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ABSTRACT
Smart devices using speaker verification are getting equipped
with multiple microphones, improving spatial ambiguity and
directivity. However, unlike other speech-based applica-
tions, the performance of speaker verification degrades in
far-field scenarios due to the adverse effects of a noisy envi-
ronment and room reverberation. This paper presents a novel
diffusion probabilistic models-based multichannel speech
enhancement as a front-end for the ECAPA-TDNN speaker
verification system in a far-field noisy-reverberant scenario.
The proposed approach incorporates a two-stage training ap-
proach. In the first stage, we individually train the speech
enhancement and speaker verification modules. In the second
stage, we combined both modules and trained them jointly.
We use similarity-preserving knowledge distillation loss that
guides the network to produce similar activation for enhanced
signals like clean signals. Joint optimization achieved the best
results on synthetic and VOiCES datasets.

Index Terms— multichannel speech enhancement, far-
field speaker verification, deep neural network

1. INTRODUCTION

Speaker Verification (SV) aims to verify the identity of speak-
ers based on their voice characteristics. In recent times, the
use of neural networks has led to the successful implementa-
tion of SV under controlled conditions or close-talk scenarios
for personalized authentication. The state-of-the-art SV sys-
tems (e.g., Time Delay Neural Network [1], ResNet [2],
ECAPA-TDNN [3]) commonly known as x-vector systems
[4] have consistently improved SV performance in recent
years. However, SV still suffers in far-field scenarios mainly
due to long-range fading, complex environmental noises, and
room reverberation. Several challenges like VOiCES from
a distance challenge [5] and Interspeech Far-field speaker
verification challenge [6] have been organized over the years
to address these issues.

French National Research Agency supports this work in the framework
of the ROBOVOX project (ANR-18-CE33-0014)). Experiments were par-
tially carried out using the Grid5000 testbed supported by a scientific group
of Inria including CNRS, RENATER and other Universities and organiza-
tions (see https://www.grid5000) hosted by the University of Lorraine.

Speech enhancement improves intelligibility and speech
quality by mapping distorted speech signals to clean signals
and can be used as a pre-processing to SV. Conventional
speech enhancement methods compute the mapping of noisy
and clean speech signals by first converting them into spec-
tral features through a short-time Fourier transform in the
time-frequency (T-F) domain. The mapping function of
noisy-to-clean spectral features is then formulated by a di-
rect mapping [7] or a masking function [8]. In multichannel
scenarios, DNNs apply to compute the T-F masks separat-
ing speech and noise from a mixture signal [9] and are then
used to estimate the speech and noise covariance matrices for
beamforming [10]. Although speech enhancement has been
used for compensating adverse effects of noise robustness
and reverberation as a front-end to speech recognition, where
joint optimization has been shown to improve the perfor-
mance [11, 12], it is also investigated for SV with promising
results. Among them, some jointly optimized or integrated
weighted prediction error (WPE) and some variants of beam-
forming using speaker embedding model for reducing the
error rate [13, 14, 15]. Shon et al. integrate speech enhance-
ment and SV module into a single framework for SV [16].
Shi et al. used an attention mechanism and cascaded speech
enhancement network and speaker recognition by jointly op-
timizing their parameters using a single loss function [17].
However, most of the previous studies either processed the
speech enhancement module individually or the SV module
was pre-trained and frozen during the training of the speech
enhancement. Moreover, most of them are for single-channel
data and are invariably applied for multichannel with addi-
tional processing. For instance, the multichannel signal is
mapped to a single-channel first by using BeamformIt1[18]
or embedding averaging.

Diffusion probabilistic models (DPM) have shown im-
pressive performance in image generation [19] and Text-to-
speech systems [20]. This paper presents GradSE, a novel
multichannel speech enhancement module based on DPM
with a score-based generative model [21]. The score-based
generative model relies on computing gradients of the log
probability density of noise on a large number of noise-

1https://github.com/xanguera/BeamformIt
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Fig. 1. Proposed GradSE model in training phase, which is composed of an encoder (CRNN) and a DPM-based decoder
(U-net). We give noisy multichannel Mel spectrogram as input to encoder from c number of channels with k number of Mel
spectrogram frames with f dimension of mel spectrogram frames. The encoder output, µk which represents the noise distribu-
tion and clean speech Mel spectrogram xk are given as input to the diffusion-based decoder. x0 is the starting of time-steps
until xT . Red arrow depicts the forward diffusion process and blue arrow depicts the reverse diffusion process.

