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INTRODUCTION

This paper is devoted to the study of conditions guaranteeing the removability of singular set for non-negative weak sub-solutions, in the weighted variable exponent Sobolev spaces, for nonlinear elliptic equations of the form -div A(x, u, ∇u) + B(x, u) = 0.

For the exacts requirements on the mappings A and B we refer to Section 3. In this work we employ the arguments used to prove the following results.

Theorem A. (see [13, Theorem 1]) Let Ω ⊂ R n , n 2, be an open set, and E ⊂ Ω be closed in Ω. Denote by M α (E) the α-dimensional upper Minkowski content of E. Suppose that α ∈ [0, n -2] and M α (E) = 0. If f is subharmonic in Ω\E and satisfies f (x) Cd(x, E) α+2-n (x ∈ Ω\E) for some positive constant C, then f has a subharmonic extension to Ω.

Theorem B. (see [START_REF] Riihentaus | Removable sets for subharmonic functions[END_REF]Theorem 3]) Let Ω ⊂ R n , n 2, be an open set, and E ⊂ Ω be closed in Ω. Denote by H α (E) the α-dimensional Hausdorff measure of E. Suppose that α ∈ [0, n -2] and H α (E) = 0. If f is subharmonic in Ω\E and satisfies

1 |B(x, r)| B(x,r)
max{f, 0}dx Cr α+2-n B(x, r) ⊂ Ω for some positive constant C, then f has a subharmonic extension to Ω.

Motivated by these theorems we given a generalization of the upper Minkowski content and the net measure involving weight and variable exponents, see the next section. In the case that certain smoothness, Hausdorff measure or uniform Minkowski condition is imposing on the singular set, a different approach can be found in [START_REF] Gardiner | Removable singularities for subharmonic functions[END_REF][START_REF] Hirata | Removable sets for continuous solutions of quasilinear elliptic equations with nonlinear source or absorption terms[END_REF][START_REF] Koskela | Removability theorems for solutions of degenerate elliptic partial differential equations[END_REF].

PRELIMINARIES

Throughout the whole article Ω is a bounded open set in R n , n 3. We will work on Ω with the Lebesgue measure dx. We first recall some facts on spaces L p(•) (Ω, ϑ) and W 1,p(•) (Ω, ϑ). We write

L ∞ + (Ω) = {p ∈ L ∞ (Ω) | ess inf Ω p > 1} . For p ∈ L ∞ + (Ω), we define W (Ω) = ϑ ∈ L 1 loc (Ω) | ϑ > 0 almost everywhere in Ω . An element in W (Ω) is called a weight function. For p ∈ L ∞ + (Ω), set W p (Ω) = ϑ ∈ W (Ω) | ϑ -1 p-1 ∈ L 1 loc (Ω) .
Let p ∈ L ∞ + (Ω) and ϑ ∈ W (Ω), we define the functional

ρ p,ϑ (u) = Ω |u| p ϑdx.
The weighted variable exponent Lebesgue space L p(•) (Ω, ϑ) is the class of all functions u such that ρ p,ϑ (tu) < ∞, for some t > 0. L p(•) (Ω, ϑ) is a Banach space equipped with the norm

u L p(•) (Ω,ϑ) = inf λ > 0 | ρ p,ϑ u λ ≤ 1 ;
see [START_REF] Kováčik | On spaces L p(x) and W k,p(x)[END_REF]Theorem 2.5]. In the case that ϑ ≡ 1, we have

L p(•) (Ω, ϑ) = L p(•) (Ω).
For any p ∈ L ∞ + (Ω), we denote by p = p p-1 the conjugate function.

Proposition 2.1. (see [11, Theorem 2.1].) Let p ∈ L ∞ + (Ω). For any u ∈ L p(•) (Ω) and v ∈ L p (•) (Ω), Ω |uv|dx ≤ 2 u L p(•) (Ω) v L p (•) (Ω) . (2.1) Proposition 2.2. (see [15, pp. 4], [5, Theorem 1.3].) Let p ∈ L ∞ + (Ω). For any u ∈ L p(•) (Ω, ϑ), we have min ρ p,ϑ (u) 1 p -, ρ p,ϑ (u) 1 p + u L p(•) (Ω,ϑ) max ρ p,ϑ (u) 1 p -, ρ p,ϑ (u) 1 p + , (2.2) 
min u p - L p(•) (Ω,ϑ) , u p + L p(•) (Ω,ϑ) ρ p,ϑ (u) max u p - L p(•) (Ω,ϑ) , u p + L p(•) (Ω,ϑ) , (2.3) 
where p -= ess inf Ω p and p + = ess sup Ω p.

