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We construct bases of Young-type matrix units for all non-propagating irreducible subrepresentations for partition algebras. In contrast to Halverson and Ram's application of Bourbaki's basic construction, our matrix units are not constructed recursively from smaller-order partition algebras, and our explicit formula for non-propagating matrix units closely resembles Young's classical formula for symmetric group algebra matrix units. Our matrix unit bases, which we construct using the semimodularity of partition lattices and define via an analogue of Young's idempotent γ-elements, cannot be obtained from Enyang's seminormal form for individual isomorphic copies of partition algebra irreducibles.

Introduction

The study of algebras that have bases that are naturally indexed by combinatorial objects is one of the most important aspects about the discipline of algebraic combinatorics. There is a huge variety of algebras that are spanned by families of discrete structures that are commonly used in combinatorics. In our present article, we introduce many new results concerning the representation theory of partition algebras, which are algebras with bases that are denoted using partitions diagrams.

Letting k ∈ N and n ∈ N be such that 2k ≤ n, and letting V denote the n-dimensional permutation representation of the symmetric group S n for n ∈ N, the partition algebra CA k (n) arises in a natural context in the sense that this algebra is isomorphic to the centralizer algebra of S n acting diagonally on the tensor space V ⊗k . In other words, we may let S n act by permuting elements in a given basis of V , with this action being extended to elements in V , and extended diagonally to V ⊗k , so that this tensor space is endowed with the structure of an S n -module under this action, so that, with respect to this action, 1 End Sn (V ⊗k ) is none other than the algebra consisting of S n -morphisms from V ⊗k to itself (cf. [START_REF] Jones | The Potts model and the symmetric group[END_REF]). Partition algebras greatly generalize symmetric group algebras, Temperley-Lieb algebras, and Brauer algebras, and contain many other well-known algebras [START_REF] Colmenarejo | An insertion algorithm on multiset partitions with applications to diagram algebras[END_REF][START_REF] Halverson | Set-partition tableaux and representations of diagram algebras[END_REF]. We remark that there are direct applications of mathematical results concerning partition algebras in statistical mechanics [START_REF] Martin | Potts models and related problems in statistical mechanics[END_REF][START_REF] Martin | Temperley-Lieb algebras for nonplanar statistical mechanics-the partition algebra construction[END_REF][START_REF] Martin | Algebras in higher-dimensional statistical mechanics-the exceptional partition (mean field) algebras[END_REF] and in the field of knot theory [START_REF] Martin | Temperley-Lieb algebras for nonplanar statistical mechanics-the partition algebra construction[END_REF]. While the study of the evaluation and the classification of the irreducible representations for CA k (n) traces back to the work in [START_REF] Martin | Temperley-Lieb algebras for nonplanar statistical mechanics-the partition algebra construction[END_REF][START_REF] Martin | The partition algebras and a new deformation of the Schur algebras[END_REF], it is far from clear as to how it may be possible to formulate an appropriate analogue of Alfred Young's construction of matrix units for symmetric group algebra irreducibles. In this article, we introduce a close analogue of Young's classical matrix unit formula, and we succeed in proving that our new construction provides bases of matrix units for all non-propagating irreducibles for a given semisimple partition algebra CA k (n) for any k ∈ N.

The fact that the group algebra for a finite group must be isomorphic to a direct sum of matrix algebras is among the most fundamental results in all of representation theory [START_REF] Ceccherini-Silberstein | Representation theory of the symmetric groups[END_REF][START_REF] Cioppa | Matrix Units in the Symmetric Group Algebra, and Unitary Integration[END_REF]; this result is sometimes referred to as Frobenius' Fundamental Theorem of Representation Theory [10, §1]. However, in general, for a given semisimple algebra, it is very difficult to actually evaluate matrix units for such an algebra, i.e., elements in such an algebra satisfying the matrix unit multiplication rules whereby:

e λ T,U e µ V,W =      0 if λ ̸ = µ 0 if U ̸ = V e λ T,W if λ = µ and U = V . (1) 
We refer to the formula

e λ i,j = γ λ i σ λ i,j 1 -γ λ j+1 1 -γ λ j+2 • • • 1 -γ λ f λ (2) 
as Young's matrix unit formula [10, §1], with the family e λ i,j λ⊢k forming a basis of matrix units for the symmetric group algebra CS k ; see [10, §1] and Section 2 below. A recursion for partition algebra matrix units was given by Halverson and Ram in 2005 [START_REF] Halverson | Partition algebras[END_REF] through a direct application of what is referred to as the "basic construction", which traces back to the work of Bourbaki in [3, §2, §4.2]. This application of the basic construction recursively constructs partition algebra matrix units from smaller-order partition algebras, and does not provide any analogue or lifting of Young's N -or P -functions, Young's γ-elements, etc. [10, §1]. In contrast, our matrix unit construction does not rely recursively on matrix units from smaller-order partition algebras, and we provide an explicit formula for non-propagating matrix units that closely resembles [START_REF] Benkart | Partition Algebras and the Invariant Theory of the Symmetric Group[END_REF].

A seminormal form introduced by Enyang in 2013 gives us formulas for generators of individual isomorphic copies of partition algebra irreducibles [START_REF] Enyang | A seminormal form for partition algebras[END_REF], but this is not the same as having an explicit formula for full bases of matrix units for partition algebra irreducibles. Recently, in [START_REF] Halverson | Set-partition tableaux and representations of diagram algebras[END_REF], individual copies of irreducible representations for partition algebras were constructed, using a new basis indexed by set-partition tableaux, but, again, this is not the same as having Young-type matrix unit bases. In [START_REF] Doty | Canonical idempotents of multiplicityfree families of algebras[END_REF], constructions for idempotents for multiplicity-free algebras were introduced, but we again encounter the same problem suggested in the preceding two sentences: All of these results are fundamentally not equivalent in any way to the families of Young-type matrix unit bases introduced in this article.

2 Non-propagating analogues of Young's γ-elements

We assume basic familiarity with Young tableaux, injective tableaux, etc.; see [10, §1]. For the sake of brevity, we also assume familiarity with basic properties about the partition algebra CA k (n), referring the interested reader to [START_REF] Halverson | Partition algebras[END_REF]. We let Young's P -and N -functions refer to the functions whereby

P (T ) = α∈R(T ) α and N (T ) = β∈C(T ) sign(β)β (3) 
for an injective tableau T [10, §1], where R(T ) and C(T ) respectively denote the row and column groups of T [10, §1]. As in [10, §1], we write E(T ) = N (T )P (T ), and we let Young tableaux of a given shape be ordered according to the YFLO relation defined in [10, §1].

Letting S λ 1 , S λ 2 , . . ., S λ f λ denote the Young tableaux of shape λ ⊢ n ordered according to YFLO, as in [10, §1], we set

γ λ i = f λ n! N S λ i P S λ i , (4) 
and we let σ λ i,j denote the permutation such that

S λ i = σ S λ i ,S λ j S λ j , recalling (2) 
. Let k and n be integer parameters such that 2k ≤ n. A flat set-partition tableau of order n is a one-row tableau with n cells, and with consecutive empty cells starting from the left-hand side followed by consecutive nonempty cells labeled with subsets of {1, 2, . . . , k} such that: The nonempty labels are increasing according to a fixed linear ordering on the power set of {1, 2, . . . , k}, and the nonempty labels form a set-partition of {1, 2, . . . , k}. So, there are B k such tableaux in total, letting B k denote the k th Bell number, and recalling that a set-partition of a set S is a set T of disjoint nonempty subsets of S such that the union of the sets in T equals S.

