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Economic Scenario Generators: a risk management tool for
insurance

Pierre-Edouard Arrouy2, Alexandre Boumezoued2, Bernard Lapeyre1 and Sophian Mehalla1,2

1CERMICS and 2Milliman R&D∗

May 18, 2022

Abstract We present a risk management tool, named Economic Scenario Generator (ESG),
used by insurance companies for simulating the global state of one or several economies described
by key financial risk drivers. This tool is of particular use within the Solvency II framework,
since insurance companies are required to value their balance-sheet from a market-consistent
viewpoint. However, there is no observable price of insurance contracts hence the necessity of
relying on ESGs to perform Monte Carlo simulations useful for valuation. As such, the calibra-
tion of Risk-Neutral models underlying this valuation is of particular interest as there is a strong
requirement to match observable market prices. Furthermore, for a variety of applications, the
insurance company has to value its balance-sheet over a set of different economic conditions,
leading to the need of intensive re-calibrations of such models. In this paper, we first provide an
overview of the key requirements from Solvency II and their practical implications for insurance
valuation. We then describe the different use cases of ESGs. A particular attention is paid
to Risk-Neutral interest rates models, specifically the Libor Market Model with a stochastic
volatility. We discuss the complexity of its calibration and describe fast calibration methods
based on approximations and expansions of the probability density function. Comparisons with
more common method highlight the reduction in calibration time.

∗https://fr.milliman.com/fr-fr/insurance/research-and-development
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1 Introduction
The insurance activity is basically the management of a large class of risks: natural, biometric,
human behavior, financial, etc. The contracts issued by the insurers aim at transferring the
risk from the policyholder to the insurance company in exchange of the payment of a risk
premium. The amount of the risk premium to be paid depends on a number of parameters: the
policyholder (age, health, etc.), the risks that are involved in the contract and in the strategy
of the insurance company to back this contract. The guarantees and options embedded in the
contracts are such that the pricing of the contracts is a complex task. As in bank industry,
stochastic simulations of risks drivers constitute a common method to do so.

Regarding the financial risk in particular, the type of models that are used are similar to
those used in bank industry. This is a quite recent choice mainly motivated by the legislation in
Solvency II. It originated after the 2008 financial crisis and it has been thought to consolidate
the insurance sector. Among models used to simulate financial risk drivers, those dedicated
to interet-rates have reached a significant degree of complexity. Notably, the quite common
model named Displaced Diffusion with Stochastic Volatility LIBOR Market Model (DDSVLMM)
has focused the attention of practitioners. In particular, the significant time required by its
calibration was a problem in practice.

The purpose of this paper is to explain why and how stochastic simulations are central
for insurance undertakings to pursue their activity. In particular, simulations of financial risk
drivers are realized by Economic Scenario Generators that are tools designed especially for
insurance needs. We present this tool and some regulatory elements in Section 2. In Section 3,
we present some recent works related to the speeding of the calibration of DDSVLMM.

2 Economic Scenario Generators
Insurance is an old activity that basically consists in managing the different kinds of risks the
economic agents are exposed to. Insurance policies are designed to protect either individuals or
estates and are at the centre of modern economies. The high technicality of economies of more
economically developed countries require the insurers to be able to face a large variety of risks.
In particular, those economies are mainly driven by macroeconomic aggregates and financial
quantities: the financial risk arises as a key element for activity of companies. Indeed, the
backing of life-insurance contracts is composed of financial derivatives explaining why insurers
are exposed to market risk.

For risk management, strategic guidance, regulatory compliance, sensitivities computations
or valuations of policies, the Economic Scenario Generators (ESGs) recently emerged as a
must-have tool for insurers. Following [PCC+16], an ESG can be defined as «a computer-based
model of an economic environment that is used to produce simulations of the joint behaviour of
financial market values and economic variables.» An ESG comprises several models, dependent
on one another, each one being dedicated to the modelling of economic quantities that reflect
different risks. Current ESGs can account for interest rates risk, equity risk, credit risk, real
estate risk and foreign exchange risk. Note that the very nature of insurance policies embedding
optional guarantees of relative long life enlightens why movement in interest rates curve has
predominant impact on the whole activity of insurers. Moreover, a major part of the financial
instruments used for backing life-insurance contracts is bonds (Sovereign or Corporate), possibly
Zero-Coupon and other interest rates derivatives. Before discussing the design of an ESG in
Section 2.4, we provide in Sections 2.1, 2.2 and 2.3 a non-exhaustive list of the main uses of
ESGs in insurance.
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2.1 Technical provisions
Technical provisions (TPs) represent the economic value of the commitments of the insurer
written in the contracts that have been issued by the company. Due to the variety of risks
faced by insurers and their imbrications, this quantity is hard to calculate. Risks associated
to contracts that may be perfectly replicated by a portfolio composed of financial instruments
could be valued using the value of this portfolio and in that case, TPs equal the market value
of the replicating portfolio. However, most of the insurance contracts can not be perfectly
replicated and the assessment of the associated economic value of the liabilities is a complex
task therefore a number of approximations are necessary to be able to obtain a value. To do so,
simulations of the risk drivers are employed to mimic the behavior of the assets and liabilities
of the insurance company.

Such liabilities are valued using a Best Estimate (BE) approach (see the dedicated paragraph
below). On top of that, a Risk Margin (RM) is added to the BE as a prudential stock accounting
for the non-replicability of some insurance risks:

Technical Provisions = Best Estimate + Risk Margin.

The Best Estimate: it is defined in [Dir09] as «the probability-weighted average of future
cash-flows, taking into account of the time value of money (expected present value of future
cash-flows), using the relevant risk-free interest rate term structure. The calculation of the
best estimate shall be based upon up-to-date and credible information and realistic assumptions
and be performed using adequate, applicable and relevant actuarial and statistical methods».
Mentioned cash-flows come from all kinds of risks faced by insurers. They can be split in two
categories: financial risks that can be replicated and non-financial ones that are non-hedgeable.
In formulas, the BE (also sometimes referred to as BEL standing for Best Estimate of Liabilities)
expresses as

BE = EP⊗Q

∑
n≥1

D(0, n)CFn

 (1)

where (D(0, n))n≥1 are discounting factors associated to risk-free term structure, Q is the stan-
dard Risk-Neutral probability measure associated to financial risks ( usually chosen as being
the probability measure whose numéraire is the value of the ”money market account”), P is
the historical probability measure used for other risks (behaviour of policyholders, mortality,
longevity, etc.) and CFn is the cash-flow delivered at time n ≥ 1 for the n-th period. In practice,
the BE is estimated through a Monte-Carlo approach using simulations of future cash-flows:

BE = lim
L→∞

1

L

L∑
l=1

N∑
n=1

D(l)(0, n)CF(l)
n .