Let p ∈ L ∞ + (Ω) and ϑ ∈ W p (Ω). The weighted variable exponent Sobolev space W 1,p(•) (Ω, ϑ) is the class of all functions u ∈ L p(•) (Ω, ϑ) which have the property |∇u| ∈ L p(•) (Ω, ϑ). The space W 1,p(•) (Ω, ϑ) is a Banach space equipped with the norm u W 1,p(•) (Ω,ϑ) = u L p(•) (Ω,ϑ) + ∇u L p(•) (Ω,ϑ) ;
see [START_REF] Kováčik | On spaces L p(x) and W k,p(x)[END_REF]Theorem 3.1] and [START_REF] Unal | Compact embeddings of weighted variable exponent Sobolev spaces and existence of solutions for weighted p(•)-laplacian[END_REF]Proposition 3.2].

In the proof our main results we employed the following type of partition of unity:

Lemma 2.1. (see [START_REF] Harvey | Removable singularities of solutions of linear partial differential equations[END_REF]Lemma 3.1]) Let {Q i } N i=1 be a finite disjoint collection of dyadic of length i . For each i, there is a non-negative function

ϕ i ∈ C ∞ 0 (R n ) with spt ϕ i ⊂ 3 2 Q i such that N i=1 ϕ i 1 on R n ,
and

N i=1 ϕ i = 1 on ∪ N i=1 Q i . Furthermore, for each multi-index λ, there is a constant C λ = C λ (n, λ) > 0 for which |D λ ϕ i (x)| C λ -|λ| i
for all x and i ∈ {1, . . . , N }.

To define the Minkowski content, let α : Ω → [0, n] be a measurable function and F ⊂ R n . For ε > 0, we write

F ε = {x ∈ R n | d(x, F ) < ε}, where d(x, F ) denote the Euclidean distance from a point x ∈ R n to F . Definition 2.1. The (α, ϑ)-upper Minkowski content of F is defined by M α ϑ (F ) = lim sup ε→0 + Fε ε α-n dϑ,
where ϑ ∈ W (Ω) and dϑ = ϑdx. Now, we proceed to define the net measure. For x ∈ R n and > 0, we denote by

Q(x, ) = {y ∈ R n | |x i -y i | /2, i = 1, • • • , n} ,
the cube of center x and length . Recall that a dyadic cube is represented as

m 1 2 -k , (m 1 + 1) 2 -k × • • • × m n 2 -k , (m n + 1) 2 -k ,
where k, m 1 , . . . , m n are integers. For a cube Q of length (Q) = , we let 3 2 Q denote the cube with the same center and length 3 /2. For any integer k let G k be a collection of cubes represented by a form

m 1 2 -k , (m 1 + 1)2 -k × • • • × m n 2 -k , (m n + 1)2 -k ,
for some integers m 1 , . . . , m n .

Let γ > 0 be fixed. For each ε > 0 we write

L ε α,γ,ϑ (F ) = inf    j Q j 2 -k j α-n dϑ γ | F ⊂ int (∪ j Q j ) , Q j ∈ G k j , 2 -k j < ε    .
Definition 2.2. The (α, γ, ϑ)-net measure of F is defined by

L α,γ,ϑ (F ) = lim ε→0 + L ε α,γ,ϑ (F ).
We finish this section, introducing the following condition used in this work.

Assumption 2.1. Assume p ∈ L ∞ + (Ω) and ϑ ∈ W p (Ω). Suppose ϕ ∈ W 1,p(•) (Ω, ϑ) has compact support spt ϕ = K. Then there exist functions ϕ m ∈ C ∞ (Ω), with spt ϕ m ⊂ K d(K,∂Ω)/2 , such that ϕ m → ϕ in W 1,p(•) (Ω, ϑ).
Remark. In the case that ϑ ≡ 1 and p ∈ P log (Ω) is bounded, the Assumption 2. 

MAIN RESULTS

In the sequel E ⊂ Ω is a compact set. For us a function is integrable if it has an integral (which may equal ±∞).

Definition 3.1. Let ϑ ∈ W p (Ω) and p ∈ L ∞ + (Ω). We define W 1,p(•) E,loc (Ω, ϑ) = u : Ω → R | u is integrable, u| Ω\E ∈ W 1,p(•) loc (Ω\E, ϑ),
and there is a integrable function ∇u : Ω → R n so that ∇u = ∇u a.e. on Ω\E .

Now, we will divide our main results into two sections.