Letting k and n be as above, for a flat set-partition tableau T , we let both P (T ) and N (T ) denote the non-propagating element d T of the diagram basis of CA k (n) with upper blocks forming the same set-partition of {1, 2, . . . , k} as the labels of T , and with the following property holding: For each upper block b, b ′ is also a block in d T , letting b ′ denote the set of "primed" versions of the elements in b.

We write

T (n) 1 < T (n) 2 < • • • < T (n) B k , (5) 
where

T (n) 1 , T (n) 2 , • • • , T (n) B k (6) 
is a full set of set-partition tableaux of shape (n) and content {1, 2, . . . , k}; we are letting the linear ordering in (5) be fixed, but any total ordering on (6) may be used in the matrix unit construction introduced in this article. For a set-partition tableau T of flat shape, we write E(T ) = N (T )P (T ), being consistent with the definition of E(Y ) for a Young tableau [10, §1].

A key part of Young's classical construction [10, §1] is given by the idempotency of (4). This leads us to normalize E(T ) for a single-row set-partition tableau T so as to form an idempotent partition algebra element. Given a nonzero partition algebra element that is idempotent-up-to-a-nonzero-scalar, it is often necessary, in our Young-inspired construction, to normalize such an element, according to Definition 2.1 below. Definition 2.1. If x is a nonzero element in a partition algebra, and if there is a nonzero scalar α such that αx is idempotent, then x = αx. So, in order for an expression of the form y to be well-defined according to Definition 2.1, we have that y must be nonzero and idempotent-up-to-a-nonzero-scalar. As it turns out, proving that the recusion indicated below in Definition 2.2 is well-defined, according to the "overline" operation in Definition 2.1, is very nontrivial. Definition 2.2. We let the expressions γ

(n) 1 , γ (n) 2 , . . ., γ (n) 
B k be defined as below:

γ (n) 1 = E T (n) 1 , γ (n) 2 = E T (n) 2 1 -γ (n) 1 , γ (n) 3 = E T (n) 3 1 -γ (n) 1 1 -γ (n) 2 , etc.
As indicated above, the semimodularity of the partition lattice is to play an important role in our work. We proceed, in this direction, by introducing the following notation. For example, an illustration of the concatenation of the non-propagating diagrams displayed in [START_REF] Enyang | A seminormal form for partition algebras[END_REF] and [START_REF] Adriano | Lectures in Algebraic Combinatorics[END_REF] is provided in Example 2.6. Definition 2.4. For set-partition tableaux T and U , let m T,U denote the number of blocks completely contained in the middle row of d T * d U . We may write m λ i,j in place of m T λ i ,T λ j . We see that the identity whereby

d T (n) i d T (n) j = n m (n) i,j d T (n) i ,T (n) j
must hold, and we also obtain that

d 2 T (n) i = n m (n) i,i d T (n) i = n ν (n) i d T (n) i , noting that m (n) i,i = ν (n) i
for a given index i. The following lemmas may be considered as being of very basic importance in terms of the lattice structure on set-partitions, and since these lemmas are very important in our proving the desired multiplicative properties of our partition algebra analogues of Young's γ-expressions, this shows how the methods that we are using to "lift" Young's construction to partition algebra irreducible representations closely reflect and are intimately connected with the combinatorics of set-partitions. Lemma 2.5. For distinct indices i and j, the strict inequality ν

(n) i > 2m (n) i,j -ν (n) j holds.
Proof. As above, we let i and j be distinct indices. Of course, we have that m . So, we have that 2m

(n) i,j ≤ ν (n) i and m (n) i,j ≤ ν (n) j ,
(n) i,j ≤ ν (n) i + ν (n) j . If m (n) i,j < ν (n) i or m (n) i,j < ν (n)
j , then we obtain the desired result whereby 2m

(n) i,j < ν (n) i + ν (n)
j . Moreover, we claim that it cannot be the case that m

(n) i,j = ν (n) i and m (n) i,j = ν (n)
j . This is shown below. By way of contradiction, suppose that both of the equalities m

(n) i,j = ν (n) i and m (n) i,j = ν (n) j
hold. This would mean that there could not exist any block in the top row of d T (n) j with two nodes a and b such that a ′ and b ′ are in separate blocks in the bottom row of d T (n) i . In other words, every block of the set partition given by the labels of T (n) j is contained in a block of the set partition given by the labels of T (n) i , and a symmetric argument proves that the converse holds, which contradicts that i and j are distinct.

We need to make use of another inequality that may appear to be quite similar to that in Lemma 2.5, but that turns out to be less intuitive. This second inequality, as given below in Lemma 2.8 is closely related to the lattice structure on set-partitions, so it is worthwhile to briefly review this poset structure.

The lattice of set-partitions

Recall that a partially ordered set or poset is set endowed with a partial order relation, which is a relation that is reflexive, antisymmetric, and transitive. A lattice is a poset such that every two elements in this poset have a unique least upper bound or supremum and a unique greatest lower bound or infimum. Given two elements x and y in a lattice, the least upper bound of x and y is denoted as x ∨ y, and the greatest lower bound is denoted as x ∧ y. The operations ∧ and ∨ are associative, commutative, and idempotent.

Let (P, ≤) be a poset. It is said that y covers x if x < y and if no element z ∈ P is such that x < z < y. A chain is a poset in which any two elements are comparable according to the underlying order relation. For a poset P , if every maximal chain has the same length n, then P is said to be graded of rank n. If P satisfies this condition, there is a unique rank function ρ : P → {0, 1, . . . , n} such that ρ(x) = 0 if x is a minimal element of P , and ρ(y) = ρ(x) + 1 if y covers x in P .

Using standard notation from [START_REF] Stanley | Enumerative combinatorics[END_REF], Π n denotes the set of all partitions of {1, 2, . . . , n} endowed with the poset structure whereby π ≤ σ if each block of π is contained in a block of σ, forming a lattice, using the following standard definition of the term set-partition.

The order relation ≤ on Π n indicated above is referred to as the refinement ordering. The poset Π n has the structure of a lattice, and this lattice structure is often simply referred to as the partition lattice or the classical set partition lattice [START_REF]Set Partitions[END_REF].

The concept of the supremum of two elements in a given partition lattice is very important for our purposes. As noted in [START_REF]Set Partitions[END_REF], given two set-partitions λ and µ, the element λ ∨ µ may be obtained as the transitive closure of the relation whereby i is related to j if and only if i and j are in the same part in λ or µ or both λ and µ.

Example 2.6. Let us consider the following two set-partitions: {{1, 2}, {3, 4}, {5, 6}, {7}} and {{1}, {2, 3}, {4, 5}, {6}, {7}} .

