Uniqueness would require some
more strict conditions on the system under consideration.

Here, we will be content with a set-valued version qAS of ¢ in
the noisy estimation scenario. Hence let ¢ be defined by

@(z) = {Fo (Be—p, Up—gpy—1) : &4—¢ as in (9) }.

A question we ask now is how far the noisy estimate (9) lies
from the true state x,. To study this, a stronger notion of
observability is introduced as follows.

Definition 2: The system (1) is called finite-time uni-
formly observable over a time horizon ¢ € N if there exists
a constant iy > 0 such that for each @ € U,

|0¢(z,a) — Op(z',0)|| > g ||z — 2| (10)

for all (z,z') € R" x R"=.

Based on this property, it is possible to bound the error

between the noisy estimate (9) and the true state.
Proposition 2: Under Assumptions 1-4, if the system (1)

is finite-time uniformly observable over a time horizon ¢ € N

in the sense of Definition 2, then

(an

lZ: — a¢|| < 2’)’?04[1 Hwtfé\tle

where ~y¢ is the Lipschitz constant of f° (See Assumption
4) and «y is the constant appearing in (10).
Proof: 1Tt follows from the definition (9) of Z;_, that

H?Jt%\tﬂ - Oe(it—l,ﬂpmil)H
< Hytff\tfl — Oz, ﬂtfé\tfl)H )

for all x € R™=. In particular this inequality holds for z =
z¢_y¢. By then invoking (8) we get

|Oe(@e—r, tp—gjp—1) — Ou(Ze—p, Up—ppp—1) + Wy—ge—1 ||
< || @e—gge-1) || -

By the triangle inequality property of norms, it follows that

H(’)g(xt,g, Uy—gjt—1) — Ou(Tt—p, Ug—gp—1) + Wy—gp—1 H
> ||Ou( e, te—gje—1) — Op(Be—p, Up—ge—1) ||

= || @e—aie]|
Combining with the previous inequality yields

ap || Ti—p — z4—g]]
<N Oe(@e—r, tr—gpt—1) — Op(dr—p, tUs—gje—1)||
<2 Hwtfﬂtfl)H .

Here, the first inequality is a consequence of the assump-
tion of uniform finite-time observability. As a consequence,
|Zt—e — 10| < 204[1 ||wt,g|t,1)”. The result follows now
by applying (9), the uniform Lipschitz assumption on f°
stated in 4 and Lemma 1. [ ]
It can observed from the expression of the error bound (11)
that the more strongly the system is observable (that is, the
larger the constant ), the more robust the estimate ;.
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Fig. 1: (a) Block diagram of our canonical reduced state
space representation as defined in (16) (b) Training: the
dynamic is modeled by H acting as a regressor from a
short history of previous observations to future. The encoder-
decoder model is used to reduce the size of the state z; to ;.
We train each network by minimizing the prediction error as
well as the reconstruction error.

IV. MODELING AND LEARNING

A. Nonlinear regression model

A starting point of our identification method for system (1)
is to solve a nonlinear regression problem. To formulate
this problem, note by Proposition 2 that the true state of
the system can be written as x; = & + §; with |5 <
’yjliag_l ||wt_ o1 H Consider now plugging the state estimate
(9) into the output equation of (1), which gives

yr = R (¢ + 0, up) + wy
= ho(i‘taut) +£t7

with & being an error component entirely due to the noise.
It is indeed equal zero whenever w = 0. It can be shown
that & can be written as & = w, 4+ 6 with ||0;] <
vh%‘ia[l Hﬁ’t—l\t—l }, where vy, is the Lipschitz constant of
the measurement function h° of system (1). Since Z; is a
function of z;, we end up with the expression

ye = H° (2, us) + & (12)

for some nonlinear function H°.

Remark 1: In the absence of noise, the exact expression
of H° is H(z,u) = ho(Fg((’)z‘(zt),n(zt))mt) with
n(2¢) = Up—gjp—1-

The first step of the identification method is to construct
a high dimensional (canonical) state-space representation

whose state is the vector z; defined in (2). More precisely,
consider

Zt4+1 = flzt + But + SHO(zt,ut) + Sft (13)
ye = H(2ze,ue) + &,
where A = A® In,yn, B= en,—1®In,, S = én, ® Iny,

e; € R™= being the canonical basis vector which has 1 in
its ¢-th entry and zero everywhere else, ® referring to the
Kronecker product and A € R"™=*"= gjven by:

0 1 o --- 0
A= 0 --- . 1 0
O --- --- 0 1
0 -+ --- 0 0

From (12) it can be seen that (13) constitutes a state-space
representation for system (1) since both models have the
same input-output behavior for ¢ > ¢.

