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Abstract 

The principle of least effort is believed to be a universal rule for living systems. Its 

application to the derivation of the power law probability distributions of living systems has 

long been challenging. Recently, a measure of efficiency was proposed as a tool of deriving 

Zipf’s and Pareto’s laws directly from the principle of least effort. The present work is a further 

investigation of this efficiency measure from a mathematical point of view. The aim is to get 

further insight into its properties and usefulness as a metric of performance. We address some 

key mathematical properties of this efficiency such as its sign, uniqueness and robustness. We 

also look at the relationship between this measure and other properties of the system of interest 

such as inequality and uncertainty, by introducing a new method for calculating non-negative 

continuous entropy.  
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1) Introduction 

The idea of achieving more by doing less is common. It is seen in most if not all living 

systems. Ferrero referred to this rule as the principle of least effort (PLE), and used it to interpret 

the mental inertia on the basis of the observation that human beings do not like work [1]. Later 

on Zipf applied the same rule in a quantitative study of word frequency distribution, and wrote: 

“The power laws in linguistics and in other human systems reflect an economical rule: 

everything carried out by human being and other biological entities must be done with least 

effort (at least statistically)” [2][3].  

This statement of Zipf extends Ferrero’s PLE for human being to other biological entities. 

According to a common understanding [4], the biological entities here can include human 

beings, animals, insects and even smaller biological agents. There has been considerable efforts 

to verify the validity of PLE for some of these living entities or agents (see [4] for a review and 

the references therein). In what follows, we will use the term “living systems” to represent these 

living agents as well as the systems used or driven by these living agents (linguistic, social, 

economic, educational, communicational systems etc.). The words “everything carried out” will 

be referred to as “achievement” of the living systems trying to achieve something with effort. 

The most interesting aspect of Zipf’s idea is the possibility of deriving the power laws from 

PLE. This perspective has inspired a lot of efforts to get power laws by minimizing effort [5][6]. 

The derivation of power laws of living systems directly from PLE has long been challenging. 

The main obstacle is the mathematical definition of the key quantities such as achievement and 

effort, both being process-dependent and difficult to define in a general way (see detailed 

explanation below).  

In a recent work [14], we proposed the idea to derive the Zipf and the Pareto power laws 

(see section 3) from PLE by using the principle of maximum efficiency (PME). The efficiency 

was defined as the ratio of achievement to effort, similar to the efficiency of thermal engine 

defined by the ratio of the output work (=achievement) to the input heat (=effort). The general 

formula of the efficiency was found with the help of the nonadditive property of the efficiency 

of thermal engines in thermodynamics. A brief review of that approach is given below. In [14], 

it is shown that the value of the efficiency can easily be calculated for a system if the distribution 

laws of achievement of the system are known. This opens the way for this efficiency functional 

to be used as a measure of the performance of the system. One just needs to establish the 

distribution laws of achievement by either empirical study or numerical simulation and to 
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calculate the efficiency using those laws. This possibility has motivated the present work which 

is aimed at getting further insight into this metric of performance by studying its mathematical 

properties.  

In the second section, we give a brief description of the context and the motivations of this 

work as well as our previous work [14], in order to explain why it is necessary to implement 

PLE by using PME, and to define the efficiency without using achievement and effort. The 

third section is a summary of our previous work presented in [14]. The reader will see how the 

efficiency functional comes out of a general nonadditivity of the efficiency of thermal engines, 

and how it can be maximized to give the Zipf and the Pareto power laws.  

In the fourth section, we present the proof for the uniqueness of the efficiency functional 

with the given efficiency nonadditivity. This uniqueness is the first guarantee of the reliability 

and the applicability of the functional as a meaningful tool to derive power laws. In the fifth 

section we study the robustness (or Lesche stability) of the efficiency functional against small 

variations of probability, which is another guarantee of the applicability of the efficiency 

functional as a reliable metric of performance.  

The sixth section presents a study of the sign and the numerical range of the efficiency, in 

order to explore the possibility and the usefulness of the efficiency which can be either negative 

or greater than one. In the seventh section, we study the relationship between the efficiency and 

the inequality measured by the Gini coefficient G which is an important property of many 

systems [23]. The eighth section is a study of the relationship between efficiency and 

informational entropy. We use a generalized definition of informational entropy called 

varentropy [24][26][28], which provides a more reliable and optimal measure of probabilistic 

uncertainty avoiding negative informational entropy[28,30]. The last section is the conclusion. 

2) From principle of least effort to principle of maximum efficiency 

The rule of least effort for the living is very appealing. Ferrero supported this rule by relating 

the activity of the human brain to the laws of inertia in physics and chemistry [1]. The idea of 

least effort is so intuitive and obvious for living systems that you can hardly say the contrary. 

In our opinion, achieving more by doing less should hold a crucial place in the survivability of 

any species, especially when its possession of the resources to use (force, money, time etc.) and 

the quantity of achievable things it desires are both limited. We can easily imagine the fate of 

a species in the ruthless competition of the living world if it always tries to spend as much as 
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possible its force and energy in order to achieve as few as possible its food, or to protect as little 

as possible itself against dangers. 

PLE is especially interesting in the perspective of being applied to derive empirical laws in 

the same way as many variational principles in physics (stationary action, least time, maximum 

entropy etc.). For this purpose, a functional of effort is needed. However, as mentioned above, 

the nature of the effort, just as achievement, depends on the system and process involved. An 

effort can be the expenditure of any resource, such as (mechanical or biological) energy, time, 

information, money, and even very abstract things such as spiritual, mental or mindful 

activities. Similarly, an achievement can be anything a living system desires to carry out or to 

obtain with effort, such as food, income, wealth, information, education, garment, pleasure, 

honor, city population, firm size, frequency of words, and so forth (further explanation is given 

below). Obviously, it is very difficult to use a single general mathematical formula for 

quantifying these quantities, some of which are even non quantifiable, such as pleasure, honor, 

mental effort etc. this difficulty of defining effort and achievement is, in our opinion, the main 

obstacle to the application of PLE using variational calculus minimizing effort.  

 It was this difficulty which led us to the idea of implementing PLE using an equivalent 

variational calculus referred to as principle of maximum efficiency (PME) to derive the Zipf 

and the Pareto laws [14]. PME can be regarded as a consequence of PLE for the following 

reasons. PLE implies either minimization of effort for given achievement (buying a given 

amount of goods with minimum of money for instance)1 or maximization of achievement for a 

given effort (doing maximum of work for a given amount of time, for example). Both these two 

sides of PLE imply PME because the efficiency is defined as the ratio of achievement to effort. 

From these considerations, we can say that PLE and PME are two sides of the same mechanism. 

One of the advantages of PME is the possibility to define a functional to quantify the efficiency 

without using well-defined achievement and effort. The reader will see in the next section how 

this is possible [14]. 

