Supplementary Information

An asymmetric Sodium Extraction/Insertion Mechanism for the Fe/V-mixed NASICON Na₄FeV(PO₄)₃

Sunkyu Park ^{1,2,3}, Jean-Noël Chotard ^{1,5}, Dany Carlier ^{2,5}, Iona Moog ³, Mathieu Duttine ², François Fauth ⁴, Antonella Iadecola ⁵, Laurence Croguennec ^{*,2,5} and Christian Masquelier ^{*,1,5}

¹ Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne,

CNRS-UMR 7314, F-80039 Amiens Cedex 1, France

² CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB UMR 5026, F-33600 Pessac,

France

³ TIAMAT, 15 Rue Baudelocque, 80000 Amiens

⁴ CELLS-ALBA Synchrotron, Cerdanyola del Vallès, E-08290 Barcelona, Spain

⁵RS2E, Réseau sur le stockage électrochimique de l'énergie, FR CNRS 3459, F-80039 Amiens Cedex 1, France

Figure S1. Rietveld refinement results of the pre-sodiated Na₄FeV(PO₄)₃ powder collected within a capillary at 298 K.

Figure S2. SEM image of the as-prepared $Na_3FeV(PO_4)_3$ powder.

Figure S3. Electrochemical charge and discharge curves of the as-prepared Na₃FeV(PO₄)₃ within the two voltage windows of 2-3.75 V and 2-4.3 V and the presodiated Na₄FeV(PO₄)₃ within the voltage window of 1.3-4.3 V with a C-rate of C/15 (1 Na⁺ in 15 h).

Figure S4. Quasi-galvanostatic intermittent titration technique (GITT) curve for the first charge up to 4.3 V vs. Na⁺/Na and discharge down to 2.0 V vs. Na⁺/Na of the pre-sodiated Na₄FeV(PO₄)₃ electrode material when applying a voltage step for 2 h at a C-rate of C/20/ion followed by 4 h of relaxation after each voltage step.

Figure S5. Comparison of the synchrotron SRPD patterns collected *ex situ* in a capillary *and in situ* in the electrochemical cell (just before starting the experiment) for the pristine pre-sodiated Na₄FeV(PO₄)₃ electrode material.

Figure S6. Electrochemical charge and discharge curves obtained for the presodiated Na₄FeV(PO₄)₃ electrode material when cycled vs. Na metal, in a normal coin cell and in the *in situ* cell.

Figure S7. Wider 20 range synchrotron XRPD patterns collected *operando* during the first cycle of Na₄FeV(PO₄)₃ vs. Na metal, within a voltage window of 1.0 - 4.3 V vs. Na⁺/Na at the C-rate of C/15 (= 1 Na⁺ in 15 h). The same data including the counter plot with the narrower 20 range of $6.5 - 13.2^{\circ}$ are shown in Figure 3.

Figure S8. Comparison between the synchrotron XRPD patterns collected for Na₃FeV(PO₄)₃ obtained by solid-state reaction at high temperature (black), and Na₃FeV(PO₄)₃ obtained by Na⁺ de-intercalation(re-intercalation) from(in) Na₄FeV(PO₄)₃ in the *in situ* cell during charge(discharge) (red(blue)). The XRPD pattern obtained in discharge (blue) shows the absence of the diffraction lines associated to the monoclinic distortion (as clearly observed at around 6.6°).

Table S1. Refined structural parameters of the $Na_4FeV(PO_4)_3$ from the synchrotron XRPD pattern collected with the *in situ* cell before cycling. Rietveld refinement profile is shown in Figure 2.

Na₄FeV(PO₄)₃

Space group: R-3c (#167); Z=6 a = 8.94160(9) Å; c = 21.3148(4) Å; c/a = 2.384 V= 1475.85(3) Å³; V/Z=245.974(5) Å³ $R_{wp} = 20.0$ %; $R_{p} = 24.8$ %; $R_{Bragg} = 12.5$ %

Atom	Wyckoff position	x/a	y/b	z/c	Uiso, Å ²	Occ.
Fe/V(1)	12c	0	0	0.1482(3)	0.0088	0.5/0.5
P(1)	18e	0	0	0.1482(3)	0.0135	1
Na(1)	6b	0.2922(11)	0	0.25	0.0160	0.98(4)
Na(2)	18e	0	0	0	0.0170	0.938(15)
O(1)	36f	0.6373(16)	0	0.25	0.0180	1
O(2)	36f	0.020(2)	0.2046(18)	0.1933(7)	0.0160	1

Figure S9. Rietveld refinement profile of the $Na_2FeV(PO_4)_3$ from the synchrotron XRPD pattern collected with the *in situ* cell during charge.