For a given simulation l, the sequence (CF(l)
n )1≤n≤N comprises cash-in and and out-flows so

that they can be decomposed as CF(l)
n = CF(l),out

n − CF(l),in
n at any time n ≥ 1. Practitioners

use Assets Liability Management (ALM) models to compute sequences of cash-flows: those are
complex models that take as inputs simulated paths of the state of the world and appreciate
the interactions between assets and liabilities of the company through the optional guarantees
carried out in the insurance policies issued by the company. The paths on which the com-
putations of cash-flows are based are either built from historical data (mortality or longevity
tables) or generated by mathematical models gathered in ESGs. Among them, those dedicated
to market risk are coming from bank industry: they are calibrated to market data so that the
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BE depends on late economic condition. Note also that the computation of the BE allows to
integrate national politics scheme as those models include operative accounting rules in each
country.

The interest rates play a particular role in the computation of Best Estimate. It can be
directly seen in the definition (1) as the sequence of discount factors only depends on interest
rates. The joint distribution of interest rates and other risk factors that intervene in the compu-
tation of cash-flows is thus key to compute the BE. Moreover, among the risk factors themselves
the interest rates are prominent as noted in [BGK17] and [Eio14]: 72.1% of the assets portfolio
are composed of bonds (31.6% sovereign and 40.5% corporate) for the representative portfolio
of the Euro zone and 72.3% (29.1% sovereign and 43.2% corporate) in France1.

Risk Margin: «[it] shall be such as to ensure that the value of the technical provisions is
equivalent to the amount that insurance and reinsurance undertakings would be expected to require
in order to take over and meet the insurance and reinsurance obligations.» following [Dir09].
Alternatively, and following [uni09] or [CN+14], «risk margin shall be calculated by determining
the cost of providing an amount of eligible own funds equal to the Solvency Capital Requirement
necessary to support the insurance and reinsurance obligations over the lifetime thereof.». The
RM adds up to the BE to take into account the non-replicability of most of insurer’s liabilities.
The act states that «(...) the risk margin shall be calculated by determining the cost of providing
an amount of eligible own funds equal to the Solvency Capital Requirement necessary to support
the insurance and reinsurance obligations over the lifetime thereof.» Alternatively, it can be
interpreted as the amount the shareholders will have to invest in the company during the years
to come to allow the company to pursue its activity in respect of the legislation.

In formulas,
RM = rCoC

∑
t≥1

P (0, t)SCRt (2)

where rCoC is the Cost-of-Capital rate, SCRt is the Solvency Capital Requirement at time t
whose definition will be detailed below and P (0, t) is the Zero-Coupon bond that is the spot
value of one unit of currency delivered at time t and valued using risk-free rate curve. Note that
computation of SCRt as described in more details in the following paragraph is only permitted
for t = 1 since for t > 1, the exhaustive process would be too heavy computationally speaking.
A number of approximations are then necessary. The rate rCoC stands for the cost a company
would endure for holding an eligible amount of own funds: it is determined by EIOPA and
currently set to 6% per year in the statutes.
Example 1. Let us draw from an example found in [BC16] of a Euro contract with a minimum
guaranteed rate and a profit sharing clause. Let us denote by rg the continuously compounded
minimum guaranteed rate, by rshare the profit sharing rate, by rfees the rate associated to fees, rd
is the effectively delivered rate to the policyholder, (rt)t≥0 is the risk-free short rate and by τred
the redemption date. To ensure the delivery of coupons to the policyholder, the insurer invests
policyholder’s deposit in a financial asset whose time-t value is denoted by A(t) associated with a
return rate rret(t) = ln

( A(t)
A(t−1)

)
. The successive rates of return are assumed to be independent.

The delivered rate is the maximum rate between the guaranteed rate and the net return rate of
the asset so that the discounted payoff of the considered product writes:

Payoff =
T−1∑
t=0

e−
∫ t
0 rsdsA(0)

(
1 + max

(
erg − 1, rshare(e

rret(t) − 1)− (erfees − 1)
))

.

1Data can be found following www.eiopa.europa.eu/content/eiopa-updates-representative-
portfolios-calculate-volatility-adjustments-solvency-ii-risk_en.
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This payoff depends thus on financial risk drivers that are involved in this contract –namely, the
equity and the risk-free rates. Simulations of those risks drivers allows to simulate the behaviour
of this payoff along each the generated paths and deduce the sequence of cash-flows delivered by
this contract in a number of generated states of the world.

2.2 Regulatory computations
An important aspect that motivates the use of mathematical based procedures in insurance
is the legislation. In particular, the Solvency II legislation that came into effect January 1st,
2016 was initiated after the 2008 financial crisis. It requires the insurer to hold a certain
quantity of cash during the lifetime of the insurer’s commitment to avoid lack of liquidity that
could lead a company to not be able to fulfil its commitments. This quantity is named the
Solvency Capital Requirement (SCR). It is part of the available cash of the company. The
whole amount of available cash forms what is named the Own Funds (OF) of the company and
is classified according to the degree of availability of the cash. The part of Own Funds that is
the «more available» (roughly speaking) is denoted NAV (Net Assets Value) is used to compute
the solvency ratio NAV/SCR. It is an economic indicator useful to deem the solvency of the
undertaking: when it is greater than one, the company is considered as being solvable at one
year, i.e. being able to fulfil its commitments in the year to come in 99.5% of the states of the
world.

Practically, a company endures an economic ruin when the net value of its assets becomes
non-positive. The SCR is defined as being the minimum amount the insurance must hold at the
date of evaluation so that the probability for the company to endure an economic ruin during
the next year is smaller than a 0.5% threshold:

SCR := inf{x ∈ R : P(NAV1 ≤ 0|NAV0 = x) ≤ 0.005}, (3)

where NAV0 is the value of the NAV at evaluation date and NAV1 is the random variable
representing the net assets value in one year. In practice, the SCR is generally computed as
a quantile on the one-year loss distribution through a Value-at-Risk (VaR). The one-year loss
valued at time t = 0 is the random quantity defined by L := NAV0−D(0, 1)NAV1. The SCR
may alternatively be defined as the 99.5%-quantile of L:

SCR = inf
x∈R

{
P
(
L ≤ x

)
≥ 0.995

}
= inf

x∈R

{
P
(
D(0, 1)NAV1 + (x− NAV0) ≤ 0

)
≤ 0.005

}
= NAV0 + inf

x∈R

{
P
(
D(0, 1)NAV1 + x ≤ 0

)
≤ 0.005

}
= NAV0 + VaR0.5%

(
D(0, 1)NAV1

)
= NAV0 − q0.5%

(
D(0, 1)NAV1

)
,

(4)

where the VaR associated to the random variable X at quantile λ ∈ [0, 1] is defined as
VaRλ(X) = infm∈R

{
P(X + m ≤ 0) ≤ λ

}
and is linked to the quantile function q as

VaRλ(X) = − supm′∈R

{
P(X < m′) ≤ λ

}
=: −qλ(X).