When discussing the implementation of PLE for deriving power laws, it is worth mentioning 

the work of Mandelbrot [5] and Cancho et al [6] who defined functionals of effort from an 

informational point of view in order to derive the Zipf law for languages from PLE. However, 

                                                 

 

 
1 The principle of good enough is a very good example of PME and PLE : minimizing the effort for a given 

achievement that is good enough for the necessary needs. See [35] and references therein. 
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the expression of effort (cost) of [5] was proportional to the log (ln) of rank, and seemed an ad 

hoc proposition aimed at obtaining the Zipf power law from the variational calculus. Cancho et 

al [6] proposed a functional of effort proportional to the information communicated between 

speaker and listener. During communication however, the information transferred should be a 

product of the effort instead of the effort itself. The effort in this case should be process-

dependent2. In addition, the approaches of [5] and [6] are limited to language and cannot be 

applied to other living systems.  

It is also worth mentioning a series of constructive efforts to derive power laws by 

variational calculus within the frameworks of several generalized statistics including the non-

extensive statistics based on Thallis and Rényi entropies [7]-[10], κ-statistics [11], 

superstatistics and others [10][12]. The main idea here is to extend the Boltzmann-Gibbs 

statistical mechanics which has the conventional logarithmic entropy and exponential 

probability, to more general formalisms allowing the derivation of power law probability 

distributions by maximizing entropy [7]-[11] or by considering the effect of thermal fluctuation 

[12]. It is worth noticing that this development of statistics theory is mainly guided by the 

principle of maximum informational entropy [13], and not directly associated with PLE for 

living systems. 

3) The functional of efficiency and the Zipf and Pareto laws 

In order to apply PME, we must define a functional quantifying efficiency. The idea of our 

previous work is roughly the following: a living agent, or a system composed of living agents, 

can be regarded as an engine spending heat 𝑄 (effort/input) and providing mechanical work 𝑊 

(achievement/output) with an efficiency defined by  =
𝑊

𝑄
 [14]. As mentioned in the above 

section, the achievement 𝑊 can be anything the living agents desire to obtain or fulfill, such as 

food, income, wealth, city population, firm size, frequency of events and words, information 

and so forth. Similarly, the effort 𝑄 can be anything a living agent consumes in order to achieve 

what he desires, such as physical or mental effort, energy, time, materials, money, information, 

etc. Now, as discussed above, both W (achievement) and Q (effort) are difficult to be defined 

                                                 

 

 
2 If you are buying information, your effort is money. If you are searching for information in documents, your 

effort can be the time spent, and so on. Obviously, the quantity of information you obtain is not necessarily 

proportional to your effort. 
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quantitatively. We have to define the efficiency  =
𝑊

𝑄
 without using predefined W and Q. It 

sounds strange. But a solution does exist [14] and is summarized below. 

It is well known that the efficiency in thermodynamics is not an additive quantity. Suppose 

we have two Carnot engines A and B. The engine A absorbs an energy 𝑄1 from the hot heat 

bath 1, delivers a quantity of work 𝑊𝐴, and loses an energy 𝑄2 to the intermediate heat bath 2 

(𝑊𝐴 = 𝑄1 − 𝑄2 ), leading to the efficiency  (𝐴) =
𝑊𝐴

𝑄1
= 1 −

𝑄2

𝑄1
. The engine B absorbs an 

energy 𝑄2 from the heat bath 2, delivers a work 𝑊𝐵, and loses an energy 𝑄3 to a cold heat bath 

3 (𝑊𝐵 = 𝑄2 − 𝑄3 ), giving the efficiency (𝐵) =
𝑊𝐵

𝑄2
= 1 −

𝑄3

𝑄2
. The overall efficiency (𝐶) of 

the ensemble engine C composed of the two engines A and B (C=A+B) is defined by 

(𝐶) =
𝑊𝐴 + 𝑊𝐵

𝑄1
= 1 −

𝑄3

𝑄1
 

since the composite engine C absorbs 𝑄1 from the heat bath 1, loses 𝑄3 to the heat bath 3 and 

delivers a work 𝑊𝐶 = 𝑊𝐴 + 𝑊𝐵 = 𝑄1 − 𝑄3. It is straightforward to calculate 

(𝐶) = (𝐴) + (𝐵) − (𝐴)(𝐵). (1) 

Lord Kelvin rewrote Eq.(1) as 1 − (𝐶) = (1 − (𝐴))(1 − (𝐵)). This form of the efficiency 

nonadditivity helped Kelvin to discover the absolute temperature, which in turn led to the 

discovery of the second law of thermodynamics about 170 years ago3.  

Notice that the Carnot engine is an ideal machine functioning in reversible process without 

loss of energy. Real engines always lose energy by friction, vibration or thermal radiation in an 

irreversible process. A real engine cannot transform all the heat absorbed into work according 

to the ideal relationship 𝑄1 − 𝑄2 = 𝑊1. We can introduce in this case a loss coefficient a so 

that Eq.(1) becomes 

(𝐶) = (𝐴) + (𝐵) + 𝑎(𝐴)(𝐵). (2) 

or 1 + 𝑎(𝐶) = (1 + 𝑎(𝐴))(1 + 𝑎(𝐵)). The reversible case of the Carnot engine Eq.(1) is 

recovered when 𝑎 = −1.  

Now if a large number of real engines (living agents) functioning randomly altogether form 

a single big system, and all the agents in the ensemble are making efforts to achieve something 

                                                 

 

 
3 https://en.wikipedia.org/wiki/Second_law_of_thermodynamics  

https://en.wikipedia.org/wiki/Second_law_of_thermodynamics
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represented by a random variable 𝑋 having w discrete values 𝑥𝑖 with 𝑖 = 1,2, … 𝑤. The more of 

X they achieve, the larger is each 𝑥𝑖. This quantity X can be any achievement such as food, 

income, wealth, city population, frequency of events etc. as mentioned in the section 2. At 

equilibrium (or stationary) states of the whole systems, the agents are distributed over the whole 

range of 𝑋 (𝑥𝑖  for all i) with 𝑛𝑖  agents achieving the value 𝑥𝑖 . We have  ∑ 𝑛𝑖
𝑤
𝑛=1 = 𝑁. The 

probability 𝑝𝑖 of finding an agents achieving 𝑥𝑖 is  𝑝𝑖 =
𝑛𝑖

𝑁
 , with the normalization ∑ 𝑝𝑖

𝑤
𝑖=1 =

1. 

Due to the statistical nature of this model and the large number of agents distributed over 

all the values of X, it is reasonable to suppose that the total efficiency 
𝑖
 of the agents obtaining 

the value 𝑥𝑖  depends on the number 𝑛𝑖  where 
𝑖

= 𝑓(𝑛𝑖)  or 
𝑖

= 𝑓(𝑝𝑖) . The average 

efficiency  of the whole system reads   = ∑ 𝑝𝑖
𝑤
𝑖=1 

𝑖
. 