Table 3	S2. Refined st	ructural param	neters of the	Na ₂ FeV(PO ₄) ₃	from the	e synchrotron
XRPD	pattern collecte	ed with the <i>in</i> s	s <i>itu</i> cell durin	g charge.		

Na ₂ FeV(PO ₄) ₃										
Space group: <i>R</i> -3 <i>c</i> (#167); <i>Z</i> =6										
	a = 8.57794(11) A; c = 21.5889(4) A; c/a = 2.517									
	V = 1375.71(4) A; $V = 229.286(6) AR = 21.5 \%; R = 25.4 \%; R_{-} = 10.4 \%$									
		wp	þ	ыаду						
Atom	Wyckoff position	x/a	y/b	z/c	Uiso, Å ²	Occ.				
Fe/V(1)	12c	0	0	0.1469(4)	0.0088	0.5/0.5				
P(1)	18e	0	0	0.1469(4)	0.0135	1				
Na(1)	6b	0.2895(13)	0	0.25	0.0160	0.98(4)				
Na(2)	18e	0	0	0	0.0170	0.416(16)				
O(1)	36f	0.644(5)	0	0.25	0.0180	1				

Figure S10. Rietveld refinement profile of the $Na_{1.3}FeV(PO_4)_3$ from the synchrotron XRPD pattern collected with the *in situ* cell at the end of charge.

Table S3. Refined structural parameters of the Na _{1.3} FeV(PO ₄) ₃ from the synchrotro
XRPD pattern collected with the <i>in situ</i> cell at the end of charge.

$Na_{1.3}FeV(PO_4)_3$ Space group: <i>R</i> -3 <i>c</i> (#167); <i>Z</i> =6 <i>a</i> = 8.4844(5) Å; <i>c</i> = 21.886(2) Å; <i>c/a</i> = 2.580 <i>V</i> = 1364.38(18) Å ³ ; <i>V/Z</i> =227.396(5) Å ³ <i>R</i> _{wp} = 27.3 %; <i>R</i> _p = 37.8 %; <i>R</i> _{Bragg} = 16.1 %									
Atom	Wyckoff position	x/a	y/b	z/c	Uiso, Å ²	Occ.			
Fe/V(1)	12c	0	0	0.1481(10)	0.0135	0.5/0.5			
P(1)	18e	0	0	0.1481(10)	0.0276	1			
Na(1)	6b	0.287(4)	0	0.25	0.0370	0.78(9)			
Na(2)	18e	0	0	0	0.0370	0.18(6)			
O(1)	36f	0.54(2)	0	0.25	0.0110	1			

Figure S11. Rietveld refinement profile of the $Na_{2.5}FeV(PO_4)_3$ from the synchrotron XRPD pattern collected with the *in situ* cell during discharge.

Table \$	 Refined structural parameters of the Na_{2.5}FeV(PO₄)₃ from the synchrotro 	n
XRPD	attern collected with the <i>in situ</i> cell during discharge.	

Na _{2.5} FeV(PO ₄) ₃ Space group: <i>R</i> -3 <i>c</i> (#167); <i>Z</i> =6 <i>a</i> = 8.6819(3) Å; <i>c</i> = 21.8170(10) Å; <i>c/a</i> = 2.513 <i>V</i> = 1424.15(9) Å ³ ; <i>V/Z</i> =237.358(5) Å ³ $R_{wp} = 21.9 \%; R_{p} = 29.9 \%; R_{Bragg} = 12.9 \%$								
Atom	Wyckoff position	x/a	y/b	z/c	Uiso, Å ²	Occ.		
Fe/V(1)	12c	0	0	0.1484(6)	0.0102	0.5/0.5		
P(1)	18e	0	0	0.1484(6)	0.0505	1		
Na(1)	6b	0.301(2)	0	0.25	0.0403	0.91(5)		
Na(2)	18e	0	0	0	0.0403	0.54(2)		
O(1)	36f	0.650(6)	0	0.25	0.0234	1		
O(2)	36f	0.034(4)	0.209(3)	0.1941(10)	0.0234	1		

Figure S12. Rietveld refinement profile of the $Na_4FeV(PO_4)_3$ from the synchrotron XRPD pattern collected with the *in situ* cell at the end discharge.