In practice, the determination of the distribution of NAV1 is delicate: the commitments
associated with all the contracts issued by the company should be valued. We have seen in
Example 1 - which is a relatively simple insurance contract - that the economic valuation of
insurance policies is complex for a single contract. Thus, at the level of the whole company, some
proxies are necessary to aggregate the value of all commitments. Under Solvency II, insurers
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can choose either to apply the Standard Formula or to develop an Internal Modelling approach
to determine the distribution of the one year loss and compute the SCR: the Standard Formula
is a formula provided by the regulator (EIOPA for Euro zone) that decomposes losses according
to each kind of risk the company is facing before aggregating them assuming a Gaussian copula
type dependency; the Internal modelling approach is a procedure developed by the company
itself to reflect the particularities of its portfolio. It is a long procedure, that has to be approved
by the regulator. This approach is intended to large companies as it requires significant human
resources.

Standard Formula
The computation of the SCR using the standard formula is built following the bottom-up ag-
gregating approach described in Figure 1. Elementary risks (interest rates, mortality, equity,
etc.) are gathered in different modulus: market, health, life, non-life, default. The modu-
lus «Intangible» accounts for the risks associated to intangible assets (comprising intellectual
properties, licenses, etc.).

Figure 1: Structure of the Standard Formula in Solvency II.

For each elementary risk (interest rates, equity, natural disasters, etc.), an economic capital
is computed: it represents the sensitivity of the balance sheet of the company with respect
to a marginal variation in the risk factor associated to the considered elementary risk. Note
that as defined in Solvency II, those marginal variations are coherent with historical shocks
of each risk factor occurring once every 200 years (99.5% of probability of occurrence under
historical measure probability). For instance, the economic capital associated to interest rates
is a valuation of the risk resulting from a sudden movement in the yield curve. Economic capital
is defined as being the difference between the central value of the NAV - obtained using current
state of risk factors - and the shocked value of the NAV - obtained when shocking the associated
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risk factor:
ECx = NAVCentral

x − NAVShocked
x

for x ∈ {interest rates, equity,mortality, · · · }. Sub-SCRs associated to each modulus are defined
by a first aggregation formula

SCRm =

√ ∑
(i,j)∈R2

m

ρmi,jECiECj ,

where Rm is the set of elementary risks in the modulus m and ρmi,j is the correlation between
elementary risks within modulus m. The correlation matrix (ρmi,j)(i,j)∈R2

m
is given by the regula-

tor. Secondly, the aggregation of the sub-SCRs is done in a similar fashion to get the so-called
Base SCR (BSCR):

BSCR =

√ ∑
(m,n)∈M2

ρMm,nSCRmSCRn,

where M is the set of all risks modulus and (ρMm,n)(m,n)∈M2 is the correlation matrix between
risks modulus, also published by the regulator. The BSCR defined this way does not take
into account the operational risks (human errors, system breakdowns, etc.) nor the ability for
the insurer to absorb a part of the loss by differing some taxes or by reducing the technical
provisions. The operational SCR, denoted by SCRop, and an adjustment are added to the
BSCR so that both phenomena are actually integrated in the final SCR:

SCR = BSCR + SCRop + Adj. (5)

Internal Model
Before going further we give a few insights on the Internal Model approach. The previous
standard formula is prescribed by the regulator, and thus does not take into account the speci-
ficities of the insurers portfolios. To compute their solvency requirements, undertakings can
alternatively establish their own methodology. Each step of the proposed methodology should
be submitted and justified to the regulatory authority, which makes its validation a very long
process and requires important human and operational resources.

The so-called ’nested simulations’ approach that underlies Internal Models (although not
widespread in practice) is the following (see [BRS12]): under Real-World measure, projections
of risk drivers are made over 1 year. At the end of it, calibrations of Risk-Neutral models are
performed on those projected economic environments. Simulations under Risk-Neutral measure
can then be achieved over the lifetime of the liabilities of the company (several decades). The
obtained Risk-Neutral paths are used to derive the distribution of the NAV and compute the
SCR as previously stated.

Other forms of Internal Models can be found, that rely on the calibration of a response
function based on a sample of points underlying the full distribution, see [FLCM16]. In all
cases, intensive recalibrations of Risk-Neutral models are generally required, as well as practical
alternatives based on simplifications.

2.3 Assets and Liabilities Management (ALM)
ALM modelling consists in the design of models reflecting the interactions between assets and
liabilities composing the balance sheet of a company. It should integrate the regulatory rules
that apply to the assets and liabilities management but also the particularity of the portfolio
of the company. ALM modelling has many goals.
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First, such models are used in a forward-looking approach in order to be able to deliver
promises as insurers can adapt their investments strategy based on the outputs of those models.
Second, they allow to generate the sequence of delivered cash-flows generated by the contracts
issued by the company which is necessary in the Best-Estimate computation (see Definition 1).

An ALM model is specific to the insurer who designed it as they heed the specific man-
agement rules of the company and its portfolio. In the literature, a quite simple ALM model
is proposed in [FLCM16] and allows to get some intuition about the management rules. More
recently, a more elaborated model has been set in [ACA20]. Some issues raised regarding ALM
modelling are discussed in [ABE+18]. Simplified ALM models are employed by practitioners to
realize some specific impact studies.

Simplified ALM model We provide below some illustrations coming from a simplified in-
surance cash-flows model. The latter forecasts the behaviour of the company’s portfolio along
with cash in and out flows generated by the issued contracts. The asset part is composed of
some available cash, risk-free bonds (issued at par), an equity index and a real estate index. On
liability side, and for simplicity, we consider only saving euro contracts with buypack option
(as introduced in Example 1 with a buypack clause), characterized by a minimum guaranteed
rate, a profit sharing rate, the age of the contract, the age of the policyholder and the initial
invested premium. The liabilities associated to such kind of contracts are projected in the ALM
model thanks to simulated economic paths along with a buypack rule and a mortality table.
We assume that the company does not issue new insurance contracts beyond the starting date
(the date at which the valuation is realized). Finally, let us mention that at each date, the
portfolio is updated to respect a prescribed asset allocation with possible purchases of (risky-
free) bonds or equity linked products. Below, we provide in Figure 2 the projection over time of
the distribution of sequence of cash-flows involved in BE computation (cf. Equation 1). In this
particular example, we see that as time goes, insured portfolio decreases following a number of
typical events, such as deaths of policyholder or lapses. The optionality embedded in the issued
contracts is anticipated to be maximal between the 17th and 25th years.