perturbed data distributions. We named our proposed speech
enhancement module GradSE as the main function of the
neural network used to compute the gradient of the log proba-
bility density of noise. Recently, DiffuSE [22], and CDiffuSE
[23] were proposed to recover clean speech signals from noisy
signals based on Markov chains to provide a framework for
diffusion probabilistic models. The denoising diffusion prob-
abilistic model is developed by training the Markov chain for
forward and reverse diffusions. These Markov chains fixed
the Markov chain, thus leading to slower inference speed.
DiffuSE and CDiffuSE use fixed Markov chains for training
diffusion models under the framework of DPM. On the other
hand, scoring-based diffusion models (GradSE) implement
using Stochastic calculus (Stochastic differential equation
(SDE)). SDE provides not only an easy-to-use framework for
training DPMs [24] but also controls the selection of the num-
ber of reverse diffusion steps for enhancement over the noisy
multichannel Mel spectrogram. In GradSE, inference phase
(reverse diffusion), sampling is conducted from conditional
noise distribution. Also, it is easier to decode if we sampled
from the noise closer to the target Mel spectrogram. We use
ECAPA-TDNN [3] based SV system for jointly optimizing
with GradSE to compensate for noisy and reverberant condi-
tions in far-field multichannel scenarios. To further improve
the performance of the jointly optimized system, we propose
using a novel similarity-preserving knowledge distillation
technique to minimize the distance between speaker embed-
dings obtained from the proposed system and clean speech
signals. Section 2 explains the proposed model, section 3
describes the dataset, section 4 narrates the experimentation,
section 5 illustrates the results, and section 6 concludes.

2. SYSTEM OVERVIEW

2.1. DPM-based Multichannel speech enhancement

DPMs were introduced to represent the complex data distri-
bution using stochastic calculus [25]. DPMs consist of two
processes, namely, (i) a forward diffusion process and (ii) a
reverse diffusion process. The forward diffusion process is
built by iteratively deconstructing data until we obtain a sim-
ple distribution, such as the Gaussian distribution, N (0, I)
with zero mean and unit variance. In the reverse diffusion pro-
cess, DPM reconstructs the data by sampling noise from the
Gaussian distribution, parameterizing reverse diffusion with a
neural network. Consequently, for the reverse diffusion pro-
cess, the neural network predicts the trajectories of the for-
ward diffusion process in reverse to generate the data from
the sampled noise.

This paper introduces GradSE, a novel DPM-based mul-
tichannel speech enhancement for SV. The architecture of
GradSE is inspired from Grad-TTS framework [20] and
WaveGrad [26] systems. GradSE comprises an encoder and
a decoder network, as shown in Figure 1. We used a con-
volutional recurrent neural network (CRNN) to implement
the encoder network. CRNN network comprises a convolu-
tional layer, batch normalization, ReLU activation function,
and LSTM layers. The encoder network defines conditional
noise distribution in the diffusion process. We used the U-net
network denoted by sθ from Ronneberger et al. [27] to imple-
ment the decoder network. The decoder network carries out
the forward and reverse diffusion processes. The forward dif-
fusion process uses for training the GradSE, and the reverse
diffusion process is for the inference phase.

GradSE is a scoring-based diffusion probabilistic model,
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Fig. 2. Joint optimization of multichannel speech enhance-
ment with SV using KD loss. Embedding generated by
ECAPA-TDNN for clean speech Mel spectrogram is consid-
ered as the teacher network. Embedding generated by joint
optimized network on multichannel noisy Mel spectrogram is
considered as the student network.

where scoring refers to the gradients of the log probability
density of the noise [28, 29]. Song et al. [24] illustrated
that the diffusion process based on the Markov chain is an
approximated trajectory of the stochastic process satisfying
SDE [30]. GradSE formulates a reverse diffusion process by
an SDE solver using the first-order Euler scheme [31] and
matches the trajectories of reverse diffusion to the forward
diffusion but in reverse time order.

In brief, the neural network minimizes the scoring func-
tion in the forward diffusion process and learns to deconstruct
the clean speech Mel spectrogram to noise distribution. And
in the reverse diffusion process, the neural network predicts
the gradients of the log density of noise, thus enabling for-
ward diffusion to reconstruct the clean speech Mel spectro-
gram in reverse-time order. GradSE’s forward diffusion trans-
forms the clean speech Mel spectrogram distribution into a
noise distribution defined as N (µ, I), where the mean is µ,
and I is unit variance. Thus, the encoder output allows the
conditional generative modeling by conditioning the diffusion
process’s terminal distribution with mean denoted by µ. After
obtaining µ, it is parameterized with latent variable sampled
from Gaussian distribution, thus creating conditional Gaus-
sian distribution depending on the µ. Afterward, for given
parameterized µ as input to the U-net decoder, the decoder
performs reverse diffusion to transform latent variables into
estimates of the target Mel spectrogram.

