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Abstract

The advent of smart grids came with several technological developments in-
cluding new electricity market rules and regulation mechanisms. Microgrids
can trade energy with the main grid to either sell its production surplus (from
renewable energy sources) or buy an additional amount to support local con-
sumers’ demand, which includes flexible loads, such as smart appliances and
electric vehicles. In this scenario, smart control devices are important elements,
executing real-time energy scheduling according to fluctuations in production
and consumption. As we might expect, the main grid’s power generation and
supply becomes more unscheduled and risky as energy trading quantities oscil-
late over time. This work studies a flexible energy contract subscription frame-
work, coupled with a real-time command strategy, suited for energy scheduling
of microgrids with uncertainty in both production and consumption. Our main
contributions are a Robust Optimization model under budgeted uncertainty for
contract subscription and a set of heuristic control strategies for the real-time
energy scheduling. The robust model is capable of providing solutions for multi-
period-ahead trading of energy, while minimizing the worst-case cost. We run
an extensive computational case study on a real microgrid instance to confirm

the efficacy of our solution approach.
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1. Introduction

A microgrid consists of a small-scale integrated energy system that can man-
age its own generation and storage resources to dynamically supply local con-
sumers’ electricity demands (Lasseter & Paigi, [1998). Since a microgrid can
integrate various sources of distributed generation, especially Renewable En-
ergy Sources (RES), an increasing participation of microgrids can help relieve
the supply tension of conventional generators in the main grid. However, the
high fluctuation of RES production makes energy management more complex
and uncertain. Consider, for example, a microgrid powered by a photo-voltaic
system. Even if energy consumption follows a regular pattern, its renewable
generation is subject to sudden weather changes, difficult to predict with accu-
racy. Consequently, the microgrid will present a volatile production profile and
sometimes its energy storage capacity may not be able to cope with the instant
demand for energy. The subsequent decision, how much electricity to buy, will
therefore inherit a considerable level of uncertainty, which is also undesirable
for the main grid, since it introduces risk and higher operational costs.

Other relevant issues concerning microgrids have arised with the introduc-
tion of free energy markets. Consumers became able to produce energy (thus
being called prosumers) and, in parallel, contract types, market models and pric-
ing schemes have evolved (Mitter et al., [2010; |Joe-Wong et al., 2012 [Morstyn
et all 2019; [Aussel et al., [2020)). In liberalized markets, large-scale generators,
suppliers, industrial consumers and other financial intermediaries trade energy
in wholesale markets, including day-ahead auctions, where agents submit their
bids and offers for delivery of electricity for each hour of the following day, before
market closing time. Small-scale prosumers, on the other hand, are currently
serviced by large suppliers in the retail market. Nonetheless, the introduction of

forward energy trading is expected to happen at the local level, with microgrids



and actively managed distribution networks becoming more widespread (Caza-
let et al., 2016). As new challenges related to local purchasing fluctuations of
prosumers arise, it is imperative for the main grid to regulate and stabilize the
microgrids’ energy purchasing behaviors. One way to accomplish this objective
is through the introduction of flexible commitments contracts (Tal et al., [2003).

This work addresses a new framework for microgrid energy trading, with
the novel introduction of flexible commitments in a multiple contract setting.
The impacts of this contract-based framework are also investigated, from the
viewpoint of microgrid energy management. Consider a time horizon, divided
into discrete time periods. For each period, one or more contracts are offered,
each one defining either selling or purchasing commitments, and providing the
flexibility to trade energy between minimum and maximum amounts. Bearing in
mind the uncertain nature of the renewable resources, the prosumer must choose
the contracts for the whole time horizon, with the objective of minimizing the
worst-case cost, at the same time guaranteeing that each commitment will be
honored. In a second level of decision, in each time period, following the list
of engaged contracts and minimum/maximum commitment constraints, a real-
time scheduler coordinates the microgrid’s systems, making energy trading and
transfer operations, according to current storage units’ status and instantaneous
information regarding local electricity production and demand.

Although microgrid energy dispatch has been well studied in the literature,
existing methods do not investigate the subscription to multiple and flexible
electricity contracts, or even committing to future amounts of energy usage, ac-
cording to forward markets. The same holds true for works focused on dynamic
electricity pricing (Mitter et al.,|2010; Joe-Wong et all |2012)). The closest work
is the one by |Duan & Zhang] (2013), which, based on Stochastic Optimization,
proposed a dynamic contract mechanism to smooth out fluctuations of micro-
grids’ purchasing from the main grid, with time-specific commitments. Their
research, however, assumes a single dynamic contract for the whole time horizon,
in which the microgrid buys electricity from the energy company.

Among the benefits of flexible contracts, it enables small customers to engage



in a set of short-term contracts and spread energy purchasing decisions over a
period of time. Besides avoiding the risk of relying on a single energy contract,
the client also has the option to sell the contracted energy back to the grid and
start over, which could be used to hedge against risk.

Flexible contract engagement may have drawbacks as well. Intelligent en-
ergy scheduling strategies are needed, a smart meter is essential to make accu-
rate readings, and purchasing decisions are often more complex, with the client
more exposed to risk, as market prices can go up or down. Moreover, if the
client needs to buy out of any engaged contract, the energy price will be higher
than existing contract prices. For these reasons, the choice of energy contracts
should be robust enough to protect the consumer even in the worst-case sce-
nario, given its operational constraints. Traditional modeling approaches for
handling uncertainty include Robust Optimization (RO) and Stochastic Opti-
mization (SO). In this work, RO was chosen for two main reasons. First, for
recently-installed microgrid energy systems, probability distributions for energy
production/consumption are generally unknown. Second, SO methods typically
rely on scenario trees for modeling uncertainty, which makes them computation-
ally expensive (Narayan & Ponnambalam| 2017)). By applying a RO approach,
the obtained models have improved tractability with less computational effort.

In a conference work (Levorato et all |2019)), we introduced a first robust
microgrid energy management model based on an electricity contract subscrip-
tion framework with flexible commitments. In that previous work, we assumed
a conservative box-shaped uncertainty set and obtained preliminary computa-
tional results on a single realistic case-study instance. In the present work,
we extend both model and real-time command strategies: a budgeted uncer-
tainty robust counterpart, which controls the level of solution conservatism, is
described (Bertsimas & Siml |2004)) and used in a look-ahead strategy for the
real-time energy scheduling. We also present extensive computational exper-
iments on a set of multiyear and seasonal case-studies based on data from a
Japanese research center microgrid recently described by [Vink et al.| (2019).

The main features of this paper are summarized as follows. Section [2] intro-



duces the Contract Collaboration Problem and the underlying framework. Once
the problem has been formally defined, Section [3] presents the state of the art on
microgrid energy trading and management as well as on related works on Robust
Optimization. In the context of the forward electricity market for microgrids,
we describe in Section [ a mathematical model for multi-contract energy trading
with flexible commitments. A robust version of this model is then presented in
Section |5 providing protection by minimizing the costs against the worst-case
realization of local production and consumption of electricity, under budgeted
uncertainty. Then, in Section [6] we describe real-time command strategies for
energy scheduling within the microgrid, taking into account the contracts pre-
viously selected by our model. Finally, we present a case study, based on a
real microgrid, detailing the results of these scheduling strategies, when coupled
with the robust model solution (list of engaged contracts), in contrast with a

deterministic approach to solve the problem.

2. The Contract Collaboration Framework
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Figure 1: The Contract Collaboration framework

Considering the context of demand response and smart grids (Siano, [2014]),
we propose a Contract Collaboration framework, established in two phases (Fig-
ure . It consists of an approach to handle energy management in microgrids,
along with purchase/sell contracts based on flexible commitments.

The first level of decision concerns the list of contracts the client can sub-

scribe, at each time period, given the microgrid’s energy demands and opera-



tional constraints (Contract table in Figure [1). The solution to the so-called
Contract Collaboration Problem (CCP), formally described in Section [2.1} pro-
vides the client with a commitment planning for the time horizon (i.e. which
contracts to engage at each time period). Once this decision has been made,
the list of engaged contracts, for the whole time horizon, cannot be changed.
In a second level of decision, inside each time period, a Real-time Command
Strategy (RTCS) is responsible for performing on-line energy scheduling (item 2
in Figure . As explained in Section the RT'CS follows a predefined strat-
egy to balance energy demand and supply at each instant of time, considering
renewable energy sources, storage devices, drivable systems and deciding how

much energy will be traded via each engaged contract.

2.1. The Contract Collaboration Problem (CCP)

The contract collaboration is established between two entities, both pro-
ducers and consumers of a same kind of energy resource. One entity is called
the client (individuals, households or businesses) and the other one the part-
ner (energy supplier). These two entities have to collaborate in order to bal-
ance their consumption and production over a given time horizon. We con-
sider a set {Tp,Th,...,Tr} of time points dividing the given time horizon into
aset T = {Iy,...,I;_1} of t time periods where I; = [T},T;;1), for each
te{0,1,2,...,f—1}.

The collaboration between the entities is established by the use of a set C' of
contracts of consumption or production, both offered by the partner. Let Cy C C
be the subset of contracts offered by the partner at time period I;. Each contract
¢ € Cy has its own functional constraints and its own gain/cost functions. The
partner determines the set C}; and sets a price to engage each contract ¢ € C4.
On each time period I; € Z, the client is free to enter into a commitment with
the partner through any subset of C;. However, these commitments have to be
taken by the client at the beginning of the time horizon and must be honored.
At any time period, the client also has the option to buy energy out of any

engaged contract, but at a higher cost which can vary with the time period.



The client’s microgrid is composed by a set of systems S that produce/con-
sume energy, each one with its own functional constraints and a cost/gain of con-
suming/producing over the time periods. In particular, the consumption/pro-
duction can be driven for a subset of these systems (drivable systems) while the
consumption/production is already planned for the other ones (non-drivable sys-
tems). Drivable systems are devices that allow being turned on/off or that must
be loaded/unloaded from time to time (e.g., batteries, electric car), whereas
non-drivable systems must be permanently turned on. Additionally, some of
the drivable systems can store the energy resource under a capacity constraint
and provide it when it is needed, thus being called storage systems. The uncer-
tainty considered in the problem lies in a subset of the non-drivable systems,
for which only uncertain previsions of the consumption/production are known.
The so-called wuncertain non-drivable systems include, for example, renewable
generation and variable energy consumption.