Table	S5. Refined structural parameters of the Na ₄ FeV(PO ₄) ₃ from t	the synchrotron
XRPD	pattern collected with the <i>in situ</i> cell at the end of discharge.	

Na ₄ FeV(PO ₄) ₃						
Space group: <i>R</i> -3 <i>c</i> (#167); <i>Z</i> =6						
<i>a</i> = 8.94445(10) Å; <i>c</i> = 21.3364(4) Å; <i>c</i> / <i>a</i> = 2.385						
V= 1478.29(4) Å ^³ ; V/ <i>Z</i> =246.382(5) Å ^³						
$R_{wp} = 20.5 \%; R_{p} = 25.5 \%; R_{Bragg} = 10.9 \%$						

Atom	Wyckoff position	x/a	y/b	z/c	Uiso, Å ²	Occ.
Fe/V(1)	12c	0	0	0.1493(3)	0.0201	0.5/0.5
P(1)	18e	0	0	0.1493(3)	0.0408	1
Na(1)	6b	0.2959(12)	0	0.25	0.0283	0.89(4)
Na(2)	18e	0	0	0	0.0283	0.984(16)
O(1)	36f	0.648(2)	0	0.25	0.0323	1
O(2)	36f	0.025(2)	0.214(2)	0.1929(7)	0.0323	1

x in Na _x FeV(PO ₄) ₃	Voltage	Site	δ (mm/s)	Δ (mm/s)	Г (mm/s)	Rel. Area (%)
4.0		Fe ³⁺ (I)	0.47(2)	0.50(2)	0.38(2)	13(3)
4.0		Fe ²⁺	1.24(1)	2.25(2)	0.38(1)	87(3)
2.0	2 4 \/	Fe ³⁺ (I)	0.44(1)	0.33(2)	0.27(1)	87(3)
3.0	3.4 V	Fe ³⁺ (II)	0.38(2)	0.79(5)	0.46(4)	13(3)
2.0	3.75 V	Fe ³⁺ (I)	0.44(1)	0.36(2)	0.39(2)	85(3)
2.0		Fe ³⁺ (II)	0.36(2)	0.86(6)	0.45(5)	15(3)
4.0	4.3 V	Fe ³⁺ (I)	0.43(1)	0.51(3)	0.39(2)	66(3)
1.5		Fe ³⁺ (II)	0.39(2)	1.08(5)	0.39(2)	34(3)
2.4	3.15 V	Fe ³⁺ (I)	0.44(1)	0.35(2)	0.32(2)	74(3)
2.4		Fe ³⁺ (II)	0.38(2)	0.88(6)	0.44(4)	26(3)
2.2	2.0.1/	Fe ³⁺ (I)	0.46(2)	0.42(3)	0.33(2)	46(3)
3.3	2.0 V	Fe ²⁺	1.20(2)	2.15(4)	0.49(4)	54(3)
27	12\/	Fe ³⁺ (I)	0.42(3)	0.41(3)	0.41(3)	25(3)
3.7	1.3 V	Fe ²⁺	1.24(2)	2.23(4)	0.41(3)	75(3)

Table S6. Room temperature ⁵⁷Fe Mössbauer refined parameters (isomer shift (δ), quadrupole splitting (Δ), Full-Width at Half-Maximum (Γ) and Relative Area (%)) extracted from the analysis of spectra collected *ex situ* for Na_xFeV(PO₄)₃ compounds obtained at different states of charge or discharge.

Figure S13 (a) Comparison of XANES spectra of V K-edge obtained before and after cycling (b) corresponding k^2 -weighted Fourier transformed EXAFS oscillations of V K-edge obtained before and after cycling. References for V K-edge XAS spectra: V³⁺ (Na₃V₂(PO₄)₃) and V⁴⁺(Na₁V₂(PO₄)₃).

Figure S14 (a) k^2 -weighted Fourier transformed EXAFS oscillations of Fe K-edge for Na_xFeV(PO₄)₃ compounds recovered at different states of charge or discharge of the battery. (b) Corresponding backward Fourier transforms in *q*-space.