2.1.1. Training

We give noisy multichannel Mel spectrogram yc,k,f as input
to the encoder, where c is the number of channels (micro-
phones), k is the number of Mel spectrogram frames, and f is
the dimension of the mel spectrogram frames. Next, we use
an encoder to compute µk, which is then used to estimate the

noise distribution N (µk, I). For simplicity of notation, we
denoted encoder output, µk as µ. Finally, we give the noise
distribution of the encoder to the DPM-based decoder, which
is then used to perform the forward diffusion process. In the
forward diffusion process, the decoder network iteratively de-
constructs the Mel spectrogram of clean speech xk = x0 to
noise xT , where T is the terminal time horizon shown in Fig-
ure 1.

We parameterize the terminal noise distribution of the for-
ward diffusion process by µ. Therefore, the decoder network
learns the trajectories of the forward diffusion through the
scoring function. The forward diffusion process can be ex-
plained mathematically as below;

x0 ∼ Pdata =⇒ xT = τ(x0) ∼ N (µ, I) (1)

where, Pdata is data distribution of clean speech Mel spectro-
gram and forward diffusion process, τ to slowly deconstruct
x0 by adding noise to simple distribution defined by N (µ, I).

2.1.2. Inference

In the inference phase, enhancement is performed by the re-
verse diffusion process. We provide the noisy multichannel
Mel spectrogram as input to the encoder network, which gives
encoder output µ. Furthermore, we carried out the reverse dif-
fusion process by providing encoder output µ as input to the
decoder. Thus noise distribution is parameterized through en-
coder output µ. The reverse diffusion process reconstructs the
Mel spectrogram of clean speech by gradually removing the
noise sampled from the distribution N (µ, I).

In each step of reverse diffusion, the reverse trajectories of
the forward diffusion are defined by SDE with an estimated
scoring function from the decoder network. This iterative pro-
cess transforms the encoder output µ into the Mel spectro-
gram of the clean speech x0. The reverse diffusion process is
explained as given below;

xT ∼ N (µ, I) =⇒ τ−1(xT ) ∼ Pdata (2)

where, xT denotes the noise sampled from terminal noise dis-
tribution defined by N (µ, I) with µ as encoder output. τ−1

denotes reverse diffusion process to construct the Mel spec-
trogram of the clean speech from data distribution, Pdata.

2.1.3. Loss function

We use two-loss criteria, mean square error (MSE) and diffu-
sion loss. We applied MSE loss on the encoder output con-
cerning the Mel spectrogram of clean speech xk. It is easier
for decoding if we start from noise, which is already close
to Mel spectrogram xk of the clean speech to train GradSE.
We used MSE to ensure the training process’s stability and
provide smooth global optima in the optimization process.

We use scoring-based DPM, which uses Fisher divergence
to define the diffusion loss [32]. Fisher divergence minimizes



the divergence between the gradient of the log density of the
noise and the gradient predicted by the DPM-based U-net de-
coder sθ. Thus, diffusion loss enables sθ to generate a better
estimate of reverse trajectories of the forward diffusion pro-
cess. The diffusion loss can be explained formally as,

Ldiffusion = Ep(x)[∥∇logpt(xt)− sθ(xt, µ, t)∥22] (3)

where ∇logpt(xt) is gradient of log probability density of
noise at step t and output of sθ(xt, µ, t) at step t.

2.2. Joint Optimization

We optimize the front-end speech enhancement with the SV
jointly in a single framework. We use ECAPA-TDNN based
SV system [3], which demonstrates state-of-the-art perfor-
mance compared to TDNN [1] or ResNet [2] systems. The
proposed system incorporates a two-stage training approach.
In the first phase, we trained GradSE and ECAPA-TDNN in-
dividually on the training dataset.

In the second phase, we combined both GradSE and
ECAPA-TDNN systems by giving multichannel noisy Mel
spectrogram as input to GradSE as shown in Figure 2.
GradSE then performs a reverse diffusion process to remove
the noise in input to reconstruct the target clean Mel spectro-
gram with a time-horizon of 20 time-steps, which means the
network conducts 20 reverse diffusion steps to reconstruct the
target clean Mel spectrogram.