The Contract Collaboration Problem (CCP) consists in determining a cost-
minimizing contract subscription from the client to the partner that satisfies all
client-side consumer demands over the time horizon, and also guarantees that
each commitment taken by the client with the partner is honored. For a detailed

description of the CCP models, we refer the reader to Sections [4 and

2.2. The Real-Time Command Strategy (RTCS)

In the first level of decision, the list of engaged contracts (i.e., the solution
of the CCP problem) is set. The second level of the framework is in charge of
defining a Real-Time Command Strategy (RTCS) that guarantees these con-
tracts will be honored. The RTCS operates on smart control devices, being in
charge of making scheduling decisions according to instantaneous energy supply
and demand fluctuations observed on customers’ premises. Thanks to the devel-
opment of advanced metering and communication infrastructure, these control
devices have the ability to regulate energy consumption by directly communi-
cating to the energy supplier and to other devices in the microgrid so as to

prevent system overloads. Interesting examples would be the load reduction



of a set of electric vehicle charging stations and the automatic activation of a
group of electric generators.

The RTCS consists of a heuristic strategy that schedules, in real-time, the set
of actions to be taken in order to properly manage the client’s microgrid. From
a real-time point of view, inside each time period I; € Z, the instantaneous
production/consumption of each microgrid system is measured every A time
units. It is also at this time scale that drivable systems are driven, i.e, every A
time units a scheduling decision has to be taken by the control device, embedded
in the client’s microgrid, considering its state. For example, according to energy
load and in real time, a group of generators (a type of drivable system) may be
switched on during a period of higher demand and, analogously, a set of storage
systems such as batteries can store energy during off-peak times in order to ease
high demand supply in peak periods.

Regarding the energy contracts, the RTCS is in charge of deciding how much
energy will be bought or sold, given each engaged contract and its minimum and
maximum commitments. For instance, given a time period, if the client engages
contract ¢, energy quotas (for buying or selling electricity) are established for
each time period and, analogously, for each time slot.

The main objective of the RTCS is to reduce power consumption costs and
promote load balance, while dealing with the effects of uncertainty in both
production and consumption of energy. As we can expect, the RT'CS operates
subject to the CCP constraints, guaranteeing both contract commitments and
energy balance at each moment. A full description of the real-time command

strategies developed in this work is available in Section [6]

3. Literature Review

In this section, we highlight existing works involving the two subjects ad-
dressed in the paper: microgrid energy scheduling (RTCS) and electricity trad-
ing models (such as the CCP).

Various approaches have been proposed to optimize microgrid operational



schedules, with distinct objectives, constraints, and methods for handling un-
certainty. As a consequence, different terms have been used to refer to similar
real-time control mechanisms: microgrid energy scheduling, real-time schedul-
ing, real-time control system, real-time power management, energy management
policies, energy dispatching policies, microgrid energy management and opera-
tion. Some authors have also studied the islanded-mode operation of microgrids.

In this review, we will focus on grid-connected microgrids, since energy trad-
ing with the main grid is a main premise of our work. As far as grid-connected
microgrids are concerned, many works have applied risk-averse optimization
methods to energy scheduling, dealing with uncertainties in several model pa-
rameters: energy prices, solar power production, wind power generation, Plug-in
Electric Vehicle (PEV) consumption and availability, and load demand. An ex-
tensive, but not exhaustive, list of papers on microgrid energy scheduling is
presented in Table [} including the approach used to deal with uncertain data
(SO or RO), which microgrid elements are assumed to be uncertain and the
type of contract with the main grid.

The common point of existing works is how the microgrid interacts with
the external energy market: energy transactions are modeled through a single
contract (often with the utility grid/retail market), via purchase and sale prices
that may vary in time, sometimes including a minimum/maximum tradable
energy amount. One exception is the work of |Ottesen et al.|(2013), where the
prosumer can have at most two active contracts: one with a retailer and one
with the grid company. In other words, flexible contract frameworks are not
investigated. Such type of contract allows buying/selling from/to the main grid
not only at different prices (even in the same time period), but also from/to
different energy companies at the same time.

The novelty in our work is the incorporation of a multi-contract subscription
framework for microgrids, based on flexible commitments. Even though such
contract model is not present in existing low-voltage energy markets, it can be
applied as an extension to the forward market (via an aggregator or similar en-

ergy service provider), or in local microgrid markets, following market structures



Uncertainty Solution Method Contract

olson & Nehrir| (2013) X PV, spot price Decentralized multi- | Single (Spot market
agents
Duan & Zhang| (2013 x REN, load demands fochastic Dynamic Pro- |Single dynamic contract
gramming
Ottesen et al.] (201 x Energy Tloads, energy | General stochastic MILP |1 contract with Utility
prices model grid + 1 dynamic price
contract
W et al. X Wind, PEV cenario generation and |Single (Utility grid)
reduction
u et al. X Wind, PV Two-stage stochastic[Single (Utility grid)
model (with scenarios)
Huang et al. 4 X REN, energy prices, en-|Constrained stochastic[Single (Utility grid)
ergy consumption programming; Lyapunov
optimization
Nguyen & Crow, 6 x REN, load demands tochastic dynamic pro-|Single (Utility grid)
gramming
Wu et al.[ (2016 X PEV, PV, home load de-[Stochastic Dynamic Pro-[Single (Utility grid)
mand gramming
Mohammadi et al. 12017 X Wind, PEV, energy prices|Multi-objective TLP and[Single (Utility grid)
scenario analysis
Zachar & Daoutidis 2017|) X Residual Toad Chance-constrained opti- [Day-ahead commitments
mization
Van Ackooi] ot a A x PV, Wind Bilevel stochastic MID Multiple contracts, but
can only subscribe to one
Wi et al [ (2018 x PEV Stochastic Dynamic Pro-|Single (Utility grid)
gramming
|Zhang et al,l (|2012 2013') x |REN Dual decomposition and|[Single (Spot market)
distributed subgradient
Wang et al. 1 x |Net demand, heat de-[Chance constraint ap-[Single (Utility grid)
mand, and electricity | proximation and RO
price (budget-constrained &
distribution uncertainty)
ussain et al.| (2016 x | CHP, electrical loads Budget-constrained min-[Single (Utility grid)
ax robust counterpart
Craparo ot al. x [Wind Scenario-robust, MILP [Single (Utility grid)
ased on realistic weather
orecast scenarios
Hu et al.[(20 x |REN, load demand ay-ahead scheduling | Single (Utility grid)
with two-stage RO
Ruiz Duarte & Fan| (2019 x |PV Two-stage RO with bud-|1 firm contract and 1 non-
| H I] get _constraints firm contract

Table 1: Summary of the works listed in literature review. SO (Stochastic Opt model), RO
(Robust Opt model). Uncertainty: list of uncertain parameters. REN (Renewable energy
production), CHP (Combined Heat and Power), PEV (Plug-in Electric Vehicle), Wind (Wind
Generator), PV (Photo-Voltaic). Contract: type of contract used to buy and sell energy.

depicted in (Olivella-Rosell et al., 2018; [Khorasany & Razzaghi, [2021)).

To our knowledge, only two authors present research directions similar to

ours. From the viewpoint of multiple energy contracts, in [Van Ackooij et al.

(2018)) different Generation Companies can offer buy /sell contracts to the micro-
grid. However, although the microgrid can receive contract offers from different

competing companies, it can select at most one contract for the whole time

horizon. As far as contract flexibility is concerned, Zachar & Daoutidis| (2017)

explored the stochastic scheduling of microgrids where energy exchange must
be made with day-ahead commitments. In the proposed market structure, the
microgrid may be either rewarded for respecting existing commitments, or pe-
nalized for deviating too much from them. Despite this flexibility, their work
assumes a single long-term contract with the utility company.

As far as RO is concerned, besides the works listed in Table 1, which directly
involve microgrids, we also refer the reader to additional RO works on related
problems with uncertain demand and production of electricity. The first one in-

volves the application of constraint generation and duality-based reformulation
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to solve the robust multistage Unit Commitment Problem, using both budgeted
uncertainty and a customized dynamic uncertainty set (Lorca et al.l |2016)). The
second work (Correa-Florez et al., 2019) involves an aggregator of residential
prosumers, which participates in the day-ahead energy market to minimize op-
eration costs. Budgeted uncertainty is considered in energy prices, demand and
PV production, and Adjustable Robust Optimization is employed. The model
takes into account energy purchases in the wholesale market, with the possi-
bility of buying additional blocks of energy. However, no flexible commitments

were considered in this framework.

4. A deterministic version of the CCP

In this section, we will present a simpler, deterministic model version of the
CCP, denoted as DCCP, where the value of the uncertain parameters are as-
sumed to be known in advance. The formulation comprises each microgrid com-
ponent, its operational constraints, as well as the underlying contract subscrip-
tion framework. The main idea of the CCP model is to find a cost-minimizing
solution which provides the client with a list of energy contracts to engage in
each time period, considering the whole time horizon. In the rest of this text,
time is discretized into periods as indicated by Iy, .., [7_; and energy units are

assumed to be in kWh. Moreover, we will often write ¢ for a time period I;.

Nomenclature

Sets

z Time periods: Z = {Io, .., Iz_1}

T Time period indexes: T={0,..,t — 1}

Cy CC Contracts offered by partner at period I+
SpCS Certain drivable systems

Snp €S Certain non-drivable systems

B (Certain, drivable) storage systems
Input parameters - Partner

vl >0 fixed cost paid by the client for engaging contract ¢ € Ct at period I+, Vt €T

al >0 cost per energy unit consumed/provided according to contract ¢ € Cy at period It
;. minimal energy quota for contract ¢ € C; during period I
Hj‘ . maximal energy quota for contract ¢ € Cy during period I

11



Bt >0 cost per energy unit consumed by the client at period I+ not provided by engaged
contracts, V teT

Input parameters - Client

5t>0 length of period I;: how many slots of A time units compose this time period

p? energy consumption(< 0)/production(> 0) of s € (Sp U Syp) during the whole
time period I

Vs cost per energy unit produced(> 0)/consumed(< 0) when using system s € (Sp U
SnD)

pmint minimum energy to be produced(> 0)/consumed(< 0) by drivable system s € Sp

before the end of period I
vs >0 cost of energy unit charged/discharged by storage system s € B
uw™m >0 minimal storage level of system s € B
u'* >0 storage capacity of system s € B
ul > 4™ initial storage level (at period Ip)
0 < As <1 the loss coefficient of system s € B
9‘5“’5 >0 maximum energy stored in s € B during A time units
07°F > 0 rated capacity, i.e., maximum energy delivered during A time units

Model variables

. 1 if the client engages contract ¢ € C¢ at period I

yC
0 otherwise
qt amount of electricity sold (< 0) / bought (> 0) by the client at time period Iy
related with contract ¢ € Ct
0 <zl <1 percentage of time period I; drivable system s € Sp is used
gt >0 energy fed into storage system s € B during period I
ht >0 energy consumed from storage system s € B during period Iy
rt >0 amount of energy stored in s € B at time period ¢t € T'U {t}
et >0 extra amount of energy requested by the client (out of any engaged contract) at

time period I

Given a set of contracts offered by the partner, each contract ¢ € C is
associated with a time period I; and its fixed (v}) and variable prices (o) may

vary if the period is in peak hours or off-peak. By engaging in a contract, the
Jr

t,c)

client must respect the established energy quotas II; . and II; ., that may be
positive (if the client purchases energy from the partner) or negative (the client
sells energy to the partner). The partner can also sell energy to the client out
of any engaged contract at a specific unit price 3.