3.1. Singular set satisfying M α ϑ (E) = 0. First, we will work with nonlinear elliptic equations of the form

-div A (x, u, ∇u) + B(x, u) = 0. (3.4) 
We assume that

A : Ω × [0, ∞) × R n → R n and B : Ω × [0, ∞) → R are measurable functions.
Furthermore, there exists µ > 0 such that the following conditions are satisfied almost everywhere:

A(x, u, η), η µ|η| p(x) -µ -1 u p(x) + a 1 (x) ϑ(x), (3.5) 
|A(x, u, η)| µ -1 |η| p(x)-1 + µ -1 u p(x)-1 + a 2 (x) ϑ(x), (3.6 
)

|B(x, u)| µ -1 u p(x)-1 + a 3 (x) ϑ(x), (3.7) 
where

ϑ ∈ W p (Ω), a 1 ∈ L q 1 (Ω, ϑ), a 2 ∈ L q 2 (Ω, ϑ), a 2 0, a 3 ∈ L q 3 (Ω, ϑ), a 3 0, α, β : Ω → [0, n] are measurable functions, and p, q 1 , q 2 , q 3 ∈ L ∞ + (Ω). Furthermore, (pβ) + n -α + -p + -1, (3.8) q - 1 , q - 3 p p -1 + , q - 2 max p p -1 + , n -α + n -α + -β + -2 . (3.9)
Definition 3.2. We will say that u ∈ W

1,p(•) E,loc (Ω, ϑ) is a (weak) sub-solution of equation (3.4) in Ω\E if Ω\E A(•, u, ∇u), ∇ϕ + B(•, u)ϕdx 0 (3.10) for all ϕ ∈ W 1,p(•) (Ω, ϑ), ϕ 0, with compact support in Ω\E.
Definition 3.3. We will say that the sub-solution u of equation (3.4) in Ω\E has a removable singularity at

E: if u ∈ W 1,p(•) E,loc (Ω, ϑ) implies u ∈ W 1,p(•) loc
(Ω, ϑ) and the equality (3.10) is fulfilled for all ϕ ∈ W 1,p(•) (Ω, ϑ), ϕ 0, with compact support.

Inspired by Theorem A we have our first main result. where C is a suitable positive constant, then the singularity of u at E is removable.

Proof. 1. Let ε ∈ (0, 1) be arbitrary. Since M α ϑ (E) = 0, there is r 0 ∈ (0, ε) such that E r 0 ⊂ Ω and Er r α-n dϑ < ε for all r ∈ [0, r 0 ] . (3.12)
For r ∈ [0, r 0 ] and j = 0, 1, . . ., we write

K j = x ∈ R n | d(x, E) < 2 -j r , then E r = ∞ j=0 (K j \K j+1 ) ,
and, by (3.11), (3.12) and (3.8),

K j \K j+1 u p dϑ K j \K j+1 C p d(•, E) -βp dϑ C 1 (p) K j \K j+1 2 -(j+1) r -βp dϑ = C 1 K j \K j+1 2 βp 2 -j r n-α-βp 2 -j r α-n dϑ C 1 2 (βp) + 2 -j r n-α + -(βp) + ε C 2 (p, β)2 -j-1 r p + +1 ε.
Therefore, considering |E| = 0,

Er u p dϑ = ∞ j=0 K j \K j+1 u p dϑ C 2 εr p + +1 , (3.13) 
for all r ∈ [0, r 0 ]. Thus u ∈ L p(•) loc (Ω, ϑ).

Now, we prove

| ∇u| ∈ L p(•)
loc (Ω, ϑ). For r < 2r 0 /5, let ψ r : R → R be a smooth function such that

ψ r (t) = 0 if t < r/2 or t > 5r/2, 1 if r < t < 2r, 0 ψ r 1 and |ψ r | C 3 /r, where C 3 is a positive constant. Set ϕ = ψ p + r • d(•, E) u.
We have ϕ ∈ W 1,p(•) (Ω, ϑ), ϕ 0, with compact support in Ω\E. For simplicity we write

ψ r = ψ r • d(•, E) and ψ r = ψ r • d(•, E). Substituting ϕ into (3.10), Ω\E A(•, u, ∇u), ψ p + r ∇u + p + ψ p + -1 r ψ r u∇d(•, E) + B (•, u) ψ p + r udx 0.
By conditions (3.5) -(3.9),

q - 1 n -α + n -α + -1 , q - 2 n -α + n -α + -β + -2 , q - 3 n -α + n -α + -β + -1 (3.14) and { r 2 d(•,E) 5r 2 } ψ p + r µ|∇u| p -µ -1 u p + a 1 dϑ { r 2 d(•,E) 5r 2 } C 3 r p + ψ p + -1 r µ -1 |∇u| p-1 + µ -1 u p-1 + a 2 udϑ + { r 2 d(•,E) 5r 2 } ψ p + r µ -1 u p-1 + a 3 udϑ
Consequently, by (3.13), (2.1), (2.2), Young's inequality and (3.11),