In the lattice Π 7 , under the refinement ordering ≤ as defined above, the supremum

{{1, 2}, {3, 4}, {5, 6}, {7}} ∨ {{1}, {2, 3}, {4, 5}, {6}, {7}} is equal to: {{1, 2, 3, 4, 5, 6}, {7}} . (8) 
With regard to Lemma 2.8 below, we may visualize this in a relevant way using diagram basis elements in CA 7 (n) by writing

d 1 = (9)
and

d 2 = , ( 10 
)
so that the concatenation d 1 * d 2 is
and we can see that the components of the middle row in this concatenation, i.e., in the configuration as above, form the set-partition indicated in (8).

As illustrated above, we have that: Given a non-propagating tableau T i with labels S 1 , S 2 , . . ., S ν i forming a set-partition λ = {S 1 , S 2 , . . . , S ν i } of {1, 2, . . . , k}, and another nonpropagating tableau T j with labels forming a set-partition µ of {1, 2, . . . , k}, the components of the middle row of d T i * d T j form the set-partition λ ∨ µ, so m i,j is equal to the cardinality of λ ∨ µ.

We make note of the important role that the classical set-partition lattice plays in [START_REF] Benkart | Partition algebras P k (n) with 2k > n and the fundamental theorems of invariant theory for the symmetric group S n[END_REF], in which the transition matrices between the two canonical bases of a given partition algebra are evaluated using the Möbius function of the lattice of set-partitions. As in [START_REF] Benkart | Partition algebras P k (n) with 2k > n and the fundamental theorems of invariant theory for the symmetric group S n[END_REF], we note that partition algebras were introduced to study the Potts lattice model of interacting spins on a crystalline lattice; see [START_REF] Martin | Representations of graph Temperley-Lieb algebras[END_REF][START_REF] Martin | Temperley-Lieb algebras for nonplanar statistical mechanics-the partition algebra construction[END_REF][START_REF] Martin | The structure of the partition algebras[END_REF].

In our constructing Young-type matrix units for non-propagating partition algebra subrepresentations, we need to make use of the concept of a semimodular lattice, which we later define. As noted in [24, p. 100], the rank of a given element x in the poset Π n is n -|x|.

Example 2.7. Let us consider the structure of the lattice Π 3 , as displayed in the diagram below.

{{1, 2, 3}} {{1}, {2, 3}} {{2}, {1, 3}} {{3}, {1, 2}} {{1}, {2}, {3}}
We have that {{1}, {2}, {3}} is a minimal element in Π 3 , so the rank ρ({{1}, {2}, {3}}) of this element is 0. This agrees with the evaluation of the rank function on Π n so that ρ(x) = n -|x|. Since {{1}, {2, 3}} covers {{1}, {2}, {3}}, we have that the rank of {{1}, {2, 3}} must be 1, which again agrees with the formula ρ(x) = n -|x|.

As indicated in [24, p. 104], a finite lattice L satisfying the following condition is referred to as a finite upper semimodular lattice or a finite semimodular lattice: L is graded, and the rank function ρ of L is such that the inequality

ρ(x) + ρ(y) ≥ ρ(x ∧ y) + ρ(x ∨ y)
holds for all x, y ∈ L.

A finite geometric lattice is a finite semimodular lattice that also satisfies a property referred to as being atomic [24, p. 105]. We let the symbol 0 refer to an element in a poset P such that 0 ≤ x for each member x in P , assuming such an element 0 actually exists in P . Also, we let the symbol 1 denote a member of P such that ∀x ∈ P x ≤ 1, under the assumption that such an element exists in P . For elements x and y in a lattice L, the supremum x ∨ y is often referred to as "x join y". We may define an atom of a finite lattice as an element covering 0. A finite lattice L is atomic if every element in L is the join of atoms.

In [24, p. 105], it is stated that Π n , with its poset structure as defined above, is a geometric lattice. So, since geometric lattices are semimodular, Π n is semimodular. So, we have that

ρ(x ∧ y) + ρ(x ∨ y) ≤ ρ(x) + ρ(y)
for all x, y ∈ L, and, from the evaluation of the rank function for Π n indicated in [24, p. 100], we have that

n -|x ∧ y| + n -|x ∨ y| ≤ n -|x| + n -|y|, or, equivalently, -|x ∧ y| -|x ∨ y| ≤ -|x| -|y|,
which, in turn, is equivalent to the following important inequality:

|x| + |y| ≤ |x ∧ y| + |x ∨ y|. (11) 
The semimodularity of partition lattices is of considerable significance in lattice theory [START_REF] Grätzer | Notes on planar semimodular lattices. V. Cover-preserving embeddings of finite semimodular lattices into simple semimodular lattices[END_REF], which makes it all the more interesting how we make use of Π k being semimodular in our representation-theoretic work. Many well-known results in lattice theory rely in a very non-trivial way on the fact that every finite lattice L may be embedded into a simple semimodular lattice [START_REF] Grätzer | Notes on planar semimodular lattices. V. Cover-preserving embeddings of finite semimodular lattices into simple semimodular lattices[END_REF], which follows from a profound result due to Pudlák and Tůma giving us that every finite lattice L can be embedded into a finite partition lattice [START_REF] Pudlák | Every finite lattice can be embedded in a finite partition lattice[END_REF].

Lemma 2.8. The inequality m (n) a,b ≥ m (n) a,c + m (n) c,b -ν (n) c ( 12 
)
holds for all possible indices a, b, and c.

Proof. Let s a , s b , and s c be the set-partitions corresponding to the non-propagating tableaux

d T (n) a , d T (n) b
, and

d T (n) c
, respectively. That is, we let s a denote the set-partition given by the blocks in the upper row of d T (n) a , and similarly for s b and s c . From the semimodular inequality in [START_REF] Grätzer | Notes on planar semimodular lattices. V. Cover-preserving embeddings of finite semimodular lattices into simple semimodular lattices[END_REF], we have that:

|s a ∨ s c | + |s c ∨ s b | ≤ |(s a ∨ s c ) ∧ (s c ∨ s b )| + |(s a ∨ s c ) ∨ (s c ∨ s b )|. ( 13 
)
Using notation as in [START_REF] Halverson | Set-partition tableaux and representations of diagram algebras[END_REF], we rewrite the inequality in [START_REF] Halverson | Partition algebras[END_REF] as:

m a,c + m c,b ≤ |(s a ∨ s c ) ∧ (s c ∨ s b )| + |(s a ∨ s c ) ∨ (s c ∨ s b )|.
By associativity of the ∨ operation, we may rewrite the above inequality as

m a,c + m c,b ≤ |(s a ∨ s c ) ∧ (s c ∨ s b )| + |s a ∨ s c ∨ s c ∨ s b |,
and by idempotency of ∨, we obtain that

m a,c + m c,b ≤ |(s a ∨ s c ) ∧ (s c ∨ s b )| + |s a ∨ s c ∨ s b |,
so that, by commutativity of the ∨ operation, we find that:

m a,c + m c,b ≤ |(s a ∨ s c ) ∧ (s c ∨ s b )| + |s a ∨ s b ∨ s c |. It is transparent that |s a ∨ s b ∨ s c | ≤ |s a ∨ s b | since mapping a set-partition x to x ∨ s c
has the effect of reducing the number of elements in the original set-partition x by 0 or more. We also claim that

|(s a ∨ s c ) ∧ (s c ∨ s b )| ≤ |s c |. ( 14 
)
This is also transparent: We have that s a ∨ s c and s c ∨ s b are both upper bounds of s c , so s c is certainly a lower bound for s a ∨ s c and s c ∨ s b , but it may or may not be the greatest lower bound for s a ∨ s c and s c ∨ s b . If s c happs to be this greatest lower bound, then we have equality in [START_REF] Jones | The Potts model and the symmetric group[END_REF], and otherwise, we must have a strict inequality in [START_REF] Jones | The Potts model and the symmetric group[END_REF], since if there were a greater lower bound for s a ∨ s c and s c ∨ s b compared to s c , this greater lower bound would necessarily have less elements than s c .