The information about energy consumption (or production) P! of all drivable

and non-drivable systems is discretized into time periods I;. Moreover, in the

microgrid’s energy scheduling, each time period I, is further subdivided into &°

12



time slots of size A, where A is an input parameter. At this time scale, the
instantaneous production/consumption of each microgrid system is measured.
Each system s € Sp U Syp U B may have an associated operational cost
vs (e.g. energy produced by a fuel generator has positive cost). This cost
can also be zero (e.g. consumer system such as a building). Additionally,
for each drivable system s € Sp, we define minimum requirements for energy
production/consumption at time period I;. In other words, for each consumer

drivable system s, Pmmi

> 0 means system s must be supplied with Pmi"i
units of energy before the end of time period I; (e.g. when charging an electric
car). Normally, Pmmi = 0 if s is a producer drivable system.

Last but not least, the storage systems are a key component for the success of
the contract subscription framework. A set of batteries can store energy during
off-peak time periods in order to ease high demand supply in peak periods.
Besides the unit cost, there are several battery-specific parameters related to

the storage levels, capacity and efficiency: u™" u™e* 49 X, 63 and 07¢/.

S ’ S
Based on the model variables defined above, we now present a Mixed-Integer
Linear Programming (MILP) model, whose optimal solution provides the client
with a commitment planning for the whole time horizon: which contracts to

engage in each time period.

Min Y > (vlyb+algd) + D> vs D Plal+ > wvs Y (gh+hl)+ > Ble (1)

teT ceCy seSp teT sEB teT teT
Spcy PYatl > Pmint ViteT, VseSp:Pl>0 (2)
Sy Plall < PN ViteT, VseSp:Pl<0 (3)
Rt <ri, VteT, VseB (4)
rP=ul VseB (5)
u™n <l <M vt e TU{E}, VsEB (6)
ritt=rl —hl 4+ gl VtET, VseB (7)
gt <0%s§t VieT, VseB (8)
ht <orefst, VieT, VseB (9)
I, oyl < gl <If yf, VEET, VeeCr: 1If, >0 (10)
Myl < ¢l <M, yl, VteT, VeeCr: T, <0 (11)
)

Yecc, bt Xsesnp Pr A Xeesy, ThPE+ Y epAshl +e >3 cpgl, VEeT (12

13



The objective function includes, respectively: (i) the fixed costs involved
in the client-partner engagement through a set of contracts; (ii) the sum of
costs/gains of consuming/providing the amounts of electricity predicted by the
set of engaged contracts; (iii) the costs of using drivable systems; (iv) the costs
of using storage systems (including depreciation); (v) the costs of consuming
extra amounts of electricity not predicted in the set of engaged contracts.

There are also costs associated with the use of non-drivable systems. How-
ever, since these costs are fixed, they do not need to be included in the objective
function to be minimized.

Constraints — ensure the minimum usage of drivable system s, in case
it produces or consumes electricity. Constraints restrict the amount
of electricity consumed from storage system s during a time period to be at
most the amount stored. Additionally, constraints (5)-(6)) state that the ini-
tial, minimum and maximum capacities of storage system s must be respected.
Constraints determine the amount of electricity stored on storage system s
at the next time period. It must take into account its loss coefficient Aq, i.e.,
when storing gt kWh of energy, only As % is effectively stored in s. Remark
that h% includes the amount of energy provided by s as well as the energy lost
during this operation. The maximum quantity of energy that can be stored by
storage system s during a time period t is guaranteed by constraints , while
constraints @D ensure the maximum quantity of energy that can be provided by
a storage system s during a time period t.

Constraints — establish minimum and maximum quotas for contracts.
They also guarantee that a non-zero consumption/production related with a
contract available at a certain time period will imply an engagement to it.

Finally, constraints define the electricity balance at each time period.
When calculating the energy refunded by storage systems s, these inequalities
must take into account the amount of energy lost during discharge, therefore
nt

! must be reduced proportionally to A; %. Besides, at any time period, to-

tal consumption may be greater than the energy available from the microgrid’s

production, storage systems and currently engaged contracts. In this case, the
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microgrid can buy additional energy e* from the partner in order to fulfill un-
foreseen demand. We also assume a dissipation system is available with no cost
of use associated.

We denote by MIP(DCCP) the formulation defined by objective function (T]),
constraints f and appropriated integrality and bounding constraints.
With |T|(]Sp| + 5|B| + |C|) constraints and 2|C| + |T||Sp| + 3|T||B| + |T
variables, this formulation is classified as a Mixed-Integer Programming (MIP)
model (Wolsey & Nemhauser| (1999, whose solution can be obtained with both
commercial and open-source solvers, using well-known branch-and-bound algo-
rithms. As seen in the experiments with case study instances, the solution to

the deterministic CCP is returned by CPLEX solver in less than a second.

5. A robust formulation of the CCP

We consider in this section the robust version of the CCP, denoted as RCCP,
in which the uncertainty of non-drivable systems will be treated via Robust Op-
timization methods. The developed model is capable of protecting against the
worst-case realization of production and consumption of electricity, within a pro-
vided uncertainty set, considering all uncertain non-drivable systems, denoted
as S ~p € S. Once again, the model solution consists of a list of contracts to
engage in each time period, for the whole time horizon.

Regarding the uncertainty in non-drivable devices’ production/consumption,
the only information required by the model are the lower and upper bound
parameters, namely {5;5, ?St}, Vt € T,Vs € S ~ND, which can be determined via
inference schemes based on historical data:

VteT,VseSyp:

P! | lower bound on energy consumption(<0)/production(>0) of s in the whole period ¢

Fg upper bound on energy consumption(<0)/production(>0) of s in the whole period ¢

Similarly to drivable and non-drivable devices, uncertain devices s € S ND

also have associated operational costs vs, per energy unit consumed/produced.

15



5.1. Definition of the uncertainty sets

In this work, we adopt a min-max criterion to assess the cost of feasible
solutions to the problem. This means that we look for a solution that is feasible
for each attribution of the uncertain parameters and that minimizes the cost
function in the worst case scenario. The uncertain data are assumed to be
varying in a given uncertainty set.

The formulation of the Robust Optimization model is connected with the
definition of this uncertainty set and this definition depends on the suppositions
made on the problem being solved. In our problem, the set U(t,s) describes

how the uncertainty is defined.
VteT,Vs€Snp:

’ Pt € U(t,s) ‘ energy consumption(<0)/production(>0) of s in the whole time period ¢ ‘

Consider a vector v € R™*™. This text uses the vector notation v* = (v;-;j =

1,...,m) and v; = (vi;i = 1,...,n). Hence, P' = (Pis € Sxp) and P, =

%
Pt;t € T). If we presume that each uncertain parameter belongs to an interval,
s

ie, U(t,s) = [ist, P?], the box uncertainty set (Soyster, [1973), denoted here by

Upor, can be defined as: Upor = X 5 Us, where Us = [Py, P, s € Snb.

€SN
Assuming that the uncertain parameter belongs to an interval is equivalent
to say that it lies between a mean value and peak values, i.e.,
U(t,s) = {P! = o} + Aol | -1 < AL <1},
withd ! = (Pt —P!)/2and 5! =P+ L.
Now suppose that, given all uncertain devices s € S ~p and time periods t €
T, at most ' uncertain parameters ﬁst may reach peak values in the whole time
horizon. We can then define the budget uncertainty set, studied in (Bertsimas

& Siml 2004) and largely applied (Agra et al.| [2013} Lorca et al., [2016; |Correa-
Florez et al., 2019):

Ur = {P € Upog : ZsegND ZteT | A’; |§ F}.
The purpose of the budget of uncertainty is to control the level of conser-

vatism of the robust solution, in terms of deviations in the uncertain model

parameters. It allows an intuitive interpretation for the decision maker, pro-
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viding a trade-off between the nominal performance of the deterministic model
and the risk protection of the most conservative model. Additionally, the ob-
tained robust counterpart remains efficiently solvable, provided that the original
nominal problem can be effectively solved.

In the context of the RCCP, with the objective of simplifying the model and
the analysis of the obtained results, we opted for a single budget parameter
I'. It controls the total number of deviated parameters regarding both energy
consumption (ﬁst < 0) or production (ﬁ; > 0) of all uncertain devices s € Snp,

over all time periods t € T.

5.2. Robust counterpart

Similarly to the DCCP, we describe a formulation for the robust version
of the problem based on time decomposition, in which decisions are made for
every time period I;. The Min-Max Adjustable Robust Counterpart (ARC)
formulation, used in this work, ensures feasibility of the constraints for any
realization of the uncertainty, through the appropriate selection of the second
stage decision variables. For more details on Adjustable RO for multi-stage
optimization problems, we refer the interested reader to |Gorissen et al.| (2015).