Now let us separate the whole ensemble of agents into two independent subsystems A and 

B, having the efficiency 
𝑘

(𝐴) and 
𝑗
(𝐵), respectively. The probability distribution of the 

agents in A is 𝑝𝑘(𝐴) and that in B is 𝑝𝑗(𝐵). The probability distribution 𝑝𝑘𝑗(𝐶) of the whole 

ensemble can be written as 

𝑝𝑘𝑗(𝐶) = 𝑝𝑘(𝐴)𝑝𝑗(𝐵)  (3) 

We choose Eq.(2) to describe the efficiency nonadditivity. This implies a total efficiency given 

by 


𝑘𝑗

(𝐶) = 
𝑘

(𝐴) + 
𝑗
(𝐵) + 𝑎

𝑘
(𝐴)

𝑗
(𝐵) (4) 

or (1 + 𝑎
𝑘𝑗

(𝐶)) = [1 + 𝑎
𝑘

(𝐴)] [1 + 𝑎
𝑗
(𝐵)].  

It can be proved (proof given in the section below) that Eq.(3) and Eq.(4) uniquely leads to 

(1 + 𝑎
𝑖
) = 𝑝𝑖

𝑏 or 
𝑖

=
𝑝𝑖

𝑏−1

𝑎
. The parameter b is related to a for the following reasons. First, 

due to the fact that the efficiency 
𝑖
 is positive and that 𝑝𝑖 is smaller than unity, 𝑏 should have 

opposite sign to 𝑎. Secondly, from Eq.(4), as 𝑎 → 0, the efficiency tends to the additive limit 


𝑖

→ 
𝑘

(𝐴) + 
𝑗
(𝐵). Taking into account Eq.(3), we expect the limit 

𝑖
→

𝑏ln𝑝𝑖

𝑎
→ −ln𝑝𝑖 , 

implying 𝑏 → −𝑎 for 𝑎 → 0. This implies a relationship 𝑏 = 𝑓(𝑎) with any odd function 𝑓(𝑎) 

obeying lim
𝑎→0

𝑓(𝑎)   → −𝑎. However, as can be seen in the variational calculus using  
𝑝𝑖

𝑏−1

𝑎
, only 

b will be associated with the power law distributions, a being absorbed in the normalization 

constant. Therefore, different relationships 𝑏 = 𝑓(𝑎) do not affect the power law derivation. 
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With no loss of generality, we choose the simplest relation  𝑏 = −𝑎. The average efficiency of 

the whole ensemble of N agents reads 

 = ∑ 𝑝𝑖𝑖

𝑤

𝑘=1
=

∑ 𝑝𝑖
1−𝑎 − 1

𝑎
 

(5) 

or  =
1−∑ 𝑝𝑖

1+𝑏

𝑏
 . The concave property of this formula is shown in Figure 1 for 𝑤 = 2 and 

several values of a in the interval 0 ≤ 𝑎 ≤ 1.   is a monotonically increasing function of a and 

concave in this domain with its extremum at  𝑝 =
1

2
.  becomes a constant independent of the 

probability distribution as 𝑎 → 1. But this case does not happen because a will be limited to 

0 < 𝑎 < 0.5 for mathematical reasons [14]. 

In our previous work [14], the efficiency Eq.(5) was maximized as an application of PLE. 

Since efficiency is defined as the ratio of achievement to effort, its maximum implies either 

maximization of achievement for given effort or minimization of effort for given achievement. 

So maximum efficiency must be associated with maximum achievement represented by the 

average 𝑋̅ = ∑ 𝑝𝑖𝑥𝑖. In other words, the maximum of  and the maximum of 𝑋̅ are mutually 

conditioned. So the functional 𝐿 =  + 𝑐𝑋̅ should be maximized in the calculus of variation 

𝛿( + 𝑐𝑋̅) = 0, where c is a positive multiplier. This calculus of PLE straightforwardly leads 

to the Pareto law [15] 𝑃(𝑋 > 𝑥) = (
𝑥𝑚

𝑥
)

𝛽

where X represents the achievement (income for 

example), 𝑃(𝑋 > 𝑥) the probability of finding a person with an income larger than the value x, 

𝑥𝑚 the smallest income and 𝛽 = −(
1

𝑏
+ 1)  =

1

𝑎
− 1 the constant characterizing the Pareto law.  

In the same way [14], we have derived the Zipf law 𝑥𝑟 =
𝑥1

𝑟𝛼 where 𝑟 is the rank of the 

achievement 𝑥𝑟  (frequency of words in a text for instance), 𝛼 = 𝑎𝛾  and 𝛾  is the constant 

characterizing the relationship between the derivative of the Pareto law 𝑝′(𝑋 > 𝑥) and the rank 

r of the value 𝑥 : 𝑝′(𝑋 > 𝑥) ∝ 𝑟𝛾. The reader is referred to [14] for the details of the variational 

calculus. 
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Figure 1. Variation of the efficiency as a function of the probability distribution over 

two states  𝑝1 = 𝑝, 𝑝2 = 1 − 𝑝 for several values of a in the interval  0 ≤ 𝑎 ≤ 1.   is 

a monotonically increasing function of a in this domain. It is concave with an 

extremum at  𝑝 =
1

2
.  

 

Following the universal character of PLE for all living systems and the starting hypothesis 

of this work that living agents can be considered as thermal engines, we hope that this approach 

is meaningful to most if not all living systems and systems used or driven by living agents. We 

can cite, among others, economic systems, linguistic systems, informational and social 

networks and so on, which are systems driven by the effort of human beings to achieve 

something. For example, in an economic system, income is the achievement 𝑋 people are trying 

to obtain with the effort. People will in general try to achieve more income with less effort, 

producing the Pareto law in the distribution of income [15]. In the linguistic systems, a similar 

thing happens. People try not to be garrulous (statistically, of course) and to express as much 

information as possible using as less words as possible. This behavior tends to increase the 

frequency of individual words in a text of a given number of words, as if increase of frequency 

of words was the thing people are looking for with effort. This produces the Zipf law of 

frequency-rank distribution [2][3].  

If we think about city populations in a society, people tend to move to large cities for many 

reasons, as if the increasing size of city was something they were trying to obtain with of course 
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10 

as little effort as possible. This produces the Zipf and Pareto laws of size distribution [4][16]. 

The last example we think worth mentioning concerns the informational networks where the 

Zipf and Pareto laws are a consequence of the rule of preferential attachment [17]. This rule is 

a typical behavior of least effort or of maximum efficiency in the quest for information. Its 

derivation from PLE will be discussed in a coming work [18]. 

We would like to remark that the Zipf and Pareto laws are often related to the Pareto 80/20 

rule4, or same rule with a slight different proportion (90/10 for instance), in the sense that this 

rule can be calculated from the Pareto law. The Pareto rule is easy to observe, it is an interesting 

illustration of the ubiquity of the Zipf and the Pareto laws, you can hardly ignore it even in daily 

life. For example, if you have a large number of phone numbers in your calling list, you can 

easily check that 80% (or even more) of your call are made to only 20% (or even less) of the 

phone numbers in that list. The same phenomenon occurs to your mailing list. If you have many 

friends, you can easily check that a small percentage (perhaps 10%) of them take up most 

(perhaps 90%) of your time spent with friends. Similar phenomena happen with the books you 

keep in your library, and your shoes and clothes. All these phenomena illustrate the ubiquity of 

the Zipf and the Pareto laws as well as of the underlying PLE.  