Before we begin with the following theorem, we introduce the notation considered below. Letting α be a non-negative integer, we write 1 n α + lower-degree expression(s) or 1 n α +l.d.e. to denote a rational function in n of the form

1 n α + r(n) ,
where r(n) is a rational function in n such that the degree of the numerator of r(n) minus the degree of the denominator of r(n) is strictly lower than α.

Theorem 2.9. Each expression of the form γ

(n) i
is well-defined in that each such expression is nonzero and idempotent.

Proof. Consider the following statement, given by the following three "bullet points", for a parameter i, letting j ≤ i:

• Each expression of the form γ j is nonzero and idempotent;

• The normalizing scalar for

E T (n) j 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) j-1 is of the form 1 n 2ν (n) j + l.d.e.
; and

• For ℓ > j, the product

d T (n) ℓ 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) j d T (n) ℓ (15) is of the form (n ν (n) ℓ + l.d.e.)d T (n) ℓ ,
and for ℓ 1 , ℓ 2 , ℓ 3 , ℓ 4 > j such that it is not the case that

ℓ 1 = ℓ 2 = ℓ 3 = ℓ 4 , the product d T (n) ℓ 1 ,T (n) ℓ 2 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) j d T (n) ℓ 3 ,T (n) ℓ 4 (16) 
is of the form

s n m (n) ℓ 2 ,ℓ 3 + l.d.e. d T (n) ℓ 1 ,T (n) ℓ 4 (17) 
for some number s ∈ C, not excluding the possibility that the above expression may vanish.

For the sake of clarity, we are letting n be an indeterminate parameter, whereas s, as above, is an element in C and is not a non-constant rational function in the variable n. In the latter part of the third point above, we need to impose the condition that it is not the case that ℓ 1 = ℓ 2 = ℓ 3 = ℓ 4 , because otherwise, we would obtain a product as in [START_REF] Martin | Potts models and related problems in statistical mechanics[END_REF], and we need to treat such products separately compared with [START_REF] Martin | Representations of graph Temperley-Lieb algebras[END_REF].

Let us consider the base case, given by setting i = 1, with regard to the above three bullet points. In this case, we have that

γ (n) 1 = E T (n) 1 = 1 n ν (n) 1 d T (n) 1
, so we see that γ 1 is indeed nonzero and idempotent. Since

E T (n) 1 = 1 n 2ν (n) 1 E T (n) 1
, we see that the normalizing scalar for E T

(n) 1

is as expected. Now, let ℓ > 1, and consider the following product:

d T (n) ℓ 1 -γ (n) 1 d T (n) ℓ = d T (n) ℓ 1 - 1 n ν (n) 1 d T (n) 1 d T (n) ℓ = n ν (n) ℓ -n 2m (n) 1,ℓ -ν (n) 1 d T (n) ℓ .
By Lemma 2.5, we have that ν

(n) ℓ > 2m (n) 1,ℓ -ν (n)
1 . Now, let ℓ 1 , ℓ 2 , ℓ 3 , ℓ 4 > 1 be such that it is not the case that ℓ 1 = ℓ 2 = ℓ 3 = ℓ 4 , and consider the following product:

d T (n) ℓ 1 ,T (n) ℓ 2 1 -γ (n) 1 d T (n) ℓ 3 ,T (n) ℓ 4 = d T (n) ℓ 1 ,T (n) ℓ 2 1 - 1 n ν (n) 1 d T (n) 1 d T (n) ℓ 3 ,T (n) ℓ 4 = n m (n) ℓ 2 ,ℓ 3 -n m (n) ℓ 2 ,1 +m (n) 1,ℓ 3 -ν (n) 1 d T (n) ℓ 1 ,T (n) ℓ 4
.

So, by Lemma 2.8, we have that the base case does indeed hold.

As an inductive hypothesis, assume that the statement given by the above three bullet points holds for i.

By definition, we have that

E T (n) i+1 = N T (n) i+1 P T (n) i+1 ,
and, since the tableau

T (n)
i+1 under consideration is of flat shape, we can see that

N T (n) i+1 = P T (n) i+1 = d T (n) i+1 , so that N T (n) i+1 P T (n) i+1 must equal n ν (n) i+1 d T (n) i+1
. Now, let us consider the product

E T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i (18) 
which we rewrite as below:

n ν (n) i+1 d T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i . ( 19 
)
We see that the right-hand side of the above equality cannot be equal to zero, because if it were equal to 0, then by right-multiplying the right-hand side of ( 19) by d T (n)

i+1

, we would have that

n ν (n) i+1 d T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i d T (n) i+1 = 0, so that d T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i d T (n) i+1 = 0, (20) 
but this contradicts our inductive hypothesis: Since i + 1 > i, we must have that the product in ( 20) is of the form

n ν (n) i+1 + l.d.e. d T (n) i+1
, which is nonzero. So, we have made use of our inductive hypothesis to prove that (18) must be nonzero. Now, we want to show that the expression in ( 18) must be idempotent up to a nonzero scalar multiple. So, we proceed to consider the product

E T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i E T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i
which we rewrite as below:

n 2ν (n) i+1 d T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i d T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i
.

By our inductive hypothesis, the above expression may be written as:

n 2ν (n) i+1 n ν (n) i+1 + l.d.e. d T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i ,
which, in turn, we rewrite as

n ν (n) i+1 n ν (n) i+1 + l.d.e. E T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i ,
So, this shows us that the expression in ( 18) is indeed idempotent-up-to-a-nonzero-scalar, i.e., that γ

i+1 is indeed nonzero and idempotent, and we have also shown that the normalizing scalar for (18) must be of the desired form. Now, let ℓ > i + 1. For our proof by induction, we also must consider products of the following form:

d T (n) ℓ 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i+1 d T (n) ℓ . (21) 
Let us rewrite this product as below:

d T (n) ℓ 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i 1 -γ (n) i+1 d T (n) ℓ = d T (n) ℓ 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i d T (n) ℓ -d T (n) ℓ 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i γ (n) i+1 d T (n) ℓ .
Now, let us consider the expression

γ (n) i+1 = E T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i
.

