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Abstract

Today’s smart devices using speaker verification are getting
equipped with multiple microphones resulting in improving
spatial ambiguity and directivity. However, unlike any other
speech-based applications, the performance of speaker verifica-
tion degrades in far-field scenarios due to the adverse effects of a
noisy environment and room reverberation. This paper presents
a novel multichannel speech enhancement module based on the
diffusion probabilistic model. It is used as the front-end of
the ECAPA-TDNN speaker verification system in far-field sce-
narios under a noisy-reverberant environment. The proposed
system incorporates a two-stage training approach. In the first
stage, both speech enhancement and speaker verification mod-
ules are trained individually. In the second stage, both the mod-
ules are combined to jointly trained them. We use similarity-
preserving knowledge distillation loss that guides the network
to produce similar activation for enhanced signals to that of
clean speech signals. Using joint optimization with knowledge
distillation loss achieved the best performance on both the eval-
uation composed of synthetic clips similar to those used at train-
ing and on unseen recorded clips from the VOiCES dataset.
Index Terms: multichannel speech enhancement, diffusion
model, far-field speaker verification

1. Introduction
Speaker Verification (SV) aims at verifying the identity of
speakers based on their voice characteristics. The use of neu-
ral networks in recent times has led to the successful imple-
mentation of SV under controlled conditions or close-talk sce-
narios for personalized authentication. The state-of-the-art SV
systems (eg., Time Delay Neural Network [1], ResNet [2],
ECAPA-TDNN [3]) commonly known as x-vector systems [4]
have consistently improved SV performance in recent years but
SV still suffers in far-field scenarios mainly due to long-range
fading, complex environmental noises, and room reverberation.
Several challenges like VOiCES from a distance challenge [5],
Interspeech Far-field speaker verification challenge [6], etc have
been organized over the years to address these issues.

Speech enhancement is the process of improving intelligi-
bility and quality of speech by mapping distorted speech sig-
nals to clean signals. It can be used as a pre-processing to SV.
Conventional speech enhancement methods compute the map-
ping of noisy and clean speech signals by first converting them
into spectral features through short-time Fourier transform in
time-frequency (T-F) domain. The mapping function of noisy-
to-clean spectral features is then formulated by a direct map-
ping [7], or a masking function [8]. In multichannel scenar-
ios, DNNs have been used to compute the T-F masks separating
speech and noise from a mixture signal [9] which are then used

to estimate the speech and noise covariance matrices for beam-
forming [10]. Although speech enhancement has been used for
compensating adverse effects of noise robustness and reverber-
ation as a front-end to speech recognition where joint optimiza-
tion has been shown to improve the performance [11, 12], it is
also investigated for SV with promising results. Among them,
some jointly optimized or integrated weighted prediction error
(WPE) and some variants of beamforming using speaker em-
bedding model for reducing the error rate [13, 14, 15]. Shon
et al. integrate speech enhancement and SV module into a sin-
gle framework for SV [16]. Shi et al. used attention mecha-
nism and cascaded speech enhancement network and speaker
recognition by jointly optimizing their parameters using sin-
gle loss function [17]. But, most of the previous studies either
processed the speech enhancement module individually or the
SV module was pre-trained and frozen during training of the
speech enhancement. Moreover, most of them are for single-
channel data and are invariably applied for multichannel with
some additional processing, for instance, the multichannel sig-
nal is mapped to single-channel first by using BeamformIt 1[18]
or embedding averaging.

Diffusion probabilistic models (DPM) have shown impres-
sive performance in image generation [19] and Text-to-speech
systems [20]. This paper presents GradSE, a novel multichannel
speech enhancement module based on DPM with score-based
generative model [21]. The score-based generative model relies
on computing gradients of the log probability density of noise
on a large number of noise-perturbed data distributions. We
named our proposed speech enhancement module GradSE as
the main function of the neural network is used to compute the
gradient of log probability density of noise. Recently, DiffuSE
[22] and CDiffuSE [23] were proposed to recover clean speech
signals from noisy signals based on Markov chains to provide a
framework of denoising diffusion probabilistic models. Instead
of Markov chains for diffusion used in DiffuSE and CDiffuSE,
we opted for the scoring function to allow the forward diffusion
process to transform clean signal to noisy signal. We provide
multichannel noisy Mel spectrogram as input to GradSE to pre-
dict the Mel spectrogram of clean speech. As using Mel spec-
trogram to design the diffusion probabilistic models ease the
joint optimization of the SV system with the speech enhance-
ment module as a single pipeline. We use ECAPA-TDNN [3]
based SV system for jointly optimizing with GradSE to com-
pensate noisy and reverberant conditions in far-field multichan-
nel scenarios. Section 2 explains the proposed model, section
3 describes the dataset, section 4 narrates the experimentation
and section 5 illustrates the results and section 6 concludes.