Given a finite set of input-output data points {(u¢, y;)
an estimate of the function H° can be obtained in a certain
nonlinear model class H as H € argmin g, J(H), where
J(H) is a regression loss given as

T+
e

T+¢

Z adllys — H(Ze,ue) I (14)

t=0+1
S.t. é’t+1 = AZA& + But + S'H(ét,ut), 2?(.;,.1 = Z¢+1, (15)

J(H) =

where a; is a weighting coefficient such as ayy; = 10 and
o =1forallt =¢+1,...,0 +T. Regression starts after
a burn-in phase of ¢ steps (ie. the window size), which are
needed to construct a full state-representation.

Our ansatz for this paper is to propose a canonical method
for system identification and model reduction. This guides
the choice of model class H to neural networks, which
proved to be impressively efficient for a wide range of
engineering applications. We evaluated two classical neural
network structures, namely multi-layer perceptron (MLP)
and gated recurrent unit (GRU). However, the equations
described above are not tied to these specific models, and
can be adapted to various structures, such as KKL/Koopman
observer, LPV systems, backstepping, etc... yielding any rele-
vant stability or robustness properties adapted to downstream
tasks.

B. Model reduction

Despite their undeniable success, neural networks tend
to model dynamical systems with high dimensional latent
state space. In effect, the model described in (13), although
structurally simple, may suffer from a high dimensional state
vector z;. This may be a concern for some applications. We
therefore propose a second deep learning structure allowing
nonlinear state-space model reduction by encoding the state
variable z; into a low dimensional state variable Z; € R for
some user-defined dimension 7 € N. Formally, we train an
auto-encoder (£,D) such that Z; = £(z;) and z; = D(Z4).
By applying these maps to Eq. (13) and neglecting the noise



terms, we get an approximate representation of the initial
system (1) as follows:

{ jt-&-l = g(AD(ft) + But + SIA{(ID(E‘,:), Ut)> (16)

yt = }:’(D(i’t), ut).
The state space equation is summarized in figure la. The
parameters of the encoder £ and decoder D are learned with
the following reconstruction loss from data samples {z;}
collected from the training set (see also Fig. 1b).

(6.D) =arg win |2~ D'E'(z))| (A7)
Note that the dimension n of the compressed state Z; in
the estimated model (16) is potentially different from the
true state dimension n,. Another observation is that by
going from (13) to (16), one reduces the dimension of the
state vector but at the cost of introducing some structural
complexity. Hence the computational price associated with
simulating a model such as (16) may still be high depending
on the complexity of the auto-encoder (€, D).

From a formal point of view, this reduced state has several
advantages. The constructed state-space z; is not part of the
update equation (16) anymore. We can also experimentally
show (see section V), that this method can discover state
representations of smaller size with a method which is
generic in nature and can be applied to a broad class of
problems.

V. EXPERIMENTAL RESULTS

We illustrate and evaluate the proposed nonlinear dynamical
model identification approach on the estimation and predic-
tion of the state of a system with unknown dynamics. To
demonstrate the practical feasibility of our model, we pro-
pose to study its behavior in three different scenarios. First,
we demonstrate the capabilities of our regressor function H°
for output prediction on simulated systems.”> We also study
the influence of key parameters, namely the length ¢ of the
time window and the impact of the state reduction.

A. Dynamical systems and benchmarks

We use two simulated and one real system to validate our
contributions.

Tank — we test the proposed method on the cascade tank
system introduced in [21]. This system relates the water level
in two connected tanks without consideration of overflow. It
has the form (1) of a discrete-time state-space model with
f° and h° implicitly instantiated as follows

Te41 = T1,t — k1T, + Koy
Toi+1 = To,e + k3 /T1 ¢ — kay/Toy

Yt = To ¢ + Wy,

(18)

with z; = (#1; x2,) € R? being the state and k;, i =
1,...,4 known parameters.