2.4 Designing ESGs
The design and the content of ESGs depends on the final purpose of the generated paths by
ESG. We distinguish three main types of designs for ESGs depending on usage: (i) Risk-Neutral
ESGs designed for economic valuation and simulation under probability measure extracted from
financial markets; (ii) Real-World ESGs whose purpose is to simulate paths of risks drivers in
keeping with historical observations and (iii) ESGs designed for regulatory compliance.

Risk-Neutral ESG In most of the previously mentioned computations, replication of market
data (prices of derivatives or volatilities) is required in order to ensure the consistency with
current economic conditions. The translation of this notion for the regulatory requirements is
named the market consistency (discussed in [VEKLP17] or [BMV19] and references therein).
Furthermore, an important feature of insurance policies is that they embed optional guarantees.
Consequently, the simulated paths obtained from ESGs has to be stochastic to take into account
the value of this optionality coming from the variety of possible behaviours of policyholders.
These two points mainly explain why, historically, insurers have been led to consider models
coming from bank industry to perform the aforementioned calculations. Even though they
were not designed for long-term projections and were mainly motivated by establishment of
hedging strategy associated with high frequency2 of portfolio rebalancing, they offer the ability of

2Compared to time periods involved in insurance.
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Figure 2: Sequences of BE cash-flows through time. Projection is made on the basis of 3000
interest rates, equity and real estate simulations realized thanks to an ESG calibrated on
12/31/2021.

stochastic simulations along with market data replications using well studied methods. Notably,
the literature relative to their calibration is significant. Now, such models are widely used and
well integrated in the companies processes and though their limitations are more understood,
the inertia of market practices make those models quite inescapable.

Real-World ESG For investment planning or risk management, forward-looking scenarios
could be helpful for insurers. For such considerations, it is no longer the replication of market
prices that is desired but that of some properties of empirical distributions. Namely, the histor-
ical returns of the assets should be duplicated by generated scenarios. In addition to historical
targets, some targets can be motivated by economic forecasts. For instance, anticipations on
average level of inflation rates may be taken into account. Models for real-world scenarios are
essentially composed of statistical models of time series. Calibrations methods are thus based
on statistical techniques that involve large historical data set.

Real-World ESGs are also central for regulatory computations in Solvency II. Indeed when
computing the Solvency Capital Requirement or when projecting it on future date (Pillar II
below), it is necessary to simulate the state of the economy under the Real-World measure
and thus generate paths reproducing some stylized facts. Based on those historical paths,
Risk-Neutral computations are performed in a second phase to value the liability side of the
undertaking from a Risk-Neutral point of view and eventually derive the projected values of the
Best Estimates (BEs). Real-World modelling is thus pivotal also for regulatory compliance.

ESG for regulatory compliance For solvency requirements, the Solvency II legislation pro-
posed to value the balance sheet of the insurance companies (and reinsurance) from a financial
perspective. Relevant ESG for such computations are thus Risk-Neutral. To be used for such
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regulatory calculations, ESGs should have few properties that can be found in [Eio15] in accor-
dance with [Par14] and summarized in [dcpedr20] for the Euro zone or in [PCC+16] for broader
context. Note that the following requirements are not specific to regulatory computations as
they may be also wanted for other applications. To respect these requirements, ESGs users
must set up monitoring measures; some are quite common, other can be specific to a company.
Be that as it may, companies have to report and justify to the authorities the methodological
choices and underlying assumptions made when using their ESG.

ESGs are asked to replicate the regulatory risk-free yield curve at date when the computa-
tion is performed. This is motivated by fact that the whole methodology to value the balance
sheet is based on risk-free discounts of cash-flows. The derivation of the regulatory risk-free
term structure is not straightforward as market rates illustrate equilibrium on financial market
resulting from considerations of financial agents whose concerns differ from that of insurance
companies. The methodology followed by the European regulator, the European Insurance and
Occupational Pensions Authority (EIOPA), to build the regulatory curve is described notably
in [Par14]. The ability of replicating the initial term-structure motivates the choice of the ded-
icated interest rates model.
Models are also asked to satisfy the Non-Arbitrage Opportunity (NAO) assumption. Arbitrage
opportunities are considered as rare events on market and thus not desirable in ESGs that
aim to simulate economies. To check the NAO assumption is valid on simulated paths, some
martingale tests are performed: empirical means computed on simulations are compared to
theoretical expectations of some martingale quantities. The test pass when the two are close
enough (a tolerance threshold is given based on statistical sampling error). Note also that NAO
assumption implies that interest rates model should perfectly fit the initial interest rates curve.
The replication is also checked to validate the used ESG is consistent with NAO assumption.
ESGs have to accurately replicate market prices: this is the so-called market consistency. This
criterion is motivated by fact that «the calculation of technical provisions shall make use of and
be consistent with information provided by the financial markets and generally available data
on underwriting risks (market consistency)», according to [uni09]. This notion and its conse-
quences are discussed in [VEKLP17]. Consequently, ESGs have to be accurately calibrated to
market prices thus relying on appropriate calibration methods and accurately simulated so that
Monte-Carlo prices are close to market ones. Several metrics are usually given to assess the
accuracy at different stages (distance between market and model prices obtained as outputs of
the calibration, distance between market and Monte-Carlo prices, and distance between model
and Monte-Carlo prices).
An important aspect of ESGs is their ability to jointly simulate economic drivers. The correla-
tion between simulated paths is of interest for insurers. Correlations targets should beforehand
be estimated in a model-free approach. Once the models are chosen, those correlations are
translated in terms of correlations between risk drivers (i.e. Brownian motions). Empirical and
target correlations are then checked to be close enough.

All those tests are though as ensuring the quality of the simulated paths that will be used for
computing the Solvency Capital Requirements. Note that some of these are Monte-Carlo tests,
in the sense that they are based on empirical estimations justified by the Law of large numbers
and Central Limit Theorem. It is thus required to simulate a sufficient number of paths to
ensure the convergence of empirical quantities and thus an accurate computation of the SCR.
[dcpedr20] discussed the fact that a number of 1000 paths is a minimum3. If some tests still

3This number of scenarios may seem as too small to ensure accurate explorations of the possible state of
the world. However, due to complexity of the models used by insurers to compute the sequence of cash-flows
associated with the insurance policies they have issued, operational constraints impose that the number of paths
should be at most a few thousands.
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fail, some «reprocessing» may be performed either on input data or on simulated paths (cap,
floor, removal of atypical data, etc.) but it should remained exceptional and have to be fully
justified. Regarding the data used to calibrate the model, they must be chosen accordingly with
the risk profile of the company as much as possible. It is quite straightforward for companies to
choose which indices must be replicated. However, for interest rates risk, it is sometimes hard
to determine what data should be used (we discuss it below). All in all, a large number (several
hundreds) of market data should be replicated explaining why calibration is challenging: not
only it has to be accurate, but also computationally efficient. The accuracy of the calibration is
required so that the simulations of the strategy of the company generated by the ALM model
using the paths of the calibrated ESG are consistent with current economic condition observed
on market despite the restricted number of possible simulations. In practice, the number of
required calibrations can go from around ten (Standard Formula) to several hundreds (Internal
modelling approach). We discuss in Section 3 the problem of the time efficiency of the calibration
of the so-called DDSVLMM.