4) Uniqueness of the efficiency functional 

An important step of our application of PLE to derive power laws is to discover the 

efficiency functional Eq.(5) from the consideration of the independent probabilities of 

subsytems Eq.(3) and the nonadditive property Eq.(4) of efficiency. The efficiency functional 

was proposed in [14] in an intuitive way. It is very important to prove that Eq.(3) and Eq.(4) 

uniquely lead to Eq.(5). This uniqueness is a guarantee of the reliability of the efficiency 

functional as a measure of performance and a maximizable fundamental quantity to yield power 

laws. Below we provide a rigorous proof of the uniqueness of the efficiency functional of 

Eq.(5). 

The uniqueness of Eq.(5), or (1 + 𝑎
𝑖
) = 𝑝𝑖

𝑏, for given Eq.(3) and Eq.(4), can be proved 

by using the following lemma. 

Lemma:   

                                                 

 

 
4 https://en.wikipedia.org/wiki/Pareto_principle  

https://en.wikipedia.org/wiki/Pareto_principle
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If f  is a positive continuous function on the -algebra  𝐵(𝑅+)  satisfying the condition 

∀𝑥 ∈ ℝ+, ∀𝑦 ∈ ℝ+, 𝑓(𝑥𝑦) = 𝑓(𝑥)𝑓(𝑦), 

then there is 𝑎 > 0 such that ∀𝑥 ∈ ℝ+, 𝑓(𝑥) = 𝑥𝑎.  

Proof 

Let ∀𝑥 ∈ ℝ+, 𝑔(𝑥) = ln(𝑓(𝑒𝑥)) , 𝑔 being continuous on ℝ+.  

We have for every 𝑥 ∈ ℝ+𝑎𝑛𝑑 𝑦 ∈ ℝ+, the following relationship: 

𝑔(𝑥 + 𝑦) = ln(𝑓(𝑒𝑥+𝑦)) = ln(𝑓(𝑒𝑥 𝑒𝑦 ))= ln(𝑓(𝑒𝑥)𝑓( 𝑒𝑦)) following the hypothesis in the 

lemma. We get 𝑔(𝑥 + 𝑦) = 𝑔(𝑥) + 𝑔(𝑦). 

Consequently, ∀𝑛 ∈ ℕ∗, 𝑔(𝑛) = 𝑛𝑔(1), 𝑔(1) = 𝑔 (
1

𝑛
+ ⋯ +

1

𝑛
) = 𝑛𝑔 (

1

𝑛
), et 𝑔 (

1

𝑛
) =

𝑔(1)

𝑛
. 

Thus, ∀𝑝 ∈ ℕ∗, ∀𝑞 ∈ ℕ∗, 𝑔 (
𝑝

𝑞
) = 𝑔 (

1

𝑞
+ ⋯ +

1

𝑞
) = 𝑝𝑔 (

1

𝑞
) = 𝑝

𝑔(1)

𝑞
. 

Because for ∀𝑥 ∈ ℝ+, there is a sequence (𝑝𝑛, 𝑞𝑛) in ℕ∗ ×   ℕ∗, such that lim
𝑛→∞

𝑝𝑛

𝑞𝑛
= 𝑥. On the 

other hand, as 𝑔 is continuous in x, we can write 

lim
𝑛→∞

 𝑔(
𝑝𝑛

𝑞𝑛
) = 𝑔(𝑥) = lim

𝑛→∞
 𝑝𝑛 (

𝑔(1)

𝑞𝑛
) = 𝑥𝑔(1) 

Now, ∀𝑥 ∈ ℝ∗+,  let 𝑋 = ln 𝑥, this gives 

𝑓(𝑥) = 𝑓(𝑒𝑋) = 𝑒𝑔(𝑋) = 𝑒𝑋𝑔(1) = (𝑒𝑋)𝑔(1) = 𝑥𝑎, 

with 𝑎 = 𝑔(1). The uniqueness of the relation (1 + 𝑎
𝑖
) = 𝑝𝑖

𝑏 and of Eq.(5) is thus proven.  

5) Lesche stability of the efficiency functional 

Now let us look at a mathematical property of the efficiency functional Eq.(5) concerning 

its robustness against small variation in the probability distributions. The idea is the following: 

if a continuous function represents a physical quantity which is a function of some variables 

such as time, position, energy, probability distribution etc., the definition of the function is 

robust (or Lesche stable) if and only if the function undergoes smooth variation when the 

variables smoothly change due to the evolution of the system [19]. This robustness guarantees 

that the defined function is a valid and meaningful physical quantity. This condition has been 

used as a criterion to verify the robustness of several generalizations of entropy, information 

and statistical means. The conclusion is that not all continuous and concave functionals are 
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Lesche stable or robust against small variation of probability [19][20]. In what follows, we 

provide a proof of the robustness (Lesche stability) of the efficiency functional Eq.(5) to 

guarantee the efficiency functional as a valid and meaningful measure of performance. 

 

Definition. A Function 𝐶 defined on 𝐴 = ⋃ {𝑝 ∈ [0,1]𝑛, ∑ 𝑝𝑖
𝑛
𝑖=1 = 1}𝑛∈𝑵∗  is stable (robust) if 

𝐶 has the following property  

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑁 ∈ ℕ∗, ∀𝑝, 𝑝′ ∈ 𝐴 ∩ ℝ𝑁, such that ‖𝑝 − 𝑝′‖1 < 𝛿 ⇒ |
𝐶(𝑝)−𝐶(𝑝′)

𝐶𝑁,𝑚𝑎𝑥
| < 𝜀 

where 𝐶𝑁,𝑚𝑎𝑥 is defined by 𝐶𝑁,𝑚𝑎𝑥 = max {|𝐶(𝑝)|, 𝑝 ∈ 𝐴 ∩ ℝ𝑁}. 

 

Proposition.  

For all 𝑎 ∈ ]0,1[, the efficiency  𝑝 ⟼ 𝐸(𝑝) given by Eq.(5) is stable. 

To establish the proof of this proposition, we need the following lemmas. 

 

Lemma 1. 

Let 𝑎 ∈]0,1[,  𝑁 ∈ ℕ∗, 𝑝 = (𝑝𝑖),  𝑝′ = (𝑝𝑖
′) ∈ [0,1]𝑁. We have 

∑ |𝑝𝑖
1−𝑎 − (𝑝𝑖

′)
1−𝑎

|

𝑁

𝑖=1

≤ 𝑁𝑎(‖𝑝 − 𝑝′‖1)1−𝑎 

Proof: 

Suppose 𝑝 ≠ 𝑝′; let 

𝐼1 = {𝑖 ∈ {1, ⋯ , 𝑁}, 𝑝𝑖
′ < 𝑝𝑖} and  𝐼2 = {𝑖 ∈ {1, ⋯ , 𝑁}, 𝑝𝑖 < 𝑝𝑖

′}. 