{r d(•,E) 2r} |∇u| p dϑ C 4 ε 5r 2 + C 4 r (n-α + ) q - 1 -1 q - 1 a 1 L q 1 (•) (Ω,ϑ) E 5r/2 5r 2 α-n dϑ q 1 -1 q 1 - + C 4 { r 2 d(•,E) 5r 2 } C 5 (ε 1 , p) u r p + ε 1 ψ (p + -1)p p-1 r |∇u| p dϑ + C 4 r (n-α + ) q - 2 -1 q - 2 -β + -1 a 2 L q 2 (•) (Ω,ϑ) E 5r/2 5r 2 α-n dϑ q 2 -1 q 2 - + C 4 r (n-α + ) q - 3 -1 q - 3 -β + a 3 L q 3 (•) (Ω,ϑ) E 5r/2 5r 2 α-n dϑ q 3 -1 q 3 - , where C 4 = C 4 (µ, α, p, C 2 ) > 0. Take ε 1 = 1 2C 4 . From (3.14), (3.11) 
, (3.12), (3.8), we have

1 2 {r d(•,E) 2r} |∇u| p dϑ C 6 ε γ 1 r + C 6 εr n-α + -(pβ) + -1 2C 6 ε γ 1 r.
Therefore,

Er | ∇u| p dϑ = ∞ i=0 {2 -(i+1) r d(•,E) 2 -i r} |∇u| p dϑ C 7 ε γ 1 r, (3.15) 
where (Ω, ϑ). To verify this assertion, fix ϕ ∈ C ∞ 0 (Ω), we assume that |ϕ| 1 and |∇ϕ| 1. For r ∈ (0, r 0 /2), let ζ r : R → R be a smooth function such that

C i = C i (µ, α, β, p, a 1 , a 2 , a 3 ) > 0, i = 6, 7, γ 1 = γ 1 (q 1 , q 2 , q 3 ) ∈ (0, 1). Hence | ∇u| ∈ L p(•) loc (Ω, ϑ).
ζ r (t) = 1 if |t| r, 0 if 2r |t|, 0 ζ r 1 and |ζ r | C 8 /r
, where C 8 is a positive constant. For simplicity we write 

ζ r = ζ r • d(•, E) and ζ r = ζ r • d(•, E). We have Ω\E u [(1 -ζ r ) ϕ] x i dx = - Ω\E u x i (1 -ζ r ) ϕdx, where i = 1, . . . , n. If r → 0 + : Ω uϕ x i dx = - Ω u x i ϕdx. ( 3 
u (ζ r ) x i ϕdx 2 C 8 u r ϑ 1/p L p(•) (E 2r ) ϑ -1/p L p (•) (E 2r ) C 9 (p, β) ϑ -1/p L p (•) (Er 0 ) (εr) 1/p + → 0 as r → 0 + , since ϑ ∈ W p (Ω). So (3.16) is proved. 4.
To complete the proof of the theorem. Let ϕ ∈ W 1,p(•) (Ω, ϑ) be with compact support and ϕ 0. By Assumption 2.1, we consider the case ϕ ∈ C ∞ (Ω), ϕ 1 and |∇ϕ| 1. We show Ω A(•, u, ∇u), ∇ϕ + B(•, u)ϕdx 0.

Let K = spt ϕ. We may suppose that K r 0 ⊂ Ω. Choose = 2 -k so small that 3 √ n < r 0 . Cover K by a finite collection of dyadic cubes Q i with same length (Q i ) = , i = 1, . . . , N . Moreover, we can assume that 3 2

Q i ∩ E = ∅ for i = 1, . . . , N * , 3 2 
Q i ∩ E = ∅ for i = N * + 1, . . . , N,
for some N * ∈ N, 1 N * N . By Lemma 2.1, we have there exist non-negative functions

ϕ i ∈ C ∞ 0 (R n ) with spt ϕ i ⊂ 3 2 Q i such that N i=1 ϕ i = 1 on ∪ N i=1 Q i ⊃ K. Furthermore, |∇ϕ i | C 10 (n) -1 , i = 1, . . . , N , on R n . Since u is a sub-solution of (3.4) in Ω\E, and ϕϕ i ∈ W 1,p(•) (Ω, ϑ), ϕϕ i 0, i = N * + 1, . . . , N has compact support in Ω\E, we have Ω\E A(•, u, ∇u), ∇ (ϕϕ i ) + B(•, u) (ϕϕ i ) dx 0, (3.17) 
Then, by (3.6) and (3.7), 