Recall that we had shown, using our inductive hypothesis, that (18) must be nonzero; this gives us immediately that γ

(n)
i+1 must be nonzero. Also, using this hypothesis, we have demonstrated that γ (n) i+1 must be idempotent, and also must be of the following form:

γ (n) i+1 = 1 n 2ν (n) i+1 + l.d.e. E T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i . Equivalently, γ (n) i+1 = n ν (n) i+1 n 2ν (n) i+1 + l.d.e. d T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i . (22) 
Now, let us write

γ (n) i+1 = 1 n ν (n) i+1 + l.d.e. d T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i , (23) 
noting that the "l.d.e." expression in [START_REF]Set Partitions[END_REF] is not necessarily the same as that in [START_REF] Pudlák | Every finite lattice can be embedded in a finite partition lattice[END_REF]. So, we can rewrite the product in [START_REF] Orellana | Symmetric Group characters as Symmetric Functions[END_REF] as below:

n ν (n) ℓ + l.d.e. d T (n) ℓ - 1 n ν (n) i+1 + l.d.e. d T (n) ℓ 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i d T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i d T (n) ℓ .
So, from our inductive hypothesis, we have that ( 21) may be written as below, for some scalar s 1 ∈ C:

n ν (n) ℓ + l.d.e. d T (n) ℓ - 1 n ν (n) i+1 + l.d.e. s 1 n m (n) ℓ,i+1 + l.d.e. d T (n) ℓ ,T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i d T (n) ℓ .
Again by our inductive hypothesis, (21) may be written as below, for some number s 2 ∈ C: Finally, let ℓ 1 , ℓ 2 , ℓ 3 , ℓ 4 > i + 1 be such that it is not the case that ℓ 1 = ℓ 2 = ℓ 3 = ℓ 4 . Consider the following product:

n ν (n) ℓ + l.d.e. d T (n) ℓ - 1 n ν (n) i+1 + l.d.e.
d T (n) ℓ 1 ,T (n) ℓ 2 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i 1 -γ (n) i+1 d T (n) ℓ 3 ,T (n) ℓ 4 . ( 24 
)
We make use of a similar kind of approach as before. We begin by rewriting the product in [START_REF] Stanley | Enumerative combinatorics[END_REF] as below:

d T (n) ℓ 1 ,T (n) ℓ 2 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i d T (n) ℓ 3 ,T (n) ℓ 4 -d T (n) ℓ 1 ,T (n) ℓ 2 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i γ (n) i+1 d T (n) ℓ 3 ,T (n) ℓ 4
.

We again make use of the equation in [START_REF]Set Partitions[END_REF], which comes from our inductive hypothesis. So, we have that ( 24) may be written as follows:

d T (n) ℓ 1 ,T (n) ℓ 2 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i d T (n) ℓ 3 ,T (n) ℓ 4 - 1 n ν (n) i+1 + l.d.e. d T (n) ℓ 1 ,T (n) ℓ 2 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i d T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i d T (n) ℓ 3 ,T (n) ℓ 4
.

So, again by our inductive hypothesis, we may rewrite the above expression as below, for some numbers α 1 , α 2 , α 3 ∈ C. We are obtaining these scalars according to the third "bullet point" corresponding to our inductive hypothesis:

α 1 n m (n) ℓ 2 ,ℓ 3 + l.d.e. d T (n) ℓ 1 ,T (n) ℓ 4 - 1 n ν (n) i+1 + l.d.e α 2 n m (n) ℓ 2 ,i+1 + l.d.e. α 3 n m (n) i+1,ℓ 3 + l.d.e. d T (n) ℓ 1 ,T (n) ℓ 4
.

Recall that m

(n) a,b ≥ m (n) a,c + m (n) c,b -ν (n) c
for all possible indices a, b, and c, by Lemma 2.8. If α 1 is nonzero, then by Lemma 2.8, we can see that the degree of the first coefficient of d

T (n) ℓ 1 ,T (n) ℓ 4
is greater than or equal to that of the latter coefficient, giving us the desired form for [START_REF] Stanley | Enumerative combinatorics[END_REF], even if we obtain an expression that vanishes. Now, let us consider the case whereby α 1 = 0. In this case, if we consider the expression

α 1 n m (n) ℓ 2 ,ℓ 3 + l.d.e. d T (n) ℓ 1 ,T (n) ℓ 4
, we see that the highest power of n in the above coefficient of d

T (n) ℓ 1 ,T (n) ℓ 4
is strictly less than m (n) ℓ 2 ,ℓ 3 , so we may again apply the fundamental inequality from Lemma 2.8 to obtain the desired expression displayed in [START_REF] Martin | Temperley-Lieb algebras for nonplanar statistical mechanics-the partition algebra construction[END_REF].

With regard to the lattice-theoretic arguments involved in our above proof, there is an elegant interplay among the combinatorial objects involved in our matrix unit constructions and the algebraic behavior and construction of these Young-type matrix units.

The multiplicative behaviour of our γ

(n)

i -elements agrees with Young's γ-expressions (cf. Proposition 4.3 in [10, p. 13]), as below.

Theorem 2.10. The multiplication rule whereby

γ (n) i γ (n) j = γ (n) i if i = j, and 
0 if i > j holds.
Proof. By Theorem 2.9, we have that each expression of the form γ (n) i is idempotent and nonzero, so that we may write

γ (n) i = E T (n) i 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i-1 .
In particular, we have that

γ (n) 2 = E T (n) 2 1 -γ (n) 1 .
So, for some nonzero scalar s = s 2 , we find that

γ (n) 2 = s E T (n) 2 1 -γ (n) 1 , so that γ (n) 2 γ (n) 1 = s E T (n) 2 (1 -γ (n) 1 )γ (n) 1 ,
which shows us that γ

(n) 2 γ (n) 1 must vanish, since 1 -γ (n) 1 γ (n) 1 = γ (n) 1 -γ (n) 1 2 = 0, by the idempotency of γ (n) 1 .
We regard the vanishing of γ

(n) 2 γ (n)
1 as a base case for an inductive argument that we are to use, as below.

Inductively, we assume that: If i > j, then the product γ

(n) i γ (n) j
vanishes, and we have shown that this property holds for i = 2. We are to apply induction with respect to the initial index of products as in γ

(n) i γ (n) j .
Suppose that i + 1 > m for some index m, and consider the product γ

(n) i+1 γ (n)
m . Again by Theorem 2.9, we have that:

γ (n) i+1 = E T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i .
So, for some nonzero scalar t = t m , we have that

γ (n) i+1 = t E T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i .
So, we obtain the equality whereby

γ (n) i+1 γ (n) m = t E T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i γ (n) m , (25) 
recalling that we are letting i + 1 > m. Since i + 1 > m, it is possible that i = m, in which case (25) must vanish, as, in this case, we have that

1 -γ (n) i γ (n) m = 1 -γ (n) i γ (n) i = γ (n) i -γ (n) i 2 ,
again by the idempotency result from Theorem 2.9. So, we now consider the case whereby i + 1 > i > m. From the strict inequality i > m, we may apply our induction hypothesis in the manner suggested below. Let us rewrite (25) as

γ (n) i+1 γ (n) m = t E T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i-1 1 -γ (n) i γ (n) m . ( 26 
)
Since i > m, by our inductive hypothesis we have that γ

(n) i γ (n)
m vanishes. So, from (26), we obtain that:

γ (n) i+1 γ (n) m = t E T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i-1 γ (n) m .
If i -1 = m, the above product must vanish by idempotency of our γ-expressions, and, otherwise, we obtain

γ (n) i+1 γ (n) m = t E T (n) i+1 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i-2 γ (n) m ,
so that we may repeat these previous steps inductively, and since 1 ≤ m < i, we must eventually "encounter" a vanishing product of the form

1 -γ (n) m γ (n) m ,
completing our proof.