We have 𝐼1 ≠ ∅, 𝐼2 ≠ ∅,  and for all 𝑖 ∈ 𝐼1,  

1 = (
𝑝𝑖

′

𝑝𝑖
) + (1 −

𝑝𝑖
′

𝑝𝑖
) ≤ (

𝑝𝑖
′

𝑝𝑖
)

1−𝑎

+ (1 −
𝑝𝑖

′

𝑝𝑖
)

1−𝑎

= (
𝑝𝑖

′

𝑝𝑖
)

1−𝑎

+ |1 −
𝑝𝑖

′

𝑝𝑖
|
1−𝑎

. 

We can deduce (𝑝𝑖)
1−𝑎 − (𝑝𝑖

′)1−𝑎 ≤ |𝑝𝑖 − 𝑝𝑖
′|𝛼1−𝑎 . By symmetry, we also get (𝑝𝑖

′)
1−𝑎

−

(𝑝𝑖)
1−𝑎 ≤ |𝑝𝑖 − 𝑝𝑖

′ |
1−𝑎

 for all 𝑖 ∈ 𝐼2. 

It can be concluded that for 𝑖 ∈ {1, ⋯ , 𝑁}, |(𝑝𝑖)
1−𝑎 − (𝑝𝑖

′)
1−𝑎

| ≤ |𝑝𝑖 − 𝑝𝑖
′ |

1−𝑎
.  

 

Now, we write ∑ |(𝑝𝑖)
1−𝑎 − (𝑝𝑖

′)1−𝑎|𝑁
𝑖=1 ≤ ∑ |𝑝𝑖 − 𝑝𝑖

′|1−𝑎𝑁
𝑖=1 = ∑ 1 × |𝑝𝑖 − 𝑝𝑖

′|1−𝑎𝑁
𝑖=1 . 

Considering Holder’s Inequality (because 1 = 𝑎 + (1 − 𝑎) =
1

1/𝑎
+

1

1/(1−𝑎)
), we obtain 

 

∑ 1 × |𝑝𝑖 − 𝑝𝑖
′ |

1−𝑎
𝑁

𝑖=1

≤ (∑ 1
1

𝑎

𝑁

𝑖=1

)

𝑎

(∑ (|𝑝𝑖 − 𝑝𝑖
′ |

1−𝑎
)

1

1−𝑎

𝑁

𝑖=1

)

1−𝑎

≤ 𝑁𝑎 (∑|𝑝𝑖 − 𝑝𝑖
′ |

𝑁

𝑖=1

)

1−𝑎

= 𝑁𝑎(‖𝑝 − 𝑝′‖1)1−𝑎
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Lemma 2. 

For all 𝑎 ∈ ]0,1[, the function 𝑥 ↦
𝑥𝑎

|1−𝑥𝑎|
 is bounded on [2, +∞[ by 𝑀 > 0. 

Indeed if 𝑎 ∈ ]0,1[, the function 𝑥 ↦
𝑥𝑎

|1−𝑥𝑎|
 is continuous on [2, +∞[  and has 𝑙𝑖𝑚

𝑥→+∞

𝑥𝑎

|1−𝑥𝑎|
=

1. 

 

Proof of the proposition. 

Using the Lagrange multiplier method, we prove that: 

𝐸𝑁,𝑚𝑎𝑥 = 𝐸((1/𝑁), ⋯ , (1/𝑁)) =
|1−𝑁𝑎|

𝑎
. 

Let 𝜀 > 0 , there exists 𝛿 = (
𝜀

𝑀
)

1/(1−𝑎)

> 0 , such that for all 𝑁 ∈ 𝑵∗ \{1} , 𝑝, 𝑝′ ∈ 𝐴 ∩ ℝ𝑁 , 

‖𝑝 − 𝑝′‖1 < 𝛿 implies 
 

|
𝐸(𝑝) − 𝐸(𝑝′)

𝐸𝑁,𝑚𝑎𝑥
| =

|∑ (𝑝𝑖
1−𝑎 − (𝑝𝑖

′)
1−𝑎

)𝑁
𝑖=1 |

|1 − 𝑁𝑎|

≤
∑ |𝑝𝑖

1−𝑎 − (𝑝𝑖
′)

1−𝑎
|𝑁

𝑖=1

|1 − 𝑁𝑎|

≤
𝑁𝑎(∑ |𝑝𝑖 − 𝑝𝑖

′ |𝑁
𝑖=1 )

1−𝑎

|1 − 𝑁𝑎|
 

=
𝑁𝑎(‖𝑝 − 𝑝′‖1)1−𝑎

|1 − 𝑁𝑎|

< 𝑀𝛿1−𝑎 = 𝜀

 

 

The above proposition is thus proved, meaning that the definition Eq.(5) of the efficiency is 

robust and Lesche stable against small variations or perturbations of the probability. As 

mentioned above, this is a basic guarantee for this functional to be a valid physical quantity and 

a reliable measure of efficiency for the application of PLE and for the metric of performance. 

6) Negative ZP efficiency? 

In the work [14], the efficiency functional Eq.(5) was supposed to be positive in the case of 

discrete distribution. Negative efficiency in thermodynamics would mean an engine absorbing 

heat but doing negative work (consuming work), which is not meaningful from the viewpoint 

of physics. This positivity is guaranteed by Eq.(5) only if X is a discrete variable. Now if X 

becomes continuous with a continuous probability distribution 𝜌(𝑥), Eq.(5) becomes 

 = ∫
𝜌(𝑥)1−𝑎 − 1

𝑎

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

𝑑𝑥 
(6) 
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Negative efficiency turns out to be possible depending on the distribution (see below). This 

may not be possible for a thermal engine, but may make sense in many domains outside physics 

if the achievement is negative. In economics for example, if a person or a company is indebted 

during a given period, negative efficiency is useful to describe the reality. The analysis below 

allowing negative efficiency is motivated by this consideration.  

 

Figure 2. Evolution of the efficiency of Eq.(6) calculated for Pareto’s distribution in 

the interval 0 < 𝑎 < 0.5 or ∞ < 𝛽 < 1.  diverges for a=0.5 ( 𝛽 = 1) and a=0 ( 

𝛽 = ∞ ).  = 0  for  𝑎 = 0.1945  or 𝛽 = 4.14 , and  < 0  in the range 0 < 𝑎 <

0.1945 or 4.14 < 𝛽 < ∞.  