Ω A(•, u, ∇u), ∇ϕ + B(•, u)ϕdx = N i=1 3 2 Q i A(•, u, ∇u), ∇ (ϕϕ i ) + B(•, u) (ϕϕ i ) dx N * i=1 3 2 Q i A(•, u, ∇u), ∇ (ϕϕ i ) + B(•, u) (ϕϕ i ) dx N * i=1 3 2 Q i µ -1 (2 + C 10 ) -1 |∇u| p-1 + u p-1 + (1 + C 10 ) -1 a 2 + a 3 dϑ C 11 (n, µ) N * i=1 3 2 Q i -1 (|∇u| p + 1) + -1 (u p + 1) + -1 a 2 + a 3 dϑ = C 11 E 3 √ n -1 N * i=1 χ 3 2 Q i |∇u| p + -1 N * i=1 χ 3 2 Q i u p dϑ + C 11 E 3 √ n -1 N * i=1 χ 3 2 Q i + N * i=1 χ 3 2 Q i dϑ + C 11 E 3 √ n -1 N * i=1 χ 3 2 Q i a 2 + N * i=1 χ 3 2 Q i a 3 dϑ. (3.18) Here χ 3 2 Q i is the characteristic function of 3 2 Q i , i = 1, . . . , N * . For each cube Q i , i = 1, . . . , N * , there are at most 3 n cubes Q j , (Q j ) = , j = 1, . . . , N i 3 n (adjacent cubes to Q i with equal length), such that 3 2 Q i ∩ 3 2 Q j = ∅. Then N * i=1 χ 3 2 Q i 3 n on E 3 √ n . ( 3 
Ω A(•, u, ∇u), ∇ϕ + B(•, u)ϕdx (C 7 + C 2 )C 11 -1 3 n (3 √ n)ε γ 1 + C 12 -1 3 n (3 √ n) n-α + ε + C 11 -1 3 n 2(3 √ n) (n-α + ) q - 2 -1 q - 2 a 2 L q 2 (•) (Ω,ϑ) ε γ 1 + C 11 3 n 2(3 √ n) (n-α + ) q - 3 -1 q - 3 a 3 L q 3 (•) (Ω,ϑ) ε γ 1 C 13 ε γ 1 ,
where C 12 , C 13 are positive constants independents of ε. Since ε ∈ (0, 1) was arbitrary, it follows that

Ω A(•, u, ∇u), ∇ϕ + B(•, u)ϕdx 0.
This completes the proof of Theorem 3.1.

3.2.

Singular set satisfying L α,γ,ϑ (E) = 0. In this section we will work with nonlinear elliptic equations of the form

-div A (x, ∇u) = 0. (3.20)
We assume that A : Ω × R n → R n is a measurable function. Furthermore, there exists µ > 0 such that the following conditions are satisfied almost everywhere:

A(x, η), η µ|η| p(x) ϑ(x), (3.21) |A(x, η)| µ -1 |η| p(x)-1 ϑ(x), (3.22) 
where ϑ ∈ W p (Ω), α, τ : Ω → [0, n] are measurable functions, and p ∈ L ∞ + (Ω). Moreover, τ n -α -p + -p + /p -a.e. on Ω.

(3.23) Definition 3.4. We will say that u ∈ W

1,p(•) E,loc (Ω, ϑ) is a (weak) sub-solution of equation (3.20) in Ω\E if Ω\E A(•, ∇u), ∇ϕ dx 0 (3.24)
for all ϕ ∈ W 1,p(•) (Ω, ϑ), ϕ 0, with compact support in Ω\E.

Definition 3.5. We will say that the sub-solution u of equation (3.20) in Ω\E has a removable singularity at E:

if u ∈ W 1,p(•) E,loc (Ω, ϑ) implies u ∈ W 1,p(•) loc
(Ω, ϑ) and the equality (3.24) is fulfilled for all ϕ ∈ W 1,p(•) (Ω, ϑ), ϕ 0, with compact support. Lemma 3.1. Suppose that there is a locally bounded function σ : Ω × Ω → (0, ∞) such that | ∇u| p dϑ

Q(y, ) -τ dϑ σ (y, z) Q(z, ) -τ dϑ, (3.25) for all adjacent dyadic cubes Q(y, ), Q(z, ) ⊂ Ω. If K ⊂ Ω is a compact set, then 3 2 Q(y, ) -τ dϑ C(n, σ, K) Q(z, ) -τ dϑ, (3.26) B(y, ) -τ dϑ C(n, σ, K) Q(y, ) -τ dϑ, ( 3 
1 p +    C 0 max    (r 2 -r 1 ) -p + B(y,r 2 / √ n) r -τ 2 dϑ 1 p - , (r 2 -r 1 ) -p + B(y,r 2 / √ n) r -τ 2 dϑ 1 p +    (3.29) for all ball B(y, r 2 ) ⊂⊂ Ω with 0 < r 2 -r 1 < 1, where C 0 = C 0 (n, µ, p, σ, E, C * ) > 0.
Proof. 1. Let r 2 > r 1 > 0 and y ∈ Ω be such that B(y, r 2 ) ⊂ Ω and r 2 -r 1 < 1. Choose r 0 ∈ (0, 1) such that E r 0 ⊂ Ω. Take ε ∈ (0, r 0 ) be arbitrarily. Since L α,γ,ϑ (E) = 0 there is a finite collection of mutually disjoint dyadic cubes