The enhanced Mel spectrogram from GradSE is then
passed through the ECAPA-TDNN network. Next, we ex-
tract the last hidden output of the ECAPA-TDNN network
as speaker embedding, where the ECAPA-TDNN network is
trained for a classification task. Then, we provide the gener-
ated speaker embedding to the classifier to derive the softmax
probability distribution, which is later used for computing
cross-entropy loss with target speaker labels. Finally, for
the joint optimization, the error gradients are passed through
ECAPA-TDNN and GradSE in the backpropagation pass.

2.3. Knowledge Distillation Loss

The knowledge distillation (KD) is used as a model com-
pression technique that extracts the knowledge of a large
pre-trained neural network model (teacher) and transfers it to
a small neural network model (student) [33]. Traditionally
knowledge distillation (KD) is used for improving inference
speed and reducing the model parameters. Moreover, the
distillation loss determines the process of reducing the diver-
gence between the output distribution of the teacher network
and the student network.

We propose to use the novel form of KD known as
similarity-preserving knowledge distillation (KD) loss in-
troduced by Tung et al. [34] 2. Similarity-preserving KD

2https://github.com/AberHu/Knowledge-Distillation-Zoo

loss is motivated by the idea that semantically similar inputs
tend to obtain similar activation patterns in a trained neural
network [34]. The main idea of similarity-preserving KD loss
is to use the pairwise activation similarities within each in-
put mini-batch to supervise the training of a student network
with a trained teacher network. The similarity-preserving KD
loss requires the student network only to maintain the pair-
wise similarities in its own representation space rather than
replicating the teacher network’s representation space.

We apply similarity-preserving KD loss to facilitate the
jointly optimized system to generate embeddings closer to
those generated by clean speech. Thus, similarity-preserving
KD loss derives the information to minimize the distance
between speaker embeddings obtained from the proposed
system (zEnhanced−speech) and that of clean speech signals
(zClean−speech), as shown in Figure 2. We use the ECAPA-
TDNN model as a teacher network with embeddings obtained
on clean speech signals and our proposed joint optimization
of the GradSE and ECAPA-TDNN as the student network.
The similarity-preserving KD loss assists the student model
in matching the performance of enhanced signal embedding
to the embeddings from a clean speech signal. Thus, KD
technique allows the proposed system to learn the robust
latent space of speaker representation in noisy scenarios.

3. DATASET

3.1. RoboVoices

We use dry clean speech data from the clean subset of Lib-
rispeech [35] corpus, which is approximately 1000 hours of
English speech data collected as part of the Librivox project.
In addition, we have selected around 10000 files randomly
from the clean training subset of Librispeech and truncated
them to 10 seconds duration for the training set, contributing
to 25 hours of speech data.

For evaluation of the SV system, we use Fabiole speech
corpus [36]. Fabiole is a French speech corpus consisting of
around 6882 audio files from 130 native French speakers. The
minimum duration of the speech file is 1 second, and the max-
imum is 46 seconds. The speech data of Fabiole has been
collected from different French radio and TV shows. For cre-
ating each evaluation set, we have used 1200 speech files from
Fabiole representing 2 hrs of evaluation material.

We used realistic office noises from Freesound 3 [37].
The selected noise categories include door, keyboard, of-
fice, phone, background noise in the room, printer, fan, door
knock, babble, and environmental noise. We divided the
dataset into two sets: a training set of 3725 clips and an
evaluation set of 1000 clips.

To simulate room effects, we have generated an RIR cor-
pus of 10000 rooms for training and 3600 for evaluation with
pyroomacoustics toolbox [38]. For training, the room length

3https://freesound.org/



Table 1. % EER on different utterance lengths and SNR on RoboVoices dataset. Performance is averaged over SNR conditions
for utterance lengths . Joint optim. refers to joint optimization of both modules. Confidence interval is 0.1.

Testing environment EER EER EER/SNR
Utterance length Below 4 secs Above 4 secs 5 10 20
Dry clean speech 18.8 5.6 5.6 5.6 5.6

Reverberated clean speech 21.1 7.5 7.5 7.5 7.5
Noisy 27.8 9.5 11.2 9.4 7.8

BLSTM Rank-1 [14] 27.4 9.2 10.9 9.0 7.8
BLSTM MVDR Rank-1 [14] 27.5 9.4 10.8 9.1 7.7

FaSNet 28.1 10.3 12.4 10.5 8.0
FaSNet Rank-1 WPE 27.5 9.0 10.5 8.8 7.7

GradSE 26.7 8.6 10.2 8.5 7.2

Jo
in

to
pt

im
.