 

As shown in [14], the PLE implies the maximization of the efficiency Eq.(6), which leads 

to Pareto’s law  

𝑃(𝑋 > 𝑥) = (
𝑥𝑚

𝑥
)

𝛽

 
(7) 

where 𝑃(𝑋 > 𝑥) is the probability of finding a person with income larger than a value x, 𝑥𝑚 is 

the smallest income and 𝛽 =
1

𝑎
− 1 is a positive constant characterizing the distribution. We 

have  0 < 𝑎 < 1 and 0 < 𝛽 < ∞. With this distribution, the efficiency Eq.(6) can be calculated 

with the Pareto probability density distribution (PDF) 𝜌(𝑥) =
𝛽

𝑥𝛽+1 where we suppose 𝑥𝑚 = 1 

and 𝑥𝑚𝑎𝑥 = ∞  for simplicity. The result reads  =
1

𝑎
[(

𝑎

1−𝑎
)

𝑎 1−𝑎

1−2𝑎
− 1] = (𝛽 + 1)[𝛽

−
1

𝛽+1 ⋅
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𝛽

𝛽−1
− 1]  which is referred to as Zipf and Pareto (ZP) efficiency and plotted in Figure 2 for  

0 < 𝑎 < 0.5. We have excluded 0.5 < 𝑎 < 1 due to the divergent mean of 𝑥 [14].  

The ZP efficiency  increases with increasing a or decreasing 𝛽, and diverges for a=0.5 ( 

𝛽 = 1) and a=0 ( 𝛽 = ∞).  = 0 for 𝑎 = 0.1945 or 𝛽 = 4.14.  < 0 for 0 < 𝑎 < 0.1945 or 

4.14 < 𝛽 < ∞. The increase of ZP efficiency with decreasing 𝛽  (or increasing a) is quite 

natural because, considering the Pareto PDF 𝜌(𝑥) =
𝛽

𝑥𝛽+1 , decreasing 𝛽  implies increasing 

probability of large achievement 𝑥  and increasing global achievement represented by the 

average achievement 𝑥̅ =
1

1−1/𝛽
 . The divergence of the ZP efficiency and of 𝑥̅ at 𝛽 = 1 is of 

course due to the choice of the infinite upper limit of 𝑥 (𝑥𝑚𝑎𝑥 = ∞). If 𝑥𝑚𝑎𝑥 is finite, the ZP 

efficiency should be finite, but can be very large at 𝛽 = 1. 

7) Efficiency and inequality 

The relationship between efficiency and inequality is a hot topic in economics [21][22][23]. 

From a classical point of view, economic efficiency or growth is positively correlated with 

inequality. This belief comes from the idea that inequality is a source of incentive. Inequality 

is a motivator and can incite effort to raise income, invest, work hard, and innovate. Without 

opportunity, firms and individuals will reduce effort resulting in lower economic growth. The 

economic disaster in some former communist countries which carried out egalitarian 

experiments is an example of the failure of redistributive policies. The same reasoning makes 

sense in educational systems as well. Inequality in educational levels implies, at least 

statistically, opportunity to receive higher education, to attain more knowledge, higher social 

class, higher income, honor and accolades and so on. It is imaginable that if everybody in a 

population has the same educational level, the effort to achieve more education, more 

knowledge and skills will be reduced or even non-existent, leading to low efficiency marked 

by low production of knowledge and innovation. This incentive mechanism has its place in 

every system of living agents where effort is needed to obtain higher achievement.  

However, a question naturally arises as to what extent the incentive of inequality works as 

a driving force. It is not convincing to claim that an economic system is extremely efficient 

when only one person has all the wealth and the rest of the population has nothing. One cannot 

say that an educational system has maximal efficiency when only one person is very educated 

and the rest of the population has no education at all (corresponding to a Gini coefficient G=1 

[24]). The reality is much more complex than the role of inequality being a pure incentive . We 
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can get an idea about this complexity from a figure of the evolution of Gini coefficients after 

World War II available on a website [24]. In this figure, we see many countries (USA, China, 

India, UK etc.) who experienced increasing inequality accompanied by long-term growth. On 

the other hand, we see obvious counterexamples with countries such as France, Germany, Japan 

etc. showing decreasing inequality coefficient during the period of long-term growth. The 

existence of different theories of economic growth is a reflection of the diversity of viewpoints 

in this domain [23][24].  

Actually, economic growth depends on so many non-economic or external factors like 

political and social stability, technological level and progress, human capital and so on, that 

sometimes the intrinsic factors such as incentive may be hidden, making it difficult to figure 

out how and to what degree the economic performance depends on the intrinsic factors. For this 

reason, it is of interest to study the behavior of the ZP efficiency in relation with the inequality 

measured by the Gini coefficient 𝐺. For a system obeying the Pareto law, the Gini coefficient 

reads 𝐺 =
1

2𝛽−1
. In Figure 3 we see a positive correlation between the ZP efficiency   and the 

Gini coefficient G.  becomes very large as 𝐺 → 1, which is the case of maximal inequality.   

decreases with decreasing 𝐺  and becomes negative when 𝐺  is smaller than a given value 

corresponding to the Pareto index 𝛽 = 4.14.  

Usually, the inequality G should be considered as an intrinsic property of the system of 

interest [21]-[24]. So from the positive correlation between the ZP efficiency and the inequality, 

we can say that the ZP efficiency should be regarded as an intrinsic property of the system. This 

implies that its behavior in Figure 2 and Figure 3 is an intrinsic behavior of the system of interest 

without the influences of the external factors. We would say that this attribute of the ZP 

efficiency is quite natural because this efficiency is derived from the pure mathematical 

property of nonadditivity Eq.(4), which is a system-independent property of any ratio between 

output/achievement and input/effort [27]. This insight into the ZP efficiency is important for it 

to be used as a general metric of performance. To our eyes, this intrinsic and system-

independent attribute of the ZP efficiency is a guarantee of its reliability as a general measure 

of performance. Despite its pure mathematical character, it should be able to reflect, indirectly, 

the complexity of the interaction and interplay among the intrinsic and extrinsic factors in a 

complex system when it is calculated from the knowledge of the probability distribution laws 

of the achievement X. These laws, derived from empirical investigation or numerical 

simulation, carry important information about the functioning of the system. Having said this, 

we agree that the question whether the ZP efficiency can be used as a practical metric of 
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performance should be investigated further, with the help of empirical data as well as numerical 

simulation. 

 

 
 

Figure 3. Variation of the ZP efficiency   as a function of the Gini coefficient G indicating 

inequality (G=0 and G=1 implies absolute equality and maximum inequality, respectively).    

becomes negative in the interval 0 < 𝐺 < 0.14 corresponding to 0 < 𝑎 < 0.1945 or 4.14 <

𝛽 < ∞, and very large when 𝐺 → 1 (maximum inequality). 