In the robust version of our problem, the RCCP, variables y (defined in
Section are non-adjustable ones, i.e, they consist of “here and now” decisions,
or first-stage variables, before having any knowledge of the actual value taken by
the uncertainty. The other variables, namely ¢, 7, h, g,  and e, are adjustable
ones, i.e, they consist of “wait and see” decisions (i.e., second-stage variables)

and define a set of decisions that depend on the uncertain parameters.
The Min-Max ARC, based on formulation MIP(DCCP) from Section 4] is
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as follows:
(ARC) minyLE E (13)

st. B> Zth Zcect (viyl + abqb(Pr)) + ZsesD Us ZteT Plzl(P)

00w D P D ws Y (6P + hU(P) + D Ble(P),Y P el (14)

seSyp €T s€EB  teT teT

Ycec, ©(P) + Xaesyp Pi+ X ocqy,, Pr+ Xeesy, Pioi(Pr)

+ e Asht(P) + et (P) > S cpgt(P),Y PeUNLET, (15)
R (Py) < rt(P;_1),YP € U,Vt € T,Vs € B, (16)
=4l vseB, (17)
wMt < gt (Py) <u™ Y PeUVteTU{L}, VseB, (18)
PP = rE(Poe1) — hE(By) + Aegh(P), Y P e UV tET, ¥ s € B, (19)
gt(P) <025tV PecUNteT, VseB, (20)
RL(Py) < 07f 5tV PeUNteT, VseB, (21)
O,y < ql(P) < gtV PeUNVLeT, Vee G 10, >0, (22)
0yt < gf(P) ST, yt,V PEUNLET, VeeCy: 10, <0, (23)
Sy Pat (P) > P Y PEUNEET, ¥s€Sp: PL>0, (24)
S PUat!(P) <P Y PeUNtET, VseSp: Pl <o, (25)
vt €{0,1},Yte T,V ceC, (26)
rt(P,_1),hL(P;), g (P) >0V PelU,vte TV s € B, (27)
ef(P) >0V PeUNVteT, (28)
0<zi(P)<1,VPeUVteTVseSp, (29)

where U is the uncertainty set chosen. For a given t' € T, variables ¢*', ht', g",
2%, and €' depend on the vector of uncertain parameters ﬁt/ while variables rt
depend on I?’t/_l.

In a previous work (Levorato et al.l 2019)), we assumed a conservative Upoy
uncertainty set and obtained preliminary computational results on a single case
study instance. In the next subsection, we will explain how the dualization
approach was employed to derive a robust counterpart for the Ur uncertainty set.
Notice that the cost associated with the use of uncertain non-drivable systems,
given by > _ Gxp Us Y et ﬁ;, must be included in the robust model. Different
from the cost of certain non-drivable systems, JB: values are not constant and

vary with the uncertain parameters. Also notice that constraints can be
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used to eliminate variables h%, reducing the set of second-stage variables.

An approach proposed in the literature to make model (ARC) tractable
consists of restricting the functional relations ¢%, rf, g¢, 2L and e’ to be affine
by replacing them with linear decision rules (LDR) (Ben-Tal et al., 2004). Also
known as affine policies, LDRs have been commonly used in the literature as
an effective approximation to multistage RO problems (Jabr, [2013; Warrington.
et all 2015} |[Lorca et al., [2016), with each recourse decision taking the form of
an affine function of the uncertain parameters.

This way, we restrict recourse variables, say gi(}?t), to be affinely dependent
on the primitive uncertainties, considering all uncertain devices ¢ € S ~p and
all time periods prior to t. Of course, only in very rare occasions, linear decision
rules are optimal. Indeed, the main motivation for linear decision rules is its
tractability. The following decision rules were applied for the set of adjustable

variables in our problem:

rl=r0+ Y Yy, TP, Y€ T\ {0} U{E},V s € B, (30)
gb=gh+ 3 Y csy, 9 PI VEET,Y s € B, (31)
xl :x?s—i—ZtT:OZ(egND a:;?ﬁg,VteT,VSESD, (32)
Gb = G+ X020 Yicsyp GBI VEETY c € Gy, (33)

e =l + 3 Yesy, 6P VET. (34)

As seen in the next subsection, after bringing the linear decision rules to the
formulation, by taking & = Ur, each constraint holding uncertain parameters
is transformed by means of strong duality theory. As a result, we obtain a
linear approximation to the model, called (ARC-L1). Each inequality will be
characterized in terms of max/min values, and later replaced by its correspond-
ing dual equivalent. In this process, a new set of continuous variables and a
new set of constraints will be added to the formulation. This final product is
a MILP model to the robust problem, which will be called MIP(RCCP), and

whose solution can be obtained with commercial optimization solvers.
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5.8. RCCP under budgeted uncertainty

Given the definition of the budget uncertainty set Ur, we now present a
dualization rule that can be applied to each constraint of the robust coun-
terpart. Each ARC constraint can be written either in form (a) f9 +
Yier Ssegup LS 0,00 (b) 24+ Yper X ey, PLfl > 0, where 0 is the
independent term and f! is the term that depends on the uncertain parameters

ﬁst € Ur. In form (a), each problem constraint can be rewritten as:

PO+ maxpey { Sier Coesy, PifL} <0, (35)
with the second term being reformulated as:
maxyy oo {20,000+ ALBL - A7LA) (36)
Af,+ A <1, seSyp,teT, (u) (37)
YL (AL + AL ST, (p) (38)
Af, >0, A, >0, se§ND,teT}<o (39)

Where variables A;fs and A; indicate that the uncertain parameter ]35 has
oscillated above (or below) its nominal value Pz. Constraints limit the
oscillation according to the maximum value allowed (v%) and constraints

limit the budget of uncertainty to I'.

Analogously, for each problem constraint in form (b), we derive:

Mina+ A {Zs 2o FE (UL + AL — AT ssit '} > 0. (40)

The inclusion of the above robustified equations in the tractable MILP model
is possible via dualization. In both cases above, dual variables z’ and p can be

derived, along with dual objective function: > > ul +p.T + > >, fLot.

In the first case (a), the dual constraints are:

pe +p 200 fi (AL) (41)
He +p 2 [0l = ul +p > —TLfL (ML) (42)
pe=0,p=0 (43)
And, in the second case (b), the dual constraints are:
py +p<0fi (AY) (44)
e +p<[Uafil =S pl +p < —TLfL (AL (45)
pe <0, p<0 (46)
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In form (a), after dualization, each constraint is replaced by the following

constraints in the tractable MILP model:
PO ms +pT+ 323 fi0, <0, and [@)-([E3).
While, in form (b), each constraint is replaced by constraints:
O+ > mt +p D+ 3,3, flol >0, and (d4)-(46).
The resulting tractable robust MILP model has (5 + |T||Syp|)(2|C| +
IT||Sp|+3|T||B|+ |T|) constraints and |T|2|Sy p|(2|B| + |C|+ 1)+ (6|T||Sp| +
8|C| + 14|T||B| + |T||C|) variables.

6. Real-time energy scheduling with the RTCS

The solution of the CCP (either the deterministic version in Section [4]or the
robust version from Section [5)) provides the client a decision for the first level in
our framework: the contract subscription for the whole time horizon. However,
for the success of the proposed contract framework, an efficient real-time energy
scheduling mechanism is needed, so that distributed energy resources, storage
devices and drivable loads within the microgrid are operated in a coordinated
and coherent way, together with the energy exchange with the main grid.

Recall the RTCS definition given in Section |2} In order to perform energy
scheduling, each time period I, is further subdivided into 6¢ time slots of
size A. At this time scale, the instantaneous production/consumption of each
microgrid system is measured. For certain (drivable and non-drivable) systems,
the consumption/production, for each time period Iy, is known beforehand. And
every A time units a scheduling decision has to be made by the control device,
according to the state of the microgrid.

In this sense, the RTCS consists of a scheduling heuristic that, based on the
microgrid state and the energy contracts engaged by the client, solves an online
optimization problem, selecting in real-time the set of actions to be taken, with
the objective of reducing energy consumption costs and promoting load balance,

while, at the same time, dealing with the effects of uncertainty. Remark that
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the solution approaches commonly used to solve off-line scheduling problems are
not appropriate for the on-line scheduling case.

Since the RTCS operates according the Contract Collaboration Framework,
we remark that, once the heuristic starts, the set of subscribed energy contracts
Yo, for the whole time horizon, has already been established. Such decision is
made by the client after running one of the previously presented CCP mod-
els. According to the microgrid energy balance, the following operations must
be considered: (a) turn on/off a production/consumption drivable system; (b)
buy/sell a quantity of energy under an engaged contract; (c) recharge/retrieve
energy from a storage system; (d) buy energy out of engaged contracts; (e) throw
energy away (if remaining energy cannot be sold back to the grid). Also, a sub-
set of actions taken in a specific moment must obey the Contract Collaboration

Problem constraints.

6.1. Naive RTCS policy

This section describes the most straightforward approach to perform energy
scheduling. The proposed naive control strategy can be used as a baseline
strategy to schedule the use of the Battery Energy Storage Systems (BESS) and
the energy exchange via contracts. The naive strategy relies on two assumptions.
First, the microgrid should only sell energy via contracts as a last resort because
the selling price is typically lower than the contract buying price. Besides,
most of the time, the production obtained from renewables does not match
the microgrid’s energy demand. As a result, the microgrid will eventually buy
energy from the power grid.

The proposed naive RTCS policy works as follows. At each time step, the
current demand for electricity is determined as the sum of the amount of energy
required by the consumer drivable and non-drivable systems minus the amount
of energy actually produced by the microgrid. In case the produced energy
outweighs the demand, the resulting surplus is used to charge the battery. If
the BESS is already full or the surplus exceeds the charging rate, the excess

energy is sold via contracts. On the contrary, if existing demand goes beyond
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the available produced energy, the difference is provided by discharging the
battery. If the stored energy is not enough, then the remaining required energy
is bought from the grid, first via available engaged contracts (provided they still
have existing capacity), or bought out of any engaged contracts, possibly at a

higher price.

6.2. Using model solution as a look-ahead policy to guide RTCS

The solution of the CCP models provide not only a list of contracts to engage,
but also a set of values that can be used as a look-ahead (LA) policy to guide
the RTCS energy dispatch operations, at each time period I;. The policy is
defined by the optimal value of all model variables, except y variables.

When using the deterministic model, look-ahead values are obtained directly
from the model solution, while for the robust models, the LDRs — are
used to derive the look-ahead values for the current time period I/. In Section|[7]
we will show that the look-ahead policies based on the robust models can effec-
tively enhance the performance of the RTCS. Among the advantages, the better
utilization of storage devices and greater protection against uncertainty, when
compared to the deterministic model.

We propose different heuristics for the RTCS, each one with a distinct be-
havior. As previously mentioned, the RTCS operates based on a predefined set
of engaged contracts, obtained from a specific CCP model solution. Therefore,
in the remainder of this section, we refer to X-RTCS as the general RTCS that
can be executed based on an existing CCP model solution X.