1https://github.com/xanguera/BeamformIt
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Figure 1: Architecture of diffusion probabilistic model-based
GradSE in training phase. yc,k is noisy multichannel Mel spec-
trogram from c number of channels with k number of Mel spec-
trogram frames. µk is output of encoder, xk is clean Mel spec-
trogram frames, and x0 is the starting of time-steps until xT .

2. System Overview
2.1. DPM-based Multichannel speech enhancement

DPM consists of forward and reverse diffusion processes. In
scoring-based DPM, the training phase involves iteratively con-
verting the Mel spectrogram of clean speech to a noisy spectro-
gram with the noise distribution represented by N (µ, I) where
µ is mean and I is unit variance. This is known as the forward
diffusion process. A reverse diffusion process is used to gradu-
ally restore the clean input by predicting and removing the noise
introduced in each step of the diffusion process.

The proposed GradSE architecture is composed of an en-
coder and a decoder network as shown in figure 1. Our model
architecture is inspired from Grad-TTS framework [20]. We
give noisy multichannel Mel spectrogram yc,k as input to the
encoder, where c is the number of channels (microphones) and
k is the number of Mel spectrogram frames. We use encoder
to compute µk which is used to define the noise distribution
N (µk, I). For computing µk, we use convolutional recurrent
neural network (CRNN) with a convolutional layer, batch nor-
malization, ReLu activation function, and LSTM layers in the
convolutional block.

For the DPM-based decoder network, we use U-net denoted
by sθ from Ronneberger et al. [24] . In the training phase, we
conducted forward diffusion process by providing Mel spectro-
gram of clean speech xk along with encoder output µk. Hence,
DPM-based decoder sθ learns to predict the gradient of log
probability density of noise. In inference phase, we performed
reverse diffusion process by providing encoder output µk as in-
put to the decoder. After that, the decoder sθ iteratively predicts
the gradient of log probability density of noise reverse in time.
This iterative process transforms the µk into Mel spectrogram
of clean speech xt. Thus, the diffusion process can be explained
as given below;

dxt =
1

2
(µ− xt − sθ(x

t, µ, t)βtdt (1)

where xt is Mel spectrogram of the clean speech at diffusion
step t with predefined noise-scheduler and diffusion step hori-
zon varies as 0−T . βt is non-negative function which we refer
as noise scheduler that controls the way noise is added in the
diffusion forward process.

It is easier for decoding if we start from noise, which is

already close to Mel spectrogram xk of clean speech to train
GradSE. Therefore, we use two-loss criteria, mean square error
(MSE) loss and diffusion loss. We applied MSE loss on the
encoder output with respect to Mel spectrogram of clean speech
xk. We use scoring-based DPM which uses Fisher divergence
to define the diffusion loss [25]. Fisher divergence minimizes
the divergence between the gradient of the log density of noisy
data and the gradient predicted by DPM-based U-net decoder
sθ . Diffusion loss can be explained formally as,

Ldiffusion = Ep(x)[∥∇logpt(x
t)− sθ(x

t, µ, t)∥22] (2)

where ∇logpt(x
t) is gradient of log probability density of noise

at step t and output of sθ(xt, µ, t) at step t. Thus, diffusion loss
enables sθ to generate a better estimate of reverse trajectories of
forward diffusion process.