 

8) Relationship with some entropies 

In order to get more insight into the efficiency Eq.(5) or (6), it is of interest to compare it to 

the informational entropy of the same probability distribution laws as used in the calculation of 

the efficiency. This informational entropy is another important quantity characterizing the state 

of the systems concerning the uncertainty or disorder in its distribution of achievement. In what 

follows, we present the results using a generalized uncertainty measure called varentropy 

[25][26]. It is worth mentioning that many widely used entropy formulas, including the 

Shannon entropy, are not suitable for continuous probability distribution for several 

mathematical reasons widely discussed in [29][31][32][33]. One of these reasons is the problem 

of negative entropy (see [29][34] and references therein). There are some solutions using for 

example Kullback-Leisler relative entropy proposed in [29][31][32][33]. But the measure of 

the absolute uncertainty of continuous probability distribution, in the same way as for discrete 

probability, is still a topic of discussion. We propose a pathway here using varentropy to 
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measure probabilistic uncertainty.  Varentropy is defined by mimicking the variational form of 

the entropy of the second law of thermodynamics [25]. This is a definition from scratch without 

any prerequisite or postulate on the property of entropy. The motivations was to seek an 

uncertainty measure that is maximal or maximizable for any probability distribution. Although 

𝑆𝐵𝑆 has been widely used as a universal uncertainty measure for any probability distribution, it 

is maximizable only for exponential and uniform distribution [25][30]. In other words, the 

outcome of its maximization by the calculus of variation is only the exponential distribution or 

the uniform distribution. This fact was especially noticed during the development of several 

generalized statistics based on the principle of maximum entropy [8]-[12]. During this 

development, many informational entropy formulas were proposed, each one being maximized 

by a specific probability distribution. A question was thus raised [25][30] about whether it was 

possible to define a general informational entropy (or measure of uncertainty) from the point of 

view of physics that can be maximized to yield any probability distribution. In other words, it 

should be just 𝑆𝐵𝑆 maximized by exponential distribution, and other known entropies which are 

maximized by their own probability distributions, respectively [25][26][28][30].  

Such a generalized measure does exist [25]. It is given by 𝛿𝑆𝑉 = 𝐴(𝛿𝑥̅ − 𝛿𝑥̅̅ ̅) =

𝐴 ∫ 𝑥 𝛿𝜌(𝑥)𝑑𝑥 for a continuous distribution 𝜌(𝑥), where 𝑆𝑉 is the uncertainty measure named 

varentropy,  𝑥̅ is the mean of the random variable 𝑥, 𝛿𝑥̅̅ ̅ is the mean of a small variation of 𝑥, 

and A is a constant determining the dimension and the sign of the uncertainty measure. When 

the variable x is energy E of a thermodynamic system, we have 𝛿𝑆𝑉 = 𝐴(𝛿𝐸̅ − 𝛿𝐸̅̅̅̅ ) =
1

𝑇
(𝛿𝑈 −

𝛿𝑊) , where 𝐴 =
1

𝑇
 the inverse temperature, 𝐸̅ = 𝑈  the internal energy, 𝛿𝑊 = 𝛿𝐸̅̅̅̅  is the 

external work and 𝑆𝑉  is just the entropy of the second law of thermodynamics. The 

maximization of 𝑆𝑉 is then a natural consequence of the second law of thermodynamics. This 

entropy turns out to be equivalent to a generalized entropy defined in [30] on the basis of the 

principle of maximum entropy. It has been shown that, for discrete probability, varentropy is 

just the Shannon entropy maximized by exponential distribution, the Tsallis (or Renyi) entropy 

maximized by q-exponential distribution, the power law entropy [25] maximized by the Zipf 

and Pareto laws, and many other entropy formulas maximized by their own probability 

distributions, respectively. The reader is referred to [25][26][28][30] for more details about 

these entropies and their probability distributions. 

It is worth mentioning that, for several probability distributions different from the 

exponential distribution, varentropy is always larger than the Shannon entropy. An example is 
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in Figure 4 below where the varentropy maximized by Pareto law is shown to be equal to or 

larger than the Shannon like informational entropy (maximized by the exponential distribution) 

calculated for the same power law. Another example was given for a double power law in [28]. 

Actually, varentropy is expected to be larger than (or equal to) the Shannon entropy for any 

probability distribution different from the exponential one, because varentropy is always 

maximized for whatever distribution but Shannon entropy is only maximized by the exponential 

distribution. In this sense, varentropy is a more optimal metric of probabilistic uncertainty and 

disorder.  

In this work, we focus on another advantage of varentropy which allows avoiding negative 

entropy for continuous distributions. It is well known that Shannon entropy (and many others 

including the Tsallis and Renyi entropies) is by definition always positive for discrete 

distributions, but can become negative when applied to continuous distributions. Some 

examples of negative entropy given by the Shannon formula for the continuous exponential and 

power law distributions can be seen in [34] and references therein. 

Now let us look at the varentropy for continuous probability distributions. For the 

continuous exponential distribution  𝜌(𝑥) =
1

𝑍
𝑒−𝑥 where 𝑥 is a dimensionless variable and Z 

the normalization constant, we have, by definition, 𝛿𝑆𝑉 =  −𝐴 ∫ ln(𝑍𝜌) 𝛿𝜌𝑑𝑥 = −𝐴 ∫(ln 𝑍 +

ln 𝜌) 𝛿𝜌𝑑𝑥 = −𝐴𝛿 ∫ 𝜌 ln 𝜌 𝑑𝑥 = 𝛿[−𝐴 ∫ 𝜌(ln 𝜌 − ln 𝑚) 𝑑𝑥 ] where m(x) is some function 

satisfying ∫ 𝜌 ln 𝑚(𝑥) 𝑑𝑥 = 𝐶, where C is a constant with 𝛿𝐶 = 0. Let A=1, we obtain the 

continuous Boltzmann-Shannon like entropy denoted by 𝑆𝑉
𝐵𝑆 in keeping the index V to indicate 

its origin from varentropy: 

𝑆𝑉
𝐵𝑆 = − ∫ 𝜌 ln

𝜌

𝑚
𝑑𝑥 

(8) 

where m is the invariant measure similar to that introduced by Jaynes [29].  

The formula Eq.(8) can take another equivalent form if we keep the term lnZ in the above 

calculation, i.e. 𝛿𝑆𝑉
𝐵𝑆 = −𝐴 ∫(ln 𝑍 + ln 𝜌) 𝛿𝜌𝑑𝑥 = −𝐴𝛿 ∫ 𝜌(ln𝑍 + ln 𝜌) 𝑑𝑥 =

𝛿[−𝐴 ∫ 𝜌(ln(𝑍𝜌) − ln 𝑚) 𝑑𝑥] which implies 𝑆𝐵𝑆 = − ∫ 𝜌 ln
𝑍𝜌

𝑚
𝑑𝑥 (A=1).  

Eq.(8) can be used to measure the uncertainty in the Pareto distribution  𝜌(𝑥) =
𝛽

𝑥𝛽+1. It is 

easy to calculate from Eq.(8) : 𝑆𝑉
𝐵𝑆 = 1 +

1

𝛽
+ 𝐶. Let 𝐶 = −1, we get  

𝑆𝑉
𝐵𝑆 =

1

𝛽
=

𝑎

1 − 𝑎
≥ 0 

(9) 

which is plotted in Figure 4. 
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It is noteworthy that, as well known, 𝑆𝑉
𝐵𝑆  can be maximized to obtain uniform and 

exponential distributions. Hence, it is not at maximum for power law distributions. For a 

discrete power law 𝑝𝑖 =
1

𝑍
𝑥

𝑖

−
1

𝑏, the maximized entropy is  𝑆𝑉 =
∑ 𝑝𝑖

1−𝑏
𝑖 −1

1−𝑏
 which is positive and 

zero for non-probabilistic case [25]. This entropy looks like Tsallis entropy 𝑆𝑇 =
∑ 𝑝𝑖

𝑞
𝑖 −1

1−𝑞
 but is 

essentially different. 𝑆𝑇 is a generalized q-logarithmic entropy (while 𝑆𝑉 is not) and tends to 

Shannon entropy when 𝑞 → 1, but 𝑆𝑉 tends to zero for 𝑏 → 0 and diverges for 𝑏 → 1 [25].  