3 Focus on the interest rates modelling in Risk-Neutral envi-
ronment

A crucial common point of all the presented usages of ESGs is that a today’s economic valuation
of future cash-flows is performed at some point. The ability of discounting those cash-flows is
thus necessary. Moreover, the composition of the portfolio of assets of the companies is so that
the interest rates risk is prominent. This is how the interest rates modelling is at the core of
the insurance activity. As already mentioned, the most popular models in Risk-Neutral ESGs
come from bank industry, in particular those dedicated to interest rates modelling. The choice
of the interest rates model embedded in the ESG is led by several factors:

• the accuracy with which the market data are replicated to respect the Market-Consistency
criterion: swaptions (i.e. call/put options on swap rates) prices are asked to be replicated
due to their high liquidity and the fact that they are deemed as capturing the correlation
structure between forward rates of different maturities;

• the computational time required by the calibration process: in most of the calibration
procedures, interest rates models should replicate more than two hundreds market prices
(or volatilities);

• the characteristics of the generated paths: e.g., it has lately become necessary to be able
to simulate negative interest rates.

A common model among insurers is the Displaced Diffusion with Stochastic Volatility LI-
BOR Market Model (DDSVLMM): it is a variant of the standard LIBOR Market Model (LMM)
comprising a displacement factor and a stochastic volatility. In the standard LMM, forward
rates are modelled by log-normal type dynamics under proper probability measure. Adding a
displacement coefficient allows to generate negative rates. The stochastic volatility accounts
for a better replication of market prices notably of Away-From-The-Money options. The
DDSVLMM is an Heston type model that took advantage of the analytic knowledge of its char-
acterisc function. In Section 3.1, we present the standard parametrization of the DDSVLMM.
In Section 3.2, we provide an approximation of this standard parametrization that allows alter-
native pricing method based on Gram-Charlier expansion.
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3.1 The DDSVLMM
Let P (t, T ) be the time-t price of a Zero-Coupon bond maturing at time T > t with par value 1.
Let us consider a finite tenor structure 0 ≤ T1 ≤ T2 ≤ · · · ≤ TN and denote by ∆Tj = Tj+1−Tj .
Let us define the forward rate of maturity Tk prevailing over the period [Tk, Tk+1] seen at time
t is defined by

Fk(t) =
1

Tk+1 − Tk

( P (t, Tk)

P (t, Tk+1)
− 1
)

(6)

for t ≤ Tk. For (m,n) ∈ J1, NK, m ≤ n, the swap rate seen at time t ≤ Tm that prevails over
the period [Tm, Tn], can be expressed as

Sm,n
t =

P (t, Tm)− P (t, Tn)∑n−1
j=m∆TjP (t, Tj+1)

(7)

according to an arbitrage-free reasoning (see Section 1.5 in [BM07]). We denote by BS(t) :=∑n−1
j=m∆TjP (t, Tj+1) the annuity of the swap rate. Under the probability measure PS (the

forward swap measure, named after [Jam97]) associated to the numéraire BS , the swap rate is a
martingale. In the standard model, the evolution of the swap rate (7) through time is described
by the following dynamics: for t ≤ Tm,

dSm,n
t =

√
Vtλ

m,n(t) · dW S
t ,

dVt = κ
(
θ − ξ0(t)Vt

)
dt+ ϵ

√
VtdWS

t ,
(8)

where (W S
t )0≤t≤Tm and (Wt)0≤t≤Tm are respectively D-dimensional and 1-dimensional Brown-

ian motions under PS . The components of W S are all independent one another and of W . The
following functions are introduced:

λm,n(t) :=

n−1∑
j=m

ωj(0)γj(t), ξ0(t) := 1 +
ϵ

κ

n−1∑
j=m

αj(0)

j∑
k=1

∆Tk(Fk(0) + δ)

1 + ∆TkFk(0)
ρk(t)‖γk(t)‖

where the coefficients ωj are defined by

ωj(0) :=
∆TjP (0, Tj+1)

BS(0)

(
1 +

∆Tj

1 + ∆TjFj(0)

j−1∑
l=m

(
Fl(0)− Sm,n

0

))
(Fj(0) + δ)

and the shape of the vector functions t 7→ γj(t) are left free to the user. A practical setting is to
consider that all those time dependent quantities to be piecewise constant on the grid [Tj , Tj+1[,
j = 1, . . . ,m. Note that the derivation of those functions λm,n and ξ0 follows from Itô’s lemma
as it is observed from the definition (7) that the swap rate is a function of the forward rates.
We refer to [WZ06] for details of the computation. The stochastic process (Vt)t≥0 is a Cox-
Ingersoll-Ross process that has been introduced to model the variance process. The coefficients
κ, θ, and ϵ are non-negative parameters. They are assumed to satisfy Feller condition 2κθ ≥ ϵ2

that ensures the process V to remain non-negative through time almost surely as long as V0 > 0.
In this parametrization, the process defined by dynamics (8) belongs to the class of affine

process for which analytical knowledge of the moment generating function is known, through
resolution of some Riccati equations. The details of the computation can be found in [LDB20].
Semi-analytical swaptions prices can then be derived based on the integration of the character-
istic function of the log-shifted swap rate. In the following, the moment generating function of
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the swap rate process is defined over its definition domain D ⊂ C as

Ψ(x; t, Sm,n
t , Vt) := ES

[
ex
(
Sm,n
Tm

+δ
)∣∣Ft

]
, x ∈ D,

where Ft is the market information known at time t (filtration generated by the Brownian
motions representing the risk on the market). In the following proposition, the time−t price of
a swaption on swap rate of maturity Tm and tenor Tn and of strike K is denoted by

PS(t, Tm, Tn,K) := BS(0)ES
[

max(Sm,n
Tm

−K, 0)
]
.