3 Young-type matrix units for non-propagating submodules

We are to make use of the following analogue of Young's σ-function as involved in Young's symmetric group algebra matrix unit formula [10, §1].

Definition 3.1. Let T (n) i
and T

(n) j be as in [START_REF] William | Crossings and nestings of matchings and partitions[END_REF]. We let τ

(n)
i,j to be the partition diagram in CA k (n) given as follows. Let L 1 and L 2 be labels in T (n) i and T

(n) j , respectively, whereby L 1 and L 2 are in the same position and are not both empty. Then

L 1 ∪ L ′ 2 is a block in τ (n) i,j .
Consider the following analogue of Young's classical matrix unit formula:

e (n) i,j = τ (n) i,j γ (n) j 1 -γ (n) j+1 1 -γ (n) j+2 • • • 1 -γ (n) B k . ( 27 
)
We are to prove that (27) gives us matrix unit bases for the non-propagating irreducibles of CA k (n) for all k.

If we want to evaluate a product of the form

e (n) i,j e (n) k,ℓ (28) 
we see that the multiplication rule given in Theorem 2.10 is not enough, since in the expansion of products as in (28), we may encounter products as in

γ (n) m 1 τ (n) m 2 ,m 3 γ (n) m 3 .
As something of a first step toward finding a suitable multiplication rule for (28), we consider the following result, which is easily seen to hold, as we consider below.

Proposition 3.2. Each expression of the form γ

(n) i
must be a linear combination of nonpropagating diagrams, as is the case with each expression of the form e

(n) i,j .
By Theorem 2.9, we see that the recursive process indicated below is well-defined, in that we can always apply the "overline" function in the manner suggested below.

γ (n) 1 = E T (n) 1 , γ (n) 2 = E T (n) 2 1 -γ (n) 1 , γ (n) 3 = E T (n) 3 1 -γ (n) 1 1 -γ (n) 2 , etc.
In any case, we have that E T 

τ (n) i,j γ (n) j = τ (n) i,j E T (n) j 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) j-1 .
So, from Definition 2.1, and from Theorem 2.9, there exists some nonzero scalar α = α j such that τ

(n) i,j γ (n) j = α τ (n) i,j E T (n) j 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) j-1 . (29) 
By definition, E T

(n) j = N T (n) j P T (n) j , writing N T (n) j = P T (n) j = S is a label in T (n) j [S, S ′ ],
where [S, S ′ ] denotes a diagram consisting of S and S ′ as separate blocks and of vertical lines everywhere else. So, we have that:

E T (n) j = n ν j S is a label in T (n) j [S, S ′ ]. That is, E T (n) j = n ν j d T (n) j . (30) 
Example 3.3. We find that

E 12 3 = n 2 ,
as one would expect.

Now, let us rewrite (29) as below:

τ (n) i,j γ (n) j = n ν j α τ (n) i,j d T (n) j 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) j-1 . 
We can see that the first two non-scalar factors in the right-hand side of the above equality give us a single non-propagating diagram. Since

e (n) i,j = τ (n) i,j γ (n) j 1 -γ (n) j+1 1 -γ (n) j+2 • • • 1 -γ (n) g (n) , (31) 
by definition, we have that

e (n) i,j = n ν j α τ (n) i,j d T (n) j 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) j-1 1 -γ (n) j+1 1 -γ (n) j+2 • • • 1 -γ (n) g (n) .
So, since τ

(n) i,j d T (n) j is a single non-propagating diagram, we have that e (n)
i,j is a scalar multiple of a non-propagating diagram times another partition algebra element, which shows that e (n) i,j must be a linear combination of non-propagating diagrams. Let us further consider diagram products of the form τ

(n) i,j d T (n) j , as below, bearing in mind that τ (n) i,j is a "lifting" of Young's σ-function.
Recall that we are letting the symbol ∼ denote equality up to a nonzero scalar multiple, e.g., within a given partition algebra. For the sake of clarity, we note that 0 ∼ 0, since a nonzero scalar multiple of 0 equals 0, so that x ∼ 0 implies x = 0 for a given partition algebra element x. It is almost immediate that the identity

τ (n) i,j d T (n) j ∼ d T (n) i ,T (n) j (32)
holds, and that the above equivalence holds up to a power of n; our τ transition function is specifically "designed" so that the identity in (32) will hold.

Example 3.4. Let us order the set-partition tableaux of shape (n) = ( 6) and content {1, 2, 3} as below:

2 13 < 123 < 1 23 < 12 3 < 1 2 3
Let us consider the following product: τ

. Recalling our definition of the τ function, we find that τ 4,5

= .

Also, we have that d

T 5 is simply the empty diagram basis element in CA 3 (n). So, we can see that τ So, up to a power of n, the expression τ 

.

Example 3.5. We can see that τ Let us consider the special case of the equivalence in (32) whereby i = j. It is almost immediate that the equality τ

(n) i,i d T (n) i = d T (n) i (33) 
holds, by definition of the τ function: According to this definition, we have that τ

(n)
i,i is simply obtained by taking a given label L in T i,i , this shows us that we do not obtain any positive powers of n in the evaluation of the diagram product τ

(n) i,i d T (n) i . Let us set i = j in (27), yielding: e (n) i,i = τ (n) i,i γ (n) i 1 -γ (n) i+1 1 -γ (n) i+2 • • • 1 -γ (n) B k .
By definition, we have that:

γ (n) i = E T (n) i 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i-1 .
From Theorem 2.9, we have that there must be a nonzero scalar β = β i such that:

γ (n) i = β E T (n) i 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i-1 .
Recalling (30), we write

γ (n) i = β n ν i d T (n) i 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) i-1 .
From (33), we can see that τ

(n) i,i γ (n) i = γ (n)
i . So, from the above equality for e (n) i,i , we can see that: e

(n) i,i = γ (n) i 1 -γ (n) i+1 1 -γ (n) i+2 • • • 1 -γ (n) B k . (34) 
It is useful, for our purposes, to consider the multiplicative behaviour of expressions of the form indicated in (34) separately, apart from the more general problem of evaluating products of the form indicated in (28). We note that many of the arguments and proofs given below are very much inspired by the presentation on Young's construction from [10, §1].

Lemma 3.6. Each expression of the form e

(n)
i,i is idempotent.

Proof. From (34), we rewrite e

(n) i,i 2 
as below:

γ (n) i 1 -γ (n) i+1 1 -γ (n) i+2 • • • 1 -γ (n) B k γ (n) i 1 -γ (n) i+1 1 -γ (n) i+2 • • • 1 -γ (n) B k .
In the extremal case whereby i = B k , we simply have that e

(n)

B k ,B k = γ (n)
B k , so, in this case, Theorem 2.9 gives us the idempotency of e (n) i,i . So, let us now consider the case whereby i < B k . We see that 1 -γ

(n) B k γ (n) i = γ (n) i
from the multiplication rule in Theorem 2.10. Similarly, if i < B k -1, then

1 -γ (n) B k -1 γ (n) i = γ (n) i ,
and, as we continue in this manner, we see that the above product expansion for e

(n) i,i 2 reduces to γ (n) i γ (n) i 1 -γ (n) i+1 1 -γ (n) i+2 • • • 1 -γ (n) B k ,
which, in turn, must equal e

(n)
i,i , by Theorem 2.10.