Now let us calculate the varentropy 𝑆𝑉
𝑃  for continuous power law distribution  𝜌(𝑥) =

1

𝑍
𝑥−

1

𝑏  directly from its definition : 𝛿𝑆𝑉
𝑃 =  𝐴 ∫(𝑍𝜌)−𝑏 𝛿𝜌𝑑𝑥 = 𝐴 ∫ 𝛿 (

𝑍−𝑏

1−𝑏
𝜌1−𝑏) 𝑑𝑥 =

𝛿{
𝐴

1−𝑏
∫(𝑍−𝑏𝜌1−𝑏 − 𝑚) 𝑑𝑥}}. Let 𝐴 = 1, this continuous varentropy reads 

𝑆𝑉
𝑃 = ∫ 𝜌

(𝑍𝜌)−𝑏 − 𝑚

1 − 𝑏
𝑑𝑥 

(10) 

where the function m is such that ∫ 𝜌𝑚(𝑥) 𝑑𝑥 = 𝐶 is a constant of the variation, i.e., 𝛿𝐶 = 0.  

For Pareto PDF 𝜌(𝑥) =
𝛽

𝑥𝛽+1, let 𝑍 =
1

𝛽
, 𝑏 =

1

𝛽+1
 in Eq.(12), we obtain 

𝑆𝑉
𝑃 =

∫ 𝛽
1

𝛽+1 ⋅ 𝜌
𝛽

𝛽+1𝑑𝑥
+∞

1
− 𝐶

𝛽

𝛽+1

=
𝛽 + 1

𝛽
(

𝛽

𝛽 − 1
− 𝐶). 

(11) 

Let 𝐶 = 1, we obtain a positive varentropy  

𝑆𝑉
𝑃 =

𝛽 + 1

𝛽(𝛽 − 1)
≥ 0 

(12) 

This continuous varentropy of the Pareto distribution is plotted in Figure 4 in comparison with 

the ZP efficiency  and the continuous 𝑆𝑉
𝐵𝑆 =

1

𝛽
=

𝑎

1−𝑎
 calculated from the Pareto distribution. 

We observe that the efficiency is positively correlated to entropy as a measure of dynamical 

uncertainty or disorder. We also noticed that 𝑆𝑉
𝑃 is always larger than 𝑆𝑉

𝐵𝑆, which is expected 

because 𝑆𝑉
𝑃  is the varentropy maximized by the power law itself, so it is more optimal in 

measuring the power law uncertainty than 𝑆𝑉
𝐵𝑆  which is only optimal or maximized for 

exponential distributions. 

By the way, this result also reveals a positive correlation between inequality and dynamic 

disorder, implying that larger inequality occurs with larger uncertainty or disorder in the 

probability distribution of achievement. The full understanding of this correlation needs further 

investigation.  



   

 

 

 

 

 

21 

 

 

Figure 4. Evolution of ZP efficiency  = (𝛽 + 1)[𝛽
−

1

𝛽+1 ⋅
𝛽

𝛽−1
− 1] compared to the 

continuous 𝑆𝑉
𝐵𝑆 =

1

𝛽
=

𝑎

1−𝑎
 and 𝑆𝑉

𝑃 =
𝛽+1

𝛽(𝛽−1)
. Both entropies increase from zero with 

increasing a or decreasing  𝛽 in the intervals 0 < 𝑎 < 0.5 or 1 < 𝛽 < ∞. So they 

have positive correlation with the ZP efficiency. However, at 𝑎 → 0.5 or 𝛽 → 1, 𝑆𝑉
𝐵𝑆 is 

finite and 𝑆𝑉
𝑃 tends to infinity. So 𝑆𝑉

𝑃 is closer to   than 𝑆𝑉
𝐵𝑆. Notice that 𝑆𝑉

𝑃 ≥ 𝑆𝑉
𝐵𝑆 as 

expected. 

 

9) Conclusion 

In this paper, an efficiency functional used in the derivation of the Zipf and Pareto laws 

from the principle of least effort has been investigated in order to get further insight into its 

mathematical properties and its potential as a general measure of performance. We have proved 

that this efficiency functional is the correct one and that it is unique under the condition of the 

nonadditivity of efficiency of thermodynamics. We have also provided a proof of its robustness 

against small variations of probability. These two mathematical properties of the efficiency 

functional guarantee its validity and reliability as a measure of performance and an origin of 

the power laws of complex living systems.  

The behavior of this efficiency has been studied for the Pareto distribution and compared to 

the Gini coefficient (inequality) and probabilistic uncertainty measured by a generalized 
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informational entropy called varentropy. Varentropy is an optimal measure of probabilistic 

uncertainty and allows us to avoid negative value of uncertainty measure. We have shown that 

the value of the efficiency increases with decreasing index 𝜷 of the Pareto law, implying that 

the efficiency is positively correlated with the statistical mean of the achievement. This result 

confirms the usefulness of the efficiency functional as a metric of performance. 

It has also been shown that the Zipf-Pareto efficiency is positively correlated with the Gini 

coefficient and probabilistic uncertainty (entropy). To put it differently, the Zipf-Pareto 

efficiency increases with increasing inequality and probabilistic uncertainty in the system of 

interest. This result also implies that inequality has a positive correlation with the probabilistic 

uncertainty (disorder). In other words, the inequality increases with increasing disorder in the 

system. 

As mentioned above, the objective of this work is, after the previous work using the 

efficiency functional to derive the Zipf and the Pareto laws from PLE, to investigate this 

functional from a mathematical point of view in order to better understand it as a metric of 

performance of the systems showing the Zipf and the Pareto laws. The present work has 

confirmed the usefulness of this efficiency for these systems. Nevertheless, the question 

whether or not this efficiency can be a useful measure of performance for other systems showing 

more complicated distribution laws is still open. This question is related to another open 

question which is whether it is possible to derive more complicated distribution laws from the 

principle of least effort. Further work is in progress in this direction. 

The principle of least effort really seems a universal fundamental rule for the world of the 

living according to the analysis of Ferrero who thought that the origin of this rule was the laws 

of inertia in physical and chemical motions [1]. It is true that a living agent should always try 

to economize its energy, to achieve more by doing less, or to achieve the necessary things by 

doing the minimum (see principle of good enough [35] for example). This is even a necessary 

condition for its survival and for the existence of its species. Our question is how far we can go 

with this universal principle in the study of the behaviors, the empirical laws, the past and the 

future of the living world. 

 

Data availability 

The data that support the findings of this study are available from the corresponding author 

upon reasonable request.  
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