Q i = Q(y i , i ) so that E ⊂ int ∪ N i=1 Q i , , N i=1 Q i α-n i dϑ γ < ε, (3.30) 
3 i √ n < ε and Q i ∩ E = ∅, i = 1, .
. . , N . Now, we attach to each cube Q i , (Q i ) = i , i = 1, . . . , N , all adjacent dyadic cubes with the same length i . Since two dyadic cubes are either mutually disjoint or one is contained in the other, we may drop extra cubes away. Proceeding in this way we get a collection of mutually disjoint cubes

Q j,k = Q(y j,k , j,k ), (j, k) ∈ {1, . . . , N 1 } × {1, . . . , m j } satisfying j,k = a j , j = 1, . . . , N 1 N, k = 1, . . . , m j 3 n , (3.31) 
where

{1 a 1 < • • • < a N 1 N } ⊂ Z, and furthermore Q j,k is adjacent to Q a j .
Additionally, by (3.28) and (3.26) ,

3 2 Q j,k u p dϑ C 1 Qa j -τ a j dϑ, (3.32) 
j = 1, . . . , N 1 , k = 1, . . . , m j , for some constant C 1 = C 1 n, σ, E 2r 0 /3 , C * > 0.
2. We next choose non-negative test functions ϕ i , ϕ j,k , i = 1, . . . N , j = 1, . . . , N 1 , k = 1, . . . , m j , given by the Lemma 2.1, with the following properties:

spt ϕ i ⊂ 3 2 Q i , |∇ϕ i | C 2 (n) -1 i , (3.33) 
spt ϕ j,k ⊂ 3 2 Q j,k , |∇ϕ j,k | C 2 (n) -1 j,k , (3.34) 
i ϕ i + j,k ϕ j,k = 1 on (∪ i Q i ) ∪ (∪ j,k Q j,k ) . (3.35) 
Let ψ 0 : R n → R be a smooth function with spt ψ 0 ⊂ B(y, r 2 ), 0

ψ 0 1, |∇ψ 0 | C 3 (n)(r 2 -r 1 ) -1
, and ψ = 1 on B(y, r 1 ). Write

ξ = ψ 0   1 -   i ϕ i + j,k ϕ j,k     .
Substituting ξ p + u into (3.24), we see

Ω\E A(•, ∇u), ∇ ξ p + u dx 0, Ω\E ξ p + A(•, ∇u), ∇u dx Ω\E p + ξ p + -1 |uA(•, ∇u)||∇ξ|dx.
Then, by (3.21), (3.22), (2.1) and (2.2),

Ω\E ξ p + |∇u| p dϑ µ -2 Ω\E p + ξ p + -1 |∇ξ||∇u| p-1 udϑ 2µ -2 p + ξ p + -1 |∇u| p-1 ϑ p-1 p L p p-1 (•) (Ω\E) |∇ξ|uϑ 1 p L p(•) (Ω) 2µ -2 p + max      Ω\E ξ p + |∇u| p dϑ p-1 p + , Ω\E ξ p + |∇u| p dϑ p-1 p -     •   i |∇ϕ i |uϑ 1 p L p(•) ( 3 2 Q i) + j,k |∇ϕ j,k | uϑ 1 p L p(•) ( 3 2 Q j,k ) + |∇ψ 0 | uϑ 1 p L p(•) (B(y,r 2 ))   .
Consequently 

u p dϑ 1 p +    + C 4 i max    -p + i 3 2 Q i u p dϑ 1 p - , -p + i 3 2 Q i u p dϑ 1 p +    + C 4 j,k max    -p + j,k 3 2 Q j,k u p dϑ 1 p - , -p + j,k 3 2 Q j,k u p dϑ 1 p +    C 5 max    (r 2 -r 1 ) -p + B(y,r 2 / √ n) r -τ 2 dϑ 1 p - , (r 2 -r 1 ) -p + B(y,r 2 / √ n) r -τ 2 dϑ 1 p +    + C 6 ε,
where

C 5 = C 5 n, µ, p, σ, E 2r 0 /3 , C * > 0 and C 6 > 0 is independent of ε. Hence, min    Ω\E ξ p + |∇u| p dϑ 1 p - , Ω\E ξ p + |∇u| p dϑ 1 p +    C 5 max    (r 2 -r 1 ) -p + B(y,r 2 / √ n) r -τ 2 dϑ 1 p - , (r 2 -r 1 ) -p + B(y,r 2 / √ n) r -τ 2 dϑ 1 p +    + C 6 ε.
Since ε ∈ (0, 1) was arbitrary: | ∇u| p dϑ

1 p +    C 5 max    (r 2 -r 1 ) -p + B(y,r 2 / √ n) r -τ 2 dϑ 1 p - , (r 2 -r 1 ) -p + B(y,r 2 / √ n) r -τ 2 dϑ 1 p +    .
Therefore, we conclude (3.29).