Proposition 1 (Normal swaption pricing under DDSVLMM). In the DDSVLMM, swap-
tion price expresses as

PS(t, Tm, Tn,K) = BS(0)
(
Sm,n
0 P1 −KP2

)
,

where
P1 =

1

2
Sm,n
0 − 1

π

∫ +∞

0
Im
(
Ψ′(−iu; 0, sm,n

0 , v0)e
iuK

u

)
du,

P2 =
1

2
+

1

π

∫ +∞

0
Im
(
e−iuKΨ(iu; 0, sm,n

0 , v0)

u

)
du.

The main issue in this model when it comes to price several hundred of options for calibrat-
ing the dynamics (8) is that an important number of quadratures are necessary to numerically
compute the integrals in (1). This makes the full calibration time quite long and researches
have been led in order to reduce it: in [LDB20], authors proposed to approximated swaptions
prices using Gram-Charlier density approximation techniques or in [CdBRG17] in which au-
thors worked in an equity-type context and derive the expression of the analytical gradient
of the prices to input in gradient-based optimization algorithms. More recently, it has been
proposed to further developp the Gram-Charlier approximation technique in this framework of
the DDSVLMM in which the convergence of the expended series is ensured.

A practical point of view To compute insurance quantities (SCR, BE, NAV, etc.), we
have to simulate paths of all the financial risk drivers that have been selected to describe the
modelled economy: interest rates, equities, real-estate, real rates/inflation and credit spreads
are usually modelled. To obtain these paths, we usually discretize the stochastic differential
equations defining the models dedicated to each risk drivers. When possible, we resort to exact
simulations methods. This can be a tricky task for the more elaborated models, such as the
DDSVLMM since the simulation of CIR process is complex but well studied in the literature.

We provide below some elements of analysis on the impact of the parameters defining the
DDSVLMM on the computations of insurance quantities. The values itself of insurance quanti-
ties are key for insurers but the associated uncertainty on it is also an important information, in
view of the amounts that are involved. This uncertainty is of course impacted by the explosive-
ness embedded in generated paths. As explained above, insurers can not increase the number
of simulations to reduce it due to limited operational resources.

To illustrate these considerations, we change the value of the parameter monitoring the
mean reversion speed and the correlation rates-volatility, respectively denoted by κ and ρ
above. We provide, for each case, (i) quantiles trajectories of 10Y Zero-Coupon rate and
(ii) the BE estimation. The quantiles trajectories allow to visualize the deformation of dis-
tributions of simulated risk factors through time. This information is easily extracted from
the set of trajectories. In Figure 3, quantiles paths of 10Y Zero-Coupon rate for the pairs
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(κ, ρ) ∈ (0.1, 0.8), (0.229, 0.9) or (0.4, 0.998). Note that (κ, ρ) = (0.229, 0.998) is obtained after
a calibration on 12/31/2021 market data; others parameters are fixed to their values obtained
as outputs of the calibration.

(a) (κ, ρ) = (0.1, 0.8). (b) (κ, ρ) = (0.229, 0.9).

(c) (κ, ρ) = (0.4, 0.998).

Figure 3: 10Y Zero-Coupon rate quantiles.

We provide in Table 1 the sensitivity of the BE estimation. This information is more
complex to have in practice, since it involves the use of ALM models, which is heavy from a
computational point of view. We observe a variation of the BE up to 350k€ depending on the
parameters which is not negligible. The amounts of cash that are involved in such computations
explain the need of accurate and robust calibrations of the models that composed the ESG (see
Section 2.4). Some comments to explain the results in Table 1: the case (κ, ρ) = (0.1, 0.8)
generates the most explosive interest rates paths (see Figure 3); in the simplified used ALM
model, a rise in the interest rates will be in favour of the company as it will allow the insurer to
increase its incomes by earning the spread between market rate and fixed delivered rate to the
policyholder, without being impacted by policyholder’s behaviour. The insurer is then able to
reduce its liabilities. This is not really realistic as if such a case appears in reality policyholders
would massively buyout if insurer does not increase the delivered rate. Uncertainty on the value
of the BE (semi confidence interval) also vary significantly following the parametrization; here,
the uncertainty increases with the explosiveness of the rates. In practice, when using more
elaborated ALM models, we observe even more pronounced impacts of the BE.

To obtain a value for the SCR (amount of cash to be immobilized), an important number
of intermediary quantities (BE, NAV, etc.) should be computed beforehand, as explained in

5Calibrated value of κ on 12/31/2021 market data. Used for plotting Figure 2.
5Calibrated value of ρ on 12/31/2021 market data. Used for plotting Figure 2.
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(κ, ρ)
Estimated BE Semi 95% confidence

value interval
(0.1,0.8) 958.03 ± 5.90

(0.229,0.9)4 958.26 ± 5.51
(0.4,0.998)5 958.35 ± 5.25

Table 1: Sensitivity of the BE estimation to the long-term level of stochastic volatility of interest
rates. All quantities are expressed in M€.

Section 2.2. In particular, they are computed based on observed market data and stressed data
(shift of the initial interest rates curve, shocks on implied volatilities of derivatives, etc.). For
all stressed scenarios, calibrations followed by the simulations of models composing the ESG
are necessary. Hence the necessity of falling back on efficient calibration methods, notably for
the models dedicated to interest rates which are usually the more delicate to calibrate. We
present in the following section an innovative method to calibrate (8) based on series expansion,
extending the works of [LDB20] and [AFP17].

3.2 Jacobi process in the DDSVLMM
It has been introduced in [ABLM20] the Jacobi version of the DDSVLMM which is an ap-
proximation of the model (8). In the proposed setting, the volatility factor is modelled by a
[vmin, vmax]-valued Jacobi process. The swap rate modelled in our proposal is denoted by Sm,n,J

and is described over [0, Tm] by the following stochastic differential equation

dSm,n,J
t =

√
Q(Vt)ρ(t)‖λm,n(t)‖dWt +

√
Vt − ρ(t)2Q(Vt)λ

m,n(t) · dW S,∗
t ,

dVt = κ
(
θ − ξ0(t)Vt

)
dt+ ϵ

√
Q(Vt)dWt,

t ≤ Tm (9)

where λm,n, ξ0 and ρ are defined as in (8), Q is a bounding function defined by Q(v) =
(vmax−v)(v−vmin)
(
√
vmax−

√
vmin)2

, where 0 ≤ vmin < vmax ≤ ∞. Observe that Q(v) ≤ v for any v ∈ R and that
Q(v) ≥ 0 for v ∈ [vmin, vmax]. We recall that all components of W S,∗ are independent and
are also all independent from W . The volatility factor (Vt)t≥0 follows a Jacobi dynamics with
additional time dependency in the drift. For this dynamics, the Feller condition writes:

ϵ2(vmax − vmin)

(
√
vmax −

√
vmin)2

≤ 2κmin
(
ξ0minvmax − θ, θ − ξ0maxvmin

)
. (10)

where we have introduced the bounds ξ0min ≤ ξ0(·) ≤ ξ0max. It ensures the process V in (9)
to remain bounded at any date: P

(
∀t ∈ [0, Tm] : Vt ∈ (vmin, vmax)

)
= 1. In this setting, the

coefficient ρ(t) is interpreted in dynamics (9) as a scaling factor of the instantaneous correlation
between the swap rate and its volatility since the following holds:

d
〈
V·, S

m,n,J
·

〉
t√

d 〈V·, V·〉t

√
d
〈
Sm,n,J
· , Sm,n,J

·

〉
t

= ρ(t)

√
Q(Vt)

Vt
.