2D Drone — we introduce a model of a 2-dimensional
drone, i.e. an unmanned aerial vehicle, which moves in a

2Code and dataset available
CanonicalStateSpace

github.com/SteevenJanny/

2D plane. The drone is equipped with two propellers and its
dynamic is modeled by:

Po = —EL(QF + QO3) sin(0) — L(Q1 + Q2)ps

B2 = 2203+ OB)cos(0) — LD + Q)b —gj)
0= R (0f - )

T
y:(pw Pz 0),

where (p,,p.) is the position, kr the thrust constant, Q;
the rotationnal speed of the i‘" propeller, L the length of the
UAYV, m its mass, J its inertia and -y its friction coefficient.
The main interest of such a system is its naturally unstable
dynamics, which complicates the identification process. The
system has been discretized.
3D Drone — We also evaluate on recordings of the Black-
bird UAV flight dataset [1], which consists of 10 hours of ag-
gressive quadrotor flights, measured with an accurate motion
capture device. We use this real world data to demonstrate
that our observer discovers a state representation containing
the same information as in the physical state without any
supervision. We processed the raw data gathered from the on-
board inertial measurement unit (IMU) and propeller rotation
speeds as observation and command signals. The regressor is
trained to simulate the IMU measurements, i.e. acceleration
and angular speed of the drone expressed in the local frame.

Noise has been added to the observations for the two
simulated systems, tank and 2D Drone. More details about
the dataset generation is provided in the appendix.

B. Baseline methods

To experimentally compare our model to competing ap-
proaches from the literature, we introduce a neural baseline
in the form of gated recurrent units (GRU) [10], the state-of-
the-art variant of recurrent neural networks. This is a pure
data-driven technique from the machine learning field, where
the learned state representation directly corresponds to the
hidden state vector of the GRU. For a fair comparison, we
limit the size of the hidden vector to fit the corresponding
size of z;. We refer to this model as classic GRU. Its update
equations are given by

hiv1 = GRU([ye; ue], he), ho=0

y =MLP(hy), (20)

where GRU(.) is a shorthand notation corresponding to the
classical update equations of GRUs [10]. For simplicity, and
as usually done, gates have been omitted from the notation.

The baseline is evaluated in a setting which is comparable
to the proposed model. In particular, the model has access
to the same window of input/output pairs [y¢1k, Uttk]|k=1..¢
during the initial burn-in phase. However, these values do
not explicitly make up the state, as in our model. This data-
driven baseline is sufficiently general to be able to learn the
same state representation in theory, but there is no guarantee
that training will lead to this solution.

We also experiment with the model introduced in [14]
which consists of an auto-encoder with a learned latent
dynamics that operates on the reduced state representation.
This model has been evaluated on the same tank system,
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Fig. 2: Visual example of the output prediction made by H (Ours (MLP)) for different value of £ on the three datasets.

yet, with a different data collection technique. Train and
test trajectory in the Tank dataset as proposed in [14]
are generated from PRBS-like signals, which is a classical
approach for system identification. Our version of Tank
dataset is much more challenging: observations are collected
from closed-loop simulations with targets generated in a
procedural manner and PID control. In our dataset, we took
care to explore a wide range of possible states with sparse
measurements in the train set to prevent over-fitting on a
specific command design.

C. Extension: a hybrid state-space model

We also introduce an extension of our model, which com-
bines the advantages of both methodologies. It uses our
proposed state representation z;, but implements the mapping
H° by a GRU in place of the MLP proposed in section 1V.
Formally, the GRU updates a zero-initialized hidden vector
using the previous observations and command. This vector is
then decoded by a MLP to the desired observation. Equation
(13) is then used for forward prediction. We refer to this
model as Ours (GRU), it is given as follows:

Zt+1 = Azt + B’Ut + S MLP(ht)
hix1 = GRU([yi;uil, hi), hi—y =0 (21

D. Output prediction and parameter analysis

Output forecasting — the identified dynamic model can
be evaluated by performing open-loop forward prediction
from initial conditions and the set of inputs applied to
the real system. The model then forecasts outputs, which
may be compared to actual ground truth measurements. We
assessed the first stage of our method using this task, i.e. the
resolution of the regression problem. Table I reports the mean

squared error on 100 step roll-out predictions for each base-
line and different window sizes ¢ € {5,10,15, 20,25, 30}.
Our method shows excellent prediction error even for low
window sizes, and consistently outperforms the closest com-
peting method from the literature, Masti et al. [14], by a
large margin. We conjecture two key arguments to justify
this difference : (1) the structure proposed by [14] suffers
from complex interaction between the auto-encoder and the
latent dynamics that penalizes learning, and (2) the model
design process over-fitted on the simpler dataset used in that

paper.