Motivated by Theorem B we have our last result. Proof. 1. Let ϕ ∈ W 1,p(•) (Ω, ϑ) be with compact support. By Assumption 2.1 we can suppose that ϕ ∈ C ∞ (Ω) and |∇ϕ| 1. Write K = spt ϕ, choose r 0 ∈ (0, 1) such that K r 0 ⊂ Ω. Let ε ∈ (0, r 0 ) be arbitrarily given. Since L α,γ,ϑ (E) = 0, there is a finite collection of mutually disjoint dyadic cubes

Q i (y i , i ), 3 √ n i < ε, i = 1, . . . , N , so that E ⊂ int ∪ N i=1 Q i and N i=1 Q i α-n i dϑ γ < ε. (3.36)
We will cover K by a suitable collection of mutually disjoint dyadic cubes: We attach to each cube Q i , (Q i ) = i , i = 1, . . . , N , all adjacent dyadic cubes with the same length i . Since two dyadic cubes are either mutually disjoint or one is contained in the other, we may drop extra cubes away. Proceeding in this way we get a collection of mutually disjoint cubes Q j,k = Q(y j,k , j,k ), (j, k) ∈ {1, . . . , N 1 } × {1, . . . , m j } satisfying j,k = a j , j = 1, . . . , N 1 N, k = 1, . . . , m j 3 n , (3.37)

where

{1 a 1 < • • • < a N 1 N } ⊂ Z, and furthermore Q j,k is adjacent to Q a j .
Finally, we cover the remaining set K\

[(∪ i Q i ) ∪ (∪ j,k Q j,k )
] by mutually disjoint dyadic cubes Q h , all with the same length Q h = 0 , h = 1, . . . , N 2 , where 0 = min { i | i = 1, . . . , N }. We see

3 2 Q h ∩ E = ∅ for h = 1, . . . , N 2 . 2. From (3.29) we have | ∇u| ∈ L p(•) loc (Ω, ϑ). We claim u ∈ W 1,p(•) loc
(Ω, ϑ). To verify this assertion, let ψ i , ψ j,k , i = 1, . . . , N , j = 1, ..., N 1 , k = 1, ..., m j be non-negative test functions given by the Lemma 2.1, satisfying

spt ψ i ⊂ 3 2 Q i , |∇ψ i | C 1 (n) -1 i , spt ψ j,k ⊂ 3 2 Q j,k , |∇ψ j,k | C 1 (n) -1 j,k , i ψ i + j,k ψ j,k = 1 on (∪ i Q i ) ∪ (∪ j,k Q j,k ) . Write ζ = i ψ i + j,k ψ j,k .
We have 3. Additionally we assume that 0 ϕ 1. We show Ω A (•, ∇u) , ∇ϕ dx 0.

Ω\E u [(1 -ζ) ϕ] x b dx = - Ω\E u x b (1 -ζ) ϕdx, where b = 1, . . . , n. If ε → 0 + : Ω uϕ x b dx = - Ω u x b ϕdx. ( 3 
uζ x b ϕdx 2 uζ x b ϑ 1/p L p(•) (Ω) ϑ -1/p L p (•) (Ω) C 2 (ϑ) i u |∇ψ i | ϑ 1/p L p(•) ( 3 2 Q i) + C 2 j,k u |∇ψ j,k | ϑ 1/p L p(•) ( 3 2 Q j,k ) C 3 (ϑ, n) i max    -p + i 3 2 Q i u p dϑ 1 p - , -p + i 3 2 Q i u p dϑ 1 p +    + C 3 j,k max    -p + j,k
We next choose non-negative test functions ϕ i , ϕ j,k , ϕ h , i = 1, . . . N , j = 1, . . . N 1 , k = 1, . . . , m j , h = 1, . . . , N 2 , given by the Lemma 2.1, with the following properties: A (•, ∇u) , ∇ϕ dx C 9 ε, here the C i , i = 6, . . . , 9 are positive constants independents of ε. Since ε ∈ (0, r 0 ) was arbitrary, the proof is complete.

spt ϕ i ⊂ 3 2 Q i , |∇ϕ i | C 5 (n) -1 i , spt ϕ j,k ⊂ 3 2 Q j,k , |∇ϕ j,k | C 5 (n) -1 j,k , spt ϕ h ⊂ 3 2 Q h , |∇ ϕ h | C 5 (n) -1 0 , i ϕ i + j,

Theorem 3 . 1 .