Since 0 ≤ Q(v) ≤ v for v ∈ [vmin, vmax], the instantaneous correlation is smaller than ρ(t) at
each time. Observing that Q(v) → v when (vmin, vmax) → (0,+∞), it can be shown that the
swap rate process defined by (9) converges weakly (and strongly) towards the process defined
in (8) (see [ABLM20]); thus, present framework (9) can be seen as a numerical approximation
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of (8).
The fact that the volatility process remains bounded through time allows to write swaptions

prices as convergent series whose coefficient are linear combinations of the moments of the swap
rates. To compute its moments, the polynomial property of the swap rate is now exploited: the
characteristic function is no longer known but the sequence of moments can be derived through
matrix exponentiation (see [CKRT12] for an introduction to the theory of polynomial processes).
Those convergent series are known in the literature as Gram-Charlier series: they are based on
an expansion technique that amounts to approximate an unknown density with a Gaussian
reference one. It is defined notably in [Cra46]6. Here, we aim at approximating the density
of the swap rate process at a fixed date. Let us denote by gr the auxiliary reference density
(Gaussian) and by gT the density of the random variable Sm,n

T defined by dynamics (8). To
present the Gram-Charlier expansion technique, let us introduce the Hilbert space of squared-
integrable function with respect to gr:

L2
r =

{
h : R → R measurable such that ‖h‖2r :=

∫
R
h(u)2gr(u)du < ∞

}
.

When the likelihood ratio gT /gr lies in L2
r , the properties of this Hilbert space allows to write

swaption price as a convergent serie:

PS(T, Tm, Tn,K) = BS(0)

∫
R

max(x−K, 0)gT (x)dx

= BS(0)

∫
R

max(x−K, 0)
gT (x)

gr(x)
gr(x)dx

= BS(0)
∑
n≥0

ϕnhn,

(11)

where ϕn =
∫
R max(x − K, 0)Hn(x)gr(x)dx, hn =

∫
RHn(x)gT (x)dx = ES [Hn(S

m,n
T )] and the

sequence (Hn)n∈N forms an orthonormal basis of polynomials of L2
r . In present case of Hilbert

space built on Gaussian density, those polynomials are known as the Hermite polynomials.
Observe then that the coefficients hn writes as linear combinations of the moments of Sm,n

T .
To ensure the likelihood ratio to lie in L2

r and thus obtain the equality (11), the following
result illustrates why the bounding assumption on the volatility process is crucial. In the
following result, λmax = supt≤T ‖λm,n(t)‖; recall this is a finite quantity as we have assumed
t 7→ ‖λm,n(t)‖ is piecewise constant.

Theorem 2. Suppose that 4κθ > ϵ2, supt≤T |ρ(t)| < 1, vmin ≥ 0 and vmax < ∞. Consider gr
is centred Gaussian density of variance σ2

r satisfying

σ2
r >

Tvmax

2
λ2
max. (12)

Then, a Gram-Charlier expansion can be performed on the density gT of (9) using gr the
reference density. In particular, the sufficient condition to the L2

r−convergence of the family of
approximating densities is satisfied; that is∫

R

gT (u)
2

gr(u)
du < ∞.

6Historically speaking, the Gram-Charlier technique refers to pointwise expansion of the unknown density
using a perturbation of a Gaussian density as reference, see notably [Cra46]. By abuse of terms, we will still
speak of Gram-Charlier expansion here when working in an Hilbert space built around a Gaussian density.
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While being a sufficient condition, (12) is sharp: a ”slight” non-satisfaction of it can cause
a divergence of the expansion series and thus a bad approximation of swaptions prices, as
illustrated below. In Figure 4, we computed expanded prices by working in Hilbert spaces asso-
ciated with different auxiliary variance parameters σr, including a case for which the sufficient
condition (12) is not satisfied (Figure 4a).
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(a) σr =
√

VarS(Sm,n
T ) = 1.273× 10−2, λ2

max = 1.648×
10−4, vmax = 0.5. Maturity and tenor of the swaption:
T = Tm = 5 and Tn − Tm = 5.
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(b) 3.203× 10−4 = σr ̸=
√

VarS(Sm,n
T ), λ2

max = 8.097×
10−7, vmax = 0.25. Maturity and tenor of the swaption:
T = Tm = 1 and Tn − Tm = 1.

Figure 4: Expanded Gram-Charlier prices compared to Monte-Carlo prices (computed on 105

simulations. Monte-Carlo prices are using after discretizing the original dynamics 9.

A practical point of view Writing swaptions prices as truncated series allows to employ
closed-form formulas to derive approximated swaptions prices while in the standard modelling
framework, one has to approximate numerically integrals appearing in swaptions prices. Trun-
cating the series induces an error that can be reduced by a wise choice of the auxiliary variance
parameter. By doing so, the series involved in (11) can be made quickly converging so that a
restricted number of moments of Sm,n

T are required in practice. We illustrate this point below in
Figure 5 in which from the very first expansion order, Garm-Charlier prices reach the 95% con-
fidence interval built around the Monter-Carlo estimation of the price (105 simulations) coming
from discretization of (9).
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Figure 5: Fast convergence of expanded Gram-Charlier prices with σ2
r = Var(Sm,n

T ) = 4.025 ×
10−5, λmax = 1.411× 10−4, vmax = 0.05, Tm = 10, Tn − Tm = 4, v0 = 0.015.

This can lead to a substantial reduction of the computational time required to obtain swap-
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tions prices compared to the more common model (8). To choose the auxiliary parameter to
get a fast convergence of the expanded series, one should take σ2

r = Var(Sm,n
T ): the underlying

idea is that the more gr and gT have moments in common, that faster the series will converge.
However, such a choice usually do not allow to satisfy constraint (12). A practical solution
would be to set σ2

r = Tvmax
2 λ2

max + η with η being a very small number. This way, we are able
to calibrate (9) while ensuring the closeness of prices induced by the model and prices computed
on generated simulations.