Machine learning baseline — is competitive with our
contribution. However, its structure forces to observe only
one couple (y;,u;) at a time. Relevant information needs
to be stored in its memory, the vectorial hidden state, and
this storage process is fully learned by gradient descent,
a difficult process. In principle, these models can learn a
state representation which is similar or even identical to
our designed state-map, but there is no guarantee that this
representation emerges. Our state map model can therefore
be seen as a form of useful inductive bias for recurrent neural
models.

For moderate window sizes, our model benefits from the
immediate availability of all the components of z; in its
state. For very large window sizes or complex dynamical
systems (such as 3D Drone), the GRU extension (Qurs
(GRU)) outperforms the MLP regressor. In this situation, the
GRU takes advantage of its incrementally updated memory,
and manages to manipulate the large dimension of z; by
processing it piecewise, whereas the MLP must manipulate
the entire vector. Figure 2 shows samples of predicted
trajectory using the MLP regressor approach for each dataset.



Window | Tank (x10~%) 2D Drone (x10~2) | 3D Drone (x1072)
S1ze R . R
Classic Masti Ours Ours Classic Masti Ours Ours Classic Masti Ours Ours
J4 GRUT et al. [14] (GRU) (MLP) GRUT etal. [14] (GRU) (MLP) GRUT et al. [14] (GRU) (MLP)
5 163 1030 138 7.14 62.8 60.5 106 314 24.8 14.6 6.44 15.2
10 41.7 1070 5.60 0.930 82.7 58.6 68.9 9.95 23.7 14.5 5.32 14.2
15 4.57 957 3.06 0.960 61.9 58.2 35.2 7.52 23.4 13.0 5.07 13.6
20 4.04 914 1.07 0.761 78.4 55.3 19.3 8.06 22.7 12.6 4.68 13.5
25 0.600 915 0.481 0.606 80.3 53.6 23.0 5.17 21.3 12.1 4.83 13.6
30 1.73 917 0.193 0.448 104 51.3 25.0 3.13 19.2 12.6 4.61 13.1

T The size of the hidden state of each GRU model is adapted to the window size s.t. fits the size of the equivalent regressor model.

TABLE I: Quantitative evaluation: we report MSE error over 100-step rollouts by the learned regression model and compare
with baselines, for different windows sizes £. Our model consistently outperforms all baselines.

E. Model reduction

The reduction step is performed downstream of the re-
gression model training. Nevertheless, the difficulty of the
reduction task is directly related to the initial size of the
state representation z;, that is, to the size of the window /.
In order to accurately evaluate the compression capabilities
of our approach, we trained several auto-encoders for each
value of ¢ € {5, 10, 15,20, 25,30} corresponding to different
rates of compression increasing by steps of 15%.

Figure 4 shows the compression capabilities of our
encoder-decoder structure for different window sizes ¢. The
results are consistent on the three datasets. The compression
rate is more sensitive on small input dimensions, and con-
versely, a larger dimension can be reduced extensively with
negligible loss of accuracy. Indeed, increasing the number
of inputs arguably leads to an increase in the redundancies
exploitable by the encoder to reduce the dimension of the
state space and reconstruct it with limited deviation with
respect to the initial vector.

Yet such reduction introduces noise to the state represen-
tation that the regressor will have to cope with. We thus
evaluate the impact of state-space reduction on the output
forecasting capabilities of our model, and summarize the
results in Figure 3. Our reduction method manages to reduce
the dimension of the state in a consistent way up to 60%
for the two datasets in simulation without sensible variation
of the prediction error. The error bars reflect the double
dependence of our approach both on the performance of the
regression model H° but also on the quality of the encoding-
decoding. We compare favorably to the baseline in [14].