Lemma 3.7. For distinct indices i and j, the product e

(n)
i,i e

(n) j,j must vanish. Proof. Let us consider the cases whereby i < j and whereby i > j separately. First, we assume that i < j. We rewrite the product e (n) i,i e (n) j,j as below:

γ (n) i 1 -γ (n) i+1 1 -γ (n) i+2 • • • 1 -γ (n) B k γ (n) j 1 -γ (n) j+1 1 -γ (n) j+2 • • • 1 -γ (n) B k . Since i < j ≤ B k , we have that i < B k . So, since i < j ≤ B k , we must have that j is equal to one of the indices in {i + 1, i + 2, . . . , B k }. So, since 1 -γ (n) m γ (n) j = γ (n) j (35)
for any index m that is strictly greater than j, we find that the partition algebra element e (n) i,i e (n) j,j must be of the form:

γ (n) i 1 -γ (n) i+1 1 -γ (n) i+2 • • • 1 -γ (n) j γ (n) j 1 -γ (n) j+1 1 -γ (n) j+2 • • • 1 -γ (n) B k . However, since γ (n) j is idempotent, the product 1 -γ (n) j γ (n) j must vanish.
Now, let us consider the case whereby j < i. So, in this case, since j must be strictly less than each index in {i + 1, i + 2, . . . , B k }, and since products as in (35) must vanish for indices m > j, the product e (n) i,i e (n) j,j may be written as

γ (n) i γ (n) j 1 -γ (n) j+1 1 -γ (n) j+2 • • • 1 -γ (n) B k ,
and since i > j, γ

(n) i γ (n) j
must vanish, by the multiplication rules that we have proved for non-propagating γ-elements.

From the equivalence whereby e

(n) i,j ∼ τ (n) i,j d T (n) j 1 -γ (n) 1 1 -γ (n) 2 • • • 1 -γ (n) j-1 1 -γ (n) j+1 1 -γ (n) j+2 • • • 1 -γ (n) g (n) ,
together with the equality e (n)

j,j = γ (n) j 1 -γ (n) j+1 1 -γ (n) j+2 • • • 1 -γ (n) B k , (36) 
we have that e

(n) i,j ∼ τ (n) i,j e (n) j,j . (37) 
This identity, together with the above lemmas, gives us that

e (n) ℓ,i e (n) j,j ∼ e (n) ℓ,j if i = j 0 if i ̸ = j . (38) 
However, we still have to consider the problem of evaluating arbitrary products of the form e

(n)

i 1 ,i 2 e (n)
i 3 ,i 4 , i.e., in the case whereby this latter factor is such that its indices are not equal. However, at this point, we remark that we have not even yet considered the problem of showing that each partition algebra element of the form e (n) i,j is nonzero; this is nontrivial, but there is a clever way of proving this using (37) along with our multiplication rule for our γ-elements. Proof. We begin by considering expressions of the form e (n) i,i , recalling (34). Since

e (n) B k ,B k = γ (n) B k ,
we have that e (n) B k ,B k must be nonzero, according to Theorem 2.9. Now, by way of contradiction, suppose that e (n) i,i vanishes for i < B k . So, we have that

γ (n) i 1 -γ (n) i+1 1 -γ (n) i+2 • • • 1 -γ (n) B k = 0,
and that there must be at least one factor of the form 1-γ (n) m for m > i, under our assumption that i < B k . So, γ (n) i must equal a linear combination of products of the form

γ (n) i γ (n) m 1 γ (n) m 2 • • • γ (n) m ℓ , (39) 
such that ℓ ≥ 1 and

i < m 1 < m 2 < • • • < m ℓ . So, writing γ (n) i
as being equal to a linear combination of this form, and right-multiplying both sides of this equality by γ (n) i , we obtain a contradiction, since

γ (n) i 2 = γ (n) i and γ (n) i
must be nonzero, by Theorem 2.9, whereas right-multiplying a given product as in (39) and γ (n) i must produce 0, by the multiplication rule given in Theorem 2.10. So, we obtain a contradiction, giving us that each expression of the form e From the identities in (32) and (37), we are led to consider the behaviour of products of τ -operators and γ-expressions. However, these τ -functions are not quite as "well-behaved" compared to Young's σ-functions. Nevertheless, there is a clever was of proving the following multiplication rule, using our τ -functions. Theorem 3.9. For arbitrary indices a and b, the product e 

γ (n) a 1 -γ (n) a+1 1 -γ (n) a+2 • • • 1 -γ (n) B k τ (n) a,b γ (n) b 1 -γ (n) b+1 1 -γ (n) b+2 • • • 1 -γ λ B k .
By expanding the factor γ (n) b , we can see that, up to a nonzero scalar multiple, e

a,a e

a,b must also be equal to:

γ (n) a 1 -γ (n) a+1 • • • 1 -γ (n) B k d T (n) a τ (n) a,b γ (n) b 1 -γ (n) b+1 • • • 1 -γ λ B k . (40) 
Now, let us consider the factor

γ (n) a 1 -γ (n) a+1 • • • 1 -γ (n) B k d T (n) a (41) 
in the product in (40). By expanding the initial factor γ (n) a , this shows us that (41) may be written as a product of d T (n) a on the left, followed by a partition algebra element as a "middle" factor, followed by a final factor given by the same 0-propagated diagram d T (n) a . So, with regard to his "central" factor, since we are left-multiplying and right-multiplying by the same non-propagating diagram d T (n) a , we can see that (41) is necessarily a scalar multiple of d T (n) a . However, we claim that (41) must actually be a nonzero scalar multiple of d T (n) a . We expand the expression e

(n) a,a e (n) a,a as γ (n) a 1 -γ (n) a+1 1 -γ (n) a+2 • • • 1 -γ (n) B k γ (n) a 1 -γ (n) a+1 1 -γ (n) a+2 • • • 1 -γ λ B k ,
and, by expanding the latter factor of the form γ

(n) a , we see that e (n) a,a e (n)
a,a must, up to a nonzero scalar multiple, be equal to

γ (n) a 1 -γ (n) a+1 • • • 1 -γ (n) B k d T (n) a γ (n) a 1 -γ (n) a+1 • • • 1 -γ λ B k , (42) 
but then we see that (41) cannot vanish, because otherwise, from (42), e

a,a e

a,a would have to vanish, but we already know that e a,a must be nonzero. So, up to a nonzero scalar multiple, (40) equals

d T (n) a τ (n) a,b γ (n) b 1 -γ (n) b+1 • • • 1 -γ λ B k ,
which, in turn, and again up to a nonzero scalar multiple, must equal

τ (n) a,b γ (n) b 1 -γ (n) b+1 • • • 1 -γ λ B k , which is none other than e (n)
a,b . This leads us to the following. Theorem 3.10. For all possible indices w, x, y, and z, we have that

e (n) w,x e (n) y,z ∼ e (n) w,z if x = y 0 if x ̸ = y . ( 43 
) Proof. Since e (n) a,a e (n) a,b ∼ e (n)
a,b , by left-multiplying both sides of the above equivalence by τ c,a , we find that

e (n) c,a e (n) a,b ∼ e (n) c,b , (44) 
for all possible indices c, a, and b, recalling (38). So, if we consider an arbitrary product of the form e

(n) w,x e (n) y,z , (45) 
if y = z or x = y, then the cases that we have already considered apply. So, it remains to consider the case whereby x ̸ = y and y ̸ = z. So, with regard to the product displayed in (45), let us assume that x ̸ = y and y ̸ = z. We already know that e (n) w,x e (n) y,y = 0, since x ̸ = y, recalling (38). So, we have that e (n) w,x e (n) y,y e (n) y,z = 0, so that our identity from (44) applies to the factor within the brackets below: e (n) w,x e (n) y,y e (n) y,z = 0.