FaSNet + ECAPA-TDNN 26.8 8.7 10.1 8.4 7.5
GradSE + ECAPA-TDNN 26.2 8.3 9.8 8.0 7.1

FaSNet + ECAPA-TDNN + KD loss 26.1 8.3 9.9 8.0 7.1
GradSE + ECAPA-TDNN + KD loss 25.8 7.9 9.2 7.7 6.8

was drawn randomly between [3 − 8] m, the width was cho-
sen between [3 − 5] m, and the height was chosen between
[2 − 3] m. The absorption coefficient was drawn randomly
such that the room’s RT60 was between [200− 600] ms. The
minimum distance between a source and the wall is 1.5 m and
1 m between the wall and the microphones. The RIR for the
evaluation set was generated with the exact room dimensions
as in the training set. However, the absorption coefficient was
selected to obtain an RT60 of 400 ms.

The final RoboVoices corpus for training and evaluation is
created by first convolving the dry speech and noise with the
simulated RIRs from different locations in the same room.
We then added the convolved dry speech and convolved noise
to obtain the noisy signal. Subsequently, we select the noise
samples randomly from Freesound and the dry speech from
Librispeech for the training set. For training, the SNR is
drawn randomly with a uniform distribution between [0− 10]
dB. For the evaluation set, the generation process is similar,
except that we draw the SNR values in 5, 10, 20dB, and the
process is applied to each speech segment from the Fabiole
dataset. In total, we have generated 10000 mixtures for train-
ing and 3600 mixtures for evaluation.

3.2. VOiCES

We also evaluate our approaches on the publicly avail-
able Voices Obscured in Complex Environmental Settings
(VOiCES) challenge 2019 Eval dataset [5]. Among the
11 microphone positions in the evaluation set, we select 3
microphone positions of the same microphone types. The
microphones are close enough to be considered a compact
microphone antenna. The identification of these microphones
in the original corpus is 2, 4, and 9. We select the signal
from these three microphones confirming that all three are

in mid-distance from the speaker and are close to building a
“virtual” microphone antenna.

4. EXPERIMENTATION

4.1. Experimental set-up

4.1.1. Multichannel speech enhancement

We extract 40 dimensional Mel spectrogram features using
the torchaudio library with a window length of 400 samples,
hop size of 160, and 512 FFT length. For GradSE, the CRNN
encoder is implemented using a 2D convolutional block of
kernel size 3× 3, a stride of 1, and padding of 1 with 3 input
channels and a single output channel. We used 4 LSTM lay-
ers of 40 hidden dimensions. The encoder output is concate-
nated channel-wise and provided to the DPM-based decoder.
We use the same network configuration of U-net from Ron-
neberger [27]. GradSE is trained for 500 iterations, using a
batch size of 32, and a learning rate of 1e−4.

4.1.2. Speaker verification

We use ECAPA-TDNN model architecture introduced by De-
splanques et al. [4]. Besides squeeze and excitation block, the
attention module of ECAPA-TDNN is set to 128. Addition-
ally, the scale dimension in Res2Block is set to 8. We ex-
tracted 256 dimension speaker embedding from the ECAPA-
TDNN network. Initially, we trained the ECAPA-TDNN net-
work on VoxCeleb1 and VoxCeleb2 datasets with a cyclic
learning rate varying between 1e − 8 and 1e − 3 using the
triangular policy with Adam optimizer. Further, the ECAPA-
TDNN network is trained with angular margin softmax with
a margin of 0.3 and softmax pre-scaling of 30, 100k itera-
tions. Mel spectrogram features of 40 dimensions as input to



Table 2. %EER on different noise conditions of the VOiCES
Eval dataset. Joint optim. in the table refers to joint opti-
mization of speech enhancement and SV module. Confidence
interval is 0.2.

Noise conditions
Testing environment Clean Babble TV Music

Unprocessed 4.1 8.8 7.8 7.9
BLSTM Rank-1 4.1 7.9 7.1 7.2

FaSNet 4.4 7.8 7.4 7.9
FaSNet Rank-1 WPE 4.2 6.9 6.4 6.8

GradSE 3.9 6.7 6.2 6.6

Jo
in

to
pt

im
.