2.2. Joint Optimization

We use ECAPA-TDNN based SV system [3], which demon-
strates state-of-the-art performance compared to X-vector or
ResNet systems. The proposed system incorporates a two-
stage training approach. In the first phase, we trained GradSE
and ECAPA-TDNN individually on the training dataset. In the
second phase, we combined GradSE and ECAPA-TDNN sys-
tems by giving multichannel noisy Mel spectrogram as input to
GradSE shown in figure 2. GradSE then performs a reverse dif-
fusion process to remove the noise in input to reconstruct the
target clean Mel spectrogram with a time-horizon of 20 time-
steps, which means the network conducts 20 steps to recon-
struct the target clean Mel spectrogram. After that, the output
Mel spectrogram is passed through the ECAPA-TDNN network
to generate speaker embedding. We provide generated speaker
embedding to the classifier to derive the softmax probability dis-
tribution, which is later used for computing cross-entropy loss
with target speaker labels.

2.3. Loss Function

We use knowledge distillation (KD) loss to derive the informa-
tion to minimize the distance between speaker embedding from
noisy signals and clean speech signals. For implementing KD
loss, we use similarity-preserving KD 2 [26] loss which guides
the network to produce similar activation for noisy signals to
that of clean speech signals than to imitate the representation
space of teacher model. Therefore, KD loss enables proposed
joint optimization to generate embeddings closer to that gener-
ated by clean speech. Similarity-preserving KD loss is a novel
form of KD that uses the pairwise activation similarities within
each input mini-batch to supervise the training of a student net-
work with a trained teacher network. In the proposed architec-
ture, we use the same pre-trained ECAPA-TDNN network to
generate output embedding on clean speech as a teacher net-
work and proposed a jointly optimized model as a student net-
work. In addition to GradSE, we use FaSNet based speech en-
hancement system for implementing a baseline system.

3. Dataset
3.1. RoboVoices

We use the dry speech (clean) data from the clean subset of
Librispeech [27] corpus which is approximately 1000 hours of

2https://github.com/AberHu/Knowledge-Distillation-Zoo



GradSE ClassifierECAPA-TDNN

ECAPA-TDNN

zEnhanced speech

zClean-speech
Knowledge distillation loss + 

Cross-entropy loss
Multichannel noisy Mel 
spectrogram

Clean speech
Mel spectrogram

Figure 2: Joint optimization of multichannel speech enhance-
ment with speaker verification using knowledge distillation loss.
Embedding generated by ECAPA-TDNN for clean speech Mel
spectrogram is considered as the teacher network. Embedding
generated by joint optimized network on multichannel noisy Mel
spectrogram is considered as the student network.

English speech data collected as part of the Librivox project.
We have selected around 10000 files randomly from the clean
training subset of Librispeech and truncated them to 10 seconds
duration for the training set, contributing to 25 hours of speech
data. For evaluation of the SV system, we use the Fabiole
speech corpus [28]. Fabiole is a French speech corpus consist-
ing of around 6882 audio files from 130 native French speak-
ers. The minimum duration of the speech file is 1 second and
the maximum is 46 seconds. The speech data of the corpus has
been collected from different French radio and television shows.
For creating each evaluation set, we have used 1200 speech files
from Fabiole representing 2 hrs of evaluation material.

We used realistic office noises from Freesound 3 [29]. The
selected noise categories include door, keyboard, office, phone,
background noise in the room, printer, fan, door knock, babble,
and environmental noise. We divided the dataset into two sets:
a training set of 3725 clips and an evaluation set of 1000 clips.

To simulate room effects, we have generated an RIR corpus
of 10000 rooms for training and 3600 for evaluation with py-
roomacoustics toolbox [30]. For training, the room length was
drawn randomly between [3 − 8] m, the width was chosen be-
tween [3− 5] m, and the height was chosen between [2− 3] m.
The absorption coefficient was drawn randomly such that the
room’s RT60 was between [200− 600] ms. The minimum dis-
tance between a source and the wall is 1.5 m and 1 m between
the wall and the microphones. The RIR for the evaluation set
was generated with the same room dimensions as in the train-
ing set but the absorption coefficient was selected to obtain an
RT60 of 400 ms.