Algorithm [1| depicts the X-RTCS executed inside a given time period I,
every A time units or, analogously, at each time slot d € {1,..., 6'5/}. At
this time, the uncertainty concerning energy production/consumption has been
revealed for all time periods before I}/, and the microgrid configuration is given
by its battery storage levels, drivable system requirements, load demand and
renewable production. Let X (y,,t’) be the X model obtained by fixing y =y,
and all variables and parameters related with ¢ < #’. The optimal solution of

X(yg,t') serves as a policy for all ¢ > ¢/. Two different parameters, named
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REOPTIMIZE and GAP POLICY, define how the X (y,,t") solution will be used as
a policy in the X-RTCS heuristic.

The first one concerns the usage of model X. The REOPTIMIZE option de-
termines which model X solution will be used as a forecast tool to determine
the initial quantities regarding how much energy will be consumed or how much
excess energy will be sent to the grid, via engaged contract‘:ﬂ and how long
drivable systems should remain powered on. If REOPTIMIZE is enabled (line ,
model X will be reoptimized at each time period I/, for the remaining time pe-
riods ¢ > ¢’ (line , and the new solution obtained will guide the initial energy
quantities (hne. Otherwise, as listed on line [5] the RTCS policy will be based
on the initial solution at the start of the time horizon (¢ = 1), i.e., the optimal
solution of X (y,,1).

The next step of the algorithm is the calculation of the current microgrid
energy gap (i.e., total consumption minus total production) at the current time
slot d (line E[), based on collected data regarding instantaneous energy produc-
tion/consumption, minimum contract engagements, as well as model predictions
regarding batteries and drivable systems (lines . We denote by qf/,/”l as the
amount of energy that will be bought or sold via the contract ¢ in time slot d; and
m’;/’d as the percentage of time in which drivable system s will be on at time slot
d. Also assume ﬁ:’d is an estimation of the uncertain production/consumption
of device s at time slot d.

Finally, according to this information, X-RTCS must decide which addi-
tional dispatch operations will be executed to balance supply and demand, by
applying a GAP POLICY (Table . These operations involve, for example, sel-
ing (line or buying (line additional energy to/from the partner, turning
on/off drivable systems (lines and interacting with an energy storage
system (lines [148425).

In summary, the combination of REOPTIMIZE and GAP POLICY parameters

11t is worth noting, however, that the amount of electricity bought or sold via each engaged
contract may be more than the initial values proposed by the model policy, depending on the
actual energy demand.
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Gap Cheapest gap policy

Positive Cheapest storage operation (batteries/drivable/contracts)
Negative Cheapest retrieval operation (batteries/drivable/contracts)
Gap Conservative gap policy

Positive Store energy surplus in batteries, then use sell contracts
Negative Buy from engaged contracts first, then use batteries

Table 2: X-RTCS policy executed at each time slot d (inside period I;/), according to the
microgrid energy gap, defined as Y (Production)— 3 (Consumption). A positve gap (+) means
there is energy surplus in the current time slot, while a negative gap (—) represents lack of
energy (more power needs to be bought from the partner or produced by the microgrid).

yield 4 different look-ahead heuristics, whose behavior is determined by which
CCP model predictions are used (from reoptimized model or not), along with a
strategy to either fulfill demands greater than the microgrid’s own production
(negative gap) or use the available energy surplus (positive gap).

Remark that the algorithm takes into account the cost of purchasing addi-
tional blocks of energy (negative imbalance) and the revenue from selling sur-
plus energy (positive imbalance) due to deviations with respect to the forecast
of energy contract usage, made in the beginning of X-RTCS. Additionally, the
amount of electricity bought out of any contract e(-) presumes an indirect pe-

nalization on price, since they are less attractive than settled day-ahead prices.

7. Experimental results

This section sets up a realistic microgrid and conducts simulations with
different sets of scenarios, comprising uncertain electricity production and con-
sumption in a given time horizon. The main objective is to evaluate the impact
of adopting a robust approach for engaging in flexible energy contracts. This
is achieved through the performance assessment of the RTCS approaches pro-
posed in the previous section, based on contract decisions taken by either the

deterministic or the robust CCP model solution.

7.1. Computational environment and simulation details

The mathematical models and numerical simulations were coded in Julia
1.6.0 using CPLEX solver 20.1.0, and their source code is available at https:
//github.com/levorato/ccp_rtcs. All experiments were performed on a work-

station with an Intel Xeon CPU X5355 x 8 with 64 GB RAM, under Ubuntu
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Algorithm 1: RTCS algorithm that runs at each time slot d €
{1,...,6%}, inside time period I.

Input: CCP model cCpM, initial cCPM solution X (yg, 1), GAP POLICY, REOPTIMIZE
Result: Set of policies qc(+), zs(+), hs(+),e(+)

1 if REOPTIMIZE is enabled then

2 Reoptimize ccPM with to := ¢’ and fix engaged contracts y = y;

3 ‘ Let {qt/,ﬂﬁt,7 gt ht,} be the reoptimized cCPM solution at t = tg = t/;

4 else // Use initial CCP model solution at tp = 1

5 ‘ Let {qt/,mt,, gt ht,} be the initial ccpM solution at ¢t = t/;

6 qzl’d = |—q£l/5t/“,VC € Cy ; // Initial contract usage according to y,

td _ y o pmint! ) . 4 )
7 Tg' = max [ms s W] ,Vs € Sp ; // Power drivable according to CCP solution
8 hz,’d = fh§//5t/1; gﬁ-/’d = |—g§//5tl-| H // Use batteries according to CCP solution
/* Sum energy consumption/production for all devices (certain and uncertain) */
! ’ ’7
sgapi= ¥ POy > Togy gty y SRy ulld gty
s€Snp sESND ceCyr seSp seSp

10 if gap > 0 then // energy left over

11 if GAP POLICY = cheapest then

12 Execute dispatch operations (Charge batteries, Sell via contracts, Power

drivable consumers) following smallest energy cost first;

13 else // conservative cap poLICY

14 gap := Charge-batteries({s € Sg});

15 gap := Sell-energy-surplus-via-contracts({c € Cy : H;’,c < 0});

16 gap := Power drivable consumers({s € Sp : Pmmil < 0});

17 ey .q =05

18 Throw remaining energy away;

19 else // Negative gap, need for additional energy

20 if GAP POLICY = cheapest then

21 Execute operations (Turn on drivable producer, Use batteries, Consume

from contracts, Consume out of contract) according to smallest cost first;

22 else // conservative cap poLICY

23 gap := Turn-on-drivable-producer-devices({s € Sp : Pmi"i,’ > 0});

24 gap := Consume-energy-via-contracts({c € Cy : I . > 0});

25 gap := Discharge-batteries({s € Sg});

26 €4 4 = gap ; // Consume remaining energy out of contracts if needed

18.04 LTS. As defined in Section each RTCS heuristic can use either the

deterministic or the robust CCP model solution as input. We denote by Det-
RTCS the RTCS based on the deterministic model, and Rob-RTCS the one

based on the robust budgeted model. The RT'CS simulation is based on sets of

realistic scenarios from the case study defined in this section.

Remember that, in order to obtain a deterministic solution for the CCP

model, it is necessary to establish a fixed value for the uncertain parameters. In

this study, we solved the deterministic model by using three sets of values for

uncertain parameters Py of each system s € Syp.
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7.2. Microgrid in a research building in Tsukuba, Japan

This case study involves the microgrid of a research building in Tsukuba,
Japan. A multiyear dataset (Vink et al., [2019)) provides microgrid statistics in
full details (every second) and summarized (per hour), for the period between
april 2015 and april 2018. Supplied data includes the Battery Energy Storage
System (BESS) installed (active power, voltage, current, state of charge), the
power generation from the four operating solar arrays, as well as purchased
electricity (voltage, active power), solar irradiance, list of holidays and electricity
prices (including surcharges).

Four problem instances were generated, one for each season of the year.
Thus the lower and upper bounds for uncertain consumption and production

were calculated as a function of the historical data for the corresponding season.

7.3. Problem instance generation

The considered planning horizon comprises 24 time periods of 1 hour, each
one with 6 = 6. Given all periods, a total of 457 contracts were proposed,
inspired by Electricité de France price distribution (EDF} 2021)), allowing the
client to buy electricity from the partner at different quantities and costs.

Concerning uncertain devices demand and production of electricity at each
time period t, historical data of the microgrid is used to calculate the lower and
upper bounds of these values. Moreover, instead of applying simple min/max ap-
proach, we use the 10th and 90th quantiles to determine the P,,;, and Py, 4, val-
ues, which guarantees robustness against outliers. The determination of BESS

kWh price is based on the cost model of Borjesson & Larsson| (2018)).

7.4. RTCS simulation and scenario types

Based on the production and consumption history of the Tsukuba microgrid,
the simulation objective is twofold: to evaluate how the solutions provided by the
two CCP models proposed (robust and deterministic) behave under uncertainty,

and to assess the performance of the RTCS policies defined in Section [6.2
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A particular scenario contains, for each uncertain system, the realization
of the uncertain electricity production (or consumption) values for each time
slot, over the whole time horizon. Given a list of engaged contracts (previously
obtained with the solution of the CCP model), the simulation iterates over each
time step, executing the chosen RTCS policy. As explained in the previous
section, at this point, real-time energy scheduling actions are taken, according
to the current state of the microgrid and the realization of energy production
and consumption values. Among these values, the ones concerning the uncertain
systems are obtained through the given scenario data in the current simulation.

For the Tsukuba microgrid, an individual set of scenarios was generated for
each of the four seasonal instances, based on real values of PV production and
building consumption provided in the dataset. The spring instance scenarios,
for example, encompass all information recorded between March 20th until June
21st, given the dataset’s 3-year time horizon.

In summary, for each microgrid instance, the simulation process consists in
testing, the RTCS policies based on each CCP model solution. The combination
of 2 types of gap policy (Cheapest and Conservative), with or without model
reoptimization, yields a total of 4 possible X-RTCS procedures for each model
X, deterministic or robust. Simulation is then performed by executing each pair
of model X and X-RTCS heuristic on the proposed microgrid instances and
their associated scenario groups. For each of the 4 seasonal Tsukuba instances,

simulation will be executed on a specific scenario set from each season.