 31 Suppose that (3.5) -(3.9) are satisfied, furthermore M α ϑ (E) = 0. If u is a non-negative subsolution of (3.4) in Ω\E, and u Cd(•, E) -β a.e. on Ω\E,(3.11) 

3 .

 3 Recall from step 1 and 2 that u ∈ L p(•) loc (Ω, ϑ) and | ∇u| ∈ L p(•) loc (Ω, ϑ). We now claim u ∈ W 1,p(•) loc

Lemma 3 . 2 .B

 32 .27) where y = z or Q(y, ), Q(z, ) ⊂ Ω are adjacent dyadic cubes, with y, z ∈ K and √ n < d(K, ∂Ω). Assume that (3.21) -(3.23), (3.25) are satisfied, and L α,γ,ϑ (E) = 0 for some γ ∈ (0, 1/p + ]. If u is a non-negative sub-solution of (3.20) in Ω\E and satisfies B(y,r) u p dϑ C * for all ball B(y, r) ⊂⊂ Ω, where C * is a suitable positive constant. Then min    B(y,r 1 ) | ∇u| p dϑ 1 p -, B(y,r 1 )

Theorem 3 . 2 .

 32 Assume that (3.21) -(3.23), (3.25) and (3.28) are satisfied, furthermore L α,γ,ϑ (E) = 0 for some γ ∈ (0, 1/p + ]. If u is a non-negative sub-solution of (3.20) in Ω\E, then the singularity of u at E is removable.

4

 4 (ϑ, n, σ, K)ε → 0 as ε → 0 + . So (3.38) is proved.

  1 is verified, see [2, Corollary 11.2.4]. On the other hand, if p ∈ P log (Ω) is bounded and ϑ satisfies the Muckenhoupt condition, see [1, 3], following the same lines of the proof of [12, Lemma 2.4] we obtain the Assumption 2.1; for auxiliary results see [14, Theorem 2.1.4], [4, Appendix C.5], [1, Theorem 1.1] and [3, Theorem 1.1]. Finally, if p ≡ constant and ϑ belongs to Muckenhoupt's A p -class, the Assumption 2.1 is satisfied; see [9, Theorem 2.5].

  Since3 2 Q h ∩ E = ∅ and spt ϕ h ⊂ 3 2 Q h , substituting ϕ ϕ h into (3.24), we haveA (•, ∇u) , ∇ (ϕ ϕ h ) dx 0, for h = 1, . . . ,N 2 . From this, A (•, ∇u) , ∇ (ϕϕ i ) dx + We can assume that Er 0 |∇u| p dϑ < 1, since |E| = 0. By (3.39), (3.22), (3.26), (3.29) and (3.36),

	Write														
														ξ =	ϕ i +	ϕ j,k +
																i	j,k
														3 2 Q h
																(3.39)
						i		3 2 Q i							j,k	2 Q j,k 3	A (•, ∇u) , ∇ (ϕϕ j,k ) dx.
	Ω	A (•, ∇u) , ∇ϕ dx C 6	i		3 2 Q i	-1 i (|∇u| p + 1) dϑ + C 6	j,k	3 2 Q j,k	-1 j,k (|∇u| p + 1) dϑ
		C 7 ε + C 6		i		B(y i ,3 √	n i /4)	-1 i |∇u| p dϑ + C 6	j,k B(y j,k ,3 √	n j,k /4)	-1 j,k |∇u| p dϑ
		C 7 ε + C 8		i	-1 i max			√	n i -	3 √ 4 n i	-p +	B(y i , i )	√	n i	-τ dϑ
	,	√	n i -	3	√ n i 4	-p +		B(y i , i )	√	n i	-τ dϑ	p -p +	    
	+ C 8	j,k	-1 j,k max		√	n j,k -	3	√	n j,k 4	-p +	B(y j,k , j,k )	√	n j,k	-τ dϑ
	,	√	n j,k -	3	√	n j,k 4	-p +	B(y j,k , j,k )	√	n j,k	-τ dϑ	p -p +	    	.	(3.40)
	Combining (3.40), (3.27), (3.23) and (3.36), we deduce that
															Ω

k ϕ j,k + h ϕ h = 1 on K. h ϕ h . Ω A (•, ∇u) , ∇ϕ dx = Ω A (•, ∇u) , ∇ (ϕξ) dx