So, we must have that e (n) w,x e (n) y,z = 0, as desired. So, all of the conditions given in the above theorem hold, by the preceding results proved in this subsection.

From the matrix unit multiplication formula given in Theorem 3.10, we arrive at the following Theorem, which is the main result of this article. 

We claim that this family is linearly independent. To show this, we write

i s i e (n) 
i,j = 0, letting s i be a scalar for each i, and we left-multiply by e (n)

ℓ,i and we right-multiply by e

(n) j,ℓ , which gives us that a nonzero scalar multiple of s ℓ e ℓ,ℓ equals 0, which shows that s ℓ = 0.

So, each family of the form indicated in (46) is a set of B k linearly independent elements, each of which is a linear combination of non-propagating diagrams. We claim that each such family is closed under the action of left-multiplication by arbitrary diagrams.

For a diagram d of a suitable order, let us consider the following product:

d e (n) i,j = d τ (n) i,j γ (n) j 1 -γ (n) j+1 1 -γ (n) j+2 • • • 1 -γ (n) g (n) . (47) 
If we expand the factor γ i,j as d ranges over all possible diagrams, we obtain, up to non-zero scalar multiples, all expressions of the form e (n) ℓ,j for all possible indices ℓ. So, this shows that there cannot be any CA k (n)-submodule strictly contained within L {e

(n) i,j : 1 ≤ i ≤ B k }.

Definition 2 . 3 .

 23 For a tableau T (n) i as in (5), we let ν (n) i denote the number of non-empty cells in the initial row of T (n) i . For flat set-partition tableaux T and U , we let d T,U denote the underlying diagram of d T d U . Observe that d T (n) the non-propagating diagram that has the same top row as d T (n) i and the same bottom row as d T (n) j . Recall that: Given two diagrams d 1 and d 2 , the concatenation of d 1 and d 2 is denoted as d 1 * d 2 and refers to the configuration obtained by placing d 1 on top of d 2 and identifying the bottom row of d 1 with the top row of d 2 .

  since a possibly zero number of blocks in the bottom row of d T (n) i are "fused" or joined together to form the middle row of d T (n) i * d T (n) j , and similarly for d T (n) j

s 1 n.

 1 m (n) ℓ,i+1 + l.d.e. s 2 n m (n) i+1,ℓ + l.d.e. d T (n) ℓ In any case, i.e., regardless of the values of the scalars s 1 and s 2 , the highest degree of the latter coefficient of d T (n) ℓ must be strictly less than ν (n) ℓ , by Lemma 2.5, so we must obtain an expression of the form n ν (n) ℓ + l.d.e. d T (n) ℓ , as desired.

  scalar multiple of a non-propagating diagram. Left-multiplying by a non-propagating diagram will always give us a linear combination of non-propagating diagrams, giving us that γ (n) i is always a linear combination of this form. Now, let us consider the first two factors in the defining product for e (n) i,j as in (27):

  other than which, in turn, is d T[START_REF] Cioppa | Matrix Units in the Symmetric Group Algebra, and Unitary Integration[END_REF] 

  block L ∪ L ′ , and since the top row of d T (n) i is given by concatenating the labels of T (n) i , and since a given block L in the top row of d T (n) i must be perfectly "aligned" with the propagating block L ∪ L ′ of τ (n)

Theorem 3 . 8 .

 38 Each expression of the form e (n) a,b must be nonzero, for arbitrary indices a and b.

  is a linear combination of non-propagating diagrams, and since e (n) i,i and e (n) j,i are the same apart from the tops of the terms in the diagram basis expansion of e (n) j,i being the same as the top of d T (n) j , this shows us that e (n)i,i being nonzero implies that e (n) j,i must be nonzero, for an arbitrary index j.

Theorem 3 . 11 .

 311 The sete (n) i,j : 1 ≤ i ≤ B k : 1 ≤ j ≤ B kis a full set of matrix unit bases for all irreducible non-propagating CA k (n)-submodules, up to multiplication by nonzero scalars. Proof. Let us fix an index j ∈ {1, 2, . . . , B k }, and let us consider the following family: e (n) i,j : 1 ≤ i ≤ B k .

j 2 .

 2 , as a product starting with a nonzero scalar multiple of E T (n) j or, equivalently, d T (n) j on the left, we can see that evaluatingτ(n) i,j d T (n) j has the effect, up to a nonzero scalar multiple, of taking the non-propagating diagram d T (n) j and replacing its top row with that of d T (n) i , so that evaluating d τ (n) i,j d T (n) j (48) for an arbitrary diagram d has the effect, up to a nonzero scalar multiple, of taking d T (n) j and replacing its top row with the top row of d. So, by comparing (47) with e (n)ℓ,j , where the index ℓ is such that the top row of d T ℓ is the same as the top row of (48), this shows that d e (n) i,j must be equivalent to e (n) ℓ,j . So, we have shown that for all j ∈ {1, 2, . . . , B k }, the expressionL e (n) i,j : 1 ≤ i ≤ B k must be a B k -dimensional CA k (n)-module. Now, for distinct indices j 1 and j 2 in {1, 2, . . . , B k } we claim that L e (n) i,j 1 : 1 ≤ i ≤ B k ̸ = L e (n) i,j 2 : 1 ≤ i ≤ B k .By way of contradiction, suppose that e Since j 1 ̸ = j 2 , right-multiplying both sides of the above equality by e (n) j 1 ,j 1 gives us a desired contradiction. So, we have shown that the family of CA k (n)-modules of the form L e (n) i,j : 1 ≤ i ≤ B k for j ∈ {1, 2, . . . , B k } gives us a full family of pairwise unequal B k -dimensional, nonpropagating CA k (n)-modules. We claim that these modules must be irreducible. One way of showing this would be to use previously established results concerning the structure of Bratteli diagrams for partition algebras. However, we wish to provide a self-contained proof of this irreducibility result, without relying on previously known results on the representation theory for partition algebras. Let us fix an index j ∈ {1, 2, . . . , B k }, and again consider the CA k (n)-module L {e (n) i,j : 1 ≤ i ≤ B k }. Let us take an arbitrary element of the form e (n) i,j and consider the CA k (n)module e : 1 ≤ i ≤ B k generated by the singleton set consisting of e (n) i,j . Letting ℓ be as above, recall that de (n) i,j must be equivalent to e (n) ℓ,j . Since left-multiplying e (n) i,j by d has the effect, up to a non-zero scalar multiple, of swtiching the top rows of the diagrams in e

  to the top row of d, we can see that: As we compute de

,T[START_REF] Cioppa | Matrix Units in the Symmetric Group Algebra, and Unitary Integration[END_REF] 
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