7.5. Performance of the robust solution method

The study performed in this section analyses several cost and reliability met-
rics obtained from simulations of the proposed RTCS policies. By mimicking
the real-time operation of the microgrid energy management system, each sim-
ulation was based on a specific solution provided by either the robust or the
deterministic CCP model.

The robust CCP model under budgeted uncertainty was tested with six '
budget parameter values (0%, 20%, 40%, 60%, 80% and 100%). They indicate
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Deterministic/ ® Robust budget /T

Instance 0 50 100 0 20 40 60 80 100
19,969.98 26,273.60 32,531.61 2598411 29,981.41 31,527.87 32,186.66 32,300.27 32,302.23

Autumn 0.07s 0.25s 0.36s 0.71s  189.20s  209.69s 86.03s 64.91s 57.865
- 18,345.28 24,429.74 30,534.44 24,161.60 27,899.25 29,398.48 30,12596 30,294.75 30,294.95
0.15s 0.31s 0.32s 0.30s 24117 s 55.88s 81.47s 40.48s 50.57s

Summer 22,281.03 29,954.69 37,364.42 29,611.22 34,129.95 36,082.87 36,960.79 37,132.68 37,132.68
0.33s 0.29s 0.32s 0.84s 2159.94s  73891s  603.36s  294.62s  263.40s

Winter 2044366 27,183.29 33,728.24 2689568 31,111.05 32,670.23 33,394.60 3348234 33,482.90
0.04s 0.255 0.285s 0.68s  229.54s 68.91s 75.76's 60.53s 54.43s

Table 3: Robust vs. Determinisitc model result comparison for different budget parameters.
The first value indicates the objective function value obtained, followed by the time spent (in
seconds) to obtain the optimal solution. CPLEX default optimality gap of 10~% was applied.

the proportion of the maximum allowed deviation of uncertain parameters re-
garding production or consumption of energy, as defined in Section As a
baseline for comparison, the deterministic CCP model was tested with 3 dif-
ferent sets of values regarding uncertain devices. When ® = 0%, the model
is based on the most optimistic scenario, assuming minimal consumption and
maximal production for uncertain consumer and producer devices, respectively.
The exact opposite situation is represented by ® = 100%, apparently the most
pessimistic one. Finally, the scenario where ® = 50% depicts the middle inter-
val, with average values of uncertain devices. Bearing in mind that the I and ®
values used to parametrize the deterministic and robust models have different
meanings, a general comparison will be conducted in this section to determine
which model behaves best under uncertainty.

The solution statistics for each model are presented on Table[3] The obtained
results show that, when solving the first-stage problem to determine the list of
contracts to engage, optimal solutions for robust models with different budget
parameter values can be obtained in less than an hour with an 8-core CPU.

Regarding the simulation results, according to the season of the year, for
each of the 4 RTCS policies proposed in the previous section, Tables 4| and
present statistical measures based on the operational cost (Cost Avg, Cost Std,
Cost CVaR), as well as Out of Contract (OC) energy consumption cost (OC
Cost Avg), penalty frequency (i.e., the proportion of time periods where OC
consumption occurred) and the State of Charge (SOC) of the microgrid’s BESS
(SOC Avg and SOC Std). In robust and deterministic CCP models, higher
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Deterministic / & Robust budget /T

Variable 0% 50% 100% 0% 20% 40% 60% 80% 100%
Cost Avg ($) 94,7580 27,6380 31,7910 49,1916 34,1288 27,9197  29,490.5 40,4863 31,9386

Cost Std ($) 55,760.3 3,077.8 4771 26,4869 6,898.7 2,182.1 17727 12,7419 4,977.2

3 CostCvar () 179,591.2 32,6628 32,3829 92,1321 452202 31,5548 32,3963 60,4098  39,906.4

S OCCostAvg($) 73,5164 406.5 00 17,677.2 5,623.2 99.0 1022 12,506.7 3,540.6

£ Penalty Freq (%) 76.4 35 0.0 16.3 5.8 03 03 14.2 34

SOC Avg (%) 382 67.7 91.7 68.2 69.8 68.2 734 71.9 72.5

S0C Std (%) 12.2 28.8 19.0 281 29.4 29.6 293 29.7 29.7

Cost Avg ($) 94,4862  27,367.2 31,2232 467815 31,9414 27,3386 27,5300  39,762.5  30,758.4

& coststa($) 55,872.6 3,2715 6221 26,1559 7,286.9 2,530.4 24533 13,4218 5,539.0

& CostCVaR ($) 179,581.4  32,607.8 32,0911  90,519.4 43,9020 314793 31,5104  60,727.0 39,7053

% occostAvg(§) 73,1285 406.5 00  15949.0 5,121.0 99.0 99.0 13,1637 3,457.0

& Penalty Freq (%) 758 35 0.0 15.9 6.4 03 03 16.2 4.0

£ s0cAvg (%) 402 68.4 916 69.1 68.7 69.9 709 70.5 74.2

S0C Std (%) 143 27.3 18.2 265 27.6 27.7 285 26.9 26.9

Cost Avg ($) 935046 27,8584  31,849.2 47,2121 332439 28,0025 29,5539 39,6145 313125

@ Coststd ($) 56,354.0 3,004.8 5556  25330.0 6,529.3 2,117.0 17380 118756 4,5333

H § Cost CVaR ($) 179,582.4 32,6826  32,650.3 90,5148 44,2912 314615 32,3987 59,0546  38917.0
2 S oCCostAvg($) 72,0424 3922 00 159114 4,617.2 78.6 799 11,5140 2,795.1
& £ penalty Freq (%) 77.8 36 0.0 18.4 76 03 03 16.3 4.0

© s0CAvg (%) 434 77.7 93.4 719 75.7 787 819 75.7 80.1

SOC Std (%) 19.8 27.1 16.1 27.4 27.5 255 243 27.0 254

£ CostAvg($) 932077 27,5521 31,3005 457548 31,2760 27,4241 27,5619 37,9295  30,126.7

Q Coststd ($) 56,490.5 3,187.0 7096 25098.8 6,823.9 2,460.5 24796 12,2889 5,000.4

% costcvar(s) 1795770 32,6625 32,3740 88,8508 42,8664 31,4775 316006 58,2638  38498.1

2 0CCostAvg($) = 71,7142 3818 00 151342 4,310.1 771 797 111252 2,7135

2 penalty Freq (%) 77.8 36 0.0 18.4 76 03 03 163 4.0

& socavg (%) 247 80.2 93.8 732 75.3 818 816 76.0 82.3

8 socstd (%) 211 255 15.7 259 26.4 24.2 24.6 253 238

Cost Avg ($) 94,9247 31,0221 332447 50,1493 351768 32,6544 32,6991 415567  35122.0

Cost Std ($) 55,737.6 1,885.5 4430 24,7255 5,770.0 864.4 8307 10,8287 3,570.1

o CostCVaR () 179,606.9 338743 33,8712  90,187.1 450062 339291  33,900.6 59,6569 41,0258

N E OCCostAvg($) ~ 73,858.1 280.1 0.0 17,2199 4,297.9 422 382 10,4120 2,650.5
2 Penalty Freq (%) 77.8 32 0.0 14.4 55 0.1 0.1 14.1 33
& S0C Avg (%) 317 76.6 94.3 716 87.0 9.6 9.2 92.0 93.9
g SOC Std (%) 0.1 301 16.4 287 258 181 17.4 19.8 18.6
> Cost Avg ($) 82,1860 49,6310  29,808.7 104,241.0 30,5247 26,1827  27,256.6 28,4287 28,4717
£ Cost Std ($) 44,527.0 12,6531 3109 32,3075 4,890.4 1,8233 2,598.0 831.8 1,643.7
£ G costavar(s) 1444452 687730 30,2099 147,380.1 381298  29,027.2 31,4910 29,7761 31,0885
S OCCostAvg(§) ~ 60,979.9 231332 02 62,0768 57733 0.0 1,497.9 0.0 346.1

£ Penalty Freq (%) 76.1 237 0.1 439 56 0.0 19 0.0 19

SOC Avg (%) 361 58.6 916 363 58.7 611 58.1 72.6 67.0

SOC Std (%) 10.5 27.6 17.0 8.9 28.0 283 288 29.0 29.1

Cost Avg ($) 82,0529 49,3001 294715 97,7402 280743 260461 26,7599 26,3809  27,470.1

& coststd($) 445709  12,899.3 4383 323122 4,783.8 1,961.2 2,634.4 1,723.1 3,0213

& CostCVaRr ($) 1444251 68,7740 30,1289 144,8886 360439 29,0582 31,0841 29,0434 32,1893

% oCCostAvg($) 607641 23,0142 02 553918 4,274.0 0.0 1,066.2 0.0 1,191.8

& penalty Freq (%) 755 239 0.1 439 55 0.0 23 0.0 2.7

£ socAvg (%) 382 58.1 90.5 634 62.2 64.2 65.4 62.6 63.1

S0C Std (%) 12.9 26.8 17.8 27.3 26.4 26.8 26.8 27.7 27.5

Cost Avg ($) 81,2544 485239 29,9853 1038049 303076 263650 27,1485 28,5506 28,5857

o CostStd($) 45,0072 12,686.5 4386 32,6203 4,665.6 1,762.3 2,319.9 890.3 1,388.0

o £ costcvar(9) 144,404.3 68,6824 30,6713 147,556  37,881.0 29,0717 30,9927 29,9754 30,8152
'S 5 OCCostAvg($) ~ 59869.0 221716 0.2 61,6225 5,214.9 0.0 1,011.7 0.0 356.2
@ £ Ppenalty Freq (%) 76.9 257 0.1 439 6.9 0.0 23 0.0 36

© s0C Avg (%) 406 64.0 95.4 383 66.0 74.7 66.4 816 74.4

S0C Std (%) 17.3 29.0 133 12.7 288 259 288 243 265

« Cost Avg ($) 80,876.6 483244 296897  97,190.6 28,0157 26,2612 267995 26,6543 26,9442

Q Coststd ($) 451228 12,8376 5748  31,950.5 4,427.5 1,941.8 2,278.1 1,693.2 2,370.5

% costcvar(s) 144,691.0 68,6483 305959 1440144 353016 29,1660 30,3020 29,2047 30,7529