FaSNet ECAPA-TDNN 4.0 6.6 6.2 6.5
GradSE ECAPA-TDNN 3.8 6.4 6.0 6.2

FaSNet + ECAPA-TDNN + KD loss 3.9 6.6 6.1 6.3
GradSE + ECAPA-TDNN + KD loss 3.8 6.2 5.9 6.1

ECAPA-TDNN network extracted using the same procedure
as used for GradSE. We used cosine scoring system for veri-
fication purpose from extracted embedding..

4.1.3. Joint Optimization

After training GradSE and ECAPA-TDNN individually, we
jointly optimized both the networks using cross-entropy loss
on predicted labels by the classifier and target speaker labels
and similarity preservation KD loss. We performed the joint
optimization using the Adam optimizer and cyclic learning
rate scheduler varying between 1e-3 and 1e-1 using the tri-
angular2 policy. During the joint optimization process, we
trained the network with angular margin softmax with a mar-
gin of 0.4 and softmax pre-scaling of 30. We used a batch size
of 64 and trained for 20k iterations. We opted for 20 steps for
reverse diffusion for speech enhancement after analyzing the
trade-off between performance on SV and inference speed.

4.2. Evaluation

We compute an equal error rate (EER) to evaluate our system.
All metrics are presented with a 95 % confidence interval us-
ing the bootstrap algorithm [39]. We consider different con-
ditions corresponding to different steps in the acoustic prop-
agation process: dry clean speech, reverberated clean speech,
and Noisy (mixture of reverberated noise and speech). We
compute EER on these conditions and the signals estimated
with different speech enhancement algorithms.

5. RESULTS AND ANALYSIS

We present the evaluation results for SV in terms of EER. Ta-
ble 1 shows the results of our experiments on the RoboVoices
dataset. To compute the EER for both the utterance lengths,
the SNR conditions are averaged. For a comprehensive com-
parison, we include other state-of-the-art pre-processing tech-
niques in our experiments. We implement the BLSTM-based

models from Taherian et al. [14], and FaSNet-based mod-
els from Dowerah et al. [40] and consider them as base-
lines. The baseline BLSTM-based and FaSNet-based models
are trained with the same data as used for the proposed ap-
proaches. First, we compare GradSE to the separately trained
pre-processing approaches. Then joint optimization is done
using both speech enhancement and SV module. Joint opti-
mization consistently improves the performance on both the
utterance lengths as well as on all the SNR conditions. Using
KD loss further enhances the SV performance. In terms of
the two joint optimized models, the proposed GradSE-based
model outperforms the FaSNet-based model. With joint opti-
mization, we observe an absolute error reduction of 2%. FaS-
Net is good at speech enhancement, but when applied to SV,
the performance degrades mainly due to the artifacts FaSNet
introduced during training, as observed in [40].

Table 2 reports the results for different distractor noise
conditions on VOiCES Eval dataset. As expected, all the
approaches achieved the best performance in the condition
without any distractor noise (Clean in the table). The baseline
BLSTM Rank-1 performs poorly compared to the proposed
GradSE in all the noise conditions. Babble seems to be the
most challenging condition with an equal error rate of 8.8%
without any pre-processing due to overlapping speech inter-
ference as well as its similarity to the desired clean speech.
However, the error rate is reduced to 6.7% by GradSE alone
and 6.2% with joint optimization of GradSE and ECAPA-
TDNN using KD loss. Joint optimization of both multichan-
nel speech enhancement and SV using KD loss outperforms
all the other approaches on all the noise conditions even
though the model was trained on a synthetic dataset.

6. CONCLUSION

We introduced GradSE, a novel multichannel speech en-
hancement approach based on diffusion probabilistic models
for far-field speaker verification. In order to facilitate speaker
verification in adverse conditions, we applied a two-stage ap-
proach in which the front-end multichannel speech enhance-
ment is trained separately at first and then jointly optimized
with the back-end speaker verification. To the best of our
knowledge, this is the first study to apply the diffusion prob-
abilistic models for multichannel speech enhancement as a
front-end to speaker verification.

We explored various experimentations, and GradSE con-
sistently improved the performance over state-of-the-art pre-
processing approaches. Moreover, the joint optimization of
the whole system (GradSE speech enhancement and ECAPA-
TDNN SV) using knowledge distillation loss achieved excel-
lent results over separately trained models on the synthetic
dataset as well as on the VOiCES dataset. In the future,
we would like to investigate various teacher model architec-
tures, such as wav2vec and UniSpeech, under a multi-teacher
knowledge distillation setting.
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