The final RoboVoices corpus for training and evaluation is
created by first convolving the dry speech and noise with the
simulated RIRs from different location in the same room. We
then added the convolved dry speech and convolved noise to
obtain the noisy signal. We randomly select the noise samples
from Freesound and the dry speech from Librispeech for the
training set. For training, the SNR is drawn randomly with a
uniform distribution between [0−10] dB. For the evaluation set,
the generation process is similar except that we draw the SNR
values in 5, 10, 20dB, and the process is applied to each speech

3https://freesound.org/

Table 1: % EER on different utterance lengths on RoboVoices
dataset. Performance is averaged over SNR conditions. Joint
optim. in the table refers to joint optimization of speech en-
hancement and SV module. Confidence interval is 0.1.

Utterance length Below 4 secs Above 4 secs
Model EER EER

Dry clean speech 18.8 5.6
Reverberated clean speech 21.1 7.5

Noisy 27.8 9.5
BLSTM Rank-1 [14] 27.4 9.2

BLSTM MVDR Rank-1 [14] 27.5 9.4
FaSNet 28.1 10.3

FaSNet Rank-1 WPE 27.5 9.0
GradSE 26.7 8.6

Jo
in

to
pt

im
.

FaSNet + ECAPA-TDNN 26.8 8.7
GradSE + ECAPA-TDNN 26.2 8.3

FaSNet + ECAPA-TDNN + KD loss 26.1 8.3
GradSE + ECAPA-TDNN + KD loss 25.8 7.9

segment from the Fabiole dataset. In total, we have generated
10000 mixtures for training and 3600 mixtures for evaluation.

3.2. VOiCES

We also evaluate our approach on the VOiCES challenge 2019
dataset [5]. Among the 11 microphone positions in the evalu-
ation set, we select 3 microphone positions of the same micro-
phone types. The microphones are close enough to be consid-
ered as a compact microphone antenna. The identification of
these microphone in the original corpus are 2, 4, and 9. The
resulting virtual antenna is in mid-distance from the speaker.

4. Experimentation
4.1. Experimental set-up

4.1.1. Multichannel speech enhancement

We extract 40 dimensional Mel spectrogram features using tor-
chaudio library with a window length of 400 samples, hop size
of 160, and 512 FFT length. For GradSE, the CRNN encoder
is implemented using a 2D convolutional block of kernel size
3× 3, a stride of 1, and padding of 1 with 3 input channels and
single output channel. We used 4 LSTM layers of 40 hidden
dimensions. The encoder output is concatenated channel-wise
and provided to DPM-based decoder. We use the same net-
work configuration of U-net from Ronneberger [24]. GradSE is
trained for 500 iterations with Adam optimizer using learning
rate of 1e−4. We use batch size of 32 for training GradSE.

4.1.2. Speaker verification

We use ECAPA-TDNN model architecture introduced by Des-
planques et al. [4]. The squeeze and excitation block and at-
tention module of ECAPA-TDNN is set to 128 and scale di-
mension in Res2Block is set to 8. We extracted 256 dimension
speaker embedding from the ECAPA-TDNN network. Initially,
we trained the ECAPA-TDNN network on VoxCeleb1 and Vox-
Celeb2 dataset with a cyclic learning rate varying between 1e-8
and 1e-3 using the triangular policy with Adam optimizer. We
trained the ECAPA-TDNN network with angular margin soft-
max with a margin of 0.3 and softmax pre-scaling of 30. We
trained the ECAPA-TDNN network for 100k iterations and used
Mel spectrogram features of 40 dimensions as input to ECAPA-
TDNN network, extracted using the same procedure as used for



Table 2: %EER on different noise conditions of the VOiCES Eval dataset. Joint optim. in the table refers to joint optimization of speech
enhancement and SV module. Confidence interval is 0.2.

Noise conditions
Model Clean Babble TV Music

Unprocessed 4.1 8.8 7.8 7.9
BLSTM Rank-1 4.1 7.9 7.1 7.2

FaSNet 4.4 7.8 7.4 7.9
FaSNet Rank-1 WPE 4.2 6.9 6.4 6.8

GradSE 3.9 6.7 6.2 6.6

Jo
in

to
pt

im
.