2 OCCostAvg($) 59,4462  22,154.8 02 549141 3,936.4 0.0 626.5 0.0 490.8

2 penalty Freq (%) 76.9 25.7 0.1 439 6.9 0.0 23 0.0 36

& socAvg (%) 227 63.4 95.5 638 711 818 80.5 785 75.4

8 socstd (%) 19.6 285 131 273 26.4 23.0 24.0 25.8 26.6

Cost Avg ($) 82,2546 47,0945 320540 1021863 330565 32,1061 31,8367 32,4051  31,565.9

Cost Std ($) 44,485.8 9,188.1 2302 30,5189 3,437.6 2159 7786 200.8 949.0

o CostCVaR ($) 144,446.5  61,597.8  32,409.6  144,2683  38840.6 32,4393 33,0265 327051 32,9759

Z OCCostAvg($) 61,1623  19,660.5 00 581431 4,547.8 0.0 4228 0.0 292.0

= Penalty Freq (%) 76.8 233 0.0 414 47 0.0 13 0.0 1.9

SOC Avg (%) 317 61.1 92.0 496 84.7 933 943 96.1 86.4

SOC Std (%) 0.0 27.8 19.9 14.9 27.0 17.6 158 13.7 223

Table 4: Robust vs. Deterministic RT'CS performance comparison for autumn and spring
scenario groups. Cost Avg is the average scenario cost over all simulations. Cost Std represents
the standard deviation of scenario cost. Cost CVaR is the conditional value at risk of scenario
cost at 80% confidence level (i.e., the average scenario cost of the 20% highest scenario costs).
OC Cost Avg is the average cost from Out of Contract (OC) energy consumption. Penalty
Freq is the proportion of time periods with OC consumption. SOC Avg and SOC Std are the
average and standard deviation of BESS State Of Charge (SOC).
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Deterministic / & Robust budget /T

Variable 0% 50% 100% 0% 20% 40% 60% 80% 100%

Cost Avg ($) 125,414.5 31,732.4 36,4317 53,796.2 52,252.5 33,014.1 60,577.1 33,982.6 33,1133

Cost std () 54,258.0 3317.8 3692 17,1482 16,3709 18749 21,8422 1,440.8 1814.3

G CostCVaR(S) | 2041233 37,2329 36891 798731 757144 361670 92,7856 364836 361711

% 0C Cost Avg ($) 93,388.0 2219 1.0 17,614.9 18,616.6 1.0 33,416.7 1.0 1.0

£ Penalty Freq (%) 70.9 (K] 0.0 87 11.0 0.0 237 0.0 0.0
SOC Avg (%) 343 63.4 92.4 581 63.3 68.4 62.9 745 67.9

SOC Std (%) 8.8 283 17.2 25.9 299 29.1 27.1 28.4 29.1

Cost Avg () 1252503 31,5044 356138 49,9740 495287 31,4051  59,809.0 316269 32,0083

& coststa($) 54,481.0 3,488.4 595.8 18,4127  16,658.7 27184 21,8163 25755 2,340.0

g Cost CVaR ($) 204,123.3 37,171.2 36,521.0 79,164.2 73,993.1 35,856.7 91,683.2 35,873.6 35,929.4

g 0C Cost Avg ($) 93,235.6 220.7 1.0 15,242.8 16,537.6 1.0 32,584.1 1.0 1.0

& Penalty Freq (%) 70.9 0.8 0.0 8.4 121 0.0 256 0.0 0.0

% SOC Avg (%) 345 65.9 91.6 65.0 63.8 64.3 65.4 64.5 66.4
SOC Std (%) 8.9 26.8 175 26.8 27.8 27.6 26.4 28.3 28.4

Cost Avg ($) 1251811  31,889.2 365103 49,4047 51,2240 33,1458  59,447.1 34,2249 332114

o CostStd($) 54,554.2 3,106.7 491.9 17,468.4 16,023.4 1,897.4 21,113.8 1,527.3 1,821.0

E % Cost CVaR ($) 204,123.3 36,890.4 37,270.4 77,266.5 74,756.1 36,311.4 91,313.2 36,792.5 36,245.3
E § OCCostAvg(s) 931426 158.4 01 147711 17,5499 01 31,7473 0.1 0.1
@ £ Penalty Freq (%) 721 0.8 0.0 8.7 129 0.0 25.7 0.0 0.0
© socAvg (%) 349 77.9 94.9 70.5 65.6 79.0 66.3 833 79.7
SOCStd (%) 10.4 26.2 14.4 265 29.1 25.9 27.0 246 25.8

| CostAvg ) 125,082.1 31,637.1 35,707.4 48,639.4 49,046.9 31,559.6 58,676.6 31,816.6 32,118.8

% Cost Std ($) 54,692.1 3,250.4 7133 16,917.4 16,422.3 2,717.0 21,118.5 2,551.9 2,347.4

% Costcvar(s) = 2081233 368708 368848 755263 735555 359345 904197 359942 359969

; 0C Cost Avg ($) 93,047.6 133.7 0.1 14,219.1 16,191.2 0.2 31,278.8 0.1 0.1

g Penalty Freq (%) 721 0.8 0.0 8.7 129 0.0 25.7 0.0 0.0

2 S0c Avg (%) 350 814 94.9 73.0 66.1 79.6 67.6 775 77.9

S SOC Std (%) 10.5 24.2 143 24.4 28.4 25.2 26.2 26.9 27.2
Cost Avg () 1229201 33,6523 34,9793 51,7286 51,7801  34,840.8  61909.9 349793 34,9793

Cost Std () 56,068.6 2,576.3 13515 163052 155756 13846 20,6886 13515 13515

o CostCVaR ($) 204,128.2 37,882.7 37,337.4 76,893.5 74,149.4 37,2331 92,283.5 37,337.4 37,337.4

- ‘E 0C Cost Avg ($) 91,216.4 186.9 1.0 14,372.6 17,575.8 1.0 31,260.6 1.0 1.0
2 Penalty Freq (%) 717 07 0.0 7.9 111 0.0 237 0.0 0.0
; SOC Avg (%) 34.0 82.0 84.2 82.9 75.0 85.5 75.4 84.2 84.2
E SOC Std (%) 7.2 235 23.8 24.0 27.1 232 25.6 23.8 23.8
> Cost Avg ($) 132,265.2 357563  32,997.6 62,6542  42,897.5 34,6543 40,1810 41,8409  31675.9
E Cost Std ($) 64,239.2 4,334.7 3825 25,296.3 11,876.2 6,460.1 9,289.5 9,835.9 1,171.8
B G costCvaR(s) | 2156577 423031 335783  95339.4 59,0035 434992 526707 551202 33,5984
§ OCCostAvg(s) 1111394  7027.7 00 322339 13,6729 53181  16950.4  18,490.6 16

S Penalty Freq (%) 93.0 7.2 0.0 17.1 10.1 33 7.0 113 0.0
SOC Avg (%) 341 56.2 89.4 44.7 56.4 55.1 58.4 58.7 65.2
SOCstd (%) 8.8 27.0 19.8 18.0 27.4 26.8 281 27.8 30.1

Cost Avg ($) 132,087.0 35,405.6 32,419.3 58,703.7 41,105.0 34,4448 39,065.3 41,098.7 29,745.7

g Cost Std ($) 64,429.2 4,388.0 640.3 26,873.9 12,113.2 6,674.4 9,627.6 10,318.8 2,253.5

& CostCVaR(3) 2156577 42,2195 33,4771 951144 581302 43,4459 52,5051 554654 33,1069

a 0C Cost Avg ($) 110,906.4 6,705.5 0.0 28,288.4 12,632.4 5,507.2 15,631.1 17,970.9 16

% Penalty Freq (%) 92.7 7.0 0.0 16.5 12,0 4.0 8.2 125 0.0

£ socAvg (%) 347 60.3 88.3 59.7 59.4 59.9 618 60.4 60.0
SOC Std (%) 9.5 259 20.0 25.2 26.2 26.7 26.6 26.2 26.7

Cost Avg () 1320389  35177.8 331598  59,530.0 417458 34,1381 39,2185 408281 31,8022

o Coststd ($) 64,453.9 3,880.3 519.4 254271 11,6552 5,903.9 8912.2 9,403.4 1,204.6

s é Cost CVaR ($) 215,657.3 41,198.2 34,014.7 93,555.5 58,392.5 42,776.1 51,993.8 54,310.1 33,7253
E £ OCCostAvg(s) 1108737 6,205.0 02/ 29,0916 12,3535 46314 14,8869 164613 0.2
H g Penalty Freq (%) 93.9 7.3 0.0 17.1 121 4.0 8.2 125 0.0
© soc Avg (%) 3438 69.6 933 545 62.1 64.8 66.4 66.3 75.4
SOC Std (%) 10.8 27.7 16.3 23.4 27.7 273 28.2 27.5 26.4

& Cost Avg ($) 131,898.3 34,8524 32,6323 56,4183 40,1236  33,560.3 38,0568 39,4186 29,8712

% Cost Std ($) 64,618.6 3,718.8 7711 25,152.3 11,584.9 5,966.3 8,894.6 9,461.0 2,237.5

% Cost CVaR ($) 215,657.3 40,431.2 33,902.8 91,735.7 57,040.2 42,124.8 50,968.4 53,244.2 33,161.3

Z 0CCostAvg($) | 110,708.5 5,977.7 02 259707 11,4741 43976 13,8809 154649 0.2

g Penalty Freq (%) 93.9 7.3 0.0 17.1 121 4.0 8.2 125 0.0

& socAvg (%) 355 74.4 93.6 65.4 63.9 70.5 701 70.0 74.4

8 socstd (%) 11.8 254 16.0 252 271 26.1 26.4 263 25.6
Cost Avg ($) 132,574.1 37,499.6 33,3943 57,904.2 43,047.4 37,680.1 41,547.7 42,897.5 33,5143

Cost std ($) 64,059.4 2,859.5 8758 24,6855  10,564.7 51784 80511 8,416.8 875.8

o CostCVaR($) = 2156506 42,0503  34,880.6 936953 580273 451297 526141 545244  34,990.1

E 0C Cost Avg ($) 111,612.8 6,121.0 0.6 25,515.2 11,529.1 5,037.4 13,619.6 15,150.6 0.6

= Penalty Freq (%) 93.9 6.9 0.0 14.2 10.0 33 6.9 11.2 0.0
SOC Avg (%) 318 72.5 87.3 741 77.8 86.9 83.7 833 87.3

SOC Std (%) 0.2 27.0 21.8 23.5 25.6 226 25.2 24.9 21.8

Table 5: Robust vs. Determinisitc RT'CS performance comparison for summer and winter
scenario groups. Cost Avg is the average scenario cost over all simulations. Cost Std represents
the standard deviation of scenario cost. Cost CVaR is the conditional value at risk of scenario
cost at 80% confidence level (i.e., the average scenario cost of the 20% highest scenario costs).
OC Cost Avg is the average cost from Out of Contract (OC) energy consumption. Penalty
Freq is the proportion of time periods with OC consumption. SOC Avg and SOC Std are the
average and standard deviation of BESS State Of Charge (SOC).
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values of I' or ® parameters, respectively, ensure improved system reliability
through elevated protection against the realization of worst-case scenarios, but
at the expense of increased overall cost. The above measures allow a trade-off
analysis between operational cost and system reliability, which can be applied
by the decision-maker to select the most appropriate model.