VI. CONCLUSION

In this work, we take advantage of the power of high-capacity
deep neural networks to design a new methodology to esti-
mate nonlinear dynamical systems from a set of input/output
data pairs. We show that the state can be expressed as a
state map computed as a function of past inputs and outputs.
We learn a mapping from this representation to model
outputs from training data using deep networks and show
that this approach is competitive. We tackled the problem
of reducing the state space, showing that this way, a state
of similar size than the original problem can be obtained
through machine learning with an auto-encoding solution.
The proposed approach can be used to reduce the order of a

State reduction dependency on hyper-parameters
Tank

= Ours = Ours
Masti et al Masti et al.

| | | | : i | I
90% 15% 30% 45% 60% 5% 90%
Compression rate

Drone 2D

= m o Emos =M

6x 107"

4x 107!

(MSE IOQ-slep rollout)

15% 30% 45% 60% 75%

Compression rate
Fig. 3: We studied the impact of state compression for
multiple configurations of final latent state dimension and
temporal window and aggregate the results by this two para-
maters on the synthetic datasets. Specifically, we measure

the MSE on observation prediction error for 100 step in the
future (Ours (MLP)).
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Fig. 4: Heatmap of MSE for the encoder-decoder structure
depending on both the window size (which relates to the
initial state dimension dim z) and the compression rate.

given nonlinear model, such as infinite-dimensional discrete
systems. The methodology was validated using three numer-
ical examples and using a data-set from real experiments
from the literature.
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APPENDIX
A. Dataset details

Tank — dataset is generated by uniform sampling of five
waypoints lying in [0, 5] evenly distributed on time on a
200 steps reference constructed by cubic spline interpolation
between the waypoints. This reference is then tracked with
a PID controller. Our dataset contains 60 trajectories for
the train set, and 20 for both the validation and test set.

[24] Alexander Weinmann. Uncertain models and robust control. Springer
Science & Business Media, 2012.

[25] Yuan Yin, Vincent Le Guen, Jérémie Dona, Ibrahim Ayed, Emmanuel
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ical models with deep networks for complex dynamics forecasting. In
Conference on Learning Representations, 2021.

[26] Tianyi Zhao, Yingzhe Zheng, Jinlong Gong, and Zhe Wu. Machine
learning-based reduced-order modeling and predictive control of non-
linear processes. Chemical Engineering Research and Design, 2022.

For simulation, we use k; = 0.5,ke = 0.4,k3 = 0.2 and
k1 =0.3.

3D drone — dataset built on the BlackBird dataset [1]. We
extracted IMU measurements and commands from raw data
and apply pre-processing as follows : temporal synchroniza-
tion of both signals, noise filtering have using Butterworth
filters, and sampling rate reduction to 50Hz. To create
train/valid/test splits, we sampled 20 flights to form the
validation and 10 for test split. The remaining 146 flights
were used for the training set. Each flight have been sliced
in 200-steps chunks to facilitate training.

2D drone — dataset is generated by uniform sampling of
5 to 10 2D waypoints lying in [—2,2] evenly distributed
on time on a 600 steps reference constructed by cubic
spline interpolation between the waypoints. This reference
is then tracked with an model predictive control approach.
Our dataset contains 500 flights for training, and 20 flights
for validation and test sets. For simulation, we choose kr =
4x1074,y=10"2L=0.15,m=1and J = 2.7 x 1073,
The system is simulated with Euler integration scheme at
30Hz.

B. Models details

Classic GRU - is a 2 layer gated reccurent unit. The hidden
vector size is chosen such that the cumulated dimension of
the two hidden vectors matches the one of the corresponding
state z;, formally n; = é(nu + ny). The hidden vector is
then decoded by a multilayer perceptron with one hidden
unit of size ny,.

Ours (MLP) — uses a MLP to model H*° with 3 hidden units
of size 256 for simulated dataset and 2 layer with 2048 units
for the 3D Drone. The encoder-decoder is modeled with 2
MLP with 2 layers of 512 units.

Ours (GRU) - model H° with a GRU with three layers,
and hidden size of 128. The encoder-decoder is identical as
Ours (MLP).

Each model is implemented in Pytorch and trained with
Adam optimizer, with learning rate of 10~%. We trained the
regressor (both MLP and GRU) for 10,000 epochs, and the
encoder for 3,000 for the simulated datasets and respectively
300 epochs for the 3D drone dataset.
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