FaSNet ECAPA-TDNN 4.0 6.6 6.2 6.5
GradSE ECAPA-TDNN 3.8 6.4 6.0 6.2

FaSNet + ECAPA-TDNN + KD loss 3.9 6.6 6.1 6.3
GradSE + ECAPA-TDNN + KD loss 3.8 6.2 5.9 6.1

the GradSE module.

4.1.3. Joint Optimization

After training GradSE and ECAPA-TDNN individually, we
jointly optimized both the networks using cross-entropy loss
on predicted labels by classifier and target speaker labels and
similarity preservation KD loss. We performed the joint opti-
mization using Adam optimizer and cyclic learning rate sched-
uler varying between 1e-3 and 1e-1 using the triangular2 policy.
During the joint optimization process, we trained the network
with angular margin softmax with a margin of 0.4 and softmax
pre-scaling of 30. We used batch size of 64, and trained for 20k
iterations. We opted for 20 steps for reverse diffusion for speech
enhancement after analysing the trade-off between performance
on SV and inference speed.

4.2. Evaluation

We compute equal error rate (EER) to evaluate our system. All
metrics are presented with a 95 % confidence interval using the
bootstrap algorithm [31]. We consider different conditions cor-
responding to different steps in the acoustic propagation pro-
cess: dry clean speech, reverberated clean speech, and Noisy
(mixture of reverberated noise and speech). We compute EER
on these conditions, and on the signals estimated with different
speech enhancement algorithms.

5. Results and Analysis
Table 1 shows the evaluation results for SV in terms of EER
depending on utterance lengths. The performance for both the
utterance lengths are averaged over SNR conditions. For a com-
prehensive comparison we include other state-of-the-art pre-
processing techniques in our experiments. We implement the
BLSTM-based models from Taherian et al. [14] and FaSNet-
based models from our previous work [32] and consider them
as baselines. First, we compare GradSE to the separately trained
pre-processing approaches, then joint optimization is done us-
ing both speech enhancement and SV module. Joint optimiza-
tion yields better performance on both the utterance lengths.
Using KD loss further enhances the SV performance. In terms
of the two joint optimized models, the proposed GradSE-based
model outperforms the FaSNet-based model. With joint opti-
mization we observe an absolute error reduction of 2%. FaS-
Net is good at speech enhancement but when applied to SV, the
performance degrades mainly due to the artifacts FaSNet intro-
duced during training as observed in our previous work [32].

Table 2 reports the results for different distractor noise con-
ditions on publicly available VOiCES Eval dataset. As expected
all the approaches achieved the best performance in the condi-
tion without any distractor noise (Clean in the table). The base-
line BLSTM Rank-1 performs poorly compared to proposed
GradSE in all the noise conditions. Babble seems to be the most
difficult condition with an equal error rate of 8.8% without any
pre-processing due to overlapping speech interference as well as
its similarity to the desired clean speech. However, the error rate
is reduced to 6.7% by GradSE alone and 6.2% with joint opti-
mization of GradSE and ECAPA-TDNN using KD loss. Joint
optimization of speech enhancement and SV using KD loss out-
performs all the other approaches on all the noise conditions
even though the model was trained on a synthetic dataset.

6. Conclusion
This paper described a novel diffusion probabilistic-based mul-
tichannel speech enhancement module for speaker verification
in far-field/distant noisy-reverberant scenarios. Our speech en-
hancement module consisted of an encoder and a diffusion
probabilistic model-based decoder and ECAPA-TDNN-based
speaker verification system. We compared our proposed sys-
tem to the state-of-the-art pre-processing techniques. We found
that our separately trained speech enhancement system obtained
best performance on a synthetic dataset and on VOiCES chal-
lenge dataset. Furthermore, we showed that joint optimiza-
tion of the whole system (GradSE speech enhancement and
ECAPA-TDNN speaker verification) using knowledge distilla-
tion loss achieved excellent results over separately trained mod-
els. The proposed joint optimized model achieved superior per-
formance across noise conditions on VOiCES challenge dataset
even though the model was trained on a synthetic dataset. In fu-
ture, we would like to explore the diffusion probabilistic models
to estimate the time-frequency masks for a multichannel noisy-
reverberant input.
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