For the autumn season, except for the naive RTCS policy, remark that Rob-
RTCS solution with I' = 40% significantly improves not only the operational
cost (Cost Avg and Cost Std), but also microgrid’s reliability (Cost CVaR met-
ric), when compared to Det-RTCS solutions. In particular, when considering
the best economic performance of Det-RTCS (Cheapest+ReOpt policy with
® = 50%), Rob-RTCS with I' = 40% achieves a reduction of 0.1% in Cost
Avg, 22.7% in Cost Std and 3.5% in Cost CVaR.

In spring season instance, the look-ahead Rob-RTCS policies with I' = 40%
and T' = 80% outperform the deterministic counterparts in average cost and
CVaR cost metrics. When compared to the previous set of scenarios, Rob-
RTCS performance is further improved, with T' = 40% and T' = 80% budget-
based RT'CS achieving the best economic performance (Cost Avg), with zero OC
cost and thus zero penalty frequency. In this case, when compared to the Det-
RTCS models whose policy has the lowest average cost (Cheapest+ReOpt), the
Rob-RTCS with I" = 40% is 17.6% cheaper on average, with a 3.6% decrease
in Cost CVaR.

For summer, the naive policy is not able to offer improved results when
coupled with the robust CCP model. On the other hand, the robust solutions
with T € {40%, 80%, 100%} provide the best protection for all look-ahead RTCS
policies, when compared to their deterministic counterparts. In particular, the
robust solution for T' = 40% coupled with Cheapest+ReRopt RTCS presents the
best observed economic and reliability values (Cost Avg = 31,405.1 and Cost
CVaR = 35,856.7), as well as low levels of OC Cost and zero penalty frequency.
It is worth noting that, besides having elevated PV electricity production, en-
ergy consumption reaches its highest levels during this season, according to the

dataset.
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Last, in winter season, it is possible to observe an interesting case where the
maximum hedge (Rob-RTCS with I' = 100%) represents the best option from
the viewpoint of worst-case protection as well as economic performance. The
best results were obtained with model re-optimization enabled (either Cheap-
est+ReRopt or Conservative+ReRopt RTCS). The robust model with I" = 100%
presents the lowest Cost C'VaR values among all models tested. It also provides
the cheapest average costs (Cost Avg), considering all robust and deterministic
models simulated. Once again, the robust-based naive policy is not able to offer
improved results when compared to Det-RTCS.

A statistical analysis was also performed to assess the cost difference be-
tween each pair of simulations, considering every combination of CCP model
and RTCS policy. For this purpose, we applied the Wilcoxon signed-rank
test (Wilcoxon, |1945)), a non-parametric alternative to the paired Student’s
t-test, which does not depend on the assumption that the data is normally
distributed. This test is based upon the ranks of the paired differences of mea-
surements, and the null hypothesis Hy is that two related paired samples come
from the same distribution. If valid, Hy indicates that there is no tendency for
the outcome in one group of simulations to be higher or lower than in the other
group. In a pair-wise comparison with a significance level a = 0.05, considering
all pairs of RTCS simulations, in only 3 cases it is not possible to reject the
null hypothesis. These cases are related with the autumn, spring and summer
instances, with no significant statistical difference when comparing the scenario
costs of the Conservative+ReOpt RTCS based either on the Det-RTCS solu-
tion with ® = 50% or on the Rob-RTCS with I = 40%. All other simulation
comparisons yielded P-values inferior to 0.05, which indicates there is enough
evidence to reject the null hypothesis and conclude that the tested samples were
likely drawn from populations with differing distributions.

As a final remark, we refer the reader to the last two measures in Tables
and According to the average and standard deviation of BESS State Of
Charge, the robust-based policies rely more on the use of batteries to regulate

the microgrid’s system load than Det-RTCS.
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7.6. Best options for CCP model and RTCS policy

The presented results confirm the overall superiority of the RTCS simula-
tions derived from the robust CCP model results, according to the value of the
budgeted uncertainty parameter I'. Such value will depend on the scenario type
and, therefore, the season of the year. For the microgrid under study, an in-
termediate value of I' = 40% proved to be the best parameter option for the
robust model during spring, summer and autumn, while the maximum hedge
(' = 100%) fits best during winter season. It is worth noting that only the
Rob-RTCS policies which incorporated the look-ahead mechanism obtained
improved results when compared to the deterministic-based policies.

As a complimentary evaluation, based on each season and the best perform-
ing robust CCP models presented above, we now investigate the differences
among the proposed RTCS policies. Once again, we turn ourselves to Tables [4]
and [5] restricting our analysis to fixed values of I'. For each combination of sea-
son and I' value, we split the policies into 3 groups: naive, look-ahead without
model re-optimization (ReOpt) and look-ahead with re-optimization applied.

As far as the robust models are concerned, it is possible to observe that the
naive policy is not able to perform well according to cost and reliability met-
rics, and its simulation results are inferior to those obtained by the look-ahead
policies. Regarding LA policies, both average and CVaR values of scenario cost
improve in re-optimization-based policies, when compared to non-re-optimized
ones. As an example, considering the summer instance, re-optimized models
provide an improvement of 3% in average scenario cost and 1% in CVaR. Out
of Contract (OC) costs also decrease in most cases. One possible explanation
for this behaviour is related to how the look-ahead policy works when the CCP
model is re-optimized. At each time period, the LA mechanism updates the
values regarding uncertain energy parameters and linear decision rules, based
on a new run of the optimization model. Using these updated predictions inside
the RTCS policy seems to be more cost-effective than not using them.

A second analysis, based on Pareto frontier, can also be used to determine

the best-performing policy. In Figure we plot the standard deviation of
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Figure 2: Winter instance: daily cost std and cost average obtained with simulations
of cheapest, cheapest4+ReOpt, conservative, convervative+ReOpt and naive policies, based
on either deterministic or robust budget models with ® = 0%,50%,100% and T" =
0%, 20%, 40%, 60%, 80%, 100%, respectively.

the daily cost (x-axis) versus the average of this cost (y-axis) for deterministic
and robust model policies, where each point denotes a specific value of ® or
I', respectively. On each curve, the right most point corresponds to ® = 0%
in the deterministic-based policies or I' = 0% in the robust-based ones. Note
that every point of each curve can be strictly improved in both average and
std of cost by changing to a different value of I', without the need to trade off
between average and std of the cost. In other words, each point is dominated
by the points to its left. Therefore, the left-most part of each curve shows the
Pareto frontier of cost average vs. cost standard deviation performance of the
associated model policy. This evaluation framework can be applied to choose a

suitable value of ® or I, making sure the system operates on the Pareto frontier.
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For the winter instance, this means that, to retain the same level of average
cost, the robust budget model with conservative+ReOpt policy achieves the lowest
std (i.e., the highest reliability); or, conversely, to maintain the same level of
std (i.e., reliability), this policy incurs the lowest average cost. That is, robust

budget / conservative+ReOpt dominates every other policy.
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Figure 3: Cumulative total costs and out-of-contract (OC) costs of the best deterministic
(Det) and robust (Rob) CCP models (and associated policies) of each season, obtained after
simulation over the whole time horizon (from January 2015 until May 2018).

Finally, in Figure |3 we present a graph which highlights some advantages of
the robust model in the long run, by comparing the accumulated costs obtained
after simulating the best set of deterministic and robust CCP models and poli-
cies for each season instance, over the whole time horizon (from January 2015
until May 2018). In this analysis, at the end of the simulation time horizon,
the system running with the robust model decisions incurs in no out-of-contract
costs as well as significantly cheaper accumulated total cost, 21% less when

compared to the best deterministic model.

8. Concluding remarks

This work presented the Contract Collaboration Problem (CCP), a multi-
contract energy trading framework based on flexible commitments, coupled with
a Real-Time Command Strategy (RTCS) for usage in microgrid energy trading

and scheduling. As the main component, we developed a robust model under
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budgeted uncertainty which provides protection against the worst-case realiza-
tion of the microgrid’s production and consumption of electricity, by presenting
a cost-effective contract commitment planning for a given time horizon.

A case study was conducted on a real microgrid, with a total of four problem
instances, one for each season of the year. Monte-Carlo simulations were used to
assess the performance of the proposed CCP robust model solution (against the
deterministic alternative), when used as input for real-time energy scheduling
strategies. Relying on a set of real-world-inspired energy purchase contracts,
simulation results have confirmed the efficacy of different robust-based RTCS
strategies, according to scenario types. For specific protection levels, the robust
RTCS was able to dominate the deterministic RTCS in all operational cost and
system reliability metrics.

The main conclusions can be highlighted as follows. The CCP robust model
under budgeted uncertainty provides a pool of solutions, with different protec-
tion levels, the decision-maker can choose from. The effectiveness of each robust
solution will depend on the microgrid’s load profile and renewable production,
which vary according to the season of the year.

There are essentially three avenues for future research. The first one is
application oriented and comprises additional testing with selling contracts. In
this sense, the energy exchange between multiple microgrids could be seen as a
game-theoretic model. The second avenue would be extending the methodology
itself, considering alternative ways of representing uncertainty in the robust
program, in addition to forecasting techniques that have added improved results
in similar problems. In particular, reinforcement learning could prove useful
inside the RT'CS, with the objective of making better decisions on energy-related
operations. For example, the scheduling heuristic could predict which kind of
operation would be better suited at a given period (e.g. store or sell surplus
energy; retrieve from storage or buy from engaged contracts). Finally, a third
path involves model refinements, such as the addition of ramping constraints

for generators and an improved battery efficiency and degradation model.
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