Table S7. Refined parameters for the first shell of Fe K-edge EXAFS spectra. *k*-range: 2.6 - 10.8 Å⁻¹, R-range: 1.0 - 2.1 Å, dR = 0, sine window. The coordination number (N) was set to 6, and attenuation factors (S_0^2) were fixed as 0.95. The Fe – O distances and the Debye-Waller factors (σ_i^2) were refined, whereas the energy shift (E₀) was first refined before being fixed.

x in Na _x FeV(PO ₄) ₃	Voltage	CN	d(Fe – O) (Å)	E ₀ (eV)	σ^2 (Å ²)	R-factor
4	OCV	6	2.067(5)	0.0	0.0121(5)	0.0092
3	3.4 V	6	1.987(5)	0.2	0.0070(5)	0.0024
2	3.75 V	6	1.981(5)	0.1	0.0074(5)	0.0017
1.3	4.3 V	6	1.964(5)	0.0	0.0086(5)	0.0031
2.4	3.15 V	6	1.983(5)	0.1	0.0076(5)	0.0015
3.3	2.0 V	6	2.031(5)	1.9	0.0117(5)	0.0120

Figure S15. (a) k^2 -weighted Fourier transformed EXAFS oscillations of V K-edge for Na_xFeV(PO₄)₃ compounds recovered at different states of charge or discharge of the battery. (b) Corresponding backward Fourier transforms in *q*-space.

Table S8 Refined parameters for the first shell of V K-edge EXAFS spectra. *k*-range: 2.7 - 10.7 Å⁻¹, R-range: 1.0 - 2.2 Å, dR = 0, sine window. The coordination number (N) was set to 6, and attenuation factors (S_0^2) were fixed as 0.7. The V – O distances and the Debye-Waller factors (σ_i^2) were refined, whereas the energy shift (E₀) was first refined before being fixed.

x in Na _x FeV(PO ₄) ₃	Voltage	CN	d(V – O) (Å)	E ₀ (eV)	σ² (Ų)	R-factor
4	OCV	6	2.029(5)	-0.2	0.0038(5)	0.0089
3	3.4 V	6	2.022(5)	0.0	0.0031(5)	0.0087
2	3.75 V	6	1.968(5)	1.2	0.0082(5)	0.0121
1.3	4.3 V	5	1.949(5)	0.1	0.0071(5)	0.0086
		1	1.648(5)			
2.4	3.15 V	5.5	2.012(5)	0.1	0.0042(5)	0.0046
		0.5	1.657(5)			
3.3	2.0 V	6	2.030(5)	-0.1	0.0036(5)	0.0115

Figure S16. (a) Different coordination models of k^2 -weighted Fourier transformed EXAFS oscillations at V K-edge at the end of charge at 4.3 V. (b) Corresponding backward Fourier transforms in *q*-space.

Table S9 Refined parameters for the first shell of V K-edge EXAFS spectraconsidering different coordination models for V in NaxFeV(PO4)3 recovered at 4.3 V.*k*-range: 2.7 - 10.7 Å⁻¹, R-range: 1.0 - 2.2 Å, dR = 0, sine window

Coordination model	d(V – O) (Å)	E ₀ (eV)	σ² (Ų)	R-factor
6	1.967(5) X 6	1.1	0.0117(5)	0.1248
	1.949(5) X 5	0.1	0.0071(5)	0.0086
5+1	1.648(5) X 1	0.1		
	1.938(5) X 4			
4+1+1	1.640(5) X 1	-0.1	0.0048(5)	0.0036
	2.531(5) X 1			

Figure S17. (a) Different coordination models of k^2 -weighted Fourier transformed EXAFS oscillations at V K-edge after the first discharge domain at 3.15 V. (b) Corresponding backward Fourier transforms in *q*-space.

Table S10 Refined parameters for the first shell of V K-edge EXAFS spectra considering different coordination models for V in Na_xFeV(PO₄)₃ recovered at 3.15 V. *k*-range: 2.7 - 10.7 Å⁻¹, R-range: 1.0 - 2.2 Å, dR = 0, sine window

Coordination model	d(V – O) (Å)	E ₀ (eV)	σ² (Ų)	R-factor
6	2.019(5) X 6	-0.1	0.0050(5)	0.0220
5.5+0.5	2.012(5) X 5.5	0.1	0.0042(5)	0.0046
	1.657(5) X 0.5	0.1		
4+1+1	1.997(5) X 4		0.0028(5)	0.0338
	1.622(5) X 1	0.0		
	2.552(5) X 1			