We provide in the table 2 the normalized approximated computational times required to
calibrate the DDSVLMM on 336 swaptions prices (quoted on EURO market on the 30/06/2020).
The calibration of (8) based on Gaussian quadrature is the reference calibration method. We
also perform a calibration of (9) using a 4th order truncation of the expanded series as explained
above. This allows a substantial reduction of the computational time required to compute the
interest rates model compared to the Gaussian quadrature based method since the time has
been divided by 2. We also have tested to integrate the gradient of the objective function in the
optimization algorithm, either analytically (for the Gaussian quadrature in (8)) or numerically
(for the Gram-Charlier expansion of (9)). For the latter, we observe that the computational
time represents only 5% of the reference time.

Method Normalized CPU times

Gaussian quadrature in (8) ∼ 100
Analytical gradient in (8) ∼ 20

Gram-Charlier in (9) ∼ 50
Numerical gradient in expanded series of (9) ∼ 5

Table 2: Computational times required for calibrating the DDSVLMM.

References
[ABE+18] Hansjörg Albrecher, Daniel Bauer, Paul Embrechts, Damir Filipović, Pablo

Koch-Medina, Ralf Korn, Stéphane Loisel, Antoon Pelsser, Frank Schiller, Hato
Schmeiser, et al. Asset-liability management for long-term insurance business. Eu-
ropean Actuarial Journal, 8(1):9–25, 2018. 8

[ABLM20] Pierre-Edouard Arrouy, Alexandre Boumezoued, Bernard Lapeyre, and Sophian
Mehalla. Jacobi Stochastic Volatility factor for the Libor Market Model. HAL
preprint: hal-02468583, 2020. 15

[ACA20] Aurélien Alfonsi, Adel Cherchali, and Jose Arturo Infante Acevedo. A synthetic
model for asset-liability management in life insurance, and analysis of the SCR
with the standard formula. European Actuarial Journal, 10(2):457–498, 2020. 8

[AFP17] Damien Ackerer, Damir Filipović, and Sergio Pulido. The Jacobi stochastic volatil-
ity model. Finance and Stochastics, pages 1–34, 2017. 15

[BC16] Paul Bonnefoy-Cudraz. Implémentation et calibrage d’un Générateur de Scénarios
Economiques: impact sur la volatilité du Solvency Capital Requirement. Mémoire,
EURIA, 2016. 4

18



[BGK17] Elia Berdin, Helmut Gründl, and Christian Kubitza. Rising interest rates, lapse
risk, and the stability of life insurers. Technical report, ICIR Working Paper Series,
2017. 4

[BM07] Damiano Brigo and Fabio Mercurio. Interest rate models-theory and practice: with
smile, inflation and credit. Springer Science & Business Media, 2007. 12

[BMV19] Fabrice Borel-Mathurin and Julien Vedani. Market-consistent valuation: a step
towards calculation stability. 2019. 8

[BRS12] Daniel Bauer, Andreas Reuss, and Daniela Singer. On the calculation of the
Solvency Capital Requirement based on nested simulations. Astin Bulletin,
42(02):453–499, 2012. 7

[CdBRG17] Yiran Cui, Sebastian del Baño Rollin, and Guido Germano. Full and fast calibra-
tion of the Heston stochastic volatility model. European Journal of Operational
Research, 263(2):625–638, 2017. 13

[CKRT12] Christa Cuchiero, Martin Keller-Ressel, and Josef Teichmann. Polynomial pro-
cesses and their applications to mathematical finance. Finance and Stochastics,
16(4):711–740, 2012. 16

[CN+14] Marcus C Christiansen, Andreas Niemeyer, et al. Fundamental definition of the
solvency capital requirement in Solvency ii. Astin Bulletin, 44(3):501–533, 2014. 4

[Cra46] Harald Cramér. Mathematical methods of statistics (PMS-9), volume 9. Princeton
university press, 1946. 16

[dcpedr20] Autorité de contrôle prudentiel et de résolution. Générateurs de scénarios
économiques : points d’attention et bonnes pratiques. acpr.banque-france.fr,
2020. 10

[Dir09] Directive 2009/138/EC of the European Parliament and the Council of 25 Novem-
ber 2009 on the taking-up and pursuit of the business of Insurance and Reinsurance
(Solvency ii). Technical report, European Insurance and Occupational Pensions
Authority, 2009. 3, 4

[Eio14] EIOPA Insurance stress test 2014. Technical report, European Insurance and Oc-
cupational Pensions Authority, 2014. 4

[Eio15] Guidelines on the valuation of technical provisions. Technical report, European
Insurance and Occupational Pensions Authority, 2015. 10

[FLCM16] Anthony Floryszczak, Olivier Le Courtois, and Mohamed Majri. Inside the Sol-
vency 2 black box: net asset values and solvency capital requirements with a least-
squares Monte-Carlo approach. Insurance: Mathematics and Economics, 71:15–26,
2016. 7, 8

[Jam97] Farshid Jamshidian. LIBOR and swap market models and measures. Finance and
Stochastics, 1(4):293–330, 1997. 12

[LDB20] P. Bonnefoy L. Devineau, P.-E. Arrouy and A. Boumezoued. Fast calibration of
the libor market model with stochastic volatility and displaced diffusion. Journal
of Industrial and Management Optimization, 16(4):1699, 2020. 12, 13, 15

19

acpr.banque-france.fr


[Par14] European Parliament. Delegated acts. Official Journal of the European Union,
2014. 10

[PCC+16] Hal Pedersen, Mary Pat Campbell, Stephan L Christiansen, Samuel H Cox, Daniel
Finn, Ken Griffin, Nigel Hooker, Matthew Lightwood, Stephen M Sonlin, and Chris
Suchar. Economic scenario generators: a practical guide. The Society of Actuaries,
2016. 2, 10

[uni09] Directive 2009/136/EC of the European parliament and of the council. Technical
report, UNION, PEAN, 2009. 4, 10

[VEKLP17] Julien Vedani, Nicole El Karoui, Stéphane Loisel, and Jean-Luc Prigent. Market
inconsistencies of market-consistent European life insurance economic valuations:
pitfalls and practical solutions. European Actuarial Journal, 7(1):1–28, 2017. 8, 10

[WZ06] Lixin Wu and Fan Zhang. LIBOR market model with stochastic volatility. Journal
of industrial and management optimization, 2(2):199, 2006. 12

20


	Introduction
	Economic Scenario Generators
	Technical provisions
	Regulatory computations
	Assets and Liabilities Management (ALM)
	Designing ESGs

	Focus on the interest rates modelling in Risk-Neutral environment
	The DDSVLMM
	Jacobi process in the